annotate doc/manual.tex @ 1888:5f478ecf65e4

Identify more local definitions as functions that should be lifted to the top level, which has synergistic effects on inlining later
author Adam Chlipala <adam@chlipala.net>
date Tue, 05 Nov 2013 11:58:52 -0500
parents a5b08bdfa450
children 779c390382b9
rev   line source
adamc@524 1 \documentclass{article}
adamc@554 2 \usepackage{fullpage,amsmath,amssymb,proof,url}
rmbruijn@1568 3 \usepackage[T1]{fontenc}
vshabanoff@1765 4 \usepackage{ae,aecompl}
adamc@524 5 \newcommand{\cd}[1]{\texttt{#1}}
adamc@524 6 \newcommand{\mt}[1]{\mathsf{#1}}
adamc@524 7
adamc@524 8 \newcommand{\rc}{+ \hspace{-.075in} + \;}
adamc@527 9 \newcommand{\rcut}{\; \texttt{--} \;}
adamc@527 10 \newcommand{\rcutM}{\; \texttt{---} \;}
adamc@524 11
adamc@524 12 \begin{document}
adamc@524 13
adamc@524 14 \title{The Ur/Web Manual}
adamc@524 15 \author{Adam Chlipala}
adamc@524 16
adamc@524 17 \maketitle
adamc@524 18
adamc@540 19 \tableofcontents
adamc@540 20
adamc@554 21
adamc@554 22 \section{Introduction}
adamc@554 23
adam@1797 24 \emph{Ur} is a programming language designed to introduce richer type system features into functional programming in the tradition of ML and Haskell. Ur is functional, pure, statically typed, and strict. Ur supports a powerful kind of \emph{metaprogramming} based on \emph{type-level computation with type-level records}.
adamc@554 25
adamc@554 26 \emph{Ur/Web} is Ur plus a special standard library and associated rules for parsing and optimization. Ur/Web supports construction of dynamic web applications backed by SQL databases. The signature of the standard library is such that well-typed Ur/Web programs ``don't go wrong'' in a very broad sense. Not only do they not crash during particular page generations, but they also may not:
adamc@554 27
adamc@554 28 \begin{itemize}
adamc@554 29 \item Suffer from any kinds of code-injection attacks
adamc@554 30 \item Return invalid HTML
adamc@554 31 \item Contain dead intra-application links
adamc@554 32 \item Have mismatches between HTML forms and the fields expected by their handlers
adamc@652 33 \item Include client-side code that makes incorrect assumptions about the ``AJAX''-style services that the remote web server provides
adamc@554 34 \item Attempt invalid SQL queries
adamc@652 35 \item Use improper marshaling or unmarshaling in communication with SQL databases or between browsers and web servers
adamc@554 36 \end{itemize}
adamc@554 37
adamc@554 38 This type safety is just the foundation of the Ur/Web methodology. It is also possible to use metaprogramming to build significant application pieces by analysis of type structure. For instance, the demo includes an ML-style functor for building an admin interface for an arbitrary SQL table. The type system guarantees that the admin interface sub-application that comes out will always be free of the above-listed bugs, no matter which well-typed table description is given as input.
adamc@554 39
adamc@652 40 The Ur/Web compiler also produces very efficient object code that does not use garbage collection. These compiled programs will often be even more efficient than what most programmers would bother to write in C. The compiler also generates JavaScript versions of client-side code, with no need to write those parts of applications in a different language.
adamc@554 41
adamc@554 42 \medskip
adamc@554 43
adamc@554 44 The official web site for Ur is:
adamc@554 45 \begin{center}
adamc@554 46 \url{http://www.impredicative.com/ur/}
adamc@554 47 \end{center}
adamc@554 48
adamc@555 49
adamc@555 50 \section{Installation}
adamc@555 51
adamc@555 52 If you are lucky, then the following standard command sequence will suffice for installation, in a directory to which you have unpacked the latest distribution tarball.
adamc@555 53
adamc@555 54 \begin{verbatim}
adamc@555 55 ./configure
adamc@555 56 make
adamc@555 57 sudo make install
adamc@555 58 \end{verbatim}
adamc@555 59
adam@1523 60 Some other packages must be installed for the above to work. At a minimum, you need a standard UNIX shell, with standard UNIX tools like sed and GCC (or an alternate C compiler) in your execution path; MLton, the whole-program optimizing compiler for Standard ML; and the development files for the OpenSSL C library. As of this writing, in the ``testing'' version of Debian Linux, this command will install the more uncommon of these dependencies:
adamc@896 61 \begin{verbatim}
adam@1368 62 apt-get install mlton libssl-dev
adamc@896 63 \end{verbatim}
adamc@555 64
adamc@896 65 To build programs that access SQL databases, you also need one of these client libraries for supported backends.
adamc@555 66 \begin{verbatim}
adamc@896 67 apt-get install libpq-dev libmysqlclient15-dev libsqlite3-dev
adamc@555 68 \end{verbatim}
adamc@555 69
adamc@555 70 It is also possible to access the modules of the Ur/Web compiler interactively, within Standard ML of New Jersey. To install the prerequisites in Debian testing:
adamc@555 71 \begin{verbatim}
adamc@555 72 apt-get install smlnj libsmlnj-smlnj ml-yacc ml-lpt
adamc@555 73 \end{verbatim}
adamc@555 74
adamc@555 75 To begin an interactive session with the Ur compiler modules, run \texttt{make smlnj}, and then, from within an \texttt{sml} session, run \texttt{CM.make "src/urweb.cm";}. The \texttt{Compiler} module is the main entry point.
adamc@555 76
adamc@896 77 To run an SQL-backed application with a backend besides SQLite, you will probably want to install one of these servers.
adamc@555 78
adamc@555 79 \begin{verbatim}
adam@1400 80 apt-get install postgresql-8.4 mysql-server-5.1
adamc@555 81 \end{verbatim}
adamc@555 82
adamc@555 83 To use the Emacs mode, you must have a modern Emacs installed. We assume that you already know how to do this, if you're in the business of looking for an Emacs mode. The demo generation facility of the compiler will also call out to Emacs to syntax-highlight code, and that process depends on the \texttt{htmlize} module, which can be installed in Debian testing via:
adamc@555 84
adamc@555 85 \begin{verbatim}
adamc@555 86 apt-get install emacs-goodies-el
adamc@555 87 \end{verbatim}
adamc@555 88
adam@1441 89 If you don't want to install the Emacs mode, run \texttt{./configure} with the argument \texttt{--without-emacs}.
adam@1441 90
adam@1523 91 Even with the right packages installed, configuration and building might fail to work. After you run \texttt{./configure}, you will see the values of some named environment variables printed. You may need to adjust these values to get proper installation for your system. To change a value, store your preferred alternative in the corresponding UNIX environment variable, before running \texttt{./configure}. For instance, here is how to change the list of extra arguments that the Ur/Web compiler will pass to the C compiler and linker on every invocation. Some older GCC versions need this setting to mask a bug in function inlining.
adamc@555 92
adamc@555 93 \begin{verbatim}
adam@1523 94 CCARGS=-fno-inline ./configure
adamc@555 95 \end{verbatim}
adamc@555 96
adam@1523 97 Since the author is still getting a handle on the GNU Autotools that provide the build system, you may need to do some further work to get started, especially in environments with significant differences from Linux (where most testing is done). The variables \texttt{PGHEADER}, \texttt{MSHEADER}, and \texttt{SQHEADER} may be used to set the proper C header files to include for the development libraries of PostgreSQL, MySQL, and SQLite, respectively. To get libpq to link, one OS X user reported setting \texttt{CCARGS="-I/opt/local/include -L/opt/local/lib/postgresql84"}, after creating a symbolic link with \texttt{ln -s /opt/local/include/postgresql84 /opt/local/include/postgresql}.
adamc@555 98
adamc@555 99 The Emacs mode can be set to autoload by adding the following to your \texttt{.emacs} file.
adamc@555 100
adamc@555 101 \begin{verbatim}
adamc@555 102 (add-to-list 'load-path "/usr/local/share/emacs/site-lisp/urweb-mode")
adamc@555 103 (load "urweb-mode-startup")
adamc@555 104 \end{verbatim}
adamc@555 105
adamc@555 106 Change the path in the first line if you chose a different Emacs installation path during configuration.
adamc@555 107
adamc@555 108
adamc@556 109 \section{Command-Line Compiler}
adamc@556 110
adam@1604 111 \subsection{\label{cl}Project Files}
adamc@556 112
adamc@556 113 The basic inputs to the \texttt{urweb} compiler are project files, which have the extension \texttt{.urp}. Here is a sample \texttt{.urp} file.
adamc@556 114
adamc@556 115 \begin{verbatim}
adamc@556 116 database dbname=test
adamc@556 117 sql crud1.sql
adamc@556 118
adamc@556 119 crud
adamc@556 120 crud1
adamc@556 121 \end{verbatim}
adamc@556 122
adamc@556 123 The \texttt{database} line gives the database information string to pass to libpq. In this case, the string only says to connect to a local database named \texttt{test}.
adamc@556 124
adamc@556 125 The \texttt{sql} line asks for an SQL source file to be generated, giving the commands to run to create the tables and sequences that this application expects to find. After building this \texttt{.urp} file, the following commands could be used to initialize the database, assuming that the current UNIX user exists as a Postgres user with database creation privileges:
adamc@556 126
adamc@556 127 \begin{verbatim}
adamc@556 128 createdb test
adamc@556 129 psql -f crud1.sql test
adamc@556 130 \end{verbatim}
adamc@556 131
adam@1331 132 A blank line separates the named directives from a list of modules to include in the project. Any line may contain a shell-script-style comment, where any suffix of a line starting at a hash character \texttt{\#} is ignored.
adamc@556 133
adamc@556 134 For each entry \texttt{M} in the module list, the file \texttt{M.urs} is included in the project if it exists, and the file \texttt{M.ur} must exist and is always included.
adamc@556 135
adamc@783 136 Here is the complete list of directive forms. ``FFI'' stands for ``foreign function interface,'' Ur's facility for interaction between Ur programs and C and JavaScript libraries.
adamc@783 137 \begin{itemize}
adam@1799 138 \item \texttt{[allow|deny] [url|mime|requestHeader|responseHeader|env] PATTERN} registers a rule governing which URLs, MIME types, HTTP request headers, HTTP response headers, or environment variable names are allowed to appear explicitly in this application. The first such rule to match a name determines the verdict. If \texttt{PATTERN} ends in \texttt{*}, it is interpreted as a prefix rule. Otherwise, a string must match it exactly.
adam@1400 139 \item \texttt{alwaysInline PATH} requests that every call to the referenced function be inlined. Section \ref{structure} explains how functions are assigned path strings.
adam@1462 140 \item \texttt{benignEffectful Module.ident} registers an FFI function or transaction as having side effects. The optimizer avoids removing, moving, or duplicating calls to such functions. Every effectful FFI function must be registered, or the optimizer may make invalid transformations. This version of the \texttt{effectful} directive registers that this function only has side effects that remain local to a single page generation.
adamc@783 141 \item \texttt{clientOnly Module.ident} registers an FFI function or transaction that may only be run in client browsers.
adam@1881 142 \item \texttt{clientToServer Module.ident} adds FFI type \texttt{Module.ident} to the list of types that are OK to marshal from clients to servers. Values like XML trees and SQL queries are hard to marshal without introducing expensive validity checks, so it's easier to ensure that the server never trusts clients to send such values. The file \texttt{include/urweb/urweb\_cpp.h} shows examples of the C support functions that are required of any type that may be marshalled. These include \texttt{attrify}, \texttt{urlify}, and \texttt{unurlify} functions.
adam@1816 143 \item \texttt{coreInline TREESIZE} sets how many nodes the AST of a function definition may have before the optimizer stops trying hard to inline calls to that function. (This is one of two options for one of two intermediate languages within the compiler.)
adamc@783 144 \item \texttt{database DBSTRING} sets the string to pass to libpq to open a database connection.
adamc@783 145 \item \texttt{debug} saves some intermediate C files, which is mostly useful to help in debugging the compiler itself.
adam@1878 146 \item \texttt{effectful Module.ident} registers an FFI function or transaction as having side effects. The optimizer avoids removing, moving, or duplicating calls to such functions. This is the default behavior for \texttt{transaction}-based types.
adamc@783 147 \item \texttt{exe FILENAME} sets the filename to which to write the output executable. The default for file \texttt{P.urp} is \texttt{P.exe}.
adam@1881 148 \item \texttt{ffi FILENAME} reads the file \texttt{FILENAME.urs} to determine the interface to a new FFI module. The name of the module is calculated from \texttt{FILENAME} in the same way as for normal source files. See the files \texttt{include/urweb/urweb\_cpp.h} and \texttt{src/c/urweb.c} for examples of C headers and implementations for FFI modules. In general, every type or value \texttt{Module.ident} becomes \texttt{uw\_Module\_ident} in C.
adamc@1099 149 \item \texttt{include FILENAME} adds \texttt{FILENAME} to the list of files to be \texttt{\#include}d in C sources. This is most useful for interfacing with new FFI modules.
adamc@783 150 \item \texttt{jsFunc Module.ident=name} gives the JavaScript name of an FFI value.
adamc@1089 151 \item \texttt{library FILENAME} parses \texttt{FILENAME.urp} and merges its contents with the rest of the current file's contents. If \texttt{FILENAME.urp} doesn't exist, the compiler also tries \texttt{FILENAME/lib.urp}.
adam@1309 152 \item \texttt{limit class num} sets a resource usage limit for generated applications. The limit \texttt{class} will be set to the non-negative integer \texttt{num}. The classes are:
adam@1309 153 \begin{itemize}
adam@1309 154 \item \texttt{cleanup}: maximum number of cleanup operations (e.g., entries recording the need to deallocate certain temporary objects) that may be active at once per request
adam@1850 155 \item \texttt{clients}: maximum number of simultaneous connections to one application by web clients waiting for new asynchronous messages sent with \texttt{Basis.send}
adam@1850 156 \item \texttt{database}: maximum size of a database file (currently only used by SQLite, which interprets the parameter as a number of pages, where page size is itself a quantity configurable in SQLite)
adam@1309 157 \item \texttt{deltas}: maximum number of messages sendable in a single request handler with \texttt{Basis.send}
adam@1309 158 \item \texttt{globals}: maximum number of global variables that FFI libraries may set in a single request context
adam@1309 159 \item \texttt{headers}: maximum size (in bytes) of per-request buffer used to hold HTTP headers for generated pages
adam@1797 160 \item \texttt{heap}: maximum size (in bytes) of per-request heap for dynamically allocated data
adam@1309 161 \item \texttt{inputs}: maximum number of top-level form fields per request
adam@1309 162 \item \texttt{messages}: maximum size (in bytes) of per-request buffer used to hold a single outgoing message sent with \texttt{Basis.send}
adam@1309 163 \item \texttt{page}: maximum size (in bytes) of per-request buffer used to hold HTML content of generated pages
adam@1309 164 \item \texttt{script}: maximum size (in bytes) of per-request buffer used to hold JavaScript content of generated pages
adam@1309 165 \item \texttt{subinputs}: maximum number of form fields per request, excluding top-level fields
adam@1309 166 \item \texttt{time}: maximum running time of a single page request, in units of approximately 0.1 seconds
adam@1309 167 \item \texttt{transactionals}: maximum number of custom transactional actions (e.g., sending an e-mail) that may be run in a single page generation
adam@1309 168 \end{itemize}
adam@1523 169 \item \texttt{link FILENAME} adds \texttt{FILENAME} to the list of files to be passed to the linker at the end of compilation. This is most useful for importing extra libraries needed by new FFI modules.
adam@1725 170 \item \texttt{linker CMD} sets \texttt{CMD} as the command line prefix to use for linking C object files. The command line will be completed with a space-separated list of \texttt{.o} and \texttt{.a} files, \texttt{-L} and \texttt{-l} flags, and finally with a \texttt{-o} flag to set the location where the executable should be written.
adam@1332 171 \item \texttt{minHeap NUMBYTES} sets the initial size for thread-local heaps used in handling requests. These heaps grow automatically as needed (up to any maximum set with \texttt{limit}), but each regrow requires restarting the request handling process.
adam@1816 172 \item \texttt{monoInline TREESIZE} sets how many nodes the AST of a function definition may have before the optimizer stops trying hard to inline calls to that function. (This is one of two options for one of two intermediate languages within the compiler.)
adam@1478 173 \item \texttt{noXsrfProtection URIPREFIX} turns off automatic cross-site request forgery protection for the page handler identified by the given URI prefix. This will avoid checking cryptographic signatures on cookies, which is generally a reasonable idea for some pages, such as login pages that are going to discard all old cookie values, anyway.
adam@1297 174 \item \texttt{onError Module.var} changes the handling of fatal application errors. Instead of displaying a default, ugly error 500 page, the error page will be generated by calling function \texttt{Module.var} on a piece of XML representing the error message. The error handler should have type $\mt{xbody} \to \mt{transaction} \; \mt{page}$. Note that the error handler \emph{cannot} be in the application's main module, since that would register it as explicitly callable via URLs.
adamc@852 175 \item \texttt{path NAME=VALUE} creates a mapping from \texttt{NAME} to \texttt{VALUE}. This mapping may be used at the beginnings of filesystem paths given to various other configuration directives. A path like \texttt{\$NAME/rest} is expanded to \texttt{VALUE/rest}. There is an initial mapping from the empty name (for paths like \texttt{\$/list}) to the directory where the Ur/Web standard library is installed. If you accept the default \texttt{configure} options, this directory is \texttt{/usr/local/lib/urweb/ur}.
adamc@783 176 \item \texttt{prefix PREFIX} sets the prefix included before every URI within the generated application. The default is \texttt{/}.
adamc@783 177 \item \texttt{profile} generates an executable that may be used with gprof.
adam@1752 178 \item \texttt{rewrite KIND FROM TO} gives a rule for rewriting canonical module paths. For instance, the canonical path of a page may be \texttt{Mod1.Mod2.mypage}, while you would rather the page were accessed via a URL containing only \texttt{page}. The directive \texttt{rewrite url Mod1/Mod2/mypage page} would accomplish that. The possible values of \texttt{KIND} determine which kinds of objects are affected. The kind \texttt{all} matches any object, and \texttt{url} matches page URLs. The kinds \texttt{table}, \texttt{sequence}, and \texttt{view} match those sorts of SQL entities, and \texttt{relation} matches any of those three. \texttt{cookie} matches HTTP cookies, and \texttt{style} matches CSS class names. If \texttt{FROM} ends in \texttt{/*}, it is interpreted as a prefix matching rule, and rewriting occurs by replacing only the appropriate prefix of a path with \texttt{TO}. The \texttt{TO} field may be left empty to express the idea of deleting a prefix. For instance, \texttt{rewrite url Main/*} will strip all \texttt{Main/} prefixes from URLs. While the actual external names of relations and styles have parts separated by underscores instead of slashes, all rewrite rules must be written in terms of slashes. An optional suffix of \cd{[-]} for a \cd{rewrite} directive asks to additionally replace all \cd{\_} characters with \cd{-} characters, which can be handy for, e.g., interfacing with an off-the-shelf CSS library that prefers hyphens over underscores.
adamc@1183 179 \item \texttt{safeGet URI} asks to allow the page handler assigned this canonical URI prefix to cause persistent side effects, even if accessed via an HTTP \cd{GET} request.
adamc@783 180 \item \texttt{script URL} adds \texttt{URL} to the list of extra JavaScript files to be included at the beginning of any page that uses JavaScript. This is most useful for importing JavaScript versions of functions found in new FFI modules.
adamc@783 181 \item \texttt{serverOnly Module.ident} registers an FFI function or transaction that may only be run on the server.
adamc@1164 182 \item \texttt{sigfile PATH} sets a path where your application should look for a key to use in cryptographic signing. This is used to prevent cross-site request forgery attacks for any form handler that both reads a cookie and creates side effects. If the referenced file doesn't exist, an application will create it and read its saved data on future invocations. You can also initialize the file manually with any contents at least 16 bytes long; the first 16 bytes will be treated as the key.
adamc@783 183 \item \texttt{sql FILENAME} sets where to write an SQL file with the commands to create the expected database schema. The default is not to create such a file.
adam@1629 184 \item \texttt{timeFormat FMT} accepts a time format string, as processed by the POSIX C function \texttt{strftime()}. This controls the default rendering of $\mt{time}$ values, via the $\mt{show}$ instance for $\mt{time}$.
adamc@783 185 \item \texttt{timeout N} sets to \texttt{N} seconds the amount of time that the generated server will wait after the last contact from a client before determining that that client has exited the application. Clients that remain active will take the timeout setting into account in determining how often to ping the server, so it only makes sense to set a high timeout to cope with browser and network delays and failures. Higher timeouts can lead to more unnecessary client information taking up memory on the server. The timeout goes unused by any page that doesn't involve the \texttt{recv} function, since the server only needs to store per-client information for clients that receive asynchronous messages.
adamc@783 186 \end{itemize}
adamc@701 187
adamc@701 188
adamc@557 189 \subsection{Building an Application}
adamc@557 190
adamc@557 191 To compile project \texttt{P.urp}, simply run
adamc@557 192 \begin{verbatim}
adamc@557 193 urweb P
adamc@557 194 \end{verbatim}
adamc@1198 195 The output executable is a standalone web server. Run it with the command-line argument \texttt{-h} to see which options it takes. If the project file lists a database, the web server will attempt to connect to that database on startup. See Section \ref{structure} for an explanation of the URI mapping convention, which determines how each page of your application may be accessed via URLs.
adamc@557 196
adamc@557 197 To time how long the different compiler phases run, without generating an executable, run
adamc@557 198 \begin{verbatim}
adamc@557 199 urweb -timing P
adamc@557 200 \end{verbatim}
adamc@557 201
adamc@1086 202 To stop the compilation process after type-checking, run
adamc@1086 203 \begin{verbatim}
adamc@1086 204 urweb -tc P
adamc@1086 205 \end{verbatim}
adam@1530 206 It is often worthwhile to run \cd{urweb} in this mode, because later phases of compilation can take significantly longer than type-checking alone, and the type checker catches many errors that would traditionally be found through debugging a running application.
adamc@1086 207
adam@1745 208 A related option is \cd{-dumpTypes}, which, as long as parsing succeeds, outputs to stdout a summary of the kinds of all identifiers declared with \cd{con} and the types of all identifiers declared with \cd{val} or \cd{val rec}. This information is dumped even if there are errors during type inference. Compiler error messages go to stderr, not stdout, so it is easy to distinguish the two kinds of output programmatically. A refined version of this option is \cd{-dumpTypesOnError}, which only has an effect when there are compilation errors.
adam@1531 209
adam@1723 210 It may be useful to combine another option \cd{-unifyMore} with \cd{-dumpTypes}. Ur/Web type inference proceeds in a series of stages, where the first is standard Hindley-Milner type inference as in ML, and the later phases add more complex aspects. By default, an error detected in one phase cuts off the execution of later phases. However, the later phases might still determine more values of unification variables. These value choices might be ``misguided,'' since earlier phases have not come up with reasonable types at a coarser detail level; but the unification decisions may still be useful for debugging and program understanding. So, if a run with \cd{-dumpTypes} leaves unification variables undetermined in positions where you would like to see best-effort guesses instead, consider \cd{-unifyMore}. Note that \cd{-unifyMore} has no effect when type inference succeeds fully, but it may lead to many more error messages when inference fails.
adam@1723 211
adamc@1170 212 To output information relevant to CSS stylesheets (and not finish regular compilation), run
adamc@1170 213 \begin{verbatim}
adamc@1170 214 urweb -css P
adamc@1170 215 \end{verbatim}
adamc@1170 216 The first output line is a list of categories of CSS properties that would be worth setting on the document body. The remaining lines are space-separated pairs of CSS class names and categories of properties that would be worth setting for that class. The category codes are divided into two varieties. Codes that reveal properties of a tag or its (recursive) children are \cd{B} for block-level elements, \cd{C} for table captions, \cd{D} for table cells, \cd{L} for lists, and \cd{T} for tables. Codes that reveal properties of the precise tag that uses a class are \cd{b} for block-level elements, \cd{t} for tables, \cd{d} for table cells, \cd{-} for table rows, \cd{H} for the possibility to set a height, \cd{N} for non-replaced inline-level elements, \cd{R} for replaced inline elements, and \cd{W} for the possibility to set a width.
adamc@1170 217
adam@1733 218 Ur/Web type inference can take a significant amount of time, so it can be helpful to cache type-inferred versions of source files. This mode can be activated by running
adam@1733 219 \begin{verbatim}
adam@1733 220 urweb daemon start
adam@1733 221 \end{verbatim}
adam@1733 222 Further \cd{urweb} invocations in the same working directory will send requests to a background daemon process that reuses type inference results whenever possible, tracking source file dependencies and modification times. To stop the background daemon, run
adam@1733 223 \begin{verbatim}
adam@1733 224 urweb daemon stop
adam@1733 225 \end{verbatim}
adam@1733 226 Communication happens via a UNIX domain socket in file \cd{.urweb\_daemon} in the working directory.
adam@1733 227
adam@1733 228 \medskip
adam@1733 229
adamc@896 230 Some other command-line parameters are accepted:
adamc@896 231 \begin{itemize}
ezyang@1739 232 \item \texttt{-boot}: Run Ur/Web from a build tree (and not from a system install). This is useful if you're testing the compiler and don't want to install it. It forces generation of statically linked executables.
ezyang@1739 233
adam@1875 234 \item \texttt{-ccompiler <PROGRAM>}: Select an alternative C compiler to call with command lines in compiling Ur/Web applications. (It's possible to set the default compiler as part of the \texttt{configure} process, but it may sometimes be useful to override the default.)
adam@1875 235
adamc@896 236 \item \texttt{-db <DBSTRING>}: Set database connection information, using the format expected by Postgres's \texttt{PQconnectdb()}, which is \texttt{name1=value1 ... nameN=valueN}. The same format is also parsed and used to discover connection parameters for MySQL and SQLite. The only significant settings for MySQL are \texttt{host}, \texttt{hostaddr}, \texttt{port}, \texttt{dbname}, \texttt{user}, and \texttt{password}. The only significant setting for SQLite is \texttt{dbname}, which is interpreted as the filesystem path to the database. Additionally, when using SQLite, a database string may be just a file path.
adamc@896 237
adamc@896 238 \item \texttt{-dbms [postgres|mysql|sqlite]}: Sets the database backend to use.
adamc@896 239 \begin{itemize}
adamc@896 240 \item \texttt{postgres}: This is PostgreSQL, the default. Among the supported engines, Postgres best matches the design philosophy behind Ur, with a focus on consistent views of data, even in the face of much concurrency. Different database engines have different quirks of SQL syntax. Ur/Web tends to use Postgres idioms where there are choices to be made, though the compiler translates SQL as needed to support other backends.
adamc@896 241
adamc@896 242 A command sequence like this can initialize a Postgres database, using a file \texttt{app.sql} generated by the compiler:
adamc@896 243 \begin{verbatim}
adamc@896 244 createdb app
adamc@896 245 psql -f app.sql app
adamc@896 246 \end{verbatim}
adamc@896 247
adamc@896 248 \item \texttt{mysql}: This is MySQL, another popular relational database engine that uses persistent server processes. Ur/Web needs transactions to function properly. Many installations of MySQL use non-transactional storage engines by default. Ur/Web generates table definitions that try to use MySQL's InnoDB engine, which supports transactions. You can edit the first line of a generated \texttt{.sql} file to change this behavior, but it really is true that Ur/Web applications will exhibit bizarre behavior if you choose an engine that ignores transaction commands.
adamc@896 249
adamc@896 250 A command sequence like this can initialize a MySQL database:
adamc@896 251 \begin{verbatim}
adamc@896 252 echo "CREATE DATABASE app" | mysql
adamc@896 253 mysql -D app <app.sql
adamc@896 254 \end{verbatim}
adamc@896 255
adamc@896 256 \item \texttt{sqlite}: This is SQLite, a simple filesystem-based transactional database engine. With this backend, Ur/Web applications can run without any additional server processes. The other engines are generally preferred for large-workload performance and full admin feature sets, while SQLite is popular for its low resource footprint and ease of set-up.
adamc@896 257
adamc@896 258 A command like this can initialize an SQLite database:
adamc@896 259 \begin{verbatim}
adamc@896 260 sqlite3 path/to/database/file <app.sql
adamc@896 261 \end{verbatim}
adamc@896 262 \end{itemize}
adamc@896 263
adam@1693 264 \item \texttt{-dumpSource}: When compilation fails, output to stderr the complete source code of the last intermediate program before the compilation phase that signaled the error. (Warning: these outputs can be very long and aren't especially optimized for readability!)
adam@1693 265
adam@1309 266 \item \texttt{-limit class num}: Equivalent to the \texttt{limit} directive from \texttt{.urp} files
adam@1309 267
adam@1850 268 \item \texttt{-moduleOf FILENAME}: Prints the Ur/Web module name corresponding to source file \texttt{FILENAME}, exiting immediately afterward.
adam@1850 269
adamc@896 270 \item \texttt{-output FILENAME}: Set where the application executable is written.
adamc@896 271
adamc@1127 272 \item \texttt{-path NAME VALUE}: Set the value of path variable \texttt{\$NAME} to \texttt{VALUE}, for use in \texttt{.urp} files.
adamc@1127 273
adam@1335 274 \item \texttt{-prefix PREFIX}: Equivalent to the \texttt{prefix} directive from \texttt{.urp} files
adam@1335 275
adam@1875 276 \item \texttt{-print-ccompiler}: Print the C compiler being used.
adam@1875 277
adam@1753 278 \item \texttt{-protocol [http|cgi|fastcgi|static]}: Set the protocol that the generated application speaks.
adamc@896 279 \begin{itemize}
adamc@896 280 \item \texttt{http}: This is the default. It is for building standalone web servers that can be accessed by web browsers directly.
adamc@896 281
adamc@896 282 \item \texttt{cgi}: This is the classic protocol that web servers use to generate dynamic content by spawning new processes. While Ur/Web programs may in general use message-passing with the \texttt{send} and \texttt{recv} functions, that functionality is not yet supported in CGI, since CGI needs a fresh process for each request, and message-passing needs to use persistent sockets to deliver messages.
adamc@896 283
adamc@896 284 Since Ur/Web treats paths in an unusual way, a configuration line like this one can be used to configure an application that was built with URL prefix \texttt{/Hello}:
adamc@896 285 \begin{verbatim}
adamc@896 286 ScriptAlias /Hello /path/to/hello.exe
adamc@896 287 \end{verbatim}
adamc@896 288
adamc@1163 289 A different method can be used for, e.g., a shared host, where you can only configure Apache via \texttt{.htaccess} files. Drop the generated executable into your web space and mark it as CGI somehow. For instance, if the script ends in \texttt{.exe}, you might put this in \texttt{.htaccess} in the directory containing the script:
adamc@1163 290 \begin{verbatim}
adamc@1163 291 Options +ExecCGI
adamc@1163 292 AddHandler cgi-script .exe
adamc@1163 293 \end{verbatim}
adamc@1163 294
adamc@1163 295 Additionally, make sure that Ur/Web knows the proper URI prefix for your script. For instance, if the script is accessed via \texttt{http://somewhere/dir/script.exe}, then include this line in your \texttt{.urp} file:
adamc@1163 296 \begin{verbatim}
adamc@1163 297 prefix /dir/script.exe/
adamc@1163 298 \end{verbatim}
adamc@1163 299
adamc@1163 300 To access the \texttt{foo} function in the \texttt{Bar} module, you would then hit \texttt{http://somewhere/dir/script.exe/Bar/foo}.
adamc@1163 301
adamc@1164 302 If your application contains form handlers that read cookies before causing side effects, then you will need to use the \texttt{sigfile} \texttt{.urp} directive, too.
adamc@1164 303
adamc@896 304 \item \texttt{fastcgi}: This is a newer protocol inspired by CGI, wherein web servers can start and reuse persistent external processes to generate dynamic content. Ur/Web doesn't implement the whole protocol, but Ur/Web's support has been tested to work with the \texttt{mod\_fastcgi}s of Apache and lighttpd.
adamc@896 305
adamc@896 306 To configure a FastCGI program with Apache, one could combine the above \texttt{ScriptAlias} line with a line like this:
adamc@896 307 \begin{verbatim}
adamc@896 308 FastCgiServer /path/to/hello.exe -idle-timeout 99999
adamc@896 309 \end{verbatim}
adamc@896 310 The idle timeout is only important for applications that use message-passing. Client connections may go long periods without receiving messages, and Apache tries to be helpful and garbage collect them in such cases. To prevent that behavior, we specify how long a connection must be idle to be collected.
