Mercurial > urweb
view src/coq/Semantics.v @ 615:3c77133afd9a
Start of Featherweight Ur semantics
author | Adam Chlipala <adamc@hcoop.net> |
---|---|
date | Tue, 17 Feb 2009 14:49:28 -0500 |
parents | |
children | d26d1f3acfd6 |
line wrap: on
line source
(* Copyright (c) 2009, Adam Chlipala * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - The names of contributors may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. *) Require Import Arith List Omega TheoryList. Require Import Syntax. Set Implicit Arguments. Section row'. Variable A : Type. Inductive row' : list name -> Type := | Nil : row' nil | Cons : forall n ls, A -> AllS (lt n) ls -> row' ls -> row' (n :: ls). End row'. Implicit Arguments Nil [A]. Record row (A : Type) : Type := Row { keys : list name; data : row' A keys }. Inductive record' : forall ls, row' Set ls -> Set := | RNil : record' Nil | RCons : forall n ls (T : Set) (pf : AllS (lt n) ls) r, T -> record' r -> record' (Cons T pf r). Definition record (r : row Set) := record' (data r). Fixpoint kDen (k : kind) : Type := match k with | KType => Set | KName => name | KArrow k1 k2 => kDen k1 -> kDen k2 | KRecord k1 => row (kDen k1) end. Axiom cheat : forall T, T. Fixpoint cinsert (n : name) (ls : list name) {struct ls} : list name := match ls with | nil => n :: nil | n' :: ls' => if eq_nat_dec n n' then ls else if le_lt_dec n n' then n :: ls else n' :: cinsert n ls' end. Hint Constructors AllS. Hint Extern 1 (_ < _) => omega. Lemma insert_front' : forall n n', n <> n' -> n <= n' -> forall ls, AllS (lt n') ls -> AllS (lt n) ls. induction 3; auto. Qed. Lemma insert_front : forall n n', n <> n' -> n <= n' -> forall ls, AllS (lt n') ls -> AllS (lt n) (n' :: ls). Hint Resolve insert_front'. eauto. Qed. Lemma insert_continue : forall n n', n <> n' -> n' < n -> forall ls, AllS (lt n') ls -> AllS (lt n') (cinsert n ls). induction 3; simpl; auto; repeat (match goal with | [ |- context[if ?E then _ else _] ] => destruct E end; auto). Qed. Fixpoint insert T (n : name) (v : T) ls (r : row' T ls) {struct r} : row' T (cinsert n ls) := match r in row' _ ls return row' T (cinsert n ls) with | Nil => Cons (n := n) v (allS_nil _) Nil | Cons n' ls' v' pf r' => match eq_nat_dec n n' as END return row' _ (if END then _ else _) with | left _ => Cons (n := n') v' pf r' | right pfNe => match le_lt_dec n n' as LLD return row' _ (if LLD then _ else _) with | left pfLe => Cons (n := n) v (insert_front pfNe pfLe pf) (Cons (n := n') v' pf r') | right pfLt => Cons (n := n') v' (insert_continue pfNe pfLt pf) (insert n v r') end end end. Fixpoint cconcat (ls1 ls2 : list name) {struct ls1} : list name := match ls1 with | nil => ls2 | n :: ls1' => cinsert n (cconcat ls1' ls2) end. Fixpoint concat T ls1 ls2 (r1 : row' T ls1) (r2 : row' T ls2) {struct r1} : row' T (cconcat ls1 ls2) := match r1 in row' _ ls1 return row' _ (cconcat ls1 _) with | Nil => r2 | Cons n _ v _ r1' => insert n v (concat r1' r2) end. Fixpoint cfold T T' (f : name -> T -> T' -> T') (i : T') ls (r : row' T ls) {struct r} : T' := match r with | Nil => i | Cons n _ v _ r' => f n v (cfold f i r') end. Fixpoint cDen k (c : con kDen k) {struct c} : kDen k := match c in con _ k return kDen k with | CVar _ x => x | Arrow c1 c2 => cDen c1 -> cDen c2 | Poly _ c1 => forall x, cDen (c1 x) | CAbs _ _ c1 => fun x => cDen (c1 x) | CApp _ _ c1 c2 => (cDen c1) (cDen c2) | Name n => n | TRecord c1 => record (cDen c1) | CEmpty _ => Row Nil | CSingle _ c1 c2 => Row (Cons (n := cDen c1) (cDen c2) (allS_nil _) Nil) | CConcat _ c1 c2 => Row (concat (data (cDen c1)) (data (cDen c2))) | CFold k1 k2 => fun f i r => cfold f i (data r) | CGuarded _ _ _ _ c => cDen c end.