Mercurial > urweb
diff src/coq/Semantics.v @ 615:3c77133afd9a
Start of Featherweight Ur semantics
author | Adam Chlipala <adamc@hcoop.net> |
---|---|
date | Tue, 17 Feb 2009 14:49:28 -0500 |
parents | |
children | d26d1f3acfd6 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/coq/Semantics.v Tue Feb 17 14:49:28 2009 -0500 @@ -0,0 +1,156 @@ +(* Copyright (c) 2009, Adam Chlipala + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * + * - Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * - Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * - The names of contributors may not be used to endorse or promote products + * derived from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + * POSSIBILITY OF SUCH DAMAGE. + *) + +Require Import Arith List Omega TheoryList. + +Require Import Syntax. + +Set Implicit Arguments. + + +Section row'. + Variable A : Type. + + Inductive row' : list name -> Type := + | Nil : row' nil + | Cons : forall n ls, A -> AllS (lt n) ls -> row' ls -> row' (n :: ls). +End row'. + +Implicit Arguments Nil [A]. + +Record row (A : Type) : Type := Row { + keys : list name; + data : row' A keys +}. + +Inductive record' : forall ls, row' Set ls -> Set := +| RNil : record' Nil +| RCons : forall n ls (T : Set) (pf : AllS (lt n) ls) r, T -> record' r -> record' (Cons T pf r). + +Definition record (r : row Set) := record' (data r). + +Fixpoint kDen (k : kind) : Type := + match k with + | KType => Set + | KName => name + | KArrow k1 k2 => kDen k1 -> kDen k2 + | KRecord k1 => row (kDen k1) + end. + +Axiom cheat : forall T, T. + +Fixpoint cinsert (n : name) (ls : list name) {struct ls} : list name := + match ls with + | nil => n :: nil + | n' :: ls' => + if eq_nat_dec n n' + then ls + else if le_lt_dec n n' + then n :: ls + else n' :: cinsert n ls' + end. + +Hint Constructors AllS. +Hint Extern 1 (_ < _) => omega. + +Lemma insert_front' : forall n n', + n <> n' + -> n <= n' + -> forall ls, AllS (lt n') ls + -> AllS (lt n) ls. + induction 3; auto. +Qed. + +Lemma insert_front : forall n n', + n <> n' + -> n <= n' + -> forall ls, AllS (lt n') ls + -> AllS (lt n) (n' :: ls). + Hint Resolve insert_front'. + eauto. +Qed. + +Lemma insert_continue : forall n n', + n <> n' + -> n' < n + -> forall ls, AllS (lt n') ls + -> AllS (lt n') (cinsert n ls). + induction 3; simpl; auto; + repeat (match goal with + | [ |- context[if ?E then _ else _] ] => destruct E + end; auto). +Qed. + +Fixpoint insert T (n : name) (v : T) ls (r : row' T ls) {struct r} : row' T (cinsert n ls) := + match r in row' _ ls return row' T (cinsert n ls) with + | Nil => Cons (n := n) v (allS_nil _) Nil + | Cons n' ls' v' pf r' => + match eq_nat_dec n n' as END + return row' _ (if END then _ else _) with + | left _ => Cons (n := n') v' pf r' + | right pfNe => + match le_lt_dec n n' as LLD + return row' _ (if LLD then _ else _) with + | left pfLe => Cons (n := n) v (insert_front pfNe pfLe pf) (Cons (n := n') v' pf r') + | right pfLt => Cons (n := n') v' (insert_continue pfNe pfLt pf) (insert n v r') + end + end + end. + +Fixpoint cconcat (ls1 ls2 : list name) {struct ls1} : list name := + match ls1 with + | nil => ls2 + | n :: ls1' => cinsert n (cconcat ls1' ls2) + end. + +Fixpoint concat T ls1 ls2 (r1 : row' T ls1) (r2 : row' T ls2) {struct r1} : row' T (cconcat ls1 ls2) := + match r1 in row' _ ls1 return row' _ (cconcat ls1 _) with + | Nil => r2 + | Cons n _ v _ r1' => insert n v (concat r1' r2) + end. + +Fixpoint cfold T T' (f : name -> T -> T' -> T') (i : T') ls (r : row' T ls) {struct r} : T' := + match r with + | Nil => i + | Cons n _ v _ r' => f n v (cfold f i r') + end. + +Fixpoint cDen k (c : con kDen k) {struct c} : kDen k := + match c in con _ k return kDen k with + | CVar _ x => x + | Arrow c1 c2 => cDen c1 -> cDen c2 + | Poly _ c1 => forall x, cDen (c1 x) + | CAbs _ _ c1 => fun x => cDen (c1 x) + | CApp _ _ c1 c2 => (cDen c1) (cDen c2) + | Name n => n + | TRecord c1 => record (cDen c1) + | CEmpty _ => Row Nil + | CSingle _ c1 c2 => Row (Cons (n := cDen c1) (cDen c2) (allS_nil _) Nil) + | CConcat _ c1 c2 => Row (concat (data (cDen c1)) (data (cDen c2))) + | CFold k1 k2 => fun f i r => cfold f i (data r) + | CGuarded _ _ _ _ c => cDen c + end.