adamc@896 311
adam@1753 312 Also see the discussion of the \cd{prefix} directive for CGI above; similar configuration is likely to be necessary for FastCGI. An Ur/Web application won't generally run correctly if it doesn't have a unique URI prefix assigned to it and configured with \cd{prefix}.
adam@1753 313
adamc@896 314 Here is some lighttpd configuration for the same application.
adamc@896 315 \begin{verbatim}
adamc@896 316 fastcgi.server = (
adamc@896 317 "/Hello/" =>
adamc@896 318 (( "bin-path" => "/path/to/hello.exe",
adamc@896 319 "socket" => "/tmp/hello",
adamc@896 320 "check-local" => "disable",
adamc@896 321 "docroot" => "/",
adamc@896 322 "max-procs" => "1"
adamc@896 323 ))
adamc@896 324 )
adamc@896 325 \end{verbatim}
adamc@896 326 The least obvious requirement is setting \texttt{max-procs} to 1, so that lighttpd doesn't try to multiplex requests across multiple external processes. This is required for message-passing applications, where a single database of client connections is maintained within a multi-threaded server process. Multiple processes may, however, be used safely with applications that don't use message-passing.
adamc@896 327
adamc@896 328 A FastCGI process reads the environment variable \texttt{URWEB\_NUM\_THREADS} to determine how many threads to spawn for handling client requests. The default is 1.
adam@1509 329
adam@1509 330 \item \texttt{static}: This protocol may be used to generate static web pages from Ur/Web code. The output executable expects a single command-line argument, giving the URI of a page to generate. For instance, this argument might be \cd{/main}, in which case a static HTTP response for that page will be written to stdout.
adamc@896 331 \end{itemize}
adamc@896 332
adamc@1127 333 \item \texttt{-root Name PATH}: Trigger an alternate module convention for all source files found in directory \texttt{PATH} or any of its subdirectories. Any file \texttt{PATH/foo.ur} defines a module \texttt{Name.Foo} instead of the usual \texttt{Foo}. Any file \texttt{PATH/subdir/foo.ur} defines a module \texttt{Name.Subdir.Foo}, and so on for arbitrary nesting of subdirectories.
adamc@1127 334
adamc@1164 335 \item \texttt{-sigfile PATH}: Same as the \texttt{sigfile} directive in \texttt{.urp} files
adamc@1164 336
adamc@896 337 \item \texttt{-sql FILENAME}: Set where a database set-up SQL script is written.
adamc@1095 338
adamc@1095 339 \item \texttt{-static}: Link the runtime system statically. The default is to link against dynamic libraries.
adamc@896 340 \end{itemize}
adamc@896 341
adam@1297 342 There is an additional convenience method for invoking \texttt{urweb}. If the main argument is \texttt{FOO}, and \texttt{FOO.ur} exists but \texttt{FOO.urp} doesn't, then the invocation is interpreted as if called on a \texttt{.urp} file containing \texttt{FOO} as its only main entry, with an additional \texttt{rewrite all FOO/*} directive.
adamc@556 343
adam@1509 344 \subsection{Tutorial Formatting}
adam@1509 345
adam@1509 346 The Ur/Web compiler also supports rendering of nice HTML tutorials from Ur source files, when invoked like \cd{urweb -tutorial DIR}. The directory \cd{DIR} is examined for files whose names end in \cd{.ur}. Every such file is translated into a \cd{.html} version.
adam@1509 347
adam@1509 348 These input files follow normal Ur syntax, with a few exceptions:
adam@1509 349 \begin{itemize}
adam@1509 350 \item The first line must be a comment like \cd{(* TITLE *)}, where \cd{TITLE} is a string of your choice that will be used as the title of the output page.
adam@1509 351 \item While most code in the output HTML will be formatted as a monospaced code listing, text in regular Ur comments is formatted as normal English text.
adam@1509 352 \item A comment like \cd{(* * HEADING *)} introduces a section heading, with text \cd{HEADING} of your choice.
adam@1509 353 \item To include both a rendering of an Ur expression and a pretty-printed version of its value, bracket the expression with \cd{(* begin eval *)} and \cd{(* end *)}. The result of expression evaluation is pretty-printed with \cd{show}, so the expression type must belong to that type class.
adam@1509 354 \item To include code that should not be shown in the tutorial (e.g., to add a \cd{show} instance to use with \cd{eval}), bracket the code with \cd{(* begin hide *)} and \cd{(* end *)}.
adam@1509 355 \end{itemize}
adam@1509 356
adam@1509 357 A word of warning: as for demo generation, tutorial generation calls Emacs to syntax-highlight Ur code.
adam@1509 358
adam@1522 359 \subsection{Run-Time Options}
adam@1522 360
adam@1522 361 Compiled applications consult a few environment variables to modify their behavior:
adam@1522 362
adam@1522 363 \begin{itemize}
adam@1522 364 \item \cd{URWEB\_NUM\_THREADS}: alternative to the \cd{-t} command-line argument (currently used only by FastCGI)
adam@1522 365 \item \cd{URWEB\_STACK\_SIZE}: size of per-thread stacks, in bytes
as@1564 366 \item \cd{URWEB\_PQ\_CON}: when using PostgreSQL, overrides the compiled-in connection string
adam@1522 367 \end{itemize}
adam@1522 368
adam@1509 369
adamc@529 370 \section{Ur Syntax}
adamc@529 371
adamc@784 372 In this section, we describe the syntax of Ur, deferring to a later section discussion of most of the syntax specific to SQL and XML. The sole exceptions are the declaration forms for relations, cookies, and styles.
adamc@524 373
adamc@524 374 \subsection{Lexical Conventions}
adamc@524 375
adamc@524 376 We give the Ur language definition in \LaTeX $\;$ math mode, since that is prettier than monospaced ASCII. The corresponding ASCII syntax can be read off directly. Here is the key for mapping math symbols to ASCII character sequences.
adamc@524 377
adamc@524 378 \begin{center}
adamc@524 379 \begin{tabular}{rl}
adamc@524 380 \textbf{\LaTeX} & \textbf{ASCII} \\
adamc@524 381 $\to$ & \cd{->} \\
adam@1687 382 $\longrightarrow$ & \cd{-{}->} \\
adamc@524 383 $\times$ & \cd{*} \\
adamc@524 384 $\lambda$ & \cd{fn} \\
adamc@524 385 $\Rightarrow$ & \cd{=>} \\
adamc@652 386 $\Longrightarrow$ & \cd{==>} \\
adamc@529 387 $\neq$ & \cd{<>} \\
adamc@529 388 $\leq$ & \cd{<=} \\
adamc@529 389 $\geq$ & \cd{>=} \\
adamc@524 390 \\
adamc@524 391 $x$ & Normal textual identifier, not beginning with an uppercase letter \\
adamc@525 392 $X$ & Normal textual identifier, beginning with an uppercase letter \\
adamc@524 393 \end{tabular}
adamc@524 394 \end{center}
adamc@524 395
adamc@525 396 We often write syntax like $e^*$ to indicate zero or more copies of $e$, $e^+$ to indicate one or more copies, and $e,^*$ and $e,^+$ to indicate multiple copies separated by commas. Another separator may be used in place of a comma. The $e$ term may be surrounded by parentheses to indicate grouping; those parentheses should not be included in the actual ASCII.
adamc@524 397
adamc@873 398 We write $\ell$ for literals of the primitive types, for the most part following C conventions. There are $\mt{int}$, $\mt{float}$, $\mt{char}$, and $\mt{string}$ literals. Character literals follow the SML convention instead of the C convention, written like \texttt{\#"a"} instead of \texttt{'a'}.
adamc@526 399
adamc@527 400 This version of the manual doesn't include operator precedences; see \texttt{src/urweb.grm} for that.
adamc@527 401
adam@1297 402 As in the ML language family, the syntax \texttt{(* ... *)} is used for (nestable) comments. Within XML literals, Ur/Web also supports the usual \texttt{<!-- ... -->} XML comments.
adam@1297 403
adamc@552 404 \subsection{\label{core}Core Syntax}
adamc@524 405
adamc@524 406 \emph{Kinds} classify types and other compile-time-only entities. Each kind in the grammar is listed with a description of the sort of data it classifies.
adamc@524 407 $$\begin{array}{rrcll}
adamc@524 408 \textrm{Kinds} & \kappa &::=& \mt{Type} & \textrm{proper types} \\
adamc@525 409 &&& \mt{Unit} & \textrm{the trivial constructor} \\
adamc@525 410 &&& \mt{Name} & \textrm{field names} \\
adamc@525 411 &&& \kappa \to \kappa & \textrm{type-level functions} \\
adamc@525 412 &&& \{\kappa\} & \textrm{type-level records} \\
adamc@525 413 &&& (\kappa\times^+) & \textrm{type-level tuples} \\
adamc@652 414 &&& X & \textrm{variable} \\
adam@1574 415 &&& X \longrightarrow \kappa & \textrm{kind-polymorphic type-level function} \\
adamc@529 416 &&& \_\_ & \textrm{wildcard} \\
adamc@525 417 &&& (\kappa) & \textrm{explicit precedence} \\
adamc@524 418 \end{array}$$
adamc@524 419
adamc@524 420 Ur supports several different notions of functions that take types as arguments. These arguments can be either implicit, causing them to be inferred at use sites; or explicit, forcing them to be specified manually at use sites. There is a common explicitness annotation convention applied at the definitions of and in the types of such functions.
adamc@524 421 $$\begin{array}{rrcll}
adamc@524 422 \textrm{Explicitness} & ? &::=& :: & \textrm{explicit} \\
adamc@558 423 &&& ::: & \textrm{implicit}
adamc@524 424 \end{array}$$
adamc@524 425
adamc@524 426 \emph{Constructors} are the main class of compile-time-only data. They include proper types and are classified by kinds.
adamc@524 427 $$\begin{array}{rrcll}
adamc@524 428 \textrm{Constructors} & c, \tau &::=& (c) :: \kappa & \textrm{kind annotation} \\
adamc@530 429 &&& \hat{x} & \textrm{constructor variable} \\
adamc@524 430 \\
adamc@525 431 &&& \tau \to \tau & \textrm{function type} \\
adamc@525 432 &&& x \; ? \; \kappa \to \tau & \textrm{polymorphic function type} \\
adamc@652 433 &&& X \longrightarrow \tau & \textrm{kind-polymorphic function type} \\
adamc@525 434 &&& \$ c & \textrm{record type} \\
adamc@524 435 \\
adamc@525 436 &&& c \; c & \textrm{type-level function application} \\
adamc@530 437 &&& \lambda x \; :: \; \kappa \Rightarrow c & \textrm{type-level function abstraction} \\
adamc@524 438 \\
adamc@652 439 &&& X \Longrightarrow c & \textrm{type-level kind-polymorphic function abstraction} \\
adamc@655 440 &&& c [\kappa] & \textrm{type-level kind-polymorphic function application} \\
adamc@652 441 \\
adamc@525 442 &&& () & \textrm{type-level unit} \\
adamc@525 443 &&& \#X & \textrm{field name} \\
adamc@524 444 \\
adamc@525 445 &&& [(c = c)^*] & \textrm{known-length type-level record} \\
adamc@525 446 &&& c \rc c & \textrm{type-level record concatenation} \\
adamc@652 447 &&& \mt{map} & \textrm{type-level record map} \\
adamc@524 448 \\
adamc@558 449 &&& (c,^+) & \textrm{type-level tuple} \\
adamc@525 450 &&& c.n & \textrm{type-level tuple projection ($n \in \mathbb N^+$)} \\
adamc@524 451 \\
adamc@652 452 &&& [c \sim c] \Rightarrow \tau & \textrm{guarded type} \\
adamc@524 453 \\
adamc@529 454 &&& \_ :: \kappa & \textrm{wildcard} \\
adamc@525 455 &&& (c) & \textrm{explicit precedence} \\
adamc@530 456 \\
adamc@530 457 \textrm{Qualified uncapitalized variables} & \hat{x} &::=& x & \textrm{not from a module} \\
adamc@530 458 &&& M.x & \textrm{projection from a module} \\
adamc@525 459 \end{array}$$
adamc@525 460
adam@1579 461 We include both abstraction and application for kind polymorphism, but applications are only inferred internally; they may not be written explicitly in source programs. Also, in the ``known-length type-level record'' form, in $c_1 = c_2$ terms, the parser currently only allows $c_1$ to be of the forms $X$ (as a shorthand for $\#X$) or $x$, or a natural number to stand for the corresponding field name (e.g., for tuples).
adamc@655 462
adamc@525 463 Modules of the module system are described by \emph{signatures}.
adamc@525 464 $$\begin{array}{rrcll}
adamc@525 465 \textrm{Signatures} & S &::=& \mt{sig} \; s^* \; \mt{end} & \textrm{constant} \\
adamc@525 466 &&& X & \textrm{variable} \\
adamc@525 467 &&& \mt{functor}(X : S) : S & \textrm{functor} \\
adamc@529 468 &&& S \; \mt{where} \; \mt{con} \; x = c & \textrm{concretizing an abstract constructor} \\
adamc@525 469 &&& M.X & \textrm{projection from a module} \\
adamc@525 470 \\
adamc@525 471 \textrm{Signature items} & s &::=& \mt{con} \; x :: \kappa & \textrm{abstract constructor} \\
adamc@525 472 &&& \mt{con} \; x :: \kappa = c & \textrm{concrete constructor} \\
adamc@528 473 &&& \mt{datatype} \; x \; x^* = dc\mid^+ & \textrm{algebraic datatype definition} \\
adamc@529 474 &&& \mt{datatype} \; x = \mt{datatype} \; M.x & \textrm{algebraic datatype import} \\
adamc@525 475 &&& \mt{val} \; x : \tau & \textrm{value} \\
adamc@525 476 &&& \mt{structure} \; X : S & \textrm{sub-module} \\
adamc@525 477 &&& \mt{signature} \; X = S & \textrm{sub-signature} \\
adamc@525 478 &&& \mt{include} \; S & \textrm{signature inclusion} \\
adamc@525 479 &&& \mt{constraint} \; c \sim c & \textrm{record disjointness constraint} \\
adamc@654 480 &&& \mt{class} \; x :: \kappa & \textrm{abstract constructor class} \\
adamc@654 481 &&& \mt{class} \; x :: \kappa = c & \textrm{concrete constructor class} \\
adamc@525 482 \\
adamc@525 483 \textrm{Datatype constructors} & dc &::=& X & \textrm{nullary constructor} \\
adamc@525 484 &&& X \; \mt{of} \; \tau & \textrm{unary constructor} \\
adamc@524 485 \end{array}$$
adamc@524 486
adamc@526 487 \emph{Patterns} are used to describe structural conditions on expressions, such that expressions may be tested against patterns, generating assignments to pattern variables if successful.
adamc@526 488 $$\begin{array}{rrcll}
adamc@526 489 \textrm{Patterns} & p &::=& \_ & \textrm{wildcard} \\
adamc@526 490 &&& x & \textrm{variable} \\
adamc@526 491 &&& \ell & \textrm{constant} \\
adamc@526 492 &&& \hat{X} & \textrm{nullary constructor} \\
adamc@526 493 &&& \hat{X} \; p & \textrm{unary constructor} \\
adamc@526 494 &&& \{(x = p,)^*\} & \textrm{rigid record pattern} \\
adamc@526 495 &&& \{(x = p,)^+, \ldots\} & \textrm{flexible record pattern} \\
adamc@852 496 &&& p : \tau & \textrm{type annotation} \\
adamc@527 497 &&& (p) & \textrm{explicit precedence} \\
adamc@526 498 \\
adamc@529 499 \textrm{Qualified capitalized variables} & \hat{X} &::=& X & \textrm{not from a module} \\
adamc@526 500 &&& M.X & \textrm{projection from a module} \\
adamc@526 501 \end{array}$$
adamc@526 502
adamc@527 503 \emph{Expressions} are the main run-time entities, corresponding to both ``expressions'' and ``statements'' in mainstream imperative languages.
adamc@527 504 $$\begin{array}{rrcll}
adamc@527 505 \textrm{Expressions} & e &::=& e : \tau & \textrm{type annotation} \\
adamc@529 506 &&& \hat{x} & \textrm{variable} \\
adamc@529 507 &&& \hat{X} & \textrm{datatype constructor} \\
adamc@527 508 &&& \ell & \textrm{constant} \\
adamc@527 509 \\
adamc@527 510 &&& e \; e & \textrm{function application} \\
adamc@527 511 &&& \lambda x : \tau \Rightarrow e & \textrm{function abstraction} \\
adamc@527 512 &&& e [c] & \textrm{polymorphic function application} \\
adamc@852 513 &&& \lambda [x \; ? \; \kappa] \Rightarrow e & \textrm{polymorphic function abstraction} \\
adamc@655 514 &&& e [\kappa] & \textrm{kind-polymorphic function application} \\
adamc@652 515 &&& X \Longrightarrow e & \textrm{kind-polymorphic function abstraction} \\
adamc@527 516 \\
adamc@527 517 &&& \{(c = e,)^*\} & \textrm{known-length record} \\
adamc@527 518 &&& e.c & \textrm{record field projection} \\
adamc@527 519 &&& e \rc e & \textrm{record concatenation} \\
adamc@527 520 &&& e \rcut c & \textrm{removal of a single record field} \\
adamc@527 521 &&& e \rcutM c & \textrm{removal of multiple record fields} \\
adamc@527 522 \\
adamc@527 523 &&& \mt{let} \; ed^* \; \mt{in} \; e \; \mt{end} & \textrm{local definitions} \\
adamc@527 524 \\
adamc@527 525 &&& \mt{case} \; e \; \mt{of} \; (p \Rightarrow e|)^+ & \textrm{pattern matching} \\
adamc@527 526 \\
adamc@654 527 &&& \lambda [c \sim c] \Rightarrow e & \textrm{guarded expression abstraction} \\
adamc@654 528 &&& e \; ! & \textrm{guarded expression application} \\
adamc@527 529 \\
adamc@527 530 &&& \_ & \textrm{wildcard} \\
adamc@527 531 &&& (e) & \textrm{explicit precedence} \\
adamc@527 532 \\
adamc@527 533 \textrm{Local declarations} & ed &::=& \cd{val} \; x : \tau = e & \textrm{non-recursive value} \\
adam@1797 534 &&& \cd{val} \; \cd{rec} \; (x : \tau = e \; \cd{and})^+ & \textrm{mutually recursive values} \\
adamc@527 535 \end{array}$$
adamc@527 536
adamc@655 537 As with constructors, we include both abstraction and application for kind polymorphism, but applications are only inferred internally.
adamc@655 538
adamc@528 539 \emph{Declarations} primarily bring new symbols into context.
adamc@528 540 $$\begin{array}{rrcll}
adamc@528 541 \textrm{Declarations} & d &::=& \mt{con} \; x :: \kappa = c & \textrm{constructor synonym} \\
adamc@528 542 &&& \mt{datatype} \; x \; x^* = dc\mid^+ & \textrm{algebraic datatype definition} \\
adamc@529 543 &&& \mt{datatype} \; x = \mt{datatype} \; M.x & \textrm{algebraic datatype import} \\
adamc@528 544 &&& \mt{val} \; x : \tau = e & \textrm{value} \\
adam@1797 545 &&& \mt{val} \; \cd{rec} \; (x : \tau = e \; \mt{and})^+ & \textrm{mutually recursive values} \\
adamc@528 546 &&& \mt{structure} \; X : S = M & \textrm{module definition} \\
adamc@528 547 &&& \mt{signature} \; X = S & \textrm{signature definition} \\
adamc@528 548 &&& \mt{open} \; M & \textrm{module inclusion} \\
adamc@528 549 &&& \mt{constraint} \; c \sim c & \textrm{record disjointness constraint} \\
adamc@528 550 &&& \mt{open} \; \mt{constraints} \; M & \textrm{inclusion of just the constraints from a module} \\
adamc@528 551 &&& \mt{table} \; x : c & \textrm{SQL table} \\
adam@1594 552 &&& \mt{view} \; x = e & \textrm{SQL view} \\
adamc@528 553 &&& \mt{sequence} \; x & \textrm{SQL sequence} \\
adamc@535 554 &&& \mt{cookie} \; x : \tau & \textrm{HTTP cookie} \\
adamc@784 555 &&& \mt{style} \; x : \tau & \textrm{CSS class} \\
adamc@1085 556 &&& \mt{task} \; e = e & \textrm{recurring task} \\
adamc@528 557 \\
adamc@529 558 \textrm{Modules} & M &::=& \mt{struct} \; d^* \; \mt{end} & \textrm{constant} \\
adamc@529 559 &&& X & \textrm{variable} \\
adamc@529 560 &&& M.X & \textrm{projection} \\
adamc@529 561 &&& M(M) & \textrm{functor application} \\
adamc@529 562 &&& \mt{functor}(X : S) : S = M & \textrm{functor abstraction} \\
adamc@528 563 \end{array}$$
adamc@528 564
adamc@528 565 There are two kinds of Ur files. A file named $M\texttt{.ur}$ is an \emph{implementation file}, and it should contain a sequence of declarations $d^*$. A file named $M\texttt{.urs}$ is an \emph{interface file}; it must always have a matching $M\texttt{.ur}$ and should contain a sequence of signature items $s^*$. When both files are present, the overall effect is the same as a monolithic declaration $\mt{structure} \; M : \mt{sig} \; s^* \; \mt{end} = \mt{struct} \; d^* \; \mt{end}$. When no interface file is included, the overall effect is similar, with a signature for module $M$ being inferred rather than just checked against an interface.
adamc@527 566
adam@1594 567 We omit some extra possibilities in $\mt{table}$ syntax, deferring them to Section \ref{tables}. The concrete syntax of $\mt{view}$ declarations is also more complex than shown in the table above, with details deferred to Section \ref{tables}.
adamc@784 568
adamc@529 569 \subsection{Shorthands}
adamc@529 570
adamc@529 571 There are a variety of derived syntactic forms that elaborate into the core syntax from the last subsection. We will present the additional forms roughly following the order in which we presented the constructs that they elaborate into.
adamc@529 572
adamc@529 573 In many contexts where record fields are expected, like in a projection $e.c$, a constant field may be written as simply $X$, rather than $\#X$.
adamc@529 574
adamc@529 575 A record type may be written $\{(c = c,)^*\}$, which elaborates to $\$[(c = c,)^*]$.
adamc@529 576
adamc@533 577 The notation $[c_1, \ldots, c_n]$ is shorthand for $[c_1 = (), \ldots, c_n = ()]$.
adamc@533 578
adam@1350 579 A tuple type $\tau_1 \times \ldots \times \tau_n$ expands to a record type $\{1 : \tau_1, \ldots, n : \tau_n\}$, with natural numbers as field names. A tuple expression $(e_1, \ldots, e_n)$ expands to a record expression $\{1 = e_1, \ldots, n = e_n\}$. A tuple pattern $(p_1, \ldots, p_n)$ expands to a rigid record pattern $\{1 = p_1, \ldots, n = p_n\}$. Positive natural numbers may be used in most places where field names would be allowed.
adamc@529 580
adam@1687 581 The syntax $()$ expands to $\{\}$ as a pattern or expression.
adam@1687 582
adamc@852 583 In general, several adjacent $\lambda$ forms may be combined into one, and kind and type annotations may be omitted, in which case they are implicitly included as wildcards. More formally, for constructor-level abstractions, we can define a new non-terminal $b ::= x \mid (x :: \kappa) \mid X$ and allow composite abstractions of the form $\lambda b^+ \Rightarrow c$, elaborating into the obvious sequence of one core $\lambda$ per element of $b^+$.
adamc@529 584
adam@1574 585 Further, the signature item or declaration syntax $\mt{con} \; x \; b^+ = c$ is shorthand for wrapping of the appropriate $\lambda$s around the righthand side $c$. The $b$ elements may not include $X$, and there may also be an optional $:: \kappa$ before the $=$.
adam@1574 586
adam@1306 587 In some contexts, the parser isn't happy with token sequences like $x :: \_$, to indicate a constructor variable of wildcard kind. In such cases, write the second two tokens as $::\hspace{-.05in}\_$, with no intervening spaces. Analogous syntax $:::\hspace{-.05in}\_$ is available for implicit constructor arguments.
adam@1302 588
adamc@529 589 For any signature item or declaration that defines some entity to be equal to $A$ with classification annotation $B$ (e.g., $\mt{val} \; x : B = A$), $B$ and the preceding colon (or similar punctuation) may be omitted, in which case it is filled in as a wildcard.
adamc@529 590
adamc@529 591 A signature item or declaration $\mt{type} \; x$ or $\mt{type} \; x = \tau$ is elaborated into $\mt{con} \; x :: \mt{Type}$ or $\mt{con} \; x :: \mt{Type} = \tau$, respectively.
adamc@529 592
adamc@654 593 A signature item or declaration $\mt{class} \; x = \lambda y \Rightarrow c$ may be abbreviated $\mt{class} \; x \; y = c$.
adamc@529 594
adam@1738 595 Handling of implicit and explicit constructor arguments may be tweaked with some prefixes to variable references. An expression $@x$ is a version of $x$ where all type class instance and disjointness arguments have been made explicit. (For the purposes of this paragraph, the type family $\mt{Top.folder}$ is a type class, though it isn't marked as one by the usual means; and any record type is considered to be a type class instance type when every field's type is a type class instance type.) An expression $@@x$ achieves the same effect, additionally making explicit all implicit constructor arguments. The default is that implicit arguments are inserted automatically after any reference to a variable, or after any application of a variable to one or more arguments. For such an expression, implicit wildcard arguments are added for the longest prefix of the expression's type consisting only of implicit polymorphism, type class instances, and disjointness obligations. The same syntax works for variables projected out of modules and for capitalized variables (datatype constructors).
adamc@529 596
adamc@852 597 At the expression level, an analogue is available of the composite $\lambda$ form for constructors. We define the language of binders as $b ::= p \mid [x] \mid [x \; ? \; \kappa] \mid X \mid [c \sim c]$. A lone variable $[x]$ stands for an implicit constructor variable of unspecified kind. The standard value-level function binder is recovered as the type-annotated pattern form $x : \tau$. It is a compile-time error to include a pattern $p$ that does not match every value of the appropriate type.
adamc@529 598
adamc@852 599 A local $\mt{val}$ declaration may bind a pattern instead of just a plain variable. As for function arguments, only irrefutable patterns are legal.
adamc@852 600
adam@1797 601 The keyword $\mt{fun}$ is a shorthand for $\mt{val} \; \mt{rec}$ that allows arguments to be specified before the equal sign in the definition of each mutually recursive function, as in SML. Each curried argument must follow the grammar of the $b$ non-terminal introduced two paragraphs ago. A $\mt{fun}$ declaration is elaborated into a version that adds additional $\lambda$s to the fronts of the righthand sides, as appropriate.
adamc@529 602
adamc@529 603 A signature item $\mt{functor} \; X_1 \; (X_2 : S_1) : S_2$ is elaborated into $\mt{structure} \; X_1 : \mt{functor}(X_2 : S_1) : S_2$. A declaration $\mt{functor} \; X_1 \; (X_2 : S_1) : S_2 = M$ is elaborated into $\mt{structure} \; X_1 : \mt{functor}(X_2 : S_1) : S_2 = \mt{functor}(X_2 : S_1) : S_2 = M$.
adamc@529 604
adamc@852 605 An $\mt{open} \; \mt{constraints}$ declaration is implicitly inserted for the argument of every functor at the beginning of the functor body. For every declaration of the form $\mt{structure} \; X : S = \mt{struct} \ldots \mt{end}$, an $\mt{open} \; \mt{constraints} \; X$ declaration is implicitly inserted immediately afterward.
adamc@852 606
adamc@853 607 A declaration $\mt{table} \; x : \{(c = c,)^*\}$ is elaborated into $\mt{table} \; x : [(c = c,)^*]$.
adamc@529 608
adamc@529 609 The syntax $\mt{where} \; \mt{type}$ is an alternate form of $\mt{where} \; \mt{con}$.
adamc@529 610
adamc@529 611 The syntax $\mt{if} \; e \; \mt{then} \; e_1 \; \mt{else} \; e_2$ expands to $\mt{case} \; e \; \mt{of} \; \mt{Basis}.\mt{True} \Rightarrow e_1 \mid \mt{Basis}.\mt{False} \Rightarrow e_2$.
adamc@529 612
adamc@529 613 There are infix operator syntaxes for a number of functions defined in the $\mt{Basis}$ module. There is $=$ for $\mt{eq}$, $\neq$ for $\mt{neq}$, $-$ for $\mt{neg}$ (as a prefix operator) and $\mt{minus}$, $+$ for $\mt{plus}$, $\times$ for $\mt{times}$, $/$ for $\mt{div}$, $\%$ for $\mt{mod}$, $<$ for $\mt{lt}$, $\leq$ for $\mt{le}$, $>$ for $\mt{gt}$, and $\geq$ for $\mt{ge}$.
adamc@529 614
adamc@784 615 A signature item $\mt{table} \; x : c$ is shorthand for $\mt{val} \; x : \mt{Basis}.\mt{sql\_table} \; c \; []$. $\mt{view} \; x : c$ is shorthand for $\mt{val} \; x : \mt{Basis}.\mt{sql\_view} \; c$, $\mt{sequence} \; x$ is short for $\mt{val} \; x : \mt{Basis}.\mt{sql\_sequence}$. $\mt{cookie} \; x : \tau$ is shorthand for $\mt{val} \; x : \mt{Basis}.\mt{http\_cookie} \; \tau$, and $\mt{style} \; x$ is shorthand for $\mt{val} \; x : \mt{Basis}.\mt{css\_class}$.
adamc@529 616
adamc@530 617
adamc@530 618 \section{Static Semantics}
adamc@530 619
adamc@530 620 In this section, we give a declarative presentation of Ur's typing rules and related judgments. Inference is the subject of the next section; here, we assume that an oracle has filled in all wildcards with concrete values.
adamc@530 621
adamc@530 622 Since there is significant mutual recursion among the judgments, we introduce them all before beginning to give rules. We use the same variety of contexts throughout this section, implicitly introducing new sorts of context entries as needed.
adamc@530 623 \begin{itemize}
adamc@655 624 \item $\Gamma \vdash \kappa$ expresses kind well-formedness.
adamc@530 625 \item $\Gamma \vdash c :: \kappa$ assigns a kind to a constructor in a context.
adamc@530 626 \item $\Gamma \vdash c \sim c$ proves the disjointness of two record constructors; that is, that they share no field names. We overload the judgment to apply to pairs of field names as well.
adamc@531 627 \item $\Gamma \vdash c \hookrightarrow C$ proves that record constructor $c$ decomposes into set $C$ of field names and record constructors.
adamc@530 628 \item $\Gamma \vdash c \equiv c$ proves the computational equivalence of two constructors. This is often called a \emph{definitional equality} in the world of type theory.
adamc@530 629 \item $\Gamma \vdash e : \tau$ is a standard typing judgment.
adamc@534 630 \item $\Gamma \vdash p \leadsto \Gamma; \tau$ combines typing of patterns with calculation of which new variables they bind.
adamc@537 631 \item $\Gamma \vdash d \leadsto \Gamma$ expresses how a declaration modifies a context. We overload this judgment to apply to sequences of declarations, as well as to signature items and sequences of signature items.
adamc@537 632 \item $\Gamma \vdash S \equiv S$ is the signature equivalence judgment.
adamc@536 633 \item $\Gamma \vdash S \leq S$ is the signature compatibility judgment. We write $\Gamma \vdash S$ as shorthand for $\Gamma \vdash S \leq S$.
adamc@530 634 \item $\Gamma \vdash M : S$ is the module signature checking judgment.
adamc@537 635 \item $\mt{proj}(M, \overline{s}, V)$ is a partial function for projecting a signature item from $\overline{s}$, given the module $M$ that we project from. $V$ may be $\mt{con} \; x$, $\mt{datatype} \; x$, $\mt{val} \; x$, $\mt{signature} \; X$, or $\mt{structure} \; X$. The parameter $M$ is needed because the projected signature item may refer to other items from $\overline{s}$.
adamc@539 636 \item $\mt{selfify}(M, \overline{s})$ adds information to signature items $\overline{s}$ to reflect the fact that we are concerned with the particular module $M$. This function is overloaded to work over individual signature items as well.
adamc@530 637 \end{itemize}
adamc@530 638
adamc@655 639
adamc@655 640 \subsection{Kind Well-Formedness}
adamc@655 641
adamc@655 642 $$\infer{\Gamma \vdash \mt{Type}}{}
adamc@655 643 \quad \infer{\Gamma \vdash \mt{Unit}}{}
adamc@655 644 \quad \infer{\Gamma \vdash \mt{Name}}{}
adamc@655 645 \quad \infer{\Gamma \vdash \kappa_1 \to \kappa_2}{
adamc@655 646 \Gamma \vdash \kappa_1
adamc@655 647 & \Gamma \vdash \kappa_2
adamc@655 648 }
adamc@655 649 \quad \infer{\Gamma \vdash \{\kappa\}}{
adamc@655 650 \Gamma \vdash \kappa
adamc@655 651 }
adamc@655 652 \quad \infer{\Gamma \vdash (\kappa_1 \times \ldots \times \kappa_n)}{
adamc@655 653 \forall i: \Gamma \vdash \kappa_i
adamc@655 654 }$$
adamc@655 655
adamc@655 656 $$\infer{\Gamma \vdash X}{
adamc@655 657 X \in \Gamma
adamc@655 658 }
adamc@655 659 \quad \infer{\Gamma \vdash X \longrightarrow \kappa}{
adamc@655 660 \Gamma, X \vdash \kappa
adamc@655 661 }$$
adamc@655 662
adamc@530 663 \subsection{Kinding}
adamc@530 664
adamc@655 665 We write $[X \mapsto \kappa_1]\kappa_2$ for capture-avoiding substitution of $\kappa_1$ for $X$ in $\kappa_2$.
adamc@655 666
adamc@530 667 $$\infer{\Gamma \vdash (c) :: \kappa :: \kappa}{
adamc@530 668 \Gamma \vdash c :: \kappa
adamc@530 669 }
adamc@530 670 \quad \infer{\Gamma \vdash x :: \kappa}{
adamc@530 671 x :: \kappa \in \Gamma
adamc@530 672 }
adamc@530 673 \quad \infer{\Gamma \vdash x :: \kappa}{
adamc@530 674 x :: \kappa = c \in \Gamma
adamc@530 675 }$$
adamc@530 676
adamc@530 677 $$\infer{\Gamma \vdash M.x :: \kappa}{
adamc@537 678 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 679 & \mt{proj}(M, \overline{s}, \mt{con} \; x) = \kappa
adamc@530 680 }
adamc@530 681 \quad \infer{\Gamma \vdash M.x :: \kappa}{
adamc@537 682 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 683 & \mt{proj}(M, \overline{s}, \mt{con} \; x) = (\kappa, c)
adamc@530 684 }$$
adamc@530 685
adamc@530 686 $$\infer{\Gamma \vdash \tau_1 \to \tau_2 :: \mt{Type}}{
adamc@530 687 \Gamma \vdash \tau_1 :: \mt{Type}
adamc@530 688 & \Gamma \vdash \tau_2 :: \mt{Type}
adamc@530 689 }
adamc@530 690 \quad \infer{\Gamma \vdash x \; ? \: \kappa \to \tau :: \mt{Type}}{
adamc@530 691 \Gamma, x :: \kappa \vdash \tau :: \mt{Type}
adamc@530 692 }
adamc@655 693 \quad \infer{\Gamma \vdash X \longrightarrow \tau :: \mt{Type}}{
adamc@655 694 \Gamma, X \vdash \tau :: \mt{Type}
adamc@655 695 }
adamc@530 696 \quad \infer{\Gamma \vdash \$c :: \mt{Type}}{
adamc@530 697 \Gamma \vdash c :: \{\mt{Type}\}
adamc@530 698 }$$
adamc@530 699
adamc@530 700 $$\infer{\Gamma \vdash c_1 \; c_2 :: \kappa_2}{
adamc@530 701 \Gamma \vdash c_1 :: \kappa_1 \to \kappa_2
adamc@530 702 & \Gamma \vdash c_2 :: \kappa_1
adamc@530 703 }
adamc@530 704 \quad \infer{\Gamma \vdash \lambda x \; :: \; \kappa_1 \Rightarrow c :: \kappa_1 \to \kappa_2}{
adamc@530 705 \Gamma, x :: \kappa_1 \vdash c :: \kappa_2
adamc@530 706 }$$
adamc@530 707
adamc@655 708 $$\infer{\Gamma \vdash c[\kappa'] :: [X \mapsto \kappa']\kappa}{
adamc@655 709 \Gamma \vdash c :: X \to \kappa
adamc@655 710 & \Gamma \vdash \kappa'
adamc@655 711 }
adamc@655 712 \quad \infer{\Gamma \vdash X \Longrightarrow c :: X \to \kappa}{
adamc@655 713 \Gamma, X \vdash c :: \kappa
adamc@655 714 }$$
adamc@655 715
adamc@530 716 $$\infer{\Gamma \vdash () :: \mt{Unit}}{}
adamc@530 717 \quad \infer{\Gamma \vdash \#X :: \mt{Name}}{}$$
adamc@530 718
adamc@530 719 $$\infer{\Gamma \vdash [\overline{c_i = c'_i}] :: \{\kappa\}}{
adamc@530 720 \forall i: \Gamma \vdash c_i : \mt{Name}
adamc@530 721 & \Gamma \vdash c'_i :: \kappa
adamc@530 722 & \forall i \neq j: \Gamma \vdash c_i \sim c_j
adamc@530 723 }
adamc@530 724 \quad \infer{\Gamma \vdash c_1 \rc c_2 :: \{\kappa\}}{
adamc@530 725 \Gamma \vdash c_1 :: \{\kappa\}
adamc@530 726 & \Gamma \vdash c_2 :: \{\kappa\}
adamc@530 727 & \Gamma \vdash c_1 \sim c_2
adamc@530 728 }$$
adamc@530 729
adamc@655 730 $$\infer{\Gamma \vdash \mt{map} :: (\kappa_1 \to \kappa_2) \to \{\kappa_1\} \to \{\kappa_2\}}{}$$
adamc@530 731
adamc@573 732 $$\infer{\Gamma \vdash (\overline c) :: (\kappa_1 \times \ldots \times \kappa_n)}{
adamc@573 733 \forall i: \Gamma \vdash c_i :: \kappa_i
adamc@530 734 }
adamc@573 735 \quad \infer{\Gamma \vdash c.i :: \kappa_i}{
adamc@573 736 \Gamma \vdash c :: (\kappa_1 \times \ldots \times \kappa_n)
adamc@530 737 }$$
adamc@530 738
adamc@655 739 $$\infer{\Gamma \vdash \lambda [c_1 \sim c_2] \Rightarrow \tau :: \mt{Type}}{
adamc@655 740 \Gamma \vdash c_1 :: \{\kappa\}
adamc@530 741 & \Gamma \vdash c_2 :: \{\kappa'\}
adamc@655 742 & \Gamma, c_1 \sim c_2 \vdash \tau :: \mt{Type}
adamc@530 743 }$$
adamc@530 744
adamc@531 745 \subsection{Record Disjointness}
adamc@531 746
adamc@531 747 $$\infer{\Gamma \vdash c_1 \sim c_2}{
adamc@558 748 \Gamma \vdash c_1 \hookrightarrow C_1
adamc@558 749 & \Gamma \vdash c_2 \hookrightarrow C_2
adamc@558 750 & \forall c'_1 \in C_1, c'_2 \in C_2: \Gamma \vdash c'_1 \sim c'_2
adamc@531 751 }
adamc@531 752 \quad \infer{\Gamma \vdash X \sim X'}{
adamc@531 753 X \neq X'
adamc@531 754 }$$
adamc@531 755
adamc@531 756 $$\infer{\Gamma \vdash c_1 \sim c_2}{
adamc@531 757 c'_1 \sim c'_2 \in \Gamma
adamc@558 758 & \Gamma \vdash c'_1 \hookrightarrow C_1
adamc@558 759 & \Gamma \vdash c'_2 \hookrightarrow C_2
adamc@558 760 & c_1 \in C_1
adamc@558 761 & c_2 \in C_2
adamc@531 762 }$$
adamc@531 763
adamc@531 764 $$\infer{\Gamma \vdash c \hookrightarrow \{c\}}{}
adamc@531 765 \quad \infer{\Gamma \vdash [\overline{c = c'}] \hookrightarrow \{\overline{c}\}}{}
adamc@531 766 \quad \infer{\Gamma \vdash c_1 \rc c_2 \hookrightarrow C_1 \cup C_2}{
adamc@531 767 \Gamma \vdash c_1 \hookrightarrow C_1
adamc@531 768 & \Gamma \vdash c_2 \hookrightarrow C_2
adamc@531 769 }
adamc@531 770 \quad \infer{\Gamma \vdash c \hookrightarrow C}{
adamc@531 771 \Gamma \vdash c \equiv c'
adamc@531 772 & \Gamma \vdash c' \hookrightarrow C
adamc@531 773 }
adamc@531 774 \quad \infer{\Gamma \vdash \mt{map} \; f \; c \hookrightarrow C}{
adamc@531 775 \Gamma \vdash c \hookrightarrow C
adamc@531 776 }$$
adamc@531 777
adamc@541 778 \subsection{\label{definitional}Definitional Equality}
adamc@532 779
adamc@655 780 We use $\mathcal C$ to stand for a one-hole context that, when filled, yields a constructor. The notation $\mathcal C[c]$ plugs $c$ into $\mathcal C$. We omit the standard definition of one-hole contexts. We write $[x \mapsto c_1]c_2$ for capture-avoiding substitution of $c_1$ for $x$ in $c_2$, with analogous notation for substituting a kind in a constructor.
adamc@532 781
adamc@532 782 $$\infer{\Gamma \vdash c \equiv c}{}
adamc@532 783 \quad \infer{\Gamma \vdash c_1 \equiv c_2}{
adamc@532 784 \Gamma \vdash c_2 \equiv c_1
adamc@532 785 }
adamc@532 786 \quad \infer{\Gamma \vdash c_1 \equiv c_3}{
adamc@532 787 \Gamma \vdash c_1 \equiv c_2
adamc@532 788 & \Gamma \vdash c_2 \equiv c_3
adamc@532 789 }
adamc@532 790 \quad \infer{\Gamma \vdash \mathcal C[c_1] \equiv \mathcal C[c_2]}{
adamc@532 791 \Gamma \vdash c_1 \equiv c_2
adamc@532 792 }$$
adamc@532 793
adamc@532 794 $$\infer{\Gamma \vdash x \equiv c}{
adamc@532 795 x :: \kappa = c \in \Gamma
adamc@532 796 }
adamc@532 797 \quad \infer{\Gamma \vdash M.x \equiv c}{
adamc@537 798 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 799 & \mt{proj}(M, \overline{s}, \mt{con} \; x) = (\kappa, c)
adamc@532 800 }
adamc@532 801 \quad \infer{\Gamma \vdash (\overline c).i \equiv c_i}{}$$
adamc@532 802
adamc@532 803 $$\infer{\Gamma \vdash (\lambda x :: \kappa \Rightarrow c) \; c' \equiv [x \mapsto c'] c}{}
adamc@655 804 \quad \infer{\Gamma \vdash (X \Longrightarrow c) [\kappa] \equiv [X \mapsto \kappa] c}{}$$
adamc@655 805
adamc@655 806 $$\infer{\Gamma \vdash c_1 \rc c_2 \equiv c_2 \rc c_1}{}
adamc@532 807 \quad \infer{\Gamma \vdash c_1 \rc (c_2 \rc c_3) \equiv (c_1 \rc c_2) \rc c_3}{}$$
adamc@532 808
adamc@532 809 $$\infer{\Gamma \vdash [] \rc c \equiv c}{}
adamc@532 810 \quad \infer{\Gamma \vdash [\overline{c_1 = c'_1}] \rc [\overline{c_2 = c'_2}] \equiv [\overline{c_1 = c'_1}, \overline{c_2 = c'_2}]}{}$$
adamc@532 811
adamc@655 812 $$\infer{\Gamma \vdash \mt{map} \; f \; [] \equiv []}{}
adamc@655 813 \quad \infer{\Gamma \vdash \mt{map} \; f \; ([c_1 = c_2] \rc c) \equiv [c_1 = f \; c_2] \rc \mt{map} \; f \; c}{}$$
adamc@532 814
adamc@532 815 $$\infer{\Gamma \vdash \mt{map} \; (\lambda x \Rightarrow x) \; c \equiv c}{}
adamc@655 816 \quad \infer{\Gamma \vdash \mt{map} \; f \; (\mt{map} \; f' \; c)
adamc@655 817 \equiv \mt{map} \; (\lambda x \Rightarrow f \; (f' \; x)) \; c}{}$$
adamc@532 818
adamc@532 819 $$\infer{\Gamma \vdash \mt{map} \; f \; (c_1 \rc c_2) \equiv \mt{map} \; f \; c_1 \rc \mt{map} \; f \; c_2}{}$$
adamc@531 820
adamc@534 821 \subsection{Expression Typing}
adamc@533 822
adamc@873 823 We assume the existence of a function $T$ assigning types to literal constants. It maps integer constants to $\mt{Basis}.\mt{int}$, float constants to $\mt{Basis}.\mt{float}$, character constants to $\mt{Basis}.\mt{char}$, and string constants to $\mt{Basis}.\mt{string}$.
adamc@533 824
adamc@533 825 We also refer to a function $\mathcal I$, such that $\mathcal I(\tau)$ ``uses an oracle'' to instantiate all constructor function arguments at the beginning of $\tau$ that are marked implicit; i.e., replace $x_1 ::: \kappa_1 \to \ldots \to x_n ::: \kappa_n \to \tau$ with $[x_1 \mapsto c_1]\ldots[x_n \mapsto c_n]\tau$, where the $c_i$s are inferred and $\tau$ does not start like $x ::: \kappa \to \tau'$.
adamc@533 826
adamc@533 827 $$\infer{\Gamma \vdash e : \tau : \tau}{
adamc@533 828 \Gamma \vdash e : \tau
adamc@533 829 }
adamc@533 830 \quad \infer{\Gamma \vdash e : \tau}{
adamc@533 831 \Gamma \vdash e : \tau'
adamc@533 832 & \Gamma \vdash \tau' \equiv \tau
adamc@533 833 }
adamc@533 834 \quad \infer{\Gamma \vdash \ell : T(\ell)}{}$$
adamc@533 835
adamc@533 836 $$\infer{\Gamma \vdash x : \mathcal I(\tau)}{
adamc@533 837 x : \tau \in \Gamma
adamc@533 838 }
adamc@533 839 \quad \infer{\Gamma \vdash M.x : \mathcal I(\tau)}{
adamc@537 840 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 841 & \mt{proj}(M, \overline{s}, \mt{val} \; x) = \tau
adamc@533 842 }
adamc@533 843 \quad \infer{\Gamma \vdash X : \mathcal I(\tau)}{
adamc@533 844 X : \tau \in \Gamma
adamc@533 845 }
adamc@533 846 \quad \infer{\Gamma \vdash M.X : \mathcal I(\tau)}{
adamc@537 847 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 848 & \mt{proj}(M, \overline{s}, \mt{val} \; X) = \tau
adamc@533 849 }$$
adamc@533 850
adamc@533 851 $$\infer{\Gamma \vdash e_1 \; e_2 : \tau_2}{
adamc@533 852 \Gamma \vdash e_1 : \tau_1 \to \tau_2
adamc@533 853 & \Gamma \vdash e_2 : \tau_1
adamc@533 854 }
adamc@533 855 \quad \infer{\Gamma \vdash \lambda x : \tau_1 \Rightarrow e : \tau_1 \to \tau_2}{
adamc@533 856 \Gamma, x : \tau_1 \vdash e : \tau_2
adamc@533 857 }$$
adamc@533 858
adamc@533 859 $$\infer{\Gamma \vdash e [c] : [x \mapsto c]\tau}{
adamc@533 860 \Gamma \vdash e : x :: \kappa \to \tau
adamc@533 861 & \Gamma \vdash c :: \kappa
adamc@533 862 }
adamc@852 863 \quad \infer{\Gamma \vdash \lambda [x \; ? \; \kappa] \Rightarrow e : x \; ? \; \kappa \to \tau}{
adamc@533 864 \Gamma, x :: \kappa \vdash e : \tau
adamc@533 865 }$$
adamc@533 866
adamc@655 867 $$\infer{\Gamma \vdash e [\kappa] : [X \mapsto \kappa]\tau}{
adamc@655 868 \Gamma \vdash e : X \longrightarrow \tau
adamc@655 869 & \Gamma \vdash \kappa
adamc@655 870 }
adamc@655 871 \quad \infer{\Gamma \vdash X \Longrightarrow e : X \longrightarrow \tau}{
adamc@655 872 \Gamma, X \vdash e : \tau
adamc@655 873 }$$
adamc@655 874
adamc@533 875 $$\infer{\Gamma \vdash \{\overline{c = e}\} : \{\overline{c : \tau}\}}{
adamc@533 876 \forall i: \Gamma \vdash c_i :: \mt{Name}
adamc@533 877 & \Gamma \vdash e_i : \tau_i
adamc@533 878 & \forall i \neq j: \Gamma \vdash c_i \sim c_j
adamc@533 879 }
adamc@533 880 \quad \infer{\Gamma \vdash e.c : \tau}{
adamc@533 881 \Gamma \vdash e : \$([c = \tau] \rc c')
adamc@533 882 }
adamc@533 883 \quad \infer{\Gamma \vdash e_1 \rc e_2 : \$(c_1 \rc c_2)}{
adamc@533 884 \Gamma \vdash e_1 : \$c_1
adamc@533 885 & \Gamma \vdash e_2 : \$c_2
adamc@573 886 & \Gamma \vdash c_1 \sim c_2
adamc@533 887 }$$
adamc@533 888
adamc@533 889 $$\infer{\Gamma \vdash e \rcut c : \$c'}{
adamc@533 890 \Gamma \vdash e : \$([c = \tau] \rc c')
adamc@533 891 }
adamc@533 892 \quad \infer{\Gamma \vdash e \rcutM c : \$c'}{
adamc@533 893 \Gamma \vdash e : \$(c \rc c')
adamc@533 894 }$$
adamc@533 895
adamc@533 896 $$\infer{\Gamma \vdash \mt{let} \; \overline{ed} \; \mt{in} \; e \; \mt{end} : \tau}{
adamc@533 897 \Gamma \vdash \overline{ed} \leadsto \Gamma'
adamc@533 898 & \Gamma' \vdash e : \tau
adamc@533 899 }
adamc@533 900 \quad \infer{\Gamma \vdash \mt{case} \; e \; \mt{of} \; \overline{p \Rightarrow e} : \tau}{
adamc@533 901 \forall i: \Gamma \vdash p_i \leadsto \Gamma_i, \tau'
adamc@533 902 & \Gamma_i \vdash e_i : \tau
adamc@533 903 }$$
adamc@533 904
adamc@573 905 $$\infer{\Gamma \vdash \lambda [c_1 \sim c_2] \Rightarrow e : \lambda [c_1 \sim c_2] \Rightarrow \tau}{
adamc@533 906 \Gamma \vdash c_1 :: \{\kappa\}
adamc@655 907 & \Gamma \vdash c_2 :: \{\kappa'\}
adamc@533 908 & \Gamma, c_1 \sim c_2 \vdash e : \tau
adamc@662 909 }
adamc@662 910 \quad \infer{\Gamma \vdash e \; ! : \tau}{
adamc@662 911 \Gamma \vdash e : [c_1 \sim c_2] \Rightarrow \tau
adamc@662 912 & \Gamma \vdash c_1 \sim c_2
adamc@533 913 }$$
adamc@533 914
adamc@534 915 \subsection{Pattern Typing}
adamc@534 916
adamc@534 917 $$\infer{\Gamma \vdash \_ \leadsto \Gamma; \tau}{}
adamc@534 918 \quad \infer{\Gamma \vdash x \leadsto \Gamma, x : \tau; \tau}{}
adamc@534 919 \quad \infer{\Gamma \vdash \ell \leadsto \Gamma; T(\ell)}{}$$
adamc@534 920
adamc@534 921 $$\infer{\Gamma \vdash X \leadsto \Gamma; \overline{[x_i \mapsto \tau'_i]}\tau}{
adamc@534 922 X : \overline{x ::: \mt{Type}} \to \tau \in \Gamma
adamc@534 923 & \textrm{$\tau$ not a function type}
adamc@534 924 }
adamc@534 925 \quad \infer{\Gamma \vdash X \; p \leadsto \Gamma'; \overline{[x_i \mapsto \tau'_i]}\tau}{
adamc@534 926 X : \overline{x ::: \mt{Type}} \to \tau'' \to \tau \in \Gamma
adamc@534 927 & \Gamma \vdash p \leadsto \Gamma'; \overline{[x_i \mapsto \tau'_i]}\tau''
adamc@534 928 }$$
adamc@534 929
adamc@534 930 $$\infer{\Gamma \vdash M.X \leadsto \Gamma; \overline{[x_i \mapsto \tau'_i]}\tau}{
adamc@537 931 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 932 & \mt{proj}(M, \overline{s}, \mt{val} \; X) = \overline{x ::: \mt{Type}} \to \tau
adamc@534 933 & \textrm{$\tau$ not a function type}
adamc@534 934 }$$
adamc@534 935
adamc@534 936 $$\infer{\Gamma \vdash M.X \; p \leadsto \Gamma'; \overline{[x_i \mapsto \tau'_i]}\tau}{
adamc@537 937 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 938 & \mt{proj}(M, \overline{s}, \mt{val} \; X) = \overline{x ::: \mt{Type}} \to \tau'' \to \tau
adamc@534 939 & \Gamma \vdash p \leadsto \Gamma'; \overline{[x_i \mapsto \tau'_i]}\tau''
adamc@534 940 }$$
adamc@534 941
adamc@534 942 $$\infer{\Gamma \vdash \{\overline{x = p}\} \leadsto \Gamma_n; \{\overline{x = \tau}\}}{
adamc@534 943 \Gamma_0 = \Gamma
adamc@534 944 & \forall i: \Gamma_i \vdash p_i \leadsto \Gamma_{i+1}; \tau_i
adamc@534 945 }
adamc@534 946 \quad \infer{\Gamma \vdash \{\overline{x = p}, \ldots\} \leadsto \Gamma_n; \$([\overline{x = \tau}] \rc c)}{
adamc@534 947 \Gamma_0 = \Gamma
adamc@534 948 & \forall i: \Gamma_i \vdash p_i \leadsto \Gamma_{i+1}; \tau_i
adamc@534 949 }$$
adamc@534 950
adamc@852 951 $$\infer{\Gamma \vdash p : \tau \leadsto \Gamma'; \tau}{
adamc@852 952 \Gamma \vdash p \leadsto \Gamma'; \tau'
adamc@852 953 & \Gamma \vdash \tau' \equiv \tau
adamc@852 954 }$$
adamc@852 955
adamc@535 956 \subsection{Declaration Typing}
adamc@535 957
adamc@535 958 We use an auxiliary judgment $\overline{y}; x; \Gamma \vdash \overline{dc} \leadsto \Gamma'$, expressing the enrichment of $\Gamma$ with the types of the datatype constructors $\overline{dc}$, when they are known to belong to datatype $x$ with type parameters $\overline{y}$.
adamc@535 959
adamc@558 960 We presuppose the existence of a function $\mathcal O$, where $\mathcal O(M, \overline{s})$ implements the $\mt{open}$ declaration by producing a context with the appropriate entry for each available component of module $M$ with signature items $\overline{s}$. Where possible, $\mathcal O$ uses ``transparent'' entries (e.g., an abstract type $M.x$ is mapped to $x :: \mt{Type} = M.x$), so that the relationship with $M$ is maintained. A related function $\mathcal O_c$ builds a context containing the disjointness constraints found in $\overline s$.
adamc@537 961 We write $\kappa_1^n \to \kappa$ as a shorthand, where $\kappa_1^0 \to \kappa = \kappa$ and $\kappa_1^{n+1} \to \kappa_2 = \kappa_1 \to (\kappa_1^n \to \kappa_2)$. We write $\mt{len}(\overline{y})$ for the length of vector $\overline{y}$ of variables.
adamc@535 962
adamc@535 963 $$\infer{\Gamma \vdash \cdot \leadsto \Gamma}{}
adamc@535 964 \quad \infer{\Gamma \vdash d, \overline{d} \leadsto \Gamma''}{
adamc@535 965 \Gamma \vdash d \leadsto \Gamma'
adamc@535 966 & \Gamma' \vdash \overline{d} \leadsto \Gamma''
adamc@535 967 }$$
adamc@535 968
adamc@535 969 $$\infer{\Gamma \vdash \mt{con} \; x :: \kappa = c \leadsto \Gamma, x :: \kappa = c}{
adamc@535 970 \Gamma \vdash c :: \kappa
adamc@535 971 }
adamc@535 972 \quad \infer{\Gamma \vdash \mt{datatype} \; x \; \overline{y} = \overline{dc} \leadsto \Gamma'}{
adamc@535 973 \overline{y}; x; \Gamma, x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type} \vdash \overline{dc} \leadsto \Gamma'
adamc@535 974 }$$
adamc@535 975
adamc@535 976 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leadsto \Gamma'}{
adamc@537 977 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 978 & \mt{proj}(M, \overline{s}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})
adamc@535 979 & \overline{y}; x; \Gamma, x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type} = M.z \vdash \overline{dc} \leadsto \Gamma'
adamc@535 980 }$$
adamc@535 981
adamc@535 982 $$\infer{\Gamma \vdash \mt{val} \; x : \tau = e \leadsto \Gamma, x : \tau}{
adamc@535 983 \Gamma \vdash e : \tau
adamc@535 984 }$$
adamc@535 985
adamc@535 986 $$\infer{\Gamma \vdash \mt{val} \; \mt{rec} \; \overline{x : \tau = e} \leadsto \Gamma, \overline{x : \tau}}{
adamc@535 987 \forall i: \Gamma, \overline{x : \tau} \vdash e_i : \tau_i
adamc@535 988 & \textrm{$e_i$ starts with an expression $\lambda$, optionally preceded by constructor and disjointness $\lambda$s}
adamc@535 989 }$$
adamc@535 990
adamc@535 991 $$\infer{\Gamma \vdash \mt{structure} \; X : S = M \leadsto \Gamma, X : S}{
adamc@535 992 \Gamma \vdash M : S
adamc@558 993 & \textrm{ $M$ not a constant or application}
adamc@535 994 }
adamc@558 995 \quad \infer{\Gamma \vdash \mt{structure} \; X : S = M \leadsto \Gamma, X : \mt{selfify}(X, \overline{s})}{
adamc@558 996 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@539 997 }$$
adamc@539 998
adamc@539 999 $$\infer{\Gamma \vdash \mt{signature} \; X = S \leadsto \Gamma, X = S}{
adamc@535 1000 \Gamma \vdash S
adamc@535 1001 }$$
adamc@535 1002
adamc@537 1003 $$\infer{\Gamma \vdash \mt{open} \; M \leadsto \Gamma, \mathcal O(M, \overline{s})}{
adamc@537 1004 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@535 1005 }$$
adamc@535 1006
adamc@535 1007 $$\infer{\Gamma \vdash \mt{constraint} \; c_1 \sim c_2 \leadsto \Gamma}{
adamc@535 1008 \Gamma \vdash c_1 :: \{\kappa\}
adamc@535 1009 & \Gamma \vdash c_2 :: \{\kappa\}
adamc@535 1010 & \Gamma \vdash c_1 \sim c_2
adamc@535 1011 }
adamc@537 1012 \quad \infer{\Gamma \vdash \mt{open} \; \mt{constraints} \; M \leadsto \Gamma, \mathcal O_c(M, \overline{s})}{
adamc@537 1013 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@535 1014 }$$
adamc@535 1015
adamc@784 1016 $$\infer{\Gamma \vdash \mt{table} \; x : c \leadsto \Gamma, x : \mt{Basis}.\mt{sql\_table} \; c \; []}{
adamc@535 1017 \Gamma \vdash c :: \{\mt{Type}\}
adamc@535 1018 }
adam@1594 1019 \quad \infer{\Gamma \vdash \mt{view} \; x = e \leadsto \Gamma, x : \mt{Basis}.\mt{sql\_view} \; c}{
adam@1594 1020 \Gamma \vdash e :: \mt{Basis}.\mt{sql\_query} \; [] \; [] \; (\mt{map} \; (\lambda \_ \Rightarrow []) \; c') \; c
adamc@784 1021 }$$
adamc@784 1022
adamc@784 1023 $$\infer{\Gamma \vdash \mt{sequence} \; x \leadsto \Gamma, x : \mt{Basis}.\mt{sql\_sequence}}{}$$
adamc@535 1024
adamc@535 1025 $$\infer{\Gamma \vdash \mt{cookie} \; x : \tau \leadsto \Gamma, x : \mt{Basis}.\mt{http\_cookie} \; \tau}{
adamc@535 1026 \Gamma \vdash \tau :: \mt{Type}
adamc@784 1027 }
adamc@784 1028 \quad \infer{\Gamma \vdash \mt{style} \; x \leadsto \Gamma, x : \mt{Basis}.\mt{css\_class}}{}$$
adamc@535 1029
adamc@1085 1030 $$\infer{\Gamma \vdash \mt{task} \; e_1 = e_2 \leadsto \Gamma}{
adam@1348 1031 \Gamma \vdash e_1 :: \mt{Basis}.\mt{task\_kind} \; \tau
adam@1348 1032 & \Gamma \vdash e_2 :: \tau \to \mt{Basis}.\mt{transaction} \; \{\}
adamc@1085 1033 }$$
adamc@1085 1034
adamc@535 1035 $$\infer{\overline{y}; x; \Gamma \vdash \cdot \leadsto \Gamma}{}
adamc@535 1036 \quad \infer{\overline{y}; x; \Gamma \vdash X \mid \overline{dc} \leadsto \Gamma', X : \overline{y ::: \mt{Type}} \to x \; \overline{y}}{
adamc@535 1037 \overline{y}; x; \Gamma \vdash \overline{dc} \leadsto \Gamma'
adamc@535 1038 }
adamc@535 1039 \quad \infer{\overline{y}; x; \Gamma \vdash X \; \mt{of} \; \tau \mid \overline{dc} \leadsto \Gamma', X : \overline{y ::: \mt{Type}} \to \tau \to x \; \overline{y}}{
adamc@535 1040 \overline{y}; x; \Gamma \vdash \overline{dc} \leadsto \Gamma'
adamc@535 1041 }$$
adamc@535 1042
adamc@537 1043 \subsection{Signature Item Typing}
adamc@537 1044
adamc@537 1045 We appeal to a signature item analogue of the $\mathcal O$ function from the last subsection.
adamc@537 1046
adam@1797 1047 This is the first judgment where we deal with constructor classes, for the $\mt{class}$ forms. We will omit their special handling in this formal specification. Section \ref{typeclasses} gives an informal description of how constructor classes influence type inference.
adam@1797 1048
adamc@537 1049 $$\infer{\Gamma \vdash \cdot \leadsto \Gamma}{}
adamc@537 1050 \quad \infer{\Gamma \vdash s, \overline{s} \leadsto \Gamma''}{
adamc@537 1051 \Gamma \vdash s \leadsto \Gamma'
adamc@537 1052 & \Gamma' \vdash \overline{s} \leadsto \Gamma''
adamc@537 1053 }$$
adamc@537 1054
adamc@537 1055 $$\infer{\Gamma \vdash \mt{con} \; x :: \kappa \leadsto \Gamma, x :: \kappa}{}
adamc@537 1056 \quad \infer{\Gamma \vdash \mt{con} \; x :: \kappa = c \leadsto \Gamma, x :: \kappa = c}{
adamc@537 1057 \Gamma \vdash c :: \kappa
adamc@537 1058 }
adamc@537 1059 \quad \infer{\Gamma \vdash \mt{datatype} \; x \; \overline{y} = \overline{dc} \leadsto \Gamma'}{
adamc@537 1060 \overline{y}; x; \Gamma, x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type} \vdash \overline{dc} \leadsto \Gamma'
adamc@537 1061 }$$
adamc@537 1062
adamc@537 1063 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leadsto \Gamma'}{
adamc@537 1064 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 1065 & \mt{proj}(M, \overline{s}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})
adamc@537 1066 & \overline{y}; x; \Gamma, x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type} = M.z \vdash \overline{dc} \leadsto \Gamma'
adamc@537 1067 }$$
adamc@537 1068
adamc@537 1069 $$\infer{\Gamma \vdash \mt{val} \; x : \tau \leadsto \Gamma, x : \tau}{
adamc@537 1070 \Gamma \vdash \tau :: \mt{Type}
adamc@537 1071 }$$
adamc@537 1072
adamc@537 1073 $$\infer{\Gamma \vdash \mt{structure} \; X : S \leadsto \Gamma, X : S}{
adamc@537 1074 \Gamma \vdash S
adamc@537 1075 }
adamc@537 1076 \quad \infer{\Gamma \vdash \mt{signature} \; X = S \leadsto \Gamma, X = S}{
adamc@537 1077 \Gamma \vdash S
adamc@537 1078 }$$
adamc@537 1079
adamc@537 1080 $$\infer{\Gamma \vdash \mt{include} \; S \leadsto \Gamma, \mathcal O(\overline{s})}{
adamc@537 1081 \Gamma \vdash S
adamc@537 1082 & \Gamma \vdash S \equiv \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 1083 }$$
adamc@537 1084
adamc@537 1085 $$\infer{\Gamma \vdash \mt{constraint} \; c_1 \sim c_2 \leadsto \Gamma, c_1 \sim c_2}{
adamc@537 1086 \Gamma \vdash c_1 :: \{\kappa\}
adamc@537 1087 & \Gamma \vdash c_2 :: \{\kappa\}
adamc@537 1088 }$$
adamc@537 1089
adamc@784 1090 $$\infer{\Gamma \vdash \mt{class} \; x :: \kappa = c \leadsto \Gamma, x :: \kappa = c}{
adamc@784 1091 \Gamma \vdash c :: \kappa
adamc@537 1092 }
adamc@784 1093 \quad \infer{\Gamma \vdash \mt{class} \; x :: \kappa \leadsto \Gamma, x :: \kappa}{}$$
adamc@537 1094
adamc@536 1095 \subsection{Signature Compatibility}
adamc@536 1096
adam@1797 1097 To simplify the judgments in this section, we assume that all signatures are alpha-varied as necessary to avoid including multiple bindings for the same identifier. This is in addition to the usual alpha-variation of locally bound variables.
adamc@537 1098
adamc@537 1099 We rely on a judgment $\Gamma \vdash \overline{s} \leq s'$, which expresses the occurrence in signature items $\overline{s}$ of an item compatible with $s'$. We also use a judgment $\Gamma \vdash \overline{dc} \leq \overline{dc}$, which expresses compatibility of datatype definitions.
adamc@537 1100
adamc@536 1101 $$\infer{\Gamma \vdash S \equiv S}{}
adamc@536 1102 \quad \infer{\Gamma \vdash S_1 \equiv S_2}{
adamc@536 1103 \Gamma \vdash S_2 \equiv S_1
adamc@536 1104 }
adamc@536 1105 \quad \infer{\Gamma \vdash X \equiv S}{
adamc@536 1106 X = S \in \Gamma
adamc@536 1107 }
adamc@536 1108 \quad \infer{\Gamma \vdash M.X \equiv S}{
adamc@537 1109 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 1110 & \mt{proj}(M, \overline{s}, \mt{signature} \; X) = S
adamc@536 1111 }$$
adamc@536 1112
adamc@536 1113 $$\infer{\Gamma \vdash S \; \mt{where} \; \mt{con} \; x = c \equiv \mt{sig} \; \overline{s^1} \; \mt{con} \; x :: \kappa = c \; \overline{s_2} \; \mt{end}}{
adamc@536 1114 \Gamma \vdash S \equiv \mt{sig} \; \overline{s^1} \; \mt{con} \; x :: \kappa \; \overline{s_2} \; \mt{end}
adamc@536 1115 & \Gamma \vdash c :: \kappa
adamc@537 1116 }
adamc@537 1117 \quad \infer{\Gamma \vdash \mt{sig} \; \overline{s^1} \; \mt{include} \; S \; \overline{s^2} \; \mt{end} \equiv \mt{sig} \; \overline{s^1} \; \overline{s} \; \overline{s^2} \; \mt{end}}{
adamc@537 1118 \Gamma \vdash S \equiv \mt{sig} \; \overline{s} \; \mt{end}
adamc@536 1119 }$$
adamc@536 1120
adamc@536 1121 $$\infer{\Gamma \vdash S_1 \leq S_2}{
adamc@536 1122 \Gamma \vdash S_1 \equiv S_2
adamc@536 1123 }
adamc@536 1124 \quad \infer{\Gamma \vdash \mt{sig} \; \overline{s} \; \mt{end} \leq \mt{sig} \; \mt{end}}{}
adamc@537 1125 \quad \infer{\Gamma \vdash \mt{sig} \; \overline{s} \; \mt{end} \leq \mt{sig} \; s' \; \overline{s'} \; \mt{end}}{
adamc@537 1126 \Gamma \vdash \overline{s} \leq s'
adamc@537 1127 & \Gamma \vdash s' \leadsto \Gamma'
adamc@537 1128 & \Gamma' \vdash \mt{sig} \; \overline{s} \; \mt{end} \leq \mt{sig} \; \overline{s'} \; \mt{end}
adamc@537 1129 }$$
adamc@537 1130
adamc@537 1131 $$\infer{\Gamma \vdash s \; \overline{s} \leq s'}{
adamc@537 1132 \Gamma \vdash s \leq s'
adamc@537 1133 }
adamc@537 1134 \quad \infer{\Gamma \vdash s \; \overline{s} \leq s'}{
adamc@537 1135 \Gamma \vdash s \leadsto \Gamma'
adamc@537 1136 & \Gamma' \vdash \overline{s} \leq s'
adamc@536 1137 }$$
adamc@536 1138
adamc@536 1139 $$\infer{\Gamma \vdash \mt{functor} (X : S_1) : S_2 \leq \mt{functor} (X : S'_1) : S'_2}{
adamc@536 1140 \Gamma \vdash S'_1 \leq S_1
adamc@536 1141 & \Gamma, X : S'_1 \vdash S_2 \leq S'_2
adamc@536 1142 }$$
adamc@536 1143
adamc@537 1144 $$\infer{\Gamma \vdash \mt{con} \; x :: \kappa \leq \mt{con} \; x :: \kappa}{}
adamc@537 1145 \quad \infer{\Gamma \vdash \mt{con} \; x :: \kappa = c \leq \mt{con} \; x :: \kappa}{}
adamc@558 1146 \quad \infer{\Gamma \vdash \mt{datatype} \; x \; \overline{y} = \overline{dc} \leq \mt{con} \; x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type}}{}$$
adamc@537 1147
adamc@537 1148 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leq \mt{con} \; x :: \mt{Type}^{\mt{len}(y)} \to \mt{Type}}{
adamc@537 1149 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 1150 & \mt{proj}(M, \overline{s}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})
adamc@537 1151 }$$
adamc@537 1152
adamc@784 1153 $$\infer{\Gamma \vdash \mt{class} \; x :: \kappa \leq \mt{con} \; x :: \kappa}{}
adamc@784 1154 \quad \infer{\Gamma \vdash \mt{class} \; x :: \kappa = c \leq \mt{con} \; x :: \kappa}{}$$
adamc@537 1155
adamc@537 1156 $$\infer{\Gamma \vdash \mt{con} \; x :: \kappa = c_1 \leq \mt{con} \; x :: \mt{\kappa} = c_2}{
adamc@537 1157 \Gamma \vdash c_1 \equiv c_2
adamc@537 1158 }
adamc@784 1159 \quad \infer{\Gamma \vdash \mt{class} \; x :: \kappa = c_1 \leq \mt{con} \; x :: \kappa = c_2}{
adamc@537 1160 \Gamma \vdash c_1 \equiv c_2
adamc@537 1161 }$$
adamc@537 1162
adamc@537 1163 $$\infer{\Gamma \vdash \mt{datatype} \; x \; \overline{y} = \overline{dc} \leq \mt{datatype} \; x \; \overline{y} = \overline{dc'}}{
adamc@537 1164 \Gamma, \overline{y :: \mt{Type}} \vdash \overline{dc} \leq \overline{dc'}
adamc@537 1165 }$$
adamc@537 1166
adamc@537 1167 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leq \mt{datatype} \; x \; \overline{y} = \overline{dc'}}{
adamc@537 1168 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 1169 & \mt{proj}(M, \overline{s}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})
adamc@537 1170 & \Gamma, \overline{y :: \mt{Type}} \vdash \overline{dc} \leq \overline{dc'}
adamc@537 1171 }$$
adamc@537 1172
adamc@537 1173 $$\infer{\Gamma \vdash \cdot \leq \cdot}{}
adamc@537 1174 \quad \infer{\Gamma \vdash X; \overline{dc} \leq X; \overline{dc'}}{
adamc@537 1175 \Gamma \vdash \overline{dc} \leq \overline{dc'}
adamc@537 1176 }
adamc@537 1177 \quad \infer{\Gamma \vdash X \; \mt{of} \; \tau_1; \overline{dc} \leq X \; \mt{of} \; \tau_2; \overline{dc'}}{
adamc@537 1178 \Gamma \vdash \tau_1 \equiv \tau_2
adamc@537 1179 & \Gamma \vdash \overline{dc} \leq \overline{dc'}
adamc@537 1180 }$$
adamc@537 1181
adamc@537 1182 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leq \mt{datatype} \; x = \mt{datatype} \; M'.z'}{
adamc@537 1183 \Gamma \vdash M.z \equiv M'.z'
adamc@537 1184 }$$
adamc@537 1185
adamc@537 1186 $$\infer{\Gamma \vdash \mt{val} \; x : \tau_1 \leq \mt{val} \; x : \tau_2}{
adamc@537 1187 \Gamma \vdash \tau_1 \equiv \tau_2
adamc@537 1188 }
adamc@537 1189 \quad \infer{\Gamma \vdash \mt{structure} \; X : S_1 \leq \mt{structure} \; X : S_2}{
adamc@537 1190 \Gamma \vdash S_1 \leq S_2
adamc@537 1191 }
adamc@537 1192 \quad \infer{\Gamma \vdash \mt{signature} \; X = S_1 \leq \mt{signature} \; X = S_2}{
adamc@537 1193 \Gamma \vdash S_1 \leq S_2
adamc@537 1194 & \Gamma \vdash S_2 \leq S_1
adamc@537 1195 }$$
adamc@537 1196
adamc@537 1197 $$\infer{\Gamma \vdash \mt{constraint} \; c_1 \sim c_2 \leq \mt{constraint} \; c'_1 \sim c'_2}{
adamc@537 1198 \Gamma \vdash c_1 \equiv c'_1
adamc@537 1199 & \Gamma \vdash c_2 \equiv c'_2
adamc@537 1200 }$$
adamc@537 1201
adamc@655 1202 $$\infer{\Gamma \vdash \mt{class} \; x :: \kappa \leq \mt{class} \; x :: \kappa}{}
adamc@655 1203 \quad \infer{\Gamma \vdash \mt{class} \; x :: \kappa = c \leq \mt{class} \; x :: \kappa}{}
adamc@655 1204 \quad \infer{\Gamma \vdash \mt{class} \; x :: \kappa = c_1 \leq \mt{class} \; x :: \kappa = c_2}{
adamc@537 1205 \Gamma \vdash c_1 \equiv c_2
adamc@537 1206 }$$
adamc@537 1207
adam@1797 1208 $$\infer{\Gamma \vdash \mt{con} \; x :: \kappa \leq \mt{class} \; x :: \kappa}{}
adam@1797 1209 \quad \infer{\Gamma \vdash \mt{con} \; x :: \kappa = c \leq \mt{class} \; x :: \kappa}{}
adam@1797 1210 \quad \infer{\Gamma \vdash \mt{con} \; x :: \kappa = c_1 \leq \mt{class} \; x :: \kappa = c_2}{
adam@1797 1211 \Gamma \vdash c_1 \equiv c_2
adam@1797 1212 }$$
adam@1797 1213
adamc@538 1214 \subsection{Module Typing}
adamc@538 1215
adamc@538 1216 We use a helper function $\mt{sigOf}$, which converts declarations and sequences of declarations into their principal signature items and sequences of signature items, respectively.
adamc@538 1217
adamc@538 1218 $$\infer{\Gamma \vdash M : S}{
adamc@538 1219 \Gamma \vdash M : S'
adamc@538 1220 & \Gamma \vdash S' \leq S
adamc@538 1221 }
adamc@538 1222 \quad \infer{\Gamma \vdash \mt{struct} \; \overline{d} \; \mt{end} : \mt{sig} \; \mt{sigOf}(\overline{d}) \; \mt{end}}{
adamc@538 1223 \Gamma \vdash \overline{d} \leadsto \Gamma'
adamc@538 1224 }
adamc@538 1225 \quad \infer{\Gamma \vdash X : S}{
adamc@538 1226 X : S \in \Gamma
adamc@538 1227 }$$
adamc@538 1228
adamc@538 1229 $$\infer{\Gamma \vdash M.X : S}{
adamc@538 1230 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@538 1231 & \mt{proj}(M, \overline{s}, \mt{structure} \; X) = S
adamc@538 1232 }$$
adamc@538 1233
adamc@538 1234 $$\infer{\Gamma \vdash M_1(M_2) : [X \mapsto M_2]S_2}{
adamc@538 1235 \Gamma \vdash M_1 : \mt{functor}(X : S_1) : S_2
adamc@538 1236 & \Gamma \vdash M_2 : S_1
adamc@538 1237 }
adamc@538 1238 \quad \infer{\Gamma \vdash \mt{functor} (X : S_1) : S_2 = M : \mt{functor} (X : S_1) : S_2}{
adamc@538 1239 \Gamma \vdash S_1
adamc@538 1240 & \Gamma, X : S_1 \vdash S_2
adamc@538 1241 & \Gamma, X : S_1 \vdash M : S_2
adamc@538 1242 }$$
adamc@538 1243
adamc@538 1244 \begin{eqnarray*}
adamc@538 1245 \mt{sigOf}(\cdot) &=& \cdot \\
adamc@538 1246 \mt{sigOf}(s \; \overline{s'}) &=& \mt{sigOf}(s) \; \mt{sigOf}(\overline{s'}) \\
adamc@538 1247 \\
adamc@538 1248 \mt{sigOf}(\mt{con} \; x :: \kappa = c) &=& \mt{con} \; x :: \kappa = c \\
adamc@538 1249 \mt{sigOf}(\mt{datatype} \; x \; \overline{y} = \overline{dc}) &=& \mt{datatype} \; x \; \overline{y} = \overline{dc} \\
adamc@538 1250 \mt{sigOf}(\mt{datatype} \; x = \mt{datatype} \; M.z) &=& \mt{datatype} \; x = \mt{datatype} \; M.z \\
adamc@538 1251 \mt{sigOf}(\mt{val} \; x : \tau = e) &=& \mt{val} \; x : \tau \\
adamc@538 1252 \mt{sigOf}(\mt{val} \; \mt{rec} \; \overline{x : \tau = e}) &=& \overline{\mt{val} \; x : \tau} \\
adamc@538 1253 \mt{sigOf}(\mt{structure} \; X : S = M) &=& \mt{structure} \; X : S \\
adamc@538 1254 \mt{sigOf}(\mt{signature} \; X = S) &=& \mt{signature} \; X = S \\
adamc@538 1255 \mt{sigOf}(\mt{open} \; M) &=& \mt{include} \; S \textrm{ (where $\Gamma \vdash M : S$)} \\
adamc@538 1256 \mt{sigOf}(\mt{constraint} \; c_1 \sim c_2) &=& \mt{constraint} \; c_1 \sim c_2 \\
adamc@538 1257 \mt{sigOf}(\mt{open} \; \mt{constraints} \; M) &=& \cdot \\
adamc@538 1258 \mt{sigOf}(\mt{table} \; x : c) &=& \mt{table} \; x : c \\
adam@1594 1259 \mt{sigOf}(\mt{view} \; x = e) &=& \mt{view} \; x : c \textrm{ (where $\Gamma \vdash e : \mt{Basis}.\mt{sql\_query} \; [] \; [] \; (\mt{map} \; (\lambda \_ \Rightarrow []) \; c') \; c$)} \\
adamc@538 1260 \mt{sigOf}(\mt{sequence} \; x) &=& \mt{sequence} \; x \\
adamc@538 1261 \mt{sigOf}(\mt{cookie} \; x : \tau) &=& \mt{cookie} \; x : \tau \\
adam@1797 1262 \mt{sigOf}(\mt{style} \; x) &=& \mt{style} \; x
adamc@538 1263 \end{eqnarray*}
adamc@539 1264 \begin{eqnarray*}
adamc@539 1265 \mt{selfify}(M, \cdot) &=& \cdot \\
adamc@558 1266 \mt{selfify}(M, s \; \overline{s'}) &=& \mt{selfify}(M, s) \; \mt{selfify}(M, \overline{s'}) \\
adamc@539 1267 \\
adamc@539 1268 \mt{selfify}(M, \mt{con} \; x :: \kappa) &=& \mt{con} \; x :: \kappa = M.x \\
adamc@539 1269 \mt{selfify}(M, \mt{con} \; x :: \kappa = c) &=& \mt{con} \; x :: \kappa = c \\
adamc@539 1270 \mt{selfify}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc}) &=& \mt{datatype} \; x \; \overline{y} = \mt{datatype} \; M.x \\
adamc@539 1271 \mt{selfify}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z) &=& \mt{datatype} \; x = \mt{datatype} \; M'.z \\
adamc@539 1272 \mt{selfify}(M, \mt{val} \; x : \tau) &=& \mt{val} \; x : \tau \\
adamc@539 1273 \mt{selfify}(M, \mt{structure} \; X : S) &=& \mt{structure} \; X : \mt{selfify}(M.X, \overline{s}) \textrm{ (where $\Gamma \vdash S \equiv \mt{sig} \; \overline{s} \; \mt{end}$)} \\
adamc@539 1274 \mt{selfify}(M, \mt{signature} \; X = S) &=& \mt{signature} \; X = S \\
adamc@539 1275 \mt{selfify}(M, \mt{include} \; S) &=& \mt{include} \; S \\
adamc@539 1276 \mt{selfify}(M, \mt{constraint} \; c_1 \sim c_2) &=& \mt{constraint} \; c_1 \sim c_2 \\
adamc@655 1277 \mt{selfify}(M, \mt{class} \; x :: \kappa) &=& \mt{class} \; x :: \kappa = M.x \\
adamc@655 1278 \mt{selfify}(M, \mt{class} \; x :: \kappa = c) &=& \mt{class} \; x :: \kappa = c \\
adamc@539 1279 \end{eqnarray*}
adamc@539 1280
adamc@540 1281 \subsection{Module Projection}
adamc@540 1282
adamc@540 1283 \begin{eqnarray*}
adamc@540 1284 \mt{proj}(M, \mt{con} \; x :: \kappa \; \overline{s}, \mt{con} \; x) &=& \kappa \\
adamc@540 1285 \mt{proj}(M, \mt{con} \; x :: \kappa = c \; \overline{s}, \mt{con} \; x) &=& (\kappa, c) \\
adamc@540 1286 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, \mt{con} \; x) &=& \mt{Type}^{\mt{len}(\overline{y})} \to \mt{Type} \\
adamc@540 1287 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z \; \overline{s}, \mt{con} \; x) &=& (\mt{Type}^{\mt{len}(\overline{y})} \to \mt{Type}, M'.z) \textrm{ (where $\Gamma \vdash M' : \mt{sig} \; \overline{s'} \; \mt{end}$} \\
adamc@540 1288 && \textrm{and $\mt{proj}(M', \overline{s'}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})$)} \\
adamc@655 1289 \mt{proj}(M, \mt{class} \; x :: \kappa \; \overline{s}, \mt{con} \; x) &=& \kappa \to \mt{Type} \\
adamc@655 1290 \mt{proj}(M, \mt{class} \; x :: \kappa = c \; \overline{s}, \mt{con} \; x) &=& (\kappa \to \mt{Type}, c) \\
adamc@540 1291 \\
adamc@540 1292 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, \mt{datatype} \; x) &=& (\overline{y}, \overline{dc}) \\
adamc@540 1293 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z \; \overline{s}, \mt{con} \; x) &=& \mt{proj}(M', \overline{s'}, \mt{datatype} \; z) \textrm{ (where $\Gamma \vdash M' : \mt{sig} \; \overline{s'} \; \mt{end}$)} \\
adamc@540 1294 \\
adamc@540 1295 \mt{proj}(M, \mt{val} \; x : \tau \; \overline{s}, \mt{val} \; x) &=& \tau \\
adamc@540 1296 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, \mt{val} \; X) &=& \overline{y ::: \mt{Type}} \to M.x \; \overline y \textrm{ (where $X \in \overline{dc}$)} \\
adamc@540 1297 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, \mt{val} \; X) &=& \overline{y ::: \mt{Type}} \to \tau \to M.x \; \overline y \textrm{ (where $X \; \mt{of} \; \tau \in \overline{dc}$)} \\
adamc@540 1298 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z, \mt{val} \; X) &=& \overline{y ::: \mt{Type}} \to M.x \; \overline y \textrm{ (where $\Gamma \vdash M' : \mt{sig} \; \overline{s'} \; \mt{end}$} \\
adamc@540 1299 && \textrm{and $\mt{proj}(M', \overline{s'}, \mt{datatype} \; z = (\overline{y}, \overline{dc})$ and $X \in \overline{dc}$)} \\
adamc@540 1300 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z, \mt{val} \; X) &=& \overline{y ::: \mt{Type}} \to \tau \to M.x \; \overline y \textrm{ (where $\Gamma \vdash M' : \mt{sig} \; \overline{s'} \; \mt{end}$} \\
adamc@558 1301 && \textrm{and $\mt{proj}(M', \overline{s'}, \mt{datatype} \; z = (\overline{y}, \overline{dc})$ and $X \; \mt{of} \; \tau \in \overline{dc}$)} \\
adamc@540 1302 \\
adamc@540 1303 \mt{proj}(M, \mt{structure} \; X : S \; \overline{s}, \mt{structure} \; X) &=& S \\
adamc@540 1304 \\
adamc@540 1305 \mt{proj}(M, \mt{signature} \; X = S \; \overline{s}, \mt{signature} \; X) &=& S \\
adamc@540 1306 \\
adamc@540 1307 \mt{proj}(M, \mt{con} \; x :: \kappa \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1308 \mt{proj}(M, \mt{con} \; x :: \kappa = c \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1309 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1310 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1311 \mt{proj}(M, \mt{val} \; x : \tau \; \overline{s}, V) &=& \mt{proj}(M, \overline{s}, V) \\
adamc@540 1312 \mt{proj}(M, \mt{structure} \; X : S \; \overline{s}, V) &=& [X \mapsto M.X]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1313 \mt{proj}(M, \mt{signature} \; X = S \; \overline{s}, V) &=& [X \mapsto M.X]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1314 \mt{proj}(M, \mt{include} \; S \; \overline{s}, V) &=& \mt{proj}(M, \overline{s'} \; \overline{s}, V) \textrm{ (where $\Gamma \vdash S \equiv \mt{sig} \; \overline{s'} \; \mt{end}$)} \\
adamc@540 1315 \mt{proj}(M, \mt{constraint} \; c_1 \sim c_2 \; \overline{s}, V) &=& \mt{proj}(M, \overline{s}, V) \\
adamc@655 1316 \mt{proj}(M, \mt{class} \; x :: \kappa \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@655 1317 \mt{proj}(M, \mt{class} \; x :: \kappa = c \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1318 \end{eqnarray*}
adamc@540 1319
adamc@541 1320
adamc@541 1321 \section{Type Inference}
adamc@541 1322
adamc@541 1323 The Ur/Web compiler uses \emph{heuristic type inference}, with no claims of completeness with respect to the declarative specification of the last section. The rules in use seem to work well in practice. This section summarizes those rules, to help Ur programmers predict what will work and what won't.
adamc@541 1324
adamc@541 1325 \subsection{Basic Unification}
adamc@541 1326
adamc@560 1327 Type-checkers for languages based on the Hindley-Milner type discipline, like ML and Haskell, take advantage of \emph{principal typing} properties, making complete type inference relatively straightforward. Inference algorithms are traditionally implemented using type unification variables, at various points asserting equalities between types, in the process discovering the values of type variables. The Ur/Web compiler uses the same basic strategy, but the complexity of the type system rules out easy completeness.
adamc@541 1328
adamc@656 1329 Type-checking can require evaluating recursive functional programs, thanks to the type-level $\mt{map}$ operator. When a unification variable appears in such a type, the next step of computation can be undetermined. The value of that variable might be determined later, but this would be ``too late'' for the unification problems generated at the first occurrence. This is the essential source of incompleteness.
adamc@541 1330
adamc@541 1331 Nonetheless, the unification engine tends to do reasonably well. Unlike in ML, polymorphism is never inferred in definitions; it must be indicated explicitly by writing out constructor-level parameters. By writing these and other annotations, the programmer can generally get the type inference engine to do most of the type reconstruction work.
adamc@541 1332
adamc@541 1333 \subsection{Unifying Record Types}
adamc@541 1334
adamc@570 1335 The type inference engine tries to take advantage of the algebraic rules governing type-level records, as shown in Section \ref{definitional}. When two constructors of record kind are unified, they are reduced to normal forms, with like terms crossed off from each normal form until, hopefully, nothing remains. This cannot be complete, with the inclusion of unification variables. The type-checker can help you understand what goes wrong when the process fails, as it outputs the unmatched remainders of the two normal forms.
adamc@541 1336
adamc@656 1337 \subsection{\label{typeclasses}Constructor Classes}
adamc@541 1338
adamc@784 1339 Ur includes a constructor class facility inspired by Haskell's. The current version is experimental, with very general Prolog-like facilities that can lead to compile-time non-termination.
adamc@541 1340
adam@1797 1341 Constructor classes are integrated with the module system. A constructor class of kind $\kappa$ is just a constructor of kind $\kappa$. By marking such a constructor $c$ as a constructor class, the programmer instructs the type inference engine to, in each scope, record all values of types $c \; c_1 \; \ldots \; c_n$ as \emph{instances}. Any function argument whose type is of such a form is treated as implicit, to be determined by examining the current instance database. Any suitably kinded constructor within a module may be exposed as a constructor class from outside the module, simply by using a $\mt{class}$ signature item instead of a $\mt{con}$ signature item in the module's signature.
adam@1797 1342
adam@1797 1343 The ``dictionary encoding'' often used in Haskell implementations is made explicit in Ur. Constructor class instances are just properly typed values, and they can also be considered as ``proofs'' of membership in the class. In some cases, it is useful to pass these proofs around explicitly. An underscore written where a proof is expected will also be inferred, if possible, from the current instance database.
adam@1797 1344
adam@1797 1345 Just as for constructors, constructors classes may be exported from modules, and they may be exported as concrete or abstract. Concrete constructor classes have their ``real'' definitions exposed, so that client code may add new instances freely. Automatic inference of concrete class instances will not generally work, so abstract classes are almost always the right choice. They are useful as ``predicates'' that can be used to enforce invariants, as we will see in some definitions of SQL syntax in the Ur/Web standard library. Free extension of a concrete class is easily supported by exporting a constructor function from a module, since the class implementation will be concrete within the module.
adamc@541 1346
adamc@541 1347 \subsection{Reverse-Engineering Record Types}
adamc@541 1348
adamc@656 1349 It's useful to write Ur functions and functors that take record constructors as inputs, but these constructors can grow quite long, even though their values are often implied by other arguments. The compiler uses a simple heuristic to infer the values of unification variables that are mapped over, yielding known results. If the result is empty, we're done; if it's not empty, we replace a single unification variable with a new constructor formed from three new unification variables, as in $[\alpha = \beta] \rc \gamma$. This process can often be repeated to determine a unification variable fully.
adamc@541 1350
adamc@541 1351 \subsection{Implicit Arguments in Functor Applications}
adamc@541 1352
adamc@656 1353 Constructor, constraint, and constructor class witness members of structures may be omitted, when those structures are used in contexts where their assigned signatures imply how to fill in those missing members. This feature combines well with reverse-engineering to allow for uses of complicated meta-programming functors with little more code than would be necessary to invoke an untyped, ad-hoc code generator.
adamc@541 1354
adamc@541 1355
adamc@542 1356 \section{The Ur Standard Library}
adamc@542 1357
adamc@542 1358 The built-in parts of the Ur/Web standard library are described by the signature in \texttt{lib/basis.urs} in the distribution. A module $\mt{Basis}$ ascribing to that signature is available in the initial environment, and every program is implicitly prefixed by $\mt{open} \; \mt{Basis}$.
adamc@542 1359
adamc@542 1360 Additionally, other common functions that are definable within Ur are included in \texttt{lib/top.urs} and \texttt{lib/top.ur}. This $\mt{Top}$ module is also opened implicitly.
adamc@542 1361
adamc@542 1362 The idea behind Ur is to serve as the ideal host for embedded domain-specific languages. For now, however, the ``generic'' functionality is intermixed with Ur/Web-specific functionality, including in these two library modules. We hope that these generic library components have types that speak for themselves. The next section introduces the Ur/Web-specific elements. Here, we only give the type declarations from the beginning of $\mt{Basis}$.
adamc@542 1363 $$\begin{array}{l}
adamc@542 1364 \mt{type} \; \mt{int} \\
adamc@542 1365 \mt{type} \; \mt{float} \\
adamc@873 1366 \mt{type} \; \mt{char} \\
adamc@542 1367 \mt{type} \; \mt{string} \\
adamc@542 1368 \mt{type} \; \mt{time} \\
adamc@785 1369 \mt{type} \; \mt{blob} \\
adamc@542 1370 \\
adamc@542 1371 \mt{type} \; \mt{unit} = \{\} \\
adamc@542 1372 \\
adamc@542 1373 \mt{datatype} \; \mt{bool} = \mt{False} \mid \mt{True} \\
adamc@542 1374 \\
adamc@785 1375 \mt{datatype} \; \mt{option} \; \mt{t} = \mt{None} \mid \mt{Some} \; \mt{of} \; \mt{t} \\
adamc@785 1376 \\
adamc@785 1377 \mt{datatype} \; \mt{list} \; \mt{t} = \mt{Nil} \mid \mt{Cons} \; \mt{of} \; \mt{t} \times \mt{list} \; \mt{t}
adamc@542 1378 \end{array}$$
adamc@542 1379
adamc@1123 1380 The only unusual element of this list is the $\mt{blob}$ type, which stands for binary sequences. Simple blobs can be created from strings via $\mt{Basis.textBlob}$. Blobs will also be generated from HTTP file uploads.
adamc@785 1381
adam@1297 1382 Ur also supports \emph{polymorphic variants}, a dual to extensible records that has been popularized by OCaml. A type $\mt{variant} \; r$ represents an $n$-ary sum type, with one constructor for each field of record $r$. Each constructor $c$ takes an argument of type $r.c$; the type $\{\}$ can be used to ``simulate'' a nullary constructor. The \cd{make} function builds a variant value, while \cd{match} implements pattern-matching, with match cases represented as records of functions.
adam@1297 1383 $$\begin{array}{l}
adam@1297 1384 \mt{con} \; \mt{variant} :: \{\mt{Type}\} \to \mt{Type} \\
adam@1297 1385 \mt{val} \; \mt{make} : \mt{nm} :: \mt{Name} \to \mt{t} ::: \mt{Type} \to \mt{ts} ::: \{\mt{Type}\} \to [[\mt{nm}] \sim \mt{ts}] \Rightarrow \mt{t} \to \mt{variant} \; ([\mt{nm} = \mt{t}] \rc \mt{ts}) \\
adam@1297 1386 \mt{val} \; \mt{match} : \mt{ts} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \to \mt{variant} \; \mt{ts} \to \$(\mt{map} \; (\lambda \mt{t'} \Rightarrow \mt{t'} \to \mt{t}) \; \mt{ts}) \to \mt{t}
adam@1297 1387 \end{array}$$
adam@1297 1388
adamc@657 1389 Another important generic Ur element comes at the beginning of \texttt{top.urs}.
adamc@657 1390
adamc@657 1391 $$\begin{array}{l}
adamc@657 1392 \mt{con} \; \mt{folder} :: \mt{K} \longrightarrow \{\mt{K}\} \to \mt{Type} \\
adamc@657 1393 \\
adamc@657 1394 \mt{val} \; \mt{fold} : \mt{K} \longrightarrow \mt{tf} :: (\{\mt{K}\} \to \mt{Type}) \\
adamc@657 1395 \hspace{.1in} \to (\mt{nm} :: \mt{Name} \to \mt{v} :: \mt{K} \to \mt{r} :: \{\mt{K}\} \to [[\mt{nm}] \sim \mt{r}] \Rightarrow \\
adamc@657 1396 \hspace{.2in} \mt{tf} \; \mt{r} \to \mt{tf} \; ([\mt{nm} = \mt{v}] \rc \mt{r})) \\
adamc@657 1397 \hspace{.1in} \to \mt{tf} \; [] \\
adamc@657 1398 \hspace{.1in} \to \mt{r} :: \{\mt{K}\} \to \mt{folder} \; \mt{r} \to \mt{tf} \; \mt{r}
adamc@657 1399 \end{array}$$
adamc@657 1400
adamc@657 1401 For a type-level record $\mt{r}$, a $\mt{folder} \; \mt{r}$ encodes a permutation of $\mt{r}$'s elements. The $\mt{fold}$ function can be called on a $\mt{folder}$ to iterate over the elements of $\mt{r}$ in that order. $\mt{fold}$ is parameterized on a type-level function to be used to calculate the type of each intermediate result of folding. After processing a subset $\mt{r'}$ of $\mt{r}$'s entries, the type of the accumulator should be $\mt{tf} \; \mt{r'}$. The next two expression arguments to $\mt{fold}$ are the usual step function and initial accumulator, familiar from fold functions over lists. The final two arguments are the record to fold over and a $\mt{folder}$ for it.
adamc@657 1402
adamc@664 1403 The Ur compiler treats $\mt{folder}$ like a constructor class, using built-in rules to infer $\mt{folder}$s for records with known structure. The order in which field names are mentioned in source code is used as a hint about the permutation that the programmer would like.
adamc@657 1404
adamc@542 1405
adamc@542 1406 \section{The Ur/Web Standard Library}
adamc@542 1407
adam@1400 1408 Some operations are only allowed in server-side code or only in client-side code. The type system does not enforce such restrictions, but the compiler enforces them in the process of whole-program compilation. In the discussion below, we note when a set of operations has a location restriction.
adam@1400 1409
adamc@658 1410 \subsection{Monads}
adamc@658 1411
adamc@658 1412 The Ur Basis defines the monad constructor class from Haskell.
adamc@658 1413
adamc@658 1414 $$\begin{array}{l}
adamc@658 1415 \mt{class} \; \mt{monad} :: \mt{Type} \to \mt{Type} \\
adamc@658 1416 \mt{val} \; \mt{return} : \mt{m} ::: (\mt{Type} \to \mt{Type}) \to \mt{t} ::: \mt{Type} \\
adamc@658 1417 \hspace{.1in} \to \mt{monad} \; \mt{m} \\
adamc@658 1418 \hspace{.1in} \to \mt{t} \to \mt{m} \; \mt{t} \\
adamc@658 1419 \mt{val} \; \mt{bind} : \mt{m} ::: (\mt{Type} \to \mt{Type}) \to \mt{t1} ::: \mt{Type} \to \mt{t2} ::: \mt{Type} \\
adamc@658 1420 \hspace{.1in} \to \mt{monad} \; \mt{m} \\
adamc@658 1421 \hspace{.1in} \to \mt{m} \; \mt{t1} \to (\mt{t1} \to \mt{m} \; \mt{t2}) \\
adam@1544 1422 \hspace{.1in} \to \mt{m} \; \mt{t2} \\
adam@1544 1423 \mt{val} \; \mt{mkMonad} : \mt{m} ::: (\mt{Type} \to \mt{Type}) \\
adam@1544 1424 \hspace{.1in} \to \{\mt{Return} : \mt{t} ::: \mt{Type} \to \mt{t} \to \mt{m} \; \mt{t}, \\
adam@1544 1425 \hspace{.3in} \mt{Bind} : \mt{t1} ::: \mt{Type} \to \mt{t2} ::: \mt{Type} \to \mt{m} \; \mt{t1} \to (\mt{t1} \to \mt{m} \; \mt{t2}) \to \mt{m} \; \mt{t2}\} \\
adam@1544 1426 \hspace{.1in} \to \mt{monad} \; \mt{m}
adamc@658 1427 \end{array}$$
adamc@658 1428
adam@1687 1429 The Ur/Web compiler provides syntactic sugar for monads, similar to Haskell's \cd{do} notation. An expression $x \leftarrow e_1; e_2$ is desugared to $\mt{bind} \; e_1 \; (\lambda x \Rightarrow e_2)$, and an expression $e_1; e_2$ is desugared to $\mt{bind} \; e_1 \; (\lambda () \Rightarrow e_2)$. Note a difference from Haskell: as the $e_1; e_2$ case desugaring involves a function with $()$ as its formal argument, the type of $e_1$ must be of the form $m \; \{\}$, rather than some arbitrary $m \; t$.
adam@1548 1430
adamc@542 1431 \subsection{Transactions}
adamc@542 1432
adamc@542 1433 Ur is a pure language; we use Haskell's trick to support controlled side effects. The standard library defines a monad $\mt{transaction}$, meant to stand for actions that may be undone cleanly. By design, no other kinds of actions are supported.
adamc@542 1434 $$\begin{array}{l}
adamc@542 1435 \mt{con} \; \mt{transaction} :: \mt{Type} \to \mt{Type} \\
adamc@658 1436 \mt{val} \; \mt{transaction\_monad} : \mt{monad} \; \mt{transaction}
adamc@542 1437 \end{array}$$
adamc@542 1438
adamc@1123 1439 For debugging purposes, a transactional function is provided for outputting a string on the server process' \texttt{stderr}.
adamc@1123 1440 $$\begin{array}{l}
adamc@1123 1441 \mt{val} \; \mt{debug} : \mt{string} \to \mt{transaction} \; \mt{unit}
adamc@1123 1442 \end{array}$$
adamc@1123 1443
adamc@542 1444 \subsection{HTTP}
adamc@542 1445
adam@1797 1446 There are transactions for reading an HTTP header by name and for getting and setting strongly typed cookies. Cookies may only be created by the $\mt{cookie}$ declaration form, ensuring that they be named consistently based on module structure. For now, cookie operations are server-side only.
adamc@542 1447 $$\begin{array}{l}
adamc@786 1448 \mt{con} \; \mt{http\_cookie} :: \mt{Type} \to \mt{Type} \\
adamc@786 1449 \mt{val} \; \mt{getCookie} : \mt{t} ::: \mt{Type} \to \mt{http\_cookie} \; \mt{t} \to \mt{transaction} \; (\mt{option} \; \mt{t}) \\
adamc@1050 1450 \mt{val} \; \mt{setCookie} : \mt{t} ::: \mt{Type} \to \mt{http\_cookie} \; \mt{t} \to \{\mt{Value} : \mt{t}, \mt{Expires} : \mt{option} \; \mt{time}, \mt{Secure} : \mt{bool}\} \to \mt{transaction} \; \mt{unit} \\
adamc@1050 1451 \mt{val} \; \mt{clearCookie} : \mt{t} ::: \mt{Type} \to \mt{http\_cookie} \; \mt{t} \to \mt{transaction} \; \mt{unit}
adamc@786 1452 \end{array}$$
adamc@786 1453
adamc@786 1454 There are also an abstract $\mt{url}$ type and functions for converting to it, based on the policy defined by \texttt{[allow|deny] url} directives in the project file.
adamc@786 1455 $$\begin{array}{l}
adamc@786 1456 \mt{type} \; \mt{url} \\
adamc@786 1457 \mt{val} \; \mt{bless} : \mt{string} \to \mt{url} \\
adamc@786 1458 \mt{val} \; \mt{checkUrl} : \mt{string} \to \mt{option} \; \mt{url}
adamc@786 1459 \end{array}$$
adamc@786 1460 $\mt{bless}$ raises a runtime error if the string passed to it fails the URL policy.
adamc@786 1461
adam@1400 1462 It is possible to grab the current page's URL or to build a URL for an arbitrary transaction that would also be an acceptable value of a \texttt{link} attribute of the \texttt{a} tag. These are server-side operations.
adamc@1085 1463 $$\begin{array}{l}
adamc@1085 1464 \mt{val} \; \mt{currentUrl} : \mt{transaction} \; \mt{url} \\
adamc@1085 1465 \mt{val} \; \mt{url} : \mt{transaction} \; \mt{page} \to \mt{url}
adamc@1085 1466 \end{array}$$
adamc@1085 1467
adamc@1085 1468 Page generation may be interrupted at any time with a request to redirect to a particular URL instead.
adamc@1085 1469 $$\begin{array}{l}
adamc@1085 1470 \mt{val} \; \mt{redirect} : \mt{t} ::: \mt{Type} \to \mt{url} \to \mt{transaction} \; \mt{t}
adamc@1085 1471 \end{array}$$
adamc@1085 1472
adam@1400 1473 It's possible for pages to return files of arbitrary MIME types. A file can be input from the user using this data type, along with the $\mt{upload}$ form tag. These functions and those described in the following paragraph are server-side.
adamc@786 1474 $$\begin{array}{l}
adamc@786 1475 \mt{type} \; \mt{file} \\
adamc@786 1476 \mt{val} \; \mt{fileName} : \mt{file} \to \mt{option} \; \mt{string} \\
adamc@786 1477 \mt{val} \; \mt{fileMimeType} : \mt{file} \to \mt{string} \\
adamc@786 1478 \mt{val} \; \mt{fileData} : \mt{file} \to \mt{blob}
adamc@786 1479 \end{array}$$
adamc@786 1480
adam@1799 1481 It is also possible to get HTTP request headers and environment variables, and set HTTP response headers, using abstract types similar to the one for URLs.
adam@1465 1482
adam@1465 1483 $$\begin{array}{l}
adam@1465 1484 \mt{type} \; \mt{requestHeader} \\
adam@1465 1485 \mt{val} \; \mt{blessRequestHeader} : \mt{string} \to \mt{requestHeader} \\
adam@1465 1486 \mt{val} \; \mt{checkRequestHeader} : \mt{string} \to \mt{option} \; \mt{requestHeader} \\
adam@1465 1487 \mt{val} \; \mt{getHeader} : \mt{requestHeader} \to \mt{transaction} \; (\mt{option} \; \mt{string}) \\
adam@1465 1488 \\
adam@1799 1489 \mt{type} \; \mt{envVar} \\
adam@1799 1490 \mt{val} \; \mt{blessEnvVar} : \mt{string} \to \mt{envVar} \\
adam@1799 1491 \mt{val} \; \mt{checkEnvVar} : \mt{string} \to \mt{option} \; \mt{envVar} \\
adam@1799 1492 \mt{val} \; \mt{getenv} : \mt{envVar} \to \mt{transaction} \; (\mt{option} \; \mt{string}) \\
adam@1799 1493 \\
adam@1465 1494 \mt{type} \; \mt{responseHeader} \\
adam@1465 1495 \mt{val} \; \mt{blessResponseHeader} : \mt{string} \to \mt{responseHeader} \\
adam@1465 1496 \mt{val} \; \mt{checkResponseHeader} : \mt{string} \to \mt{option} \; \mt{responseHeader} \\
adam@1465 1497 \mt{val} \; \mt{setHeader} : \mt{responseHeader} \to \mt{string} \to \mt{transaction} \; \mt{unit}
adam@1465 1498 \end{array}$$
adam@1465 1499
adamc@786 1500 A blob can be extracted from a file and returned as the page result. There are bless and check functions for MIME types analogous to those for URLs.
adamc@786 1501 $$\begin{array}{l}
adamc@786 1502 \mt{type} \; \mt{mimeType} \\
adamc@786 1503 \mt{val} \; \mt{blessMime} : \mt{string} \to \mt{mimeType} \\
adamc@786 1504 \mt{val} \; \mt{checkMime} : \mt{string} \to \mt{option} \; \mt{mimeType} \\
adamc@786 1505 \mt{val} \; \mt{returnBlob} : \mt{t} ::: \mt{Type} \to \mt{blob} \to \mt{mimeType} \to \mt{transaction} \; \mt{t}
adamc@542 1506 \end{array}$$
adamc@542 1507
adamc@543 1508 \subsection{SQL}
adamc@543 1509
adam@1400 1510 Everything about SQL database access is restricted to server-side code.
adam@1400 1511
adamc@543 1512 The fundamental unit of interest in the embedding of SQL is tables, described by a type family and creatable only via the $\mt{table}$ declaration form.
adamc@543 1513 $$\begin{array}{l}
adamc@785 1514 \mt{con} \; \mt{sql\_table} :: \{\mt{Type}\} \to \{\{\mt{Unit}\}\} \to \mt{Type}
adamc@785 1515 \end{array}$$
adamc@785 1516 The first argument to this constructor gives the names and types of a table's columns, and the second argument gives the set of valid keys. Keys are the only subsets of the columns that may be referenced as foreign keys. Each key has a name.
adamc@785 1517
adamc@785 1518 We also have the simpler type family of SQL views, which have no keys.
adamc@785 1519 $$\begin{array}{l}
adamc@785 1520 \mt{con} \; \mt{sql\_view} :: \{\mt{Type}\} \to \mt{Type}
adamc@543 1521 \end{array}$$
adamc@543 1522
adamc@785 1523 A multi-parameter type class is used to allow tables and views to be used interchangeably, with a way of extracting the set of columns from each.
adamc@785 1524 $$\begin{array}{l}
adamc@785 1525 \mt{class} \; \mt{fieldsOf} :: \mt{Type} \to \{\mt{Type}\} \to \mt{Type} \\
adamc@785 1526 \mt{val} \; \mt{fieldsOf\_table} : \mt{fs} ::: \{\mt{Type}\} \to \mt{keys} ::: \{\{\mt{Unit}\}\} \to \mt{fieldsOf} \; (\mt{sql\_table} \; \mt{fs} \; \mt{keys}) \; \mt{fs} \\
adamc@785 1527 \mt{val} \; \mt{fieldsOf\_view} : \mt{fs} ::: \{\mt{Type}\} \to \mt{fieldsOf} \; (\mt{sql\_view} \; \mt{fs}) \; \mt{fs}
adamc@785 1528 \end{array}$$
adamc@785 1529
adamc@785 1530 \subsubsection{Table Constraints}
adamc@785 1531
adamc@785 1532 Tables may be declared with constraints, such that database modifications that violate the constraints are blocked. A table may have at most one \texttt{PRIMARY KEY} constraint, which gives the subset of columns that will most often be used to look up individual rows in the table.
adamc@785 1533
adamc@785 1534 $$\begin{array}{l}
adamc@785 1535 \mt{con} \; \mt{primary\_key} :: \{\mt{Type}\} \to \{\{\mt{Unit}\}\} \to \mt{Type} \\
adamc@785 1536 \mt{val} \; \mt{no\_primary\_key} : \mt{fs} ::: \{\mt{Type}\} \to \mt{primary\_key} \; \mt{fs} \; [] \\
adamc@785 1537 \mt{val} \; \mt{primary\_key} : \mt{rest} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \to \mt{key1} :: \mt{Name} \to \mt{keys} :: \{\mt{Type}\} \\
adamc@785 1538 \hspace{.1in} \to [[\mt{key1}] \sim \mt{keys}] \Rightarrow [[\mt{key1} = \mt{t}] \rc \mt{keys} \sim \mt{rest}] \\
adamc@785 1539 \hspace{.1in} \Rightarrow \$([\mt{key1} = \mt{sql\_injectable\_prim} \; \mt{t}] \rc \mt{map} \; \mt{sql\_injectable\_prim} \; \mt{keys}) \\
adamc@785 1540 \hspace{.1in} \to \mt{primary\_key} \; ([\mt{key1} = \mt{t}] \rc \mt{keys} \rc \mt{rest}) \; [\mt{Pkey} = [\mt{key1}] \rc \mt{map} \; (\lambda \_ \Rightarrow ()) \; \mt{keys}]
adamc@785 1541 \end{array}$$
adamc@785 1542 The type class $\mt{sql\_injectable\_prim}$ characterizes which types are allowed in SQL and are not $\mt{option}$ types. In SQL, a \texttt{PRIMARY KEY} constraint enforces after-the-fact that a column may not contain \texttt{NULL}s, but Ur/Web forces that information to be included in table types from the beginning. Thus, the only effect of this kind of constraint in Ur/Web is to enforce uniqueness of the given key within the table.
adamc@785 1543
adamc@785 1544 A type family stands for sets of named constraints of the remaining varieties.
adamc@785 1545 $$\begin{array}{l}
adamc@785 1546 \mt{con} \; \mt{sql\_constraints} :: \{\mt{Type}\} \to \{\{\mt{Unit}\}\} \to \mt{Type}
adamc@785 1547 \end{array}$$
adamc@785 1548 The first argument gives the column types of the table being constrained, and the second argument maps constraint names to the keys that they define. Constraints that don't define keys are mapped to ``empty keys.''
adamc@785 1549
adamc@785 1550 There is a type family of individual, unnamed constraints.
adamc@785 1551 $$\begin{array}{l}
adamc@785 1552 \mt{con} \; \mt{sql\_constraint} :: \{\mt{Type}\} \to \{\mt{Unit}\} \to \mt{Type}
adamc@785 1553 \end{array}$$
adamc@785 1554 The first argument is the same as above, and the second argument gives the key columns for just this constraint.
adamc@785 1555
adamc@785 1556 We have operations for assembling constraints into constraint sets.
adamc@785 1557 $$\begin{array}{l}
adamc@785 1558 \mt{val} \; \mt{no\_constraint} : \mt{fs} ::: \{\mt{Type}\} \to \mt{sql\_constraints} \; \mt{fs} \; [] \\
adamc@785 1559 \mt{val} \; \mt{one\_constraint} : \mt{fs} ::: \{\mt{Type}\} \to \mt{unique} ::: \{\mt{Unit}\} \to \mt{name} :: \mt{Name} \\
adamc@785 1560 \hspace{.1in} \to \mt{sql\_constraint} \; \mt{fs} \; \mt{unique} \to \mt{sql\_constraints} \; \mt{fs} \; [\mt{name} = \mt{unique}] \\
adamc@785 1561 \mt{val} \; \mt{join\_constraints} : \mt{fs} ::: \{\mt{Type}\} \to \mt{uniques1} ::: \{\{\mt{Unit}\}\} \to \mt{uniques2} ::: \{\{\mt{Unit}\}\} \to [\mt{uniques1} \sim \mt{uniques2}] \\
adamc@785 1562 \hspace{.1in} \Rightarrow \mt{sql\_constraints} \; \mt{fs} \; \mt{uniques1} \to \mt{sql\_constraints} \; \mt{fs} \; \mt{uniques2} \to \mt{sql\_constraints} \; \mt{fs} \; (\mt{uniques1} \rc \mt{uniques2})
adamc@785 1563 \end{array}$$
adamc@785 1564
adamc@785 1565 A \texttt{UNIQUE} constraint forces a set of columns to be a key, which means that no combination of column values may occur more than once in the table. The $\mt{unique1}$ and $\mt{unique}$ arguments are separated out only to ensure that empty \texttt{UNIQUE} constraints are rejected.
adamc@785 1566 $$\begin{array}{l}
adamc@785 1567 \mt{val} \; \mt{unique} : \mt{rest} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \to \mt{unique1} :: \mt{Name} \to \mt{unique} :: \{\mt{Type}\} \\
adamc@785 1568 \hspace{.1in} \to [[\mt{unique1}] \sim \mt{unique}] \Rightarrow [[\mt{unique1} = \mt{t}] \rc \mt{unique} \sim \mt{rest}] \\
adamc@785 1569 \hspace{.1in} \Rightarrow \mt{sql\_constraint} \; ([\mt{unique1} = \mt{t}] \rc \mt{unique} \rc \mt{rest}) \; ([\mt{unique1}] \rc \mt{map} \; (\lambda \_ \Rightarrow ()) \; \mt{unique})
adamc@785 1570 \end{array}$$
adamc@785 1571
adamc@785 1572 A \texttt{FOREIGN KEY} constraint connects a set of local columns to a local or remote key, enforcing that the local columns always reference an existent row of the foreign key's table. A local column of type $\mt{t}$ may be linked to a foreign column of type $\mt{option} \; \mt{t}$, and vice versa. We formalize that notion with a type class.
adamc@785 1573 $$\begin{array}{l}
adamc@785 1574 \mt{class} \; \mt{linkable} :: \mt{Type} \to \mt{Type} \to \mt{Type} \\
adamc@785 1575 \mt{val} \; \mt{linkable\_same} : \mt{t} ::: \mt{Type} \to \mt{linkable} \; \mt{t} \; \mt{t} \\
adamc@785 1576 \mt{val} \; \mt{linkable\_from\_nullable} : \mt{t} ::: \mt{Type} \to \mt{linkable} \; (\mt{option} \; \mt{t}) \; \mt{t} \\
adamc@785 1577 \mt{val} \; \mt{linkable\_to\_nullable} : \mt{t} ::: \mt{Type} \to \mt{linkable} \; \mt{t} \; (\mt{option} \; \mt{t})
adamc@785 1578 \end{array}$$
adamc@785 1579
adamc@785 1580 The $\mt{matching}$ type family uses $\mt{linkable}$ to define when two keys match up type-wise.
adamc@785 1581 $$\begin{array}{l}
adamc@785 1582 \mt{con} \; \mt{matching} :: \{\mt{Type}\} \to \{\mt{Type}\} \to \mt{Type} \\
adamc@785 1583 \mt{val} \; \mt{mat\_nil} : \mt{matching} \; [] \; [] \\
adamc@785 1584 \mt{val} \; \mt{mat\_cons} : \mt{t1} ::: \mt{Type} \to \mt{rest1} ::: \{\mt{Type}\} \to \mt{t2} ::: \mt{Type} \to \mt{rest2} ::: \{\mt{Type}\} \to \mt{nm1} :: \mt{Name} \to \mt{nm2} :: \mt{Name} \\
adamc@785 1585 \hspace{.1in} \to [[\mt{nm1}] \sim \mt{rest1}] \Rightarrow [[\mt{nm2}] \sim \mt{rest2}] \Rightarrow \mt{linkable} \; \mt{t1} \; \mt{t2} \to \mt{matching} \; \mt{rest1} \; \mt{rest2} \\
adamc@785 1586 \hspace{.1in} \to \mt{matching} \; ([\mt{nm1} = \mt{t1}] \rc \mt{rest1}) \; ([\mt{nm2} = \mt{t2}] \rc \mt{rest2})
adamc@785 1587 \end{array}$$
adamc@785 1588
adamc@785 1589 SQL provides a number of different propagation modes for \texttt{FOREIGN KEY} constraints, governing what happens when a row containing a still-referenced foreign key value is deleted or modified to have a different key value. The argument of a propagation mode's type gives the local key type.
adamc@785 1590 $$\begin{array}{l}
adamc@785 1591 \mt{con} \; \mt{propagation\_mode} :: \{\mt{Type}\} \to \mt{Type} \\
adamc@785 1592 \mt{val} \; \mt{restrict} : \mt{fs} ::: \{\mt{Type}\} \to \mt{propagation\_mode} \; \mt{fs} \\
adamc@785 1593 \mt{val} \; \mt{cascade} : \mt{fs} ::: \{\mt{Type}\} \to \mt{propagation\_mode} \; \mt{fs} \\
adamc@785 1594 \mt{val} \; \mt{no\_action} : \mt{fs} ::: \{\mt{Type}\} \to \mt{propagation\_mode} \; \mt{fs} \\
adamc@785 1595 \mt{val} \; \mt{set\_null} : \mt{fs} ::: \{\mt{Type}\} \to \mt{propagation\_mode} \; (\mt{map} \; \mt{option} \; \mt{fs})
adamc@785 1596 \end{array}$$
adamc@785 1597
adamc@785 1598 Finally, we put these ingredient together to define the \texttt{FOREIGN KEY} constraint function.
adamc@785 1599 $$\begin{array}{l}
adamc@785 1600 \mt{val} \; \mt{foreign\_key} : \mt{mine1} ::: \mt{Name} \to \mt{t} ::: \mt{Type} \to \mt{mine} ::: \{\mt{Type}\} \to \mt{munused} ::: \{\mt{Type}\} \to \mt{foreign} ::: \{\mt{Type}\} \\
adamc@785 1601 \hspace{.1in} \to \mt{funused} ::: \{\mt{Type}\} \to \mt{nm} ::: \mt{Name} \to \mt{uniques} ::: \{\{\mt{Unit}\}\} \\
adamc@785 1602 \hspace{.1in} \to [[\mt{mine1}] \sim \mt{mine}] \Rightarrow [[\mt{mine1} = \mt{t}] \rc \mt{mine} \sim \mt{munused}] \Rightarrow [\mt{foreign} \sim \mt{funused}] \Rightarrow [[\mt{nm}] \sim \mt{uniques}] \\
adamc@785 1603 \hspace{.1in} \Rightarrow \mt{matching} \; ([\mt{mine1} = \mt{t}] \rc \mt{mine}) \; \mt{foreign} \\
adamc@785 1604 \hspace{.1in} \to \mt{sql\_table} \; (\mt{foreign} \rc \mt{funused}) \; ([\mt{nm} = \mt{map} \; (\lambda \_ \Rightarrow ()) \; \mt{foreign}] \rc \mt{uniques}) \\
adamc@785 1605 \hspace{.1in} \to \{\mt{OnDelete} : \mt{propagation\_mode} \; ([\mt{mine1} = \mt{t}] \rc \mt{mine}), \\
adamc@785 1606 \hspace{.2in} \mt{OnUpdate} : \mt{propagation\_mode} \; ([\mt{mine1} = \mt{t}] \rc \mt{mine})\} \\
adamc@785 1607 \hspace{.1in} \to \mt{sql\_constraint} \; ([\mt{mine1} = \mt{t}] \rc \mt{mine} \rc \mt{munused}) \; []
adamc@785 1608 \end{array}$$
adamc@785 1609
adamc@785 1610 The last kind of constraint is a \texttt{CHECK} constraint, which attaches a boolean invariant over a row's contents. It is defined using the $\mt{sql\_exp}$ type family, which we discuss in more detail below.
adamc@785 1611 $$\begin{array}{l}
adam@1778 1612 \mt{val} \; \mt{check} : \mt{fs} ::: \{\mt{Type}\} \to \mt{sql\_exp} \; [] \; [] \; \mt{fs} \; \mt{bool} \to \mt{sql\_constraint} \; \mt{fs} \; []
adamc@785 1613 \end{array}$$
adamc@785 1614
adamc@785 1615 Section \ref{tables} shows the expanded syntax of the $\mt{table}$ declaration and signature item that includes constraints. There is no other way to use constraints with SQL in Ur/Web.
adamc@785 1616
adamc@784 1617
adamc@543 1618 \subsubsection{Queries}
adamc@543 1619
adam@1400 1620 A final query is constructed via the $\mt{sql\_query}$ function. Constructor arguments respectively specify the unrestricted free table variables (which will only be available in subqueries), the free table variables that may only be mentioned within arguments to aggregate functions, table fields we select (as records mapping tables to the subsets of their fields that we choose), and the (always named) extra expressions that we select.
adamc@543 1621 $$\begin{array}{l}
adam@1400 1622 \mt{con} \; \mt{sql\_query} :: \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \\
adamc@1193 1623 \mt{val} \; \mt{sql\_query} : \mt{free} ::: \{\{\mt{Type}\}\} \\
adam@1400 1624 \hspace{.1in} \to \mt{afree} ::: \{\{\mt{Type}\}\} \\
adamc@1193 1625 \hspace{.1in} \to \mt{tables} ::: \{\{\mt{Type}\}\} \\
adamc@543 1626 \hspace{.1in} \to \mt{selectedFields} ::: \{\{\mt{Type}\}\} \\
adamc@543 1627 \hspace{.1in} \to \mt{selectedExps} ::: \{\mt{Type}\} \\
adamc@1193 1628 \hspace{.1in} \to [\mt{free} \sim \mt{tables}] \\
adam@1400 1629 \hspace{.1in} \Rightarrow \{\mt{Rows} : \mt{sql\_query1} \; \mt{free} \; \mt{afree} \; \mt{tables} \; \mt{selectedFields} \; \mt{selectedExps}, \\
adamc@1193 1630 \hspace{.2in} \mt{OrderBy} : \mt{sql\_order\_by} \; (\mt{free} \rc \mt{tables}) \; \mt{selectedExps}, \\
adamc@543 1631 \hspace{.2in} \mt{Limit} : \mt{sql\_limit}, \\
adamc@543 1632 \hspace{.2in} \mt{Offset} : \mt{sql\_offset}\} \\
adam@1400 1633 \hspace{.1in} \to \mt{sql\_query} \; \mt{free} \; \mt{afree} \; \mt{selectedFields} \; \mt{selectedExps}
adamc@543 1634 \end{array}$$
adamc@543 1635
adamc@545 1636 Queries are used by folding over their results inside transactions.
adamc@545 1637 $$\begin{array}{l}
adam@1400 1638 \mt{val} \; \mt{query} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to [\mt{tables} \sim \mt{exps}] \Rightarrow \mt{state} ::: \mt{Type} \to \mt{sql\_query} \; [] \; [] \; \mt{tables} \; \mt{exps} \\
adamc@658 1639 \hspace{.1in} \to (\$(\mt{exps} \rc \mt{map} \; (\lambda \mt{fields} :: \{\mt{Type}\} \Rightarrow \$\mt{fields}) \; \mt{tables}) \\
adamc@545 1640 \hspace{.2in} \to \mt{state} \to \mt{transaction} \; \mt{state}) \\
adamc@545 1641 \hspace{.1in} \to \mt{state} \to \mt{transaction} \; \mt{state}
adamc@545 1642 \end{array}$$
adamc@545 1643
adam@1400 1644 Most of the complexity of the query encoding is in the type $\mt{sql\_query1}$, which includes simple queries and derived queries based on relational operators. Constructor arguments respectively specify the unrestricted free table veriables, the aggregate-only free table variables, the tables we select from, the subset of fields that we keep from each table for the result rows, and the extra expressions that we select.
adamc@543 1645 $$\begin{array}{l}
adam@1400 1646 \mt{con} \; \mt{sql\_query1} :: \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \\
adamc@543 1647 \\
adamc@543 1648 \mt{type} \; \mt{sql\_relop} \\
adamc@543 1649 \mt{val} \; \mt{sql\_union} : \mt{sql\_relop} \\
adamc@543 1650 \mt{val} \; \mt{sql\_intersect} : \mt{sql\_relop} \\
adamc@543 1651 \mt{val} \; \mt{sql\_except} : \mt{sql\_relop} \\
adam@1400 1652 \mt{val} \; \mt{sql\_relop} : \mt{free} ::: \{\{\mt{Type}\}\} \\
adam@1400 1653 \hspace{.1in} \to \mt{afree} ::: \{\{\mt{Type}\}\} \\
adam@1400 1654 \hspace{.1in} \to \mt{tables1} ::: \{\{\mt{Type}\}\} \\
adamc@543 1655 \hspace{.1in} \to \mt{tables2} ::: \{\{\mt{Type}\}\} \\
adamc@543 1656 \hspace{.1in} \to \mt{selectedFields} ::: \{\{\mt{Type}\}\} \\
adamc@543 1657 \hspace{.1in} \to \mt{selectedExps} ::: \{\mt{Type}\} \\
adamc@543 1658 \hspace{.1in} \to \mt{sql\_relop} \\
adam@1458 1659 \hspace{.1in} \to \mt{bool} \; (* \; \mt{ALL} \; *) \\
adam@1400 1660 \hspace{.1in} \to \mt{sql\_query1} \; \mt{free} \; \mt{afree} \; \mt{tables1} \; \mt{selectedFields} \; \mt{selectedExps} \\
adam@1400 1661 \hspace{.1in} \to \mt{sql\_query1} \; \mt{free} \; \mt{afree} \; \mt{tables2} \; \mt{selectedFields} \; \mt{selectedExps} \\
adam@1400 1662 \hspace{.1in} \to \mt{sql\_query1} \; \mt{free} \; \mt{afree} \; \mt{selectedFields} \; \mt{selectedFields} \; \mt{selectedExps}
adamc@543 1663 \end{array}$$
adamc@543 1664
adamc@543 1665 $$\begin{array}{l}
adamc@1193 1666 \mt{val} \; \mt{sql\_query1} : \mt{free} ::: \{\{\mt{Type}\}\} \\
adam@1400 1667 \hspace{.1in} \to \mt{afree} ::: \{\{\mt{Type}\}\} \\
adamc@1193 1668 \hspace{.1in} \to \mt{tables} ::: \{\{\mt{Type}\}\} \\
adamc@543 1669 \hspace{.1in} \to \mt{grouped} ::: \{\{\mt{Type}\}\} \\
adamc@543 1670 \hspace{.1in} \to \mt{selectedFields} ::: \{\{\mt{Type}\}\} \\
adamc@543 1671 \hspace{.1in} \to \mt{selectedExps} ::: \{\mt{Type}\} \\
adamc@1085 1672 \hspace{.1in} \to \mt{empties} :: \{\mt{Unit}\} \\
adamc@1193 1673 \hspace{.1in} \to [\mt{free} \sim \mt{tables}] \\
adamc@1193 1674 \hspace{.1in} \Rightarrow [\mt{free} \sim \mt{grouped}] \\
adam@1400 1675 \hspace{.1in} \Rightarrow [\mt{afree} \sim \mt{tables}] \\
adamc@1193 1676 \hspace{.1in} \Rightarrow [\mt{empties} \sim \mt{selectedFields}] \\
adamc@1085 1677 \hspace{.1in} \Rightarrow \{\mt{Distinct} : \mt{bool}, \\
adamc@1193 1678 \hspace{.2in} \mt{From} : \mt{sql\_from\_items} \; \mt{free} \; \mt{tables}, \\
adam@1778 1679 \hspace{.2in} \mt{Where} : \mt{sql\_exp} \; (\mt{free} \rc \mt{tables}) \; \mt{afree} \; [] \; \mt{bool}, \\
adamc@543 1680 \hspace{.2in} \mt{GroupBy} : \mt{sql\_subset} \; \mt{tables} \; \mt{grouped}, \\
adam@1778 1681 \hspace{.2in} \mt{Having} : \mt{sql\_exp} \; (\mt{free} \rc \mt{grouped}) \; (\mt{afree} \rc \mt{tables}) \; [] \; \mt{bool}, \\
adamc@1085 1682 \hspace{.2in} \mt{SelectFields} : \mt{sql\_subset} \; \mt{grouped} \; (\mt{map} \; (\lambda \_ \Rightarrow []) \; \mt{empties} \rc \mt{selectedFields}), \\
adam@1778 1683 \hspace{.2in} \mt {SelectExps} : \$(\mt{map} \; (\mt{sql\_expw} \; (\mt{free} \rc \mt{grouped}) \; (\mt{afree} \rc \mt{tables}) \; []) \; \mt{selectedExps}) \} \\
adam@1400 1684 \hspace{.1in} \to \mt{sql\_query1} \; \mt{free} \; \mt{afree} \; \mt{tables} \; \mt{selectedFields} \; \mt{selectedExps}
adamc@543 1685 \end{array}$$
adamc@543 1686
adamc@543 1687 To encode projection of subsets of fields in $\mt{SELECT}$ clauses, and to encode $\mt{GROUP} \; \mt{BY}$ clauses, we rely on a type family $\mt{sql\_subset}$, capturing what it means for one record of table fields to be a subset of another. The main constructor $\mt{sql\_subset}$ ``proves subset facts'' by requiring a split of a record into kept and dropped parts. The extra constructor $\mt{sql\_subset\_all}$ is a convenience for keeping all fields of a record.
adamc@543 1688 $$\begin{array}{l}
adamc@543 1689 \mt{con} \; \mt{sql\_subset} :: \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \mt{Type} \\
adamc@543 1690 \mt{val} \; \mt{sql\_subset} : \mt{keep\_drop} :: \{(\{\mt{Type}\} \times \{\mt{Type}\})\} \\
adamc@543 1691 \hspace{.1in} \to \mt{sql\_subset} \\
adamc@658 1692 \hspace{.2in} (\mt{map} \; (\lambda \mt{fields} :: (\{\mt{Type}\} \times \{\mt{Type}\}) \Rightarrow \mt{fields}.1 \rc \mt{fields}.2)\; \mt{keep\_drop}) \\
adamc@658 1693 \hspace{.2in} (\mt{map} \; (\lambda \mt{fields} :: (\{\mt{Type}\} \times \{\mt{Type}\}) \Rightarrow \mt{fields}.1) \; \mt{keep\_drop}) \\
adamc@543 1694 \mt{val} \; \mt{sql\_subset\_all} : \mt{tables} :: \{\{\mt{Type}\}\} \to \mt{sql\_subset} \; \mt{tables} \; \mt{tables}
adamc@543 1695 \end{array}$$
adamc@543 1696
adam@1778 1697 SQL expressions are used in several places, including $\mt{SELECT}$, $\mt{WHERE}$, $\mt{HAVING}$, and $\mt{ORDER} \; \mt{BY}$ clauses. They reify a fragment of the standard SQL expression language, while making it possible to inject ``native'' Ur values in some places. The arguments to the $\mt{sql\_exp}$ type family respectively give the unrestricted-availability table fields, the table fields that may only be used in arguments to aggregate functions, the available selected expressions, and the type of the expression.
adamc@543 1698 $$\begin{array}{l}
adam@1778 1699 \mt{con} \; \mt{sql\_exp} :: \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \to \mt{Type}
adamc@543 1700 \end{array}$$
adamc@543 1701
adamc@543 1702 Any field in scope may be converted to an expression.
adamc@543 1703 $$\begin{array}{l}
adamc@543 1704 \mt{val} \; \mt{sql\_field} : \mt{otherTabs} ::: \{\{\mt{Type}\}\} \to \mt{otherFields} ::: \{\mt{Type}\} \\
adam@1778 1705 \hspace{.1in} \to \mt{fieldType} ::: \mt{Type} \to \mt{agg} ::: \{\{\mt{Type}\}\} \\
adamc@543 1706 \hspace{.1in} \to \mt{exps} ::: \{\mt{Type}\} \\
adamc@543 1707 \hspace{.1in} \to \mt{tab} :: \mt{Name} \to \mt{field} :: \mt{Name} \\
adam@1778 1708 \hspace{.1in} \to \mt{sql\_exp} \; ([\mt{tab} = [\mt{field} = \mt{fieldType}] \rc \mt{otherFields}] \rc \mt{otherTabs}) \; \mt{agg} \; \mt{exps} \; \mt{fieldType}
adamc@543 1709 \end{array}$$
adamc@543 1710
adamc@544 1711 There is an analogous function for referencing named expressions.
adamc@544 1712 $$\begin{array}{l}
adam@1778 1713 \mt{val} \; \mt{sql\_exp} : \mt{tabs} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{t} ::: \mt{Type} \to \mt{rest} ::: \{\mt{Type}\} \to \mt{nm} :: \mt{Name} \\
adam@1778 1714 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tabs} \; \mt{agg} \; ([\mt{nm} = \mt{t}] \rc \mt{rest}) \; \mt{t}
adamc@544 1715 \end{array}$$
adamc@544 1716
adamc@544 1717 Ur values of appropriate types may be injected into SQL expressions.
adamc@544 1718 $$\begin{array}{l}
adamc@786 1719 \mt{class} \; \mt{sql\_injectable\_prim} \\
adamc@786 1720 \mt{val} \; \mt{sql\_bool} : \mt{sql\_injectable\_prim} \; \mt{bool} \\
adamc@786 1721 \mt{val} \; \mt{sql\_int} : \mt{sql\_injectable\_prim} \; \mt{int} \\
adamc@786 1722 \mt{val} \; \mt{sql\_float} : \mt{sql\_injectable\_prim} \; \mt{float} \\
adamc@786 1723 \mt{val} \; \mt{sql\_string} : \mt{sql\_injectable\_prim} \; \mt{string} \\
adamc@786 1724 \mt{val} \; \mt{sql\_time} : \mt{sql\_injectable\_prim} \; \mt{time} \\
adamc@786 1725 \mt{val} \; \mt{sql\_blob} : \mt{sql\_injectable\_prim} \; \mt{blob} \\
adamc@786 1726 \mt{val} \; \mt{sql\_channel} : \mt{t} ::: \mt{Type} \to \mt{sql\_injectable\_prim} \; (\mt{channel} \; \mt{t}) \\
adamc@786 1727 \mt{val} \; \mt{sql\_client} : \mt{sql\_injectable\_prim} \; \mt{client} \\
adamc@786 1728 \\
adamc@544 1729 \mt{class} \; \mt{sql\_injectable} \\
adamc@786 1730 \mt{val} \; \mt{sql\_prim} : \mt{t} ::: \mt{Type} \to \mt{sql\_injectable\_prim} \; \mt{t} \to \mt{sql\_injectable} \; \mt{t} \\
adamc@786 1731 \mt{val} \; \mt{sql\_option\_prim} : \mt{t} ::: \mt{Type} \to \mt{sql\_injectable\_prim} \; \mt{t} \to \mt{sql\_injectable} \; (\mt{option} \; \mt{t}) \\
adamc@786 1732 \\
adam@1778 1733 \mt{val} \; \mt{sql\_inject} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \to \mt{sql\_injectable} \; \mt{t} \\
adam@1778 1734 \hspace{.1in} \to \mt{t} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t}
adamc@544 1735 \end{array}$$
adamc@544 1736
adamc@1123 1737 Additionally, most function-free types may be injected safely, via the $\mt{serialized}$ type family.
adamc@1123 1738 $$\begin{array}{l}
adamc@1123 1739 \mt{con} \; \mt{serialized} :: \mt{Type} \to \mt{Type} \\
adamc@1123 1740 \mt{val} \; \mt{serialize} : \mt{t} ::: \mt{Type} \to \mt{t} \to \mt{serialized} \; \mt{t} \\
adamc@1123 1741 \mt{val} \; \mt{deserialize} : \mt{t} ::: \mt{Type} \to \mt{serialized} \; \mt{t} \to \mt{t} \\
adamc@1123 1742 \mt{val} \; \mt{sql\_serialized} : \mt{t} ::: \mt{Type} \to \mt{sql\_injectable\_prim} \; (\mt{serialized} \; \mt{t})
adamc@1123 1743 \end{array}$$
adamc@1123 1744
adamc@544 1745 We have the SQL nullness test, which is necessary because of the strange SQL semantics of equality in the presence of null values.
adamc@544 1746 $$\begin{array}{l}
adam@1778 1747 \mt{val} \; \mt{sql\_is\_null} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \\
adam@1778 1748 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; (\mt{option} \; \mt{t}) \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{bool}
adamc@544 1749 \end{array}$$
adamc@544 1750
adam@1602 1751 As another way of dealing with null values, there is also a restricted form of the standard \cd{COALESCE} function.
adam@1602 1752 $$\begin{array}{l}
adam@1602 1753 \mt{val} \; \mt{sql\_coalesce} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \\
adam@1778 1754 \hspace{.1in} \to \mt{t} ::: \mt{Type} \\
adam@1778 1755 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; (\mt{option} \; \mt{t}) \\
adam@1778 1756 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t} \\
adam@1778 1757 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t}
adam@1602 1758 \end{array}$$
adam@1602 1759
adamc@559 1760 We have generic nullary, unary, and binary operators.
adamc@544 1761 $$\begin{array}{l}
adamc@544 1762 \mt{con} \; \mt{sql\_nfunc} :: \mt{Type} \to \mt{Type} \\
adamc@544 1763 \mt{val} \; \mt{sql\_current\_timestamp} : \mt{sql\_nfunc} \; \mt{time} \\
adam@1778 1764 \mt{val} \; \mt{sql\_nfunc} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \\
adam@1778 1765 \hspace{.1in} \to \mt{sql\_nfunc} \; \mt{t} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t} \\\end{array}$$
adamc@544 1766
adamc@544 1767 $$\begin{array}{l}
adamc@544 1768 \mt{con} \; \mt{sql\_unary} :: \mt{Type} \to \mt{Type} \to \mt{Type} \\
adamc@544 1769 \mt{val} \; \mt{sql\_not} : \mt{sql\_unary} \; \mt{bool} \; \mt{bool} \\
adam@1778 1770 \mt{val} \; \mt{sql\_unary} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{arg} ::: \mt{Type} \to \mt{res} ::: \mt{Type} \\
adam@1778 1771 \hspace{.1in} \to \mt{sql\_unary} \; \mt{arg} \; \mt{res} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{arg} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{res} \\
adamc@544 1772 \end{array}$$
adamc@544 1773
adamc@544 1774 $$\begin{array}{l}
adamc@544 1775 \mt{con} \; \mt{sql\_binary} :: \mt{Type} \to \mt{Type} \to \mt{Type} \to \mt{Type} \\
adamc@544 1776 \mt{val} \; \mt{sql\_and} : \mt{sql\_binary} \; \mt{bool} \; \mt{bool} \; \mt{bool} \\
adamc@544 1777 \mt{val} \; \mt{sql\_or} : \mt{sql\_binary} \; \mt{bool} \; \mt{bool} \; \mt{bool} \\
adam@1778 1778 \mt{val} \; \mt{sql\_binary} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{arg_1} ::: \mt{Type} \to \mt{arg_2} ::: \mt{Type} \to \mt{res} ::: \mt{Type} \\
adam@1778 1779 \hspace{.1in} \to \mt{sql\_binary} \; \mt{arg_1} \; \mt{arg_2} \; \mt{res} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{arg_1} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{arg_2} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{res}
adamc@544 1780 \end{array}$$
adamc@544 1781
adamc@544 1782 $$\begin{array}{l}
adamc@559 1783 \mt{class} \; \mt{sql\_arith} \\
adamc@559 1784 \mt{val} \; \mt{sql\_int\_arith} : \mt{sql\_arith} \; \mt{int} \\
adamc@559 1785 \mt{val} \; \mt{sql\_float\_arith} : \mt{sql\_arith} \; \mt{float} \\
adamc@559 1786 \mt{val} \; \mt{sql\_neg} : \mt{t} ::: \mt{Type} \to \mt{sql\_arith} \; \mt{t} \to \mt{sql\_unary} \; \mt{t} \; \mt{t} \\
adamc@559 1787 \mt{val} \; \mt{sql\_plus} : \mt{t} ::: \mt{Type} \to \mt{sql\_arith} \; \mt{t} \to \mt{sql\_binary} \; \mt{t} \; \mt{t} \; \mt{t} \\
adamc@559 1788 \mt{val} \; \mt{sql\_minus} : \mt{t} ::: \mt{Type} \to \mt{sql\_arith} \; \mt{t} \to \mt{sql\_binary} \; \mt{t} \; \mt{t} \; \mt{t} \\
adamc@559 1789 \mt{val} \; \mt{sql\_times} : \mt{t} ::: \mt{Type} \to \mt{sql\_arith} \; \mt{t} \to \mt{sql\_binary} \; \mt{t} \; \mt{t} \; \mt{t} \\
adamc@559 1790 \mt{val} \; \mt{sql\_div} : \mt{t} ::: \mt{Type} \to \mt{sql\_arith} \; \mt{t} \to \mt{sql\_binary} \; \mt{t} \; \mt{t} \; \mt{t} \\
adamc@559 1791 \mt{val} \; \mt{sql\_mod} : \mt{sql\_binary} \; \mt{int} \; \mt{int} \; \mt{int}
adamc@559 1792 \end{array}$$
adamc@544 1793
adam@1797 1794 Finally, we have aggregate functions. The $\mt{COUNT(\ast)}$ syntax is handled specially, since it takes no real argument. The other aggregate functions are placed into a general type family, using constructor classes to restrict usage to properly typed arguments. The key aspect of the $\mt{sql\_aggregate}$ function's type is the shift of aggregate-function-only fields into unrestricted fields.
adamc@544 1795 $$\begin{array}{l}
adam@1778 1796 \mt{val} \; \mt{sql\_count} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{int}
adamc@544 1797 \end{array}$$
adamc@544 1798
adamc@544 1799 $$\begin{array}{l}
adamc@1188 1800 \mt{con} \; \mt{sql\_aggregate} :: \mt{Type} \to \mt{Type} \to \mt{Type} \\
adam@1778 1801 \mt{val} \; \mt{sql\_aggregate} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{dom} ::: \mt{Type} \to \mt{ran} ::: \mt{Type} \\
adam@1778 1802 \hspace{.1in} \to \mt{sql\_aggregate} \; \mt{dom} \; \mt{ran} \to \mt{sql\_exp} \; \mt{agg} \; \mt{agg} \; \mt{exps} \; \mt{dom} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{ran}
adamc@1188 1803 \end{array}$$
adamc@1188 1804
adamc@1188 1805 $$\begin{array}{l}
adamc@1188 1806 \mt{val} \; \mt{sql\_count\_col} : \mt{t} ::: \mt{Type} \to \mt{sql\_aggregate} \; (\mt{option} \; \mt{t}) \; \mt{int}
adamc@544 1807 \end{array}$$
adam@1400 1808
adam@1400 1809 Most aggregate functions are typed using a two-parameter constructor class $\mt{nullify}$ which maps $\mt{option}$ types to themselves and adds $\mt{option}$ to others. That is, this constructor class represents the process of making an SQL type ``nullable.''
adamc@544 1810
adamc@544 1811 $$\begin{array}{l}
adamc@544 1812 \mt{class} \; \mt{sql\_summable} \\
adamc@544 1813 \mt{val} \; \mt{sql\_summable\_int} : \mt{sql\_summable} \; \mt{int} \\
adamc@544 1814 \mt{val} \; \mt{sql\_summable\_float} : \mt{sql\_summable} \; \mt{float} \\
adam@1777 1815 \mt{val} \; \mt{sql\_avg} : \mt{t} ::: \mt{Type} \to \mt{sql\_summable} \; \mt{t} \to \mt{sql\_aggregate} \; \mt{t} \; (\mt{option} \; \mt{float}) \\
adam@1400 1816 \mt{val} \; \mt{sql\_sum} : \mt{t} ::: \mt{Type} \to \mt{nt} ::: \mt{Type} \to \mt{sql\_summable} \; \mt{t} \to \mt{nullify} \; \mt{t} \; \mt{nt} \to \mt{sql\_aggregate} \; \mt{t} \; \mt{nt}
adamc@544 1817 \end{array}$$
adamc@544 1818
adamc@544 1819 $$\begin{array}{l}
adamc@544 1820 \mt{class} \; \mt{sql\_maxable} \\
adamc@544 1821 \mt{val} \; \mt{sql\_maxable\_int} : \mt{sql\_maxable} \; \mt{int} \\
adamc@544 1822 \mt{val} \; \mt{sql\_maxable\_float} : \mt{sql\_maxable} \; \mt{float} \\
adamc@544 1823 \mt{val} \; \mt{sql\_maxable\_string} : \mt{sql\_maxable} \; \mt{string} \\
adamc@544 1824 \mt{val} \; \mt{sql\_maxable\_time} : \mt{sql\_maxable} \; \mt{time} \\
adam@1400 1825 \mt{val} \; \mt{sql\_max} : \mt{t} ::: \mt{Type} \to \mt{nt} ::: \mt{Type} \to \mt{sql\_maxable} \; \mt{t} \to \mt{nullify} \; \mt{t} \; \mt{nt} \to \mt{sql\_aggregate} \; \mt{t} \; \mt{nt} \\
adam@1400 1826 \mt{val} \; \mt{sql\_min} : \mt{t} ::: \mt{Type} \to \mt{nt} ::: \mt{Type} \to \mt{sql\_maxable} \; \mt{t} \to \mt{nullify} \; \mt{t} \; \mt{nt} \to \mt{sql\_aggregate} \; \mt{t} \; \mt{nt}
adamc@544 1827 \end{array}$$
adamc@544 1828
adam@1778 1829 Any SQL query that returns single columns may be turned into a subquery expression.
adam@1777 1830
adam@1777 1831 $$\begin{array}{l}
adam@1778 1832 \mt{val} \; \mt{sql\_subquery} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{nm} ::: \mt{Name} \to \mt{t} ::: \mt{Type} \to \mt{nt} ::: \mt{Type} \\
adam@1778 1833 \hspace{.1in} \to \mt{nullify} \; \mt{t} \; \mt{nt} \to \mt{sql\_query} \; \mt{tables} \; \mt{agg} \; [\mt{nm} = \mt{t}] \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{nt}
adamc@1193 1834 \end{array}$$
adamc@1193 1835
adam@1573 1836 There is also an \cd{IF..THEN..ELSE..} construct that is compiled into standard SQL \cd{CASE} expressions.
adam@1573 1837 $$\begin{array}{l}
adam@1778 1838 \mt{val} \; \mt{sql\_if\_then\_else} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \\
adam@1778 1839 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{bool} \\
adam@1778 1840 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t} \\
adam@1778 1841 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t} \\
adam@1778 1842 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t}
adam@1573 1843 \end{array}$$
adam@1573 1844
adamc@1193 1845 \texttt{FROM} clauses are specified using a type family, whose arguments are the free table variables and the table variables bound by this clause.
adamc@1193 1846 $$\begin{array}{l}
adamc@1193 1847 \mt{con} \; \mt{sql\_from\_items} :: \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \mt{Type} \\
adamc@1193 1848 \mt{val} \; \mt{sql\_from\_table} : \mt{free} ::: \{\{\mt{Type}\}\} \\
adamc@1193 1849 \hspace{.1in} \to \mt{t} ::: \mt{Type} \to \mt{fs} ::: \{\mt{Type}\} \to \mt{fieldsOf} \; \mt{t} \; \mt{fs} \to \mt{name} :: \mt{Name} \to \mt{t} \to \mt{sql\_from\_items} \; \mt{free} \; [\mt{name} = \mt{fs}] \\
adamc@1193 1850 \mt{val} \; \mt{sql\_from\_query} : \mt{free} ::: \{\{\mt{Type}\}\} \to \mt{fs} ::: \{\mt{Type}\} \to \mt{name} :: \mt{Name} \to \mt{sql\_query} \; \mt{free} \; [] \; \mt{fs} \to \mt{sql\_from\_items} \; \mt{free} \; [\mt{name} = \mt{fs}] \\
adamc@1193 1851 \mt{val} \; \mt{sql\_from\_comma} : \mt{free} ::: \mt{tabs1} ::: \{\{\mt{Type}\}\} \to \mt{tabs2} ::: \{\{\mt{Type}\}\} \to [\mt{tabs1} \sim \mt{tabs2}] \\
adamc@1193 1852 \hspace{.1in} \Rightarrow \mt{sql\_from\_items} \; \mt{free} \; \mt{tabs1} \to \mt{sql\_from\_items} \; \mt{free} \; \mt{tabs2} \\
adamc@1193 1853 \hspace{.1in} \to \mt{sql\_from\_items} \; \mt{free} \; (\mt{tabs1} \rc \mt{tabs2}) \\
adamc@1193 1854 \mt{val} \; \mt{sql\_inner\_join} : \mt{free} ::: \{\{\mt{Type}\}\} \to \mt{tabs1} ::: \{\{\mt{Type}\}\} \to \mt{tabs2} ::: \{\{\mt{Type}\}\} \\
adamc@1193 1855 \hspace{.1in} \to [\mt{free} \sim \mt{tabs1}] \Rightarrow [\mt{free} \sim \mt{tabs2}] \Rightarrow [\mt{tabs1} \sim \mt{tabs2}] \\
adamc@1193 1856 \hspace{.1in} \Rightarrow \mt{sql\_from\_items} \; \mt{free} \; \mt{tabs1} \to \mt{sql\_from\_items} \; \mt{free} \; \mt{tabs2} \\
adam@1778 1857 \hspace{.1in} \to \mt{sql\_exp} \; (\mt{free} \rc \mt{tabs1} \rc \mt{tabs2}) \; [] \; [] \; \mt{bool} \\
adamc@1193 1858 \hspace{.1in} \to \mt{sql\_from\_items} \; \mt{free} \; (\mt{tabs1} \rc \mt{tabs2})
adamc@786 1859 \end{array}$$
adamc@786 1860
adamc@786 1861 Besides these basic cases, outer joins are supported, which requires a type class for turning non-$\mt{option}$ columns into $\mt{option}$ columns.
adamc@786 1862 $$\begin{array}{l}
adamc@786 1863 \mt{class} \; \mt{nullify} :: \mt{Type} \to \mt{Type} \to \mt{Type} \\
adamc@786 1864 \mt{val} \; \mt{nullify\_option} : \mt{t} ::: \mt{Type} \to \mt{nullify} \; (\mt{option} \; \mt{t}) \; (\mt{option} \; \mt{t}) \\
adamc@786 1865 \mt{val} \; \mt{nullify\_prim} : \mt{t} ::: \mt{Type} \to \mt{sql\_injectable\_prim} \; \mt{t} \to \mt{nullify} \; \mt{t} \; (\mt{option} \; \mt{t})
adamc@786 1866 \end{array}$$
adamc@786 1867
adamc@786 1868 Left, right, and full outer joins can now be expressed using functions that accept records of $\mt{nullify}$ instances. Here, we give only the type for a left join as an example.
adamc@786 1869
adamc@786 1870 $$\begin{array}{l}
adamc@1193 1871 \mt{val} \; \mt{sql\_left\_join} : \mt{free} ::: \{\{\mt{Type}\}\} \to \mt{tabs1} ::: \{\{\mt{Type}\}\} \to \mt{tabs2} ::: \{\{(\mt{Type} \times \mt{Type})\}\} \\
adamc@1193 1872 \hspace{.1in} \to [\mt{free} \sim \mt{tabs1}] \Rightarrow [\mt{free} \sim \mt{tabs2}] \Rightarrow [\mt{tabs1} \sim \mt{tabs2}] \\
adamc@786 1873 \hspace{.1in} \Rightarrow \$(\mt{map} \; (\lambda \mt{r} \Rightarrow \$(\mt{map} \; (\lambda \mt{p} :: (\mt{Type} \times \mt{Type}) \Rightarrow \mt{nullify} \; \mt{p}.1 \; \mt{p}.2) \; \mt{r})) \; \mt{tabs2}) \\
adamc@1193 1874 \hspace{.1in} \to \mt{sql\_from\_items} \; \mt{free} \; \mt{tabs1} \to \mt{sql\_from\_items} \; \mt{free} \; (\mt{map} \; (\mt{map} \; (\lambda \mt{p} :: (\mt{Type} \times \mt{Type}) \Rightarrow \mt{p}.1)) \; \mt{tabs2}) \\
adam@1778 1875 \hspace{.1in} \to \mt{sql\_exp} \; (\mt{free} \rc \mt{tabs1} \rc \mt{map} \; (\mt{map} \; (\lambda \mt{p} :: (\mt{Type} \times \mt{Type}) \Rightarrow \mt{p}.1)) \; \mt{tabs2}) \; [] \; [] \; \mt{bool} \\
adamc@1193 1876 \hspace{.1in} \to \mt{sql\_from\_items} \; \mt{free} \; (\mt{tabs1} \rc \mt{map} \; (\mt{map} \; (\lambda \mt{p} :: (\mt{Type} \times \mt{Type}) \Rightarrow \mt{p}.2)) \; \mt{tabs2})
adamc@786 1877 \end{array}$$
adamc@786 1878
adamc@544 1879 We wrap up the definition of query syntax with the types used in representing $\mt{ORDER} \; \mt{BY}$, $\mt{LIMIT}$, and $\mt{OFFSET}$ clauses.
adamc@544 1880 $$\begin{array}{l}
adamc@544 1881 \mt{type} \; \mt{sql\_direction} \\
adamc@544 1882 \mt{val} \; \mt{sql\_asc} : \mt{sql\_direction} \\
adamc@544 1883 \mt{val} \; \mt{sql\_desc} : \mt{sql\_direction} \\
adamc@544 1884 \\
adamc@544 1885 \mt{con} \; \mt{sql\_order\_by} :: \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \\
adamc@544 1886 \mt{val} \; \mt{sql\_order\_by\_Nil} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{exps} :: \{\mt{Type}\} \to \mt{sql\_order\_by} \; \mt{tables} \; \mt{exps} \\
adam@1778 1887 \mt{val} \; \mt{sql\_order\_by\_Cons} : \mt{tf} ::: (\{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \to \mt{Type}) \\
adam@1778 1888 \hspace{.1in} \to \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \\
adam@1778 1889 \hspace{.1in} \to \mt{sql\_window} \; \mt{tf} \to \mt{tf} \; \mt{tables} \; [] \; \mt{exps} \; \mt{t} \to \mt{sql\_direction} \to \mt{sql\_order\_by} \; \mt{tables} \; \mt{exps} \to \mt{sql\_order\_by} \; \mt{tables} \; \mt{exps} \\
adam@1684 1890 \mt{val} \; \mt{sql\_order\_by\_random} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{sql\_order\_by} \; \mt{tables} \; \mt{exps} \\
adamc@544 1891 \\
adamc@544 1892 \mt{type} \; \mt{sql\_limit} \\
adamc@544 1893 \mt{val} \; \mt{sql\_no\_limit} : \mt{sql\_limit} \\
adamc@544 1894 \mt{val} \; \mt{sql\_limit} : \mt{int} \to \mt{sql\_limit} \\
adamc@544 1895 \\
adamc@544 1896 \mt{type} \; \mt{sql\_offset} \\
adamc@544 1897 \mt{val} \; \mt{sql\_no\_offset} : \mt{sql\_offset} \\
adamc@544 1898 \mt{val} \; \mt{sql\_offset} : \mt{int} \to \mt{sql\_offset}
adamc@544 1899 \end{array}$$
adamc@544 1900
adam@1778 1901 When using Postgres, \cd{SELECT} and \cd{ORDER BY} are allowed to contain top-level uses of \emph{window functions}. A separate type family \cd{sql\_expw} is provided for such cases, with some type class convenience for overloading between normal and window expressions.
adam@1778 1902 $$\begin{array}{l}
adam@1778 1903 \mt{con} \; \mt{sql\_expw} :: \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \to \mt{Type} \\
adam@1778 1904 \\
adam@1778 1905 \mt{class} \; \mt{sql\_window} :: (\{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \to \mt{Type}) \to \mt{Type} \\
adam@1778 1906 \mt{val} \; \mt{sql\_window\_normal} : \mt{sql\_window} \; \mt{sql\_exp} \\
adam@1778 1907 \mt{val} \; \mt{sql\_window\_fancy} : \mt{sql\_window} \; \mt{sql\_expw} \\
adam@1778 1908 \mt{val} \; \mt{sql\_window} : \mt{tf} ::: (\{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \to \mt{Type}) \\
adam@1778 1909 \hspace{.1in} \to \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \\
adam@1778 1910 \hspace{.1in} \to \mt{sql\_window} \; \mt{tf} \\
adam@1778 1911 \hspace{.1in} \to \mt{tf} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t} \\
adam@1778 1912 \hspace{.1in} \to \mt{sql\_expw} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t} \\
adam@1778 1913 \\
adam@1778 1914 \mt{con} \; \mt{sql\_partition} :: \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \\
adam@1778 1915 \mt{val} \; \mt{sql\_no\_partition} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \\
adam@1778 1916 \hspace{.1in} \to \mt{sql\_partition} \; \mt{tables} \; \mt{agg} \; \mt{exps} \\
adam@1778 1917 \mt{val} \; \mt{sql\_partition} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \\
adam@1778 1918 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t} \\
adam@1778 1919 \hspace{.1in} \to \mt{sql\_partition} \; \mt{tables} \; \mt{agg} \; \mt{exps} \\
adam@1778 1920 \\
adam@1778 1921 \mt{con} \; \mt{sql\_window\_function} :: \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \to \mt{Type} \\
adam@1778 1922 \mt{val} \; \mt{sql\_window\_function} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \\
adam@1778 1923 \hspace{.1in} \to \mt{t} ::: \mt{Type} \\
adam@1778 1924 \hspace{.1in} \to \mt{sql\_window\_function} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t} \\
adam@1778 1925 \hspace{.1in} \to \mt{sql\_partition} \; \mt{tables} \; \mt{agg} \; \mt{exps} \\
adam@1778 1926 \hspace{.1in} \to \mt{sql\_order\_by} \; \mt{tables} \; \mt{exps} \\
adam@1778 1927 \hspace{.1in} \to \mt{sql\_expw} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t} \\
adam@1778 1928 \\
adam@1778 1929 \mt{val} \; \mt{sql\_window\_aggregate} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \\
adam@1778 1930 \hspace{.1in} \to \mt{t} ::: \mt{Type} \to \mt{nt} ::: \mt{Type} \\
adam@1778 1931 \hspace{.1in} \to \mt{sql\_aggregate} \; \mt{t} \; \mt{nt} \\
adam@1778 1932 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t} \\
adam@1778 1933 \hspace{.1in} \to \mt{sql\_window\_function} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{nt} \\
adam@1778 1934 \mt{val} \; \mt{sql\_window\_count} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \\
adam@1778 1935 \hspace{.1in} \to \mt{sql\_window\_function} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{int} \\
adam@1778 1936 \mt{val} \; \mt{sql\_rank} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \\
adam@1778 1937 \hspace{.1in} \to \mt{sql\_window\_function} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{int}
adam@1778 1938 \end{array}$$
adam@1778 1939
adamc@545 1940
adamc@545 1941 \subsubsection{DML}
adamc@545 1942
adamc@545 1943 The Ur/Web library also includes an embedding of a fragment of SQL's DML, the Data Manipulation Language, for modifying database tables. Any piece of DML may be executed in a transaction.
adamc@545 1944
adamc@545 1945 $$\begin{array}{l}
adamc@545 1946 \mt{type} \; \mt{dml} \\
adamc@545 1947 \mt{val} \; \mt{dml} : \mt{dml} \to \mt{transaction} \; \mt{unit}
adamc@545 1948 \end{array}$$
adamc@545 1949
adam@1297 1950 The function $\mt{Basis.dml}$ will trigger a fatal application error if the command fails, for instance, because a data integrity constraint is violated. An alternate function returns an error message as a string instead.
adam@1297 1951
adam@1297 1952 $$\begin{array}{l}
adam@1297 1953 \mt{val} \; \mt{tryDml} : \mt{dml} \to \mt{transaction} \; (\mt{option} \; \mt{string})
adam@1297 1954 \end{array}$$
adam@1297 1955
adam@1797 1956 Properly typed records may be used to form $\mt{INSERT}$ commands.
adamc@545 1957 $$\begin{array}{l}
adamc@545 1958 \mt{val} \; \mt{insert} : \mt{fields} ::: \{\mt{Type}\} \to \mt{sql\_table} \; \mt{fields} \\
adam@1778 1959 \hspace{.1in} \to \$(\mt{map} \; (\mt{sql\_exp} \; [] \; [] \; []) \; \mt{fields}) \to \mt{dml}
adamc@545 1960 \end{array}$$
adamc@545 1961
adam@1578 1962 An $\mt{UPDATE}$ command is formed from a choice of which table fields to leave alone and which to change, along with an expression to use to compute the new value of each changed field and a $\mt{WHERE}$ clause. Note that, in the table environment applied to expressions, the table being updated is hardcoded at the name $\mt{T}$. The parsing extension for $\mt{UPDATE}$ will elaborate all table-free field references to use table variable $\mt{T}$.
adamc@545 1963 $$\begin{array}{l}
adam@1380 1964 \mt{val} \; \mt{update} : \mt{unchanged} ::: \{\mt{Type}\} \to \mt{changed} :: \{\mt{Type}\} \to [\mt{changed} \sim \mt{unchanged}] \\
adam@1778 1965 \hspace{.1in} \Rightarrow \$(\mt{map} \; (\mt{sql\_exp} \; [\mt{T} = \mt{changed} \rc \mt{unchanged}] \; [] \; []) \; \mt{changed}) \\
adam@1778 1966 \hspace{.1in} \to \mt{sql\_table} \; (\mt{changed} \rc \mt{unchanged}) \to \mt{sql\_exp} \; [\mt{T} = \mt{changed} \rc \mt{unchanged}] \; [] \; [] \; \mt{bool} \to \mt{dml}
adamc@545 1967 \end{array}$$
adamc@545 1968
adam@1578 1969 A $\mt{DELETE}$ command is formed from a table and a $\mt{WHERE}$ clause. The above use of $\mt{T}$ is repeated.
adamc@545 1970 $$\begin{array}{l}
adam@1778 1971 \mt{val} \; \mt{delete} : \mt{fields} ::: \{\mt{Type}\} \to \mt{sql\_table} \; \mt{fields} \to \mt{sql\_exp} \; [\mt{T} = \mt{fields}] \; [] \; [] \; \mt{bool} \to \mt{dml}
adamc@545 1972 \end{array}$$
adamc@545 1973
adamc@546 1974 \subsubsection{Sequences}
adamc@546 1975
adamc@546 1976 SQL sequences are counters with concurrency control, often used to assign unique IDs. Ur/Web supports them via a simple interface. The only way to create a sequence is with the $\mt{sequence}$ declaration form.
adamc@546 1977
adamc@546 1978 $$\begin{array}{l}
adamc@546 1979 \mt{type} \; \mt{sql\_sequence} \\
adamc@1085 1980 \mt{val} \; \mt{nextval} : \mt{sql\_sequence} \to \mt{transaction} \; \mt{int} \\
adamc@1085 1981 \mt{val} \; \mt{setval} : \mt{sql\_sequence} \to \mt{int} \to \mt{transaction} \; \mt{unit}
adamc@546 1982 \end{array}$$
adamc@546 1983
adamc@546 1984
adam@1648 1985 \subsection{\label{xml}XML}
adamc@547 1986
adam@1333 1987 Ur/Web's library contains an encoding of XML syntax and semantic constraints. We make no effort to follow the standards governing XML schemas. Rather, XML fragments are viewed more as values of ML datatypes, and we only track which tags are allowed inside which other tags. The Ur/Web standard library encodes a very loose version of XHTML, where it is very easy to produce documents which are invalid XHTML, but which still display properly in all major browsers. The main purposes of the invariants that are enforced are first, to provide some documentation about the places where it would make sense to insert XML fragments; and second, to rule out code injection attacks and other abstraction violations related to HTML syntax.
adamc@547 1988
adam@1642 1989 The basic XML type family has arguments respectively indicating the \emph{context} of a fragment, the fields that the fragment expects to be bound on entry (and their types), and the fields that the fragment will bind (and their types). Contexts are a record-based ``poor man's subtyping'' encoding, with each possible set of valid tags corresponding to a different context record. For instance, the context for the \texttt{<td>} tag is $[\mt{Dyn}, \mt{MakeForm}, \mt{Tr}]$, to indicate nesting inside a \texttt{<tr>} tag with the ability to nest \texttt{<form>} and \texttt{<dyn>} tags (see below). Contexts are maintained in a somewhat ad-hoc way; the only definitive reference for their meanings is the types of the tag values in \texttt{basis.urs}. The arguments dealing with field binding are only relevant to HTML forms.
adamc@547 1990 $$\begin{array}{l}
adamc@547 1991 \mt{con} \; \mt{xml} :: \{\mt{Unit}\} \to \{\mt{Type}\} \to \{\mt{Type}\} \to \mt{Type}
adamc@547 1992 \end{array}$$
adamc@547 1993
adamc@547 1994 We also have a type family of XML tags, indexed respectively by the record of optional attributes accepted by the tag, the context in which the tag may be placed, the context required of children of the tag, which form fields the tag uses, and which fields the tag defines.
adamc@547 1995 $$\begin{array}{l}
adamc@547 1996 \mt{con} \; \mt{tag} :: \{\mt{Type}\} \to \{\mt{Unit}\} \to \{\mt{Unit}\} \to \{\mt{Type}\} \to \{\mt{Type}\} \to \mt{Type}
adamc@547 1997 \end{array}$$
adamc@547 1998
adamc@547 1999 Literal text may be injected into XML as ``CDATA.''
adamc@547 2000 $$\begin{array}{l}
adamc@547 2001 \mt{val} \; \mt{cdata} : \mt{ctx} ::: \{\mt{Unit}\} \to \mt{use} ::: \{\mt{Type}\} \to \mt{string} \to \mt{xml} \; \mt{ctx} \; \mt{use} \; []
adamc@547 2002 \end{array}$$
adamc@547 2003
adam@1358 2004 There is also a function to insert the literal value of a character. Since Ur/Web uses the UTF-8 text encoding, the $\mt{cdata}$ function is only sufficient to encode characters with ASCII codes below 128. Higher codes have alternate meanings in UTF-8 than in usual ASCII, so this alternate function should be used with them.
adam@1358 2005 $$\begin{array}{l}
adam@1358 2006 \mt{val} \; \mt{cdataChar} : \mt{ctx} ::: \{\mt{Unit}\} \to \mt{use} ::: \{\mt{Type}\} \to \mt{char} \to \mt{xml} \; \mt{ctx} \; \mt{use} \; []
adam@1358 2007 \end{array}$$
adam@1358 2008
adamc@547 2009 There is a function for producing an XML tree with a particular tag at its root.
adamc@547 2010 $$\begin{array}{l}
adamc@547 2011 \mt{val} \; \mt{tag} : \mt{attrsGiven} ::: \{\mt{Type}\} \to \mt{attrsAbsent} ::: \{\mt{Type}\} \to \mt{ctxOuter} ::: \{\mt{Unit}\} \to \mt{ctxInner} ::: \{\mt{Unit}\} \\
adamc@547 2012 \hspace{.1in} \to \mt{useOuter} ::: \{\mt{Type}\} \to \mt{useInner} ::: \{\mt{Type}\} \to \mt{bindOuter} ::: \{\mt{Type}\} \to \mt{bindInner} ::: \{\mt{Type}\} \\
adam@1380 2013 \hspace{.1in} \to [\mt{attrsGiven} \sim \mt{attrsAbsent}] \Rightarrow [\mt{useOuter} \sim \mt{useInner}] \Rightarrow [\mt{bindOuter} \sim \mt{bindInner}] \\
adam@1749 2014 \hspace{.1in} \Rightarrow \mt{css\_class} \\
adam@1643 2015 \hspace{.1in} \to \mt{option} \; (\mt{signal} \; \mt{css\_class}) \\
adam@1750 2016 \hspace{.1in} \to \mt{css\_style} \\
adam@1751 2017 \hspace{.1in} \to \mt{option} \; (\mt{signal} \; \mt{css\_style}) \\
adamc@787 2018 \hspace{.1in} \to \$\mt{attrsGiven} \\
adamc@547 2019 \hspace{.1in} \to \mt{tag} \; (\mt{attrsGiven} \rc \mt{attrsAbsent}) \; \mt{ctxOuter} \; \mt{ctxInner} \; \mt{useOuter} \; \mt{bindOuter} \\
adamc@547 2020 \hspace{.1in} \to \mt{xml} \; \mt{ctxInner} \; \mt{useInner} \; \mt{bindInner} \to \mt{xml} \; \mt{ctxOuter} \; (\mt{useOuter} \rc \mt{useInner}) \; (\mt{bindOuter} \rc \mt{bindInner})
adamc@547 2021 \end{array}$$
adam@1750 2022 Note that any tag may be assigned a CSS class, or left without a class by passing $\mt{Basis.null}$ as the first value-level argument. This is the sole way of making use of the values produced by $\mt{style}$ declarations. The function $\mt{Basis.classes}$ can be used to specify a list of CSS classes for a single tag. Stylesheets to assign properties to the classes can be linked via URL's with \texttt{link} tags. Ur/Web makes it easy to calculate upper bounds on usage of CSS classes through program analysis, with the \cd{-css} command-line flag.
adamc@547 2023
adam@1643 2024 Also note that two different arguments are available for setting CSS classes: the first, associated with the \texttt{class} pseudo-attribute syntactic sugar, fixes the class of a tag for the duration of the tag's life; while the second, associated with the \texttt{dynClass} pseudo-attribute, allows the class to vary over the tag's life. See Section \ref{signals} for an introduction to the $\mt{signal}$ type family.
adam@1643 2025
adam@1751 2026 The third and fourth value-level arguments makes it possible to generate HTML \cd{style} attributes, either with fixed content (\cd{style} attribute) or dynamic content (\cd{dynStyle} pseudo-attribute).
adam@1750 2027
adamc@547 2028 Two XML fragments may be concatenated.
adamc@547 2029 $$\begin{array}{l}
adamc@547 2030 \mt{val} \; \mt{join} : \mt{ctx} ::: \{\mt{Unit}\} \to \mt{use_1} ::: \{\mt{Type}\} \to \mt{bind_1} ::: \{\mt{Type}\} \to \mt{bind_2} ::: \{\mt{Type}\} \\
adam@1380 2031 \hspace{.1in} \to [\mt{use_1} \sim \mt{bind_1}] \Rightarrow [\mt{bind_1} \sim \mt{bind_2}] \\
adamc@547 2032 \hspace{.1in} \Rightarrow \mt{xml} \; \mt{ctx} \; \mt{use_1} \; \mt{bind_1} \to \mt{xml} \; \mt{ctx} \; (\mt{use_1} \rc \mt{bind_1}) \; \mt{bind_2} \to \mt{xml} \; \mt{ctx} \; \mt{use_1} \; (\mt{bind_1} \rc \mt{bind_2})
adamc@547 2033 \end{array}$$
adamc@547 2034
adamc@547 2035 Finally, any XML fragment may be updated to ``claim'' to use more form fields than it does.
adamc@547 2036 $$\begin{array}{l}
adam@1380 2037 \mt{val} \; \mt{useMore} : \mt{ctx} ::: \{\mt{Unit}\} \to \mt{use_1} ::: \{\mt{Type}\} \to \mt{use_2} ::: \{\mt{Type}\} \to \mt{bind} ::: \{\mt{Type}\} \to [\mt{use_1} \sim \mt{use_2}] \\
adamc@547 2038 \hspace{.1in} \Rightarrow \mt{xml} \; \mt{ctx} \; \mt{use_1} \; \mt{bind} \to \mt{xml} \; \mt{ctx} \; (\mt{use_1} \rc \mt{use_2}) \; \mt{bind}
adamc@547 2039 \end{array}$$
adamc@547 2040
adam@1344 2041 We will not list here the different HTML tags and related functions from the standard library. They should be easy enough to understand from the code in \texttt{basis.urs}. The set of tags in the library is not yet claimed to be complete for HTML standards. Also note that there is currently no way for the programmer to add his own tags. It \emph{is} possible to add new tags directly to \texttt{basis.urs}, but this should only be done as a prelude to suggesting a patch to the main distribution.
adamc@547 2042
adamc@547 2043 One last useful function is for aborting any page generation, returning some XML as an error message. This function takes the place of some uses of a general exception mechanism.
adamc@547 2044 $$\begin{array}{l}
adam@1641 2045 \mt{val} \; \mt{error} : \mt{t} ::: \mt{Type} \to \mt{xbody} \to \mt{t}
adamc@547 2046 \end{array}$$
adamc@547 2047
adamc@549 2048
adamc@701 2049 \subsection{Client-Side Programming}
adamc@659 2050
adamc@701 2051 Ur/Web supports running code on web browsers, via automatic compilation to JavaScript.
adamc@701 2052
adamc@701 2053 \subsubsection{The Basics}
adamc@701 2054
adam@1400 2055 All of the functions in this subsection are client-side only.
adam@1400 2056
adam@1297 2057 Clients can open alert and confirm dialog boxes, in the usual annoying JavaScript way.
adamc@701 2058 $$\begin{array}{l}
adam@1297 2059 \mt{val} \; \mt{alert} : \mt{string} \to \mt{transaction} \; \mt{unit} \\
adam@1297 2060 \mt{val} \; \mt{confirm} : \mt{string} \to \mt{transaction} \; \mt{bool}
adamc@701 2061 \end{array}$$
adamc@701 2062
adamc@701 2063 Any transaction may be run in a new thread with the $\mt{spawn}$ function.
adamc@701 2064 $$\begin{array}{l}
adamc@701 2065 \mt{val} \; \mt{spawn} : \mt{transaction} \; \mt{unit} \to \mt{transaction} \; \mt{unit}
adamc@701 2066 \end{array}$$
adamc@701 2067
adamc@701 2068 The current thread can be paused for at least a specified number of milliseconds.
adamc@701 2069 $$\begin{array}{l}
adamc@701 2070 \mt{val} \; \mt{sleep} : \mt{int} \to \mt{transaction} \; \mt{unit}
adamc@701 2071 \end{array}$$
adamc@701 2072
adam@1770 2073 A few functions are available to registers callbacks for particular error events. Respectively, they are triggered on calls to $\mt{error}$, uncaught JavaScript exceptions, failure of remote procedure calls, the severance of the connection serving asynchronous messages, or the occurrence of some other error with that connection. If no handlers are registered for a kind of error, then a JavaScript \cd{alert()} is used to announce its occurrence. When one of these functions is called multiple times within a single page, all registered handlers are run when appropriate events occur, with handlers run in the reverse of their registration order.
adamc@787 2074 $$\begin{array}{l}
adamc@787 2075 \mt{val} \; \mt{onError} : (\mt{xbody} \to \mt{transaction} \; \mt{unit}) \to \mt{transaction} \; \mt{unit} \\
adamc@787 2076 \mt{val} \; \mt{onFail} : (\mt{string} \to \mt{transaction} \; \mt{unit}) \to \mt{transaction} \; \mt{unit} \\
adamc@787 2077 \mt{val} \; \mt{onConnectFail} : \mt{transaction} \; \mt{unit} \to \mt{transaction} \; \mt{unit} \\
adamc@787 2078 \mt{val} \; \mt{onDisconnect} : \mt{transaction} \; \mt{unit} \to \mt{transaction} \; \mt{unit} \\
adamc@787 2079 \mt{val} \; \mt{onServerError} : (\mt{string} \to \mt{transaction} \; \mt{unit}) \to \mt{transaction} \; \mt{unit}
adamc@787 2080 \end{array}$$
adamc@787 2081
adam@1555 2082 There are also functions to register standard document-level event handlers.
adam@1555 2083
adam@1555 2084 $$\begin{array}{l}
adam@1783 2085 \mt{val} \; \mt{onClick} : (\mt{mouseEvent} \to \mt{transaction} \; \mt{unit}) \to \mt{transaction} \; \mt{unit} \\
adam@1783 2086 \mt{val} \; \mt{onDblclick} : (\mt{mouseEvent} \to \mt{transaction} \; \mt{unit}) \to \mt{transaction} \; \mt{unit} \\
adam@1783 2087 \mt{val} \; \mt{onKeydown} : (\mt{keyEvent} \to \mt{transaction} \; \mt{unit}) \to \mt{transaction} \; \mt{unit} \\
adam@1783 2088 \mt{val} \; \mt{onKeypress} : (\mt{keyEvent} \to \mt{transaction} \; \mt{unit}) \to \mt{transaction} \; \mt{unit} \\
adam@1783 2089 \mt{val} \; \mt{onKeyup} : (\mt{keyEvent} \to \mt{transaction} \; \mt{unit}) \to \mt{transaction} \; \mt{unit} \\
adam@1783 2090 \mt{val} \; \mt{onMousedown} : (\mt{mouseEvent} \to \mt{transaction} \; \mt{unit}) \to \mt{transaction} \; \mt{unit} \\
adam@1783 2091 \mt{val} \; \mt{onMouseup} : (\mt{mouseEvent} \to \mt{transaction} \; \mt{unit}) \to \mt{transaction} \; \mt{unit}
adam@1555 2092 \end{array}$$
adam@1555 2093
adam@1559 2094 Versions of standard JavaScript functions are provided that event handlers may call to mask default handling or prevent bubbling of events up to parent DOM nodes, respectively.
adam@1559 2095
adam@1559 2096 $$\begin{array}{l}
adam@1559 2097 \mt{val} \; \mt{preventDefault} : \mt{transaction} \; \mt{unit} \\
adam@1559 2098 \mt{val} \; \mt{stopPropagation} : \mt{transaction} \; \mt{unit}
adam@1559 2099 \end{array}$$
adam@1559 2100
adam@1556 2101 \subsubsection{Node IDs}
adam@1556 2102
adam@1556 2103 There is an abstract type of node IDs that may be assigned to \cd{id} attributes of most HTML tags.
adam@1556 2104
adam@1556 2105 $$\begin{array}{l}
adam@1556 2106 \mt{type} \; \mt{id} \\
adam@1556 2107 \mt{val} \; \mt{fresh} : \mt{transaction} \; \mt{id}
adam@1556 2108 \end{array}$$
adam@1556 2109
adam@1785 2110 The \cd{fresh} function is allowed on both server and client, but there is no other way to create IDs, which includes lack of a way to force an ID to match a particular string. The main semantic importance of IDs within Ur/Web is in uses of the HTML \cd{<label>} tag. IDs play a much more central role in mainstream JavaScript programming, but Ur/Web uses a very different model to enable changes to particular nodes of a page tree, as the next manual subsection explains. IDs may still be useful in interfacing with JavaScript code (for instance, through Ur/Web's FFI).
adam@1785 2111
adam@1785 2112 One further use of IDs is as handles for requesting that \emph{focus} be given to specific tags.
adam@1785 2113
adam@1785 2114 $$\begin{array}{l}
adam@1785 2115 \mt{val} \; \mt{giveFocus} : \mt{id} \to \mt{transaction} \; \mt{unit}
adam@1785 2116 \end{array}$$
adam@1556 2117
adam@1643 2118 \subsubsection{\label{signals}Functional-Reactive Page Generation}
adamc@701 2119
adamc@701 2120 Most approaches to ``AJAX''-style coding involve imperative manipulation of the DOM tree representing an HTML document's structure. Ur/Web follows the \emph{functional-reactive} approach instead. Programs may allocate mutable \emph{sources} of arbitrary types, and an HTML page is effectively a pure function over the latest values of the sources. The page is not mutated directly, but rather it changes automatically as the sources are mutated.
adamc@659 2121
adam@1403 2122 More operationally, you can think of a source as a mutable cell with facilities for subscription to change notifications. That level of detail is hidden behind a monadic facility to be described below. First, there are three primitive operations for working with sources just as if they were ML \cd{ref} cells, corresponding to ML's \cd{ref}, \cd{:=}, and \cd{!} operations.
adam@1403 2123
adamc@659 2124 $$\begin{array}{l}
adamc@659 2125 \mt{con} \; \mt{source} :: \mt{Type} \to \mt{Type} \\
adamc@659 2126 \mt{val} \; \mt{source} : \mt{t} ::: \mt{Type} \to \mt{t} \to \mt{transaction} \; (\mt{source} \; \mt{t}) \\
adamc@659 2127 \mt{val} \; \mt{set} : \mt{t} ::: \mt{Type} \to \mt{source} \; \mt{t} \to \mt{t} \to \mt{transaction} \; \mt{unit} \\
adamc@659 2128 \mt{val} \; \mt{get} : \mt{t} ::: \mt{Type} \to \mt{source} \; \mt{t} \to \mt{transaction} \; \mt{t}
adamc@659 2129 \end{array}$$
adamc@659 2130
adam@1400 2131 Only source creation and setting are supported server-side, as a convenience to help in setting up a page, where you may wish to allocate many sources that will be referenced through the page. All server-side storage of values inside sources uses string serializations of values, while client-side storage uses normal JavaScript values.
adam@1400 2132
adam@1608 2133 Pure functions over arbitrary numbers of sources are represented in a monad of \emph{signals}, which may only be used in client-side code. This is presented to the programmer in the form of a monad $\mt{signal}$, each of whose values represents (conceptually) some pure function over all sources that may be allocated in the course of program execution. A monad operation $\mt{signal}$ denotes the identity function over a particular source. By using $\mt{signal}$ on a source, you implicitly subscribe to change notifications for that source. That is, your signal will automatically be recomputed as that source changes. The usual monad operators make it possible to build up complex signals that depend on multiple sources; automatic updating upon source-value changes still happens automatically. There is also an operator for computing a signal's current value within a transaction.
adamc@659 2134
adamc@659 2135 $$\begin{array}{l}
adamc@659 2136 \mt{con} \; \mt{signal} :: \mt{Type} \to \mt{Type} \\
adamc@659 2137 \mt{val} \; \mt{signal\_monad} : \mt{monad} \; \mt{signal} \\
adam@1608 2138 \mt{val} \; \mt{signal} : \mt{t} ::: \mt{Type} \to \mt{source} \; \mt{t} \to \mt{signal} \; \mt{t} \\
adam@1608 2139 \mt{val} \; \mt{current} : \mt{t} ::: \mt{Type} \to \mt{signal} \; \mt{t} \to \mt{transaction} \; \mt{t}
adamc@659 2140 \end{array}$$
adamc@659 2141
adamc@659 2142 A reactive portion of an HTML page is injected with a $\mt{dyn}$ tag, which has a signal-valued attribute $\mt{Signal}$.
adamc@659 2143
adamc@659 2144 $$\begin{array}{l}
adam@1641 2145 \mt{val} \; \mt{dyn} : \mt{ctx} ::: \{\mt{Unit}\} \to \mt{use} ::: \{\mt{Type}\} \to \mt{bind} ::: \{\mt{Type}\} \to [\mt{ctx} \sim [\mt{Dyn}]] \Rightarrow \mt{unit} \\
adam@1641 2146 \hspace{.1in} \to \mt{tag} \; [\mt{Signal} = \mt{signal} \; (\mt{xml} \; ([\mt{Dyn}] \rc \mt{ctx}) \; \mt{use} \; \mt{bind})] \; ([\mt{Dyn}] \rc \mt{ctx}) \; [] \; \mt{use} \; \mt{bind}
adamc@659 2147 \end{array}$$
adamc@659 2148
adam@1648 2149 The semantics of \cd{<dyn>} tags is somewhat subtle. When the signal associated with such a tag changes value, the associated subtree of the HTML page is recreated. Some properties of the subtree, such as attributes and client-side widget values, are specified explicitly in the signal value, so these may be counted on to remain the same after recreation. Other properties, like focus and cursor position within textboxes, are \emph{not} specified by signal values, and these properties will be \emph{reset} upon subtree regeneration. Furthermore, user interaction with widgets may not work properly during regeneration. For instance, clicking a button while it is being regenerated may not trigger its \cd{onclick} event code.
adam@1648 2150
adam@1648 2151 Currently, the only way to avoid undesired resets is to avoid regeneration of containing subtrees. There are two main strategies for achieving that goal. First, when changes to a subtree can be confined to CSS classes of tags, the \texttt{dynClass} pseudo-attribute may be used instead (see Section \ref{xml}), as it does not regenerate subtrees. Second, a single \cd{<dyn>} tag may be broken into multiple tags, in a way that makes finer-grained dependency structure explicit. This latter strategy can avoid ``spurious'' regenerations that are not actually required to achieve the intended semantics.
adam@1648 2152
adam@1786 2153 Transactions can be run on the client by including them in attributes like the $\mt{Onclick}$ attribute of $\mt{button}$, and GUI widgets like $\mt{ctextbox}$ have $\mt{Source}$ attributes that can be used to connect them to sources, so that their values can be read by code running because of, e.g., an $\mt{Onclick}$ event. It is also possible to create an ``active'' HTML fragment that runs a $\mt{transaction}$ to determine its content, possibly allocating some sources in the process:
adam@1786 2154
adam@1786 2155 $$\begin{array}{l}
adam@1786 2156 \mt{val} \; \mt{active} : \mt{unit} \to \mt{tag} \; [\mt{Code} = \mt{transaction} \; \mt{xbody}] \; \mt{body} \; [] \; [] \; []
adam@1786 2157 \end{array}$$
adamc@701 2158
adamc@914 2159 \subsubsection{Remote Procedure Calls}
adamc@914 2160
adamc@914 2161 Any function call may be made a client-to-server ``remote procedure call'' if the function being called needs no features that are only available to client code. To make a function call an RPC, pass that function call as the argument to $\mt{Basis.rpc}$:
adamc@914 2162
adamc@914 2163 $$\begin{array}{l}
adamc@914 2164 \mt{val} \; \mt{rpc} : \mt{t} ::: \mt{Type} \to \mt{transaction} \; \mt{t} \to \mt{transaction} \; \mt{t}
adamc@914 2165 \end{array}$$
adamc@914 2166
adam@1848 2167 There is an alternate form that uses $\mt{None}$ to indicate that an error occurred during RPC processing, rather than raising an exception to abort this branch of control flow.
adam@1848 2168
adam@1848 2169 $$\begin{array}{l}
adam@1848 2170 \mt{val} \; \mt{tryRpc} : \mt{t} ::: \mt{Type} \to \mt{transaction} \; \mt{t} \to \mt{transaction} \; (\mt{option} \; \mt{t})
adam@1848 2171 \end{array}$$
adam@1848 2172
adamc@701 2173 \subsubsection{Asynchronous Message-Passing}
adamc@701 2174
adamc@701 2175 To support asynchronous, ``server push'' delivery of messages to clients, any client that might need to receive an asynchronous message is assigned a unique ID. These IDs may be retrieved both on the client and on the server, during execution of code related to a client.
adamc@701 2176
adamc@701 2177 $$\begin{array}{l}
adamc@701 2178 \mt{type} \; \mt{client} \\
adamc@701 2179 \mt{val} \; \mt{self} : \mt{transaction} \; \mt{client}
adamc@701 2180 \end{array}$$
adamc@701 2181
adamc@701 2182 \emph{Channels} are the means of message-passing. Each channel is created in the context of a client and belongs to that client; no other client may receive the channel's messages. Each channel type includes the type of values that may be sent over the channel. Sending and receiving are asynchronous, in the sense that a client need not be ready to receive a message right away. Rather, sent messages may queue up, waiting to be processed.
adamc@701 2183
adamc@701 2184 $$\begin{array}{l}
adamc@701 2185 \mt{con} \; \mt{channel} :: \mt{Type} \to \mt{Type} \\
adamc@701 2186 \mt{val} \; \mt{channel} : \mt{t} ::: \mt{Type} \to \mt{transaction} \; (\mt{channel} \; \mt{t}) \\
adamc@701 2187 \mt{val} \; \mt{send} : \mt{t} ::: \mt{Type} \to \mt{channel} \; \mt{t} \to \mt{t} \to \mt{transaction} \; \mt{unit} \\
adamc@701 2188 \mt{val} \; \mt{recv} : \mt{t} ::: \mt{Type} \to \mt{channel} \; \mt{t} \to \mt{transaction} \; \mt{t}
adamc@701 2189 \end{array}$$
adamc@701 2190
adamc@701 2191 The $\mt{channel}$ and $\mt{send}$ operations may only be executed on the server, and $\mt{recv}$ may only be executed on a client. Neither clients nor channels may be passed as arguments from clients to server-side functions, so persistent channels can only be maintained by storing them in the database and looking them up using the current client ID or some application-specific value as a key.
adamc@701 2192
adamc@701 2193 Clients and channels live only as long as the web browser page views that they are associated with. When a user surfs away, his client and its channels will be garbage-collected, after that user is not heard from for the timeout period. Garbage collection deletes any database row that contains a client or channel directly. Any reference to one of these types inside an $\mt{option}$ is set to $\mt{None}$ instead. Both kinds of handling have the flavor of weak pointers, and that is a useful way to think about clients and channels in the database.
adamc@701 2194
adam@1551 2195 \emph{Note}: Currently, there are known concurrency issues with multi-threaded applications that employ message-passing on top of database engines that don't support true serializable transactions. Postgres 9.1 is the only supported engine that does this properly.
adam@1551 2196
adamc@659 2197
adamc@549 2198 \section{Ur/Web Syntax Extensions}
adamc@549 2199
adamc@549 2200 Ur/Web features some syntactic shorthands for building values using the functions from the last section. This section sketches the grammar of those extensions. We write spans of syntax inside brackets to indicate that they are optional.
adamc@549 2201
adamc@549 2202 \subsection{SQL}
adamc@549 2203
adamc@786 2204 \subsubsection{\label{tables}Table Declarations}
adamc@786 2205
adamc@788 2206 $\mt{table}$ declarations may include constraints, via these grammar rules.
adamc@788 2207 $$\begin{array}{rrcll}
adam@1594 2208 \textrm{Declarations} & d &::=& \mt{table} \; x : c \; [pk[,]] \; cts \mid \mt{view} \; x = V \\
adamc@788 2209 \textrm{Primary key constraints} & pk &::=& \mt{PRIMARY} \; \mt{KEY} \; K \\
adam@1722 2210 \textrm{Keys} & K &::=& f \mid (f, (f,)^+) \mid \{\{e\}\} \\
adamc@788 2211 \textrm{Constraint sets} & cts &::=& \mt{CONSTRAINT} f \; ct \mid cts, cts \mid \{\{e\}\} \\
adamc@788 2212 \textrm{Constraints} & ct &::=& \mt{UNIQUE} \; K \mid \mt{CHECK} \; E \\
adamc@788 2213 &&& \mid \mt{FOREIGN} \; \mt{KEY} \; K \; \mt{REFERENCES} \; F \; (K) \; [\mt{ON} \; \mt{DELETE} \; pr] \; [\mt{ON} \; \mt{UPDATE} \; pr] \\
adamc@788 2214 \textrm{Foreign tables} & F &::=& x \mid \{\{e\}\} \\
adam@1594 2215 \textrm{Propagation modes} & pr &::=& \mt{NO} \; \mt{ACTION} \mid \mt{RESTRICT} \mid \mt{CASCADE} \mid \mt{SET} \; \mt{NULL} \\
adam@1594 2216 \textrm{View expressions} & V &::=& Q \mid \{e\}
adamc@788 2217 \end{array}$$
adamc@788 2218
adamc@788 2219 A signature item $\mt{table} \; \mt{x} : \mt{c}$ is actually elaborated into two signature items: $\mt{con} \; \mt{x\_hidden\_constraints} :: \{\{\mt{Unit}\}\}$ and $\mt{val} \; \mt{x} : \mt{sql\_table} \; \mt{c} \; \mt{x\_hidden\_constraints}$. This is appropriate for common cases where client code doesn't care which keys a table has. It's also possible to include constraints after a $\mt{table}$ signature item, with the same syntax as for $\mt{table}$ declarations. This may look like dependent typing, but it's just a convenience. The constraints are type-checked to determine a constructor $u$ to include in $\mt{val} \; \mt{x} : \mt{sql\_table} \; \mt{c} \; (u \rc \mt{x\_hidden\_constraints})$, and then the expressions are thrown away. Nonetheless, it can be useful for documentation purposes to include table constraint details in signatures. Note that the automatic generation of $\mt{x\_hidden\_constraints}$ leads to a kind of free subtyping with respect to which constraints are defined.
adamc@788 2220
adamc@788 2221
adamc@549 2222 \subsubsection{Queries}
adamc@549 2223
adamc@550 2224 Queries $Q$ are added to the rules for expressions $e$.
adamc@550 2225
adamc@549 2226 $$\begin{array}{rrcll}
adam@1684 2227 \textrm{Queries} & Q &::=& (q \; [\mt{ORDER} \; \mt{BY} \; O] \; [\mt{LIMIT} \; N] \; [\mt{OFFSET} \; N]) \\
adamc@1085 2228 \textrm{Pre-queries} & q &::=& \mt{SELECT} \; [\mt{DISTINCT}] \; P \; \mt{FROM} \; F,^+ \; [\mt{WHERE} \; E] \; [\mt{GROUP} \; \mt{BY} \; p,^+] \; [\mt{HAVING} \; E] \\
adamc@1085 2229 &&& \mid q \; R \; q \mid \{\{\{e\}\}\} \\
adam@1684 2230 \textrm{Relational operators} & R &::=& \mt{UNION} \mid \mt{INTERSECT} \mid \mt{EXCEPT} \\
adam@1778 2231 \textrm{$\mt{ORDER \; BY}$ items} & O &::=& \mt{RANDOM} [()] \mid \hat{E} \; [o] \mid \hat{E} \; [o], O
adamc@549 2232 \end{array}$$
adamc@549 2233
adamc@549 2234 $$\begin{array}{rrcll}
adamc@549 2235 \textrm{Projections} & P &::=& \ast & \textrm{all columns} \\
adamc@549 2236 &&& p,^+ & \textrm{particular columns} \\
adamc@549 2237 \textrm{Pre-projections} & p &::=& t.f & \textrm{one column from a table} \\
adamc@558 2238 &&& t.\{\{c\}\} & \textrm{a record of columns from a table (of kind $\{\mt{Type}\}$)} \\
adam@1627 2239 &&& t.* & \textrm{all columns from a table} \\
adam@1778 2240 &&& \hat{E} \; [\mt{AS} \; f] & \textrm{expression column} \\
adamc@549 2241 \textrm{Table names} & t &::=& x & \textrm{constant table name (automatically capitalized)} \\
adamc@549 2242 &&& X & \textrm{constant table name} \\
adamc@549 2243 &&& \{\{c\}\} & \textrm{computed table name (of kind $\mt{Name}$)} \\
adamc@549 2244 \textrm{Column names} & f &::=& X & \textrm{constant column name} \\
adamc@549 2245 &&& \{c\} & \textrm{computed column name (of kind $\mt{Name}$)} \\
adamc@549 2246 \textrm{Tables} & T &::=& x & \textrm{table variable, named locally by its own capitalization} \\
adam@1756 2247 &&& x \; \mt{AS} \; X & \textrm{table variable, with local name} \\
adam@1756 2248 &&& x \; \mt{AS} \; \{c\} & \textrm{table variable, with computed local name} \\
adamc@549 2249 &&& \{\{e\}\} \; \mt{AS} \; t & \textrm{computed table expression, with local name} \\
adam@1756 2250 &&& \{\{e\}\} \; \mt{AS} \; \{c\} & \textrm{computed table expression, with computed local name} \\
adamc@1085 2251 \textrm{$\mt{FROM}$ items} & F &::=& T \mid \{\{e\}\} \mid F \; J \; \mt{JOIN} \; F \; \mt{ON} \; E \\
adamc@1085 2252 &&& \mid F \; \mt{CROSS} \; \mt{JOIN} \ F \\
adamc@1193 2253 &&& \mid (Q) \; \mt{AS} \; t \\
adamc@1085 2254 \textrm{Joins} & J &::=& [\mt{INNER}] \\
adamc@1085 2255 &&& \mid [\mt{LEFT} \mid \mt{RIGHT} \mid \mt{FULL}] \; [\mt{OUTER}] \\
adam@1587 2256 \textrm{SQL expressions} & E &::=& t.f & \textrm{column references} \\
adamc@549 2257 &&& X & \textrm{named expression references} \\
adam@1490 2258 &&& \{[e]\} & \textrm{injected native Ur expressions} \\
adam@1778 2259 &&& \{e\} & \textrm{computed expressions, probably using $\mt{sql\_exp}$ directly} \\
adamc@549 2260 &&& \mt{TRUE} \mid \mt{FALSE} & \textrm{boolean constants} \\
adamc@549 2261 &&& \ell & \textrm{primitive type literals} \\
adamc@549 2262 &&& \mt{NULL} & \textrm{null value (injection of $\mt{None}$)} \\
adamc@549 2263 &&& E \; \mt{IS} \; \mt{NULL} & \textrm{nullness test} \\
adam@1602 2264 &&& \mt{COALESCE}(E, E) & \textrm{take first non-null value} \\
adamc@549 2265 &&& n & \textrm{nullary operators} \\
adamc@549 2266 &&& u \; E & \textrm{unary operators} \\
adamc@549 2267 &&& E \; b \; E & \textrm{binary operators} \\
adam@1778 2268 &&& \mt{COUNT}(\ast) & \textrm{count number of rows} \\
adam@1778 2269 &&& a(E) & \textrm{other aggregate function} \\
adam@1573 2270 &&& \mt{IF} \; E \; \mt{THEN} \; E \; \mt{ELSE} \; E & \textrm{conditional} \\
adam@1778 2271 &&& (Q) & \textrm{subquery (must return a single expression column)} \\
adamc@549 2272 &&& (E) & \textrm{explicit precedence} \\
adamc@549 2273 \textrm{Nullary operators} & n &::=& \mt{CURRENT\_TIMESTAMP} \\
adamc@549 2274 \textrm{Unary operators} & u &::=& \mt{NOT} \\
adam@1688 2275 \textrm{Binary operators} & b &::=& \mt{AND} \mid \mt{OR} \mid = \mid \neq \mid < \mid \leq \mid > \mid \geq \\
adamc@1188 2276 \textrm{Aggregate functions} & a &::=& \mt{COUNT} \mid \mt{AVG} \mid \mt{SUM} \mid \mt{MIN} \mid \mt{MAX} \\
adam@1543 2277 \textrm{Directions} & o &::=& \mt{ASC} \mid \mt{DESC} \mid \{e\} \\
adamc@549 2278 \textrm{SQL integer} & N &::=& n \mid \{e\} \\
adam@1778 2279 \textrm{Windowable expressions} & \hat{E} &::=& E \\
adam@1778 2280 &&& w \; [\mt{OVER} \; ( & \textrm{(Postgres only)} \\
adam@1778 2281 &&& \hspace{.1in} [\mt{PARTITION} \; \mt{BY} \; E] \\
adam@1778 2282 &&& \hspace{.1in} [\mt{ORDER} \; \mt{BY} \; O])] \\
adam@1778 2283 \textrm{Window function} & w &::=& \mt{RANK}() \\
adam@1778 2284 &&& \mt{COUNT}(*) \\
adam@1778 2285 &&& a(E)
adamc@549 2286 \end{array}$$
adamc@549 2287
adamc@1085 2288 Additionally, an SQL expression may be inserted into normal Ur code with the syntax $(\mt{SQL} \; E)$ or $(\mt{WHERE} \; E)$. Similar shorthands exist for other nonterminals, with the prefix $\mt{FROM}$ for $\mt{FROM}$ items and $\mt{SELECT1}$ for pre-queries.
adamc@549 2289
adam@1683 2290 Unnamed expression columns in $\mt{SELECT}$ clauses are assigned consecutive natural numbers, starting with 1. Any expression in a $p$ position that is enclosed in parentheses is treated as an expression column, rather than a column pulled directly out of a table, even if it is only a field projection. (This distinction affects the record type used to describe query results.)
adamc@1194 2291
adamc@550 2292 \subsubsection{DML}
adamc@550 2293
adamc@550 2294 DML commands $D$ are added to the rules for expressions $e$.
adamc@550 2295
adamc@550 2296 $$\begin{array}{rrcll}
adamc@550 2297 \textrm{Commands} & D &::=& (\mt{INSERT} \; \mt{INTO} \; T^E \; (f,^+) \; \mt{VALUES} \; (E,^+)) \\
adamc@550 2298 &&& (\mt{UPDATE} \; T^E \; \mt{SET} \; (f = E,)^+ \; \mt{WHERE} \; E) \\
adamc@550 2299 &&& (\mt{DELETE} \; \mt{FROM} \; T^E \; \mt{WHERE} \; E) \\
adamc@550 2300 \textrm{Table expressions} & T^E &::=& x \mid \{\{e\}\}
adamc@550 2301 \end{array}$$
adamc@550 2302
adamc@550 2303 Inside $\mt{UPDATE}$ and $\mt{DELETE}$ commands, lone variables $X$ are interpreted as references to columns of the implicit table $\mt{T}$, rather than to named expressions.
adamc@549 2304
adamc@551 2305 \subsection{XML}
adamc@551 2306
adamc@551 2307 XML fragments $L$ are added to the rules for expressions $e$.
adamc@551 2308
adamc@551 2309 $$\begin{array}{rrcll}
adamc@551 2310 \textrm{XML fragments} & L &::=& \texttt{<xml/>} \mid \texttt{<xml>}l^*\texttt{</xml>} \\
adamc@551 2311 \textrm{XML pieces} & l &::=& \textrm{text} & \textrm{cdata} \\
adamc@551 2312 &&& \texttt{<}g\texttt{/>} & \textrm{tag with no children} \\
adamc@551 2313 &&& \texttt{<}g\texttt{>}l^*\texttt{</}x\texttt{>} & \textrm{tag with children} \\
adamc@559 2314 &&& \{e\} & \textrm{computed XML fragment} \\
adamc@559 2315 &&& \{[e]\} & \textrm{injection of an Ur expression, via the $\mt{Top}.\mt{txt}$ function} \\
adamc@551 2316 \textrm{Tag} & g &::=& h \; (x = v)^* \\
adamc@551 2317 \textrm{Tag head} & h &::=& x & \textrm{tag name} \\
adamc@551 2318 &&& h\{c\} & \textrm{constructor parameter} \\
adamc@551 2319 \textrm{Attribute value} & v &::=& \ell & \textrm{literal value} \\
adamc@551 2320 &&& \{e\} & \textrm{computed value} \\
adamc@551 2321 \end{array}$$
adamc@551 2322
adam@1751 2323 Further, there is a special convenience and compatibility form for setting CSS classes of tags. If a \cd{class} attribute has a value that is a string literal, the literal is parsed in the usual HTML way and replaced with calls to appropriate Ur/Web combinators. Any dashes in the text are replaced with underscores to determine Ur identifiers. The same desugaring can be accessed in a normal expression context by calling the pseudo-function \cd{CLASS} on a string literal.
adam@1751 2324
adam@1751 2325 Similar support is provided for \cd{style} attributes. Normal CSS syntax may be used in string literals that are \cd{style} attribute values, and the desugaring may be accessed elsewhere with the pseudo-function \cd{STYLE}.
adamc@552 2326
adamc@1198 2327 \section{\label{structure}The Structure of Web Applications}
adamc@553 2328
adam@1797 2329 A web application is built from a series of modules, with one module, the last one appearing in the \texttt{.urp} file, designated as the main module. The signature of the main module determines the URL entry points to the application. Such an entry point should have type $\mt{t1} \to \ldots \to \mt{tn} \to \mt{transaction} \; \mt{page}$, for any integer $n \geq 0$, where $\mt{page}$ is a type synonym for top-level HTML pages, defined in $\mt{Basis}$. If such a function is at the top level of main module $M$, with $n = 0$, it will be accessible at URI \texttt{/M/f}, and so on for more deeply nested functions, as described in Section \ref{tag} below. See Section \ref{cl} for information on the \texttt{prefix} and \texttt{rewrite url} directives, which can be used to rewrite the default URIs of different entry point functions. The final URL of a function is its default module-based URI, with \texttt{rewrite url} rules applied, and with the \texttt{prefix} prepended. Arguments to an entry-point function are deserialized from the part of the URI following \texttt{f}.
adamc@553 2330
adam@1532 2331 Elements of modules beside the main module, including page handlers, will only be included in the final application if they are transitive dependencies of the handlers in the main module.
adam@1532 2332
adam@1787 2333 Normal links are accessible via HTTP \texttt{GET}, which the relevant standard says should never cause side effects. To export a page which may cause side effects, accessible only via HTTP \texttt{POST}, include one argument of the page handler of type $\mt{Basis.postBody}$. When the handler is called, this argument will receive a value that can be deconstructed into a MIME type (with $\mt{Basis.postType}$) and payload (with $\mt{Basis.postData}$). This kind of handler should not be used with forms that exist solely within Ur/Web apps; for these, use Ur/Web's built-in support, as described below. It may still be useful to use $\mt{Basis.postBody}$ with form requests submitted by code outside an Ur/Web app. For such cases, the function $\mt{Top.postFields} : \mt{postBody} \to \mt{list} \; (\mt{string} \times \mt{string})$ may be useful, breaking a \texttt{POST} body of type \texttt{application/x-www-form-urlencoded} into its name-value pairs.
adam@1347 2334
adam@1370 2335 Any normal page handler may also include arguments of type $\mt{option \; Basis.queryString}$, which will be handled specially. Rather than being deserialized from the current URI, such an argument is passed the whole query string that the handler received. The string may be analyzed by calling $\mt{Basis.show}$ on it. A handler of this kind may be passed as an argument to $\mt{Basis.effectfulUrl}$ to generate a URL to a page that may be used as a ``callback'' by an external service, such that the handler is allowed to cause side effects.
adam@1370 2336
adamc@553 2337 When the standalone web server receives a request for a known page, it calls the function for that page, ``running'' the resulting transaction to produce the page to return to the client. Pages link to other pages with the \texttt{link} attribute of the \texttt{a} HTML tag. A link has type $\mt{transaction} \; \mt{page}$, and the semantics of a link are that this transaction should be run to compute the result page, when the link is followed. Link targets are assigned URL names in the same way as top-level entry points.
adamc@553 2338
adamc@553 2339 HTML forms are handled in a similar way. The $\mt{action}$ attribute of a $\mt{submit}$ form tag takes a value of type $\$\mt{use} \to \mt{transaction} \; \mt{page}$, where $\mt{use}$ is a kind-$\{\mt{Type}\}$ record of the form fields used by this action handler. Action handlers are assigned URL patterns in the same way as above.
adamc@553 2340
adam@1653 2341 For both links and actions, direct arguments and local variables mentioned implicitly via closures are automatically included in serialized form in URLs, in the order in which they appear in the source code. Such serialized values may only be drawn from a limited set of types, and programs will fail to compile when the (implicit or explicit) arguments of page handler functions involve disallowed types. (Keep in mind that every free variable of a function is an implicit argument if it was not defined at the top level of a module.) For instance:
adam@1653 2342 \begin{itemize}
adam@1653 2343 \item Functions are disallowed, since there is no obvious way to serialize them safely.
adam@1653 2344 \item XML fragments are disallowed, since it is unclear how to check client-provided XML to be sure it doesn't break the HTML invariants of the application (for instance, by mutating the DOM in the conventional way, interfering with Ur/Web's functional-reactive regime).
adam@1653 2345 \item Blobs (``files'') are disallowed, since they can easily have very large serializations that could not fit within most web servers' URL size limits. (And you probably don't want to be serializing, e.g., image files in URLs, anyway.)
adam@1653 2346 \end{itemize}
adamc@553 2347
adamc@660 2348 Ur/Web programs generally mix server- and client-side code in a fairly transparent way. The one important restriction is that mixed client-server code must encapsulate all server-side pieces within named functions. This is because execution of such pieces will be implemented by explicit calls to the remote web server, and it is useful to get the programmer's help in designing the interface to be used. For example, this makes it easier to allow a client running an old version of an application to continue interacting with a server that has been upgraded to a new version, if the programmer took care to keep the interfaces of all of the old remote calls the same. The functions implementing these services are assigned names in the same way as normal web entry points, by using module structure.
adamc@660 2349
adamc@789 2350 \medskip
adamc@789 2351
adam@1347 2352 The HTTP standard suggests that GET requests only be used in ways that generate no side effects. Side effecting operations should use POST requests instead. The Ur/Web compiler enforces this rule strictly, via a simple conservative program analysis. Any page that may have a side effect must be accessed through a form, all of which use POST requests, or via a direct call to a page handler with some argument of type $\mt{Basis.postBody}$. A page is judged to have a side effect if its code depends syntactically on any of the side-effecting, server-side FFI functions. Links, forms, and most client-side event handlers are not followed during this syntactic traversal, but \texttt{<body onload=\{...\}>} handlers \emph{are} examined, since they run right away and could just as well be considered parts of main page handlers.
adamc@789 2353
adamc@789 2354 Ur/Web includes a kind of automatic protection against cross site request forgery attacks. Whenever any page execution can have side effects and can also read at least one cookie value, all cookie values must be signed cryptographically, to ensure that the user has come to the current page by submitting a form on a real page generated by the proper server. Signing and signature checking are inserted automatically by the compiler. This prevents attacks like phishing schemes where users are directed to counterfeit pages with forms that submit to your application, where a user's cookies might be submitted without his knowledge, causing some undesired side effect.
adamc@789 2355
adam@1348 2356 \subsection{Tasks}
adam@1348 2357
adam@1348 2358 In many web applications, it's useful to run code at points other than requests from browsers. Ur/Web's \emph{task} mechanism facilitates this. A type family of \emph{task kinds} is in the standard library:
adam@1348 2359
adam@1348 2360 $$\begin{array}{l}
adam@1348 2361 \mt{con} \; \mt{task\_kind} :: \mt{Type} \to \mt{Type} \\
adam@1348 2362 \mt{val} \; \mt{initialize} : \mt{task\_kind} \; \mt{unit} \\
adam@1349 2363 \mt{val} \; \mt{clientLeaves} : \mt{task\_kind} \; \mt{client} \\
adam@1349 2364 \mt{val} \; \mt{periodic} : \mt{int} \to \mt{task\_kind} \; \mt{unit}
adam@1348 2365 \end{array}$$
adam@1348 2366
adam@1348 2367 A task kind names a particular extension point of generated applications, where the type parameter of a task kind describes which extra input data is available at that extension point. Add task code with the special declaration form $\mt{task} \; e_1 = e_2$, where $e_1$ is a task kind with data $\tau$, and $e_2$ is a function from $\tau$ to $\mt{transaction} \; \mt{unit}$.
adam@1348 2368
adam@1348 2369 The currently supported task kinds are:
adam@1348 2370 \begin{itemize}
adam@1349 2371 \item $\mt{initialize}$: Code that is run when the application starts up.
adam@1348 2372 \item $\mt{clientLeaves}$: Code that is run for each client that the runtime system decides has surfed away. When a request that generates a new client handle is aborted, that handle will still eventually be passed to $\mt{clientLeaves}$ task code, even though the corresponding browser was never informed of the client handle's existence. In other words, in general, $\mt{clientLeaves}$ handlers will be called more times than there are actual clients.
adam@1349 2373 \item $\mt{periodic} \; n$: Code that is run when the application starts up and then every $n$ seconds thereafter.
adam@1348 2374 \end{itemize}
adam@1348 2375
adamc@553 2376
adamc@897 2377 \section{The Foreign Function Interface}
adamc@897 2378
adamc@897 2379 It is possible to call your own C and JavaScript code from Ur/Web applications, via the foreign function interface (FFI). The starting point for a new binding is a \texttt{.urs} signature file that presents your external library as a single Ur/Web module (with no nested modules). Compilation conventions map the types and values that you use into C and/or JavaScript types and values.
adamc@897 2380
adamc@897 2381 It is most convenient to encapsulate an FFI binding with a new \texttt{.urp} file, which applications can include with the \texttt{library} directive in their own \texttt{.urp} files. A number of directives are likely to show up in the library's project file.
adamc@897 2382
adamc@897 2383 \begin{itemize}
adamc@897 2384 \item \texttt{clientOnly Module.ident} registers a value as being allowed only in client-side code.
adamc@897 2385 \item \texttt{clientToServer Module.ident} declares a type as OK to marshal between clients and servers. By default, abstract FFI types are not allowed to be marshalled, since your library might be maintaining invariants that the simple serialization code doesn't check.
adam@1878 2386 \item \texttt{effectful Module.ident} registers a function that can have side effects. This is the default for \texttt{transaction}-based types, and, actually, this directive is mostly present for legacy compatibility reasons, since it used to be required explicitly for each \texttt{transaction}al function.
adamc@897 2387 \item \texttt{ffi FILE.urs} names the file giving your library's signature. You can include multiple such files in a single \texttt{.urp} file, and each file \texttt{mod.urp} defines an FFI module \texttt{Mod}.
adamc@1099 2388 \item \texttt{include FILE} requests inclusion of a C header file.
adamc@897 2389 \item \texttt{jsFunc Module.ident=name} gives a mapping from an Ur name for a value to a JavaScript name.
adamc@897 2390 \item \texttt{link FILE} requests that \texttt{FILE} be linked into applications. It should be a C object or library archive file, and you are responsible for generating it with your own build process.
adamc@897 2391 \item \texttt{script URL} requests inclusion of a JavaScript source file within application HTML.
adamc@897 2392 \item \texttt{serverOnly Module.ident} registers a value as being allowed only in server-side code.
adamc@897 2393 \end{itemize}
adamc@897 2394
adamc@897 2395 \subsection{Writing C FFI Code}
adamc@897 2396
adam@1881 2397 C source files connecting to the Ur/Web FFI should include \texttt{urweb.h}, and C++ source files should include \texttt{urweb\_cpp.h}.
adam@1881 2398
adamc@897 2399 A server-side FFI type or value \texttt{Module.ident} must have a corresponding type or value definition \texttt{uw\_Module\_ident} in C code. With the current Ur/Web version, it's not generally possible to work with Ur records or complex datatypes in C code, but most other kinds of types are fair game.
adamc@897 2400
adamc@897 2401 \begin{itemize}
adam@1881 2402 \item Primitive types defined in \texttt{Basis} are themselves using the standard FFI interface, so you may refer to them like \texttt{uw\_Basis\_t}. See \texttt{include/urweb/types.h} for their definitions.
adamc@897 2403 \item Enumeration datatypes, which have only constructors that take no arguments, should be defined using C \texttt{enum}s. The type is named as for any other type identifier, and each constructor \texttt{c} gets an enumeration constant named \texttt{uw\_Module\_c}.
adamc@897 2404 \item A datatype \texttt{dt} (such as \texttt{Basis.option}) that has one non-value-carrying constructor \texttt{NC} and one value-carrying constructor \texttt{C} gets special treatment. Where \texttt{T} is the type of \texttt{C}'s argument, and where we represent \texttt{T} as \texttt{t} in C, we represent \texttt{NC} with \texttt{NULL}. The representation of \texttt{C} depends on whether we're sure that we don't need to use \texttt{NULL} to represent \texttt{t} values; this condition holds only for strings and complex datatypes. For such types, \texttt{C v} is represented with the C encoding of \texttt{v}, such that the translation of \texttt{dt} is \texttt{t}. For other types, \texttt{C v} is represented with a pointer to the C encoding of v, such that the translation of \texttt{dt} is \texttt{t*}.
adam@1686 2405 \item Ur/Web involves many types of program syntax, such as for HTML and SQL code. All of these types are implemented with normal C strings, and you may take advantage of that encoding to manipulate code as strings in C FFI code. Be mindful that, in writing such code, it is your responsibility to maintain the appropriate code invariants, or you may reintroduce the code injection vulnerabilities that Ur/Web rules out. The most convenient way to extend Ur/Web with functions that, e.g., use natively unsupported HTML tags is to generate the HTML code with the FFI.
adamc@897 2406 \end{itemize}
adamc@897 2407
adam@1881 2408 The C FFI version of a Ur function with type \texttt{T1 -> ... -> TN -> R} or \texttt{T1 -> ... -> TN -> transaction R} has a C prototype like \texttt{R uw\_Module\_ident(uw\_context, T1, ..., TN)}. Only functions with types of the second form may have side effects. \texttt{uw\_context} is the type of state that persists across handling a client request. Many functions that operate on contexts are prototyped in \texttt{include/urweb/urweb\_cpp.h}. Most should only be used internally by the compiler. A few are useful in general FFI implementation:
adamc@897 2409 \begin{itemize}
adamc@897 2410 \item \begin{verbatim}
adamc@897 2411 void uw_error(uw_context, failure_kind, const char *fmt, ...);
adamc@897 2412 \end{verbatim}
adamc@897 2413 Abort the current request processing, giving a \texttt{printf}-style format string and arguments for generating an error message. The \texttt{failure\_kind} argument can be \texttt{FATAL}, to abort the whole execution; \texttt{BOUNDED\_RETRY}, to try processing the request again from the beginning, but failing if this happens too many times; or \texttt{UNLIMITED\_RETRY}, to repeat processing, with no cap on how many times this can recur.
adamc@897 2414
adam@1329 2415 All pointers to the context-local heap (see description below of \texttt{uw\_malloc()}) become invalid at the start and end of any execution of a main entry point function of an application. For example, if the request handler is restarted because of a \texttt{uw\_error()} call with \texttt{BOUNDED\_RETRY} or for any other reason, it is unsafe to access any local heap pointers that may have been stashed somewhere beforehand.
adam@1329 2416
adamc@897 2417 \item \begin{verbatim}
adam@1469 2418 void uw_set_error_message(uw_context, const char *fmt, ...);
adam@1469 2419 \end{verbatim}
adam@1469 2420 This simpler form of \texttt{uw\_error()} saves an error message without immediately aborting execution.
adam@1469 2421
adam@1469 2422 \item \begin{verbatim}
adamc@897 2423 void uw_push_cleanup(uw_context, void (*func)(void *), void *arg);
adamc@897 2424 void uw_pop_cleanup(uw_context);
adamc@897 2425 \end{verbatim}
adam@1329 2426 Manipulate a stack of actions that should be taken if any kind of error condition arises. Calling the ``pop'' function both removes an action from the stack and executes it. It is a bug to let a page request handler finish successfully with unpopped cleanup actions.
adam@1329 2427
adam@1329 2428 Pending cleanup actions aren't intended to have any complex relationship amongst themselves, so, upon request handler abort, pending actions are executed in first-in-first-out order.
adamc@897 2429
adamc@897 2430 \item \begin{verbatim}
adamc@897 2431 void *uw_malloc(uw_context, size_t);
adamc@897 2432 \end{verbatim}
adam@1329 2433 A version of \texttt{malloc()} that allocates memory inside a context's heap, which is managed with region allocation. Thus, there is no \texttt{uw\_free()}, but you need to be careful not to keep ad-hoc C pointers to this area of memory. In general, \texttt{uw\_malloc()}ed memory should only be used in ways compatible with the computation model of pure Ur. This means it is fine to allocate and return a value that could just as well have been built with core Ur code. In contrast, it is almost never safe to store \texttt{uw\_malloc()}ed pointers in global variables, including when the storage happens implicitly by registering a callback that would take the pointer as an argument.
adam@1329 2434
adam@1329 2435 For performance and correctness reasons, it is usually preferable to use \texttt{uw\_malloc()} instead of \texttt{malloc()}. The former manipulates a local heap that can be kept allocated across page requests, while the latter uses global data structures that may face contention during concurrent execution. However, we emphasize again that \texttt{uw\_malloc()} should never be used to implement some logic that couldn't be implemented trivially by a constant-valued expression in Ur.
adamc@897 2436
adamc@897 2437 \item \begin{verbatim}
adamc@897 2438 typedef void (*uw_callback)(void *);
adam@1328 2439 typedef void (*uw_callback_with_retry)(void *, int will_retry);
adamc@897 2440 void uw_register_transactional(uw_context, void *data, uw_callback commit,
adam@1328 2441 uw_callback rollback, uw_callback_with_retry free);
adamc@897 2442 \end{verbatim}
adam@1328 2443 All side effects in Ur/Web programs need to be compatible with transactions, such that any set of actions can be undone at any time. Thus, you should not perform actions with non-local side effects directly; instead, register handlers to be called when the current transaction is committed or rolled back. The arguments here give an arbitary piece of data to be passed to callbacks, a function to call on commit, a function to call on rollback, and a function to call afterward in either case to clean up any allocated resources. A rollback handler may be called after the associated commit handler has already been called, if some later part of the commit process fails. A free handler is told whether the runtime system expects to retry the current page request after rollback finishes.
adamc@897 2444
adamc@1085 2445 Any of the callbacks may be \texttt{NULL}. To accommodate some stubbornly non-transactional real-world actions like sending an e-mail message, Ur/Web treats \texttt{NULL} \texttt{rollback} callbacks specially. When a transaction commits, all \texttt{commit} actions that have non-\texttt{NULL} rollback actions are tried before any \texttt{commit} actions that have \texttt{NULL} rollback actions. Thus, if a single execution uses only one non-transactional action, and if that action never fails partway through its execution while still causing an observable side effect, then Ur/Web can maintain the transactional abstraction.
adamc@1085 2446
adam@1329 2447 When a request handler ends with multiple pending transactional actions, their handlers are run in a first-in-last-out stack-like order, wherever the order would otherwise be ambiguous.
adam@1329 2448
adam@1329 2449 It is not safe for any of these handlers to access a context-local heap through a pointer returned previously by \texttt{uw\_malloc()}, nor should any new calls to that function be made. Think of the context-local heap as meant for use by the Ur/Web code itself, while transactional handlers execute after the Ur/Web code has finished.
adam@1329 2450
adam@1469 2451 A handler may signal an error by calling \texttt{uw\_set\_error\_message()}, but it is not safe to call \texttt{uw\_error()} from a handler. Signaling an error in a commit handler will cause the runtime system to switch to aborting the transaction, immediately after the current commit handler returns.
adam@1469 2452
adamc@1085 2453 \item \begin{verbatim}
adamc@1085 2454 void *uw_get_global(uw_context, char *name);
adamc@1085 2455 void uw_set_global(uw_context, char *name, void *data, uw_callback free);
adamc@1085 2456 \end{verbatim}
adam@1329 2457 Different FFI-based extensions may want to associate their own pieces of data with contexts. The global interface provides a way of doing that, where each extension must come up with its own unique key. The \texttt{free} argument to \texttt{uw\_set\_global()} explains how to deallocate the saved data. It is never safe to store \texttt{uw\_malloc()}ed pointers in global variable slots.
adamc@1085 2458
adamc@897 2459 \end{itemize}
adamc@897 2460
adamc@897 2461 \subsection{Writing JavaScript FFI Code}
adamc@897 2462
adamc@897 2463 JavaScript is dynamically typed, so Ur/Web type definitions imply no JavaScript code. The JavaScript identifier for each FFI function is set with the \texttt{jsFunc} directive. Each identifier can be defined in any JavaScript file that you ask to include with the \texttt{script} directive.
adamc@897 2464
adamc@897 2465 In contrast to C FFI code, JavaScript FFI functions take no extra context argument. Their argument lists are as you would expect from their Ur types. Only functions whose ranges take the form \texttt{transaction T} should have side effects; the JavaScript ``return type'' of such a function is \texttt{T}. Here are the conventions for representing Ur values in JavaScript.
adamc@897 2466
adamc@897 2467 \begin{itemize}
adamc@897 2468 \item Integers, floats, strings, characters, and booleans are represented in the usual JavaScript way.
adam@1644 2469 \item Ur functions are represented in an unspecified way. This means that you should not rely on any details of function representation. Named FFI functions are represented as JavaScript functions with as many arguments as their Ur types specify. To call a non-FFI function \texttt{f} on argument \texttt{x}, run \texttt{execF(f, x)}. To lift a normal JavaScript function \cd{f} into an Ur/Web JavaScript function, run \cd{flift(f)}.
adamc@897 2470 \item An Ur record is represented with a JavaScript record, where Ur field name \texttt{N} translates to JavaScript field name \texttt{\_N}. An exception to this rule is that the empty record is encoded as \texttt{null}.
adamc@897 2471 \item \texttt{option}-like types receive special handling similar to their handling in C. The ``\texttt{None}'' constructor is \texttt{null}, and a use of the ``\texttt{Some}'' constructor on a value \texttt{v} is either \texttt{v}, if the underlying type doesn't need to use \texttt{null}; or \texttt{\{v:v\}} otherwise.
adamc@985 2472 \item Any other datatypes represent a non-value-carrying constructor \texttt{C} as \texttt{"C"} and an application of a constructor \texttt{C} to value \texttt{v} as \texttt{\{n:"C", v:v\}}. This rule only applies to datatypes defined in FFI module signatures; the compiler is free to optimize the representations of other, non-\texttt{option}-like datatypes in arbitrary ways.
adam@1686 2473 \item As in the C FFI, all abstract types of program syntax are implemented with strings in JavaScript.
adam@1844 2474 \item A value of Ur type \texttt{transaction t} is represented in the same way as for \texttt{unit -> t}.
adamc@897 2475 \end{itemize}
adamc@897 2476
adam@1644 2477 It is possible to write JavaScript FFI code that interacts with the functional-reactive structure of a document. Here is a quick summary of some of the simpler functions to use; descriptions of fancier stuff may be added later on request (and such stuff should be considered ``undocumented features'' until then).
adam@1644 2478
adam@1644 2479 \begin{itemize}
adam@1644 2480 \item Sources should be treated as an abstract type, manipulated via:
adam@1644 2481 \begin{itemize}
adam@1644 2482 \item \cd{sc(v)}, to create a source initialized to \cd{v}
adam@1644 2483 \item \cd{sg(s)}, to retrieve the current value of source \cd{s}
adam@1644 2484 \item \cd{sv(s, v)}, to set source \cd{s} to value \cd{v}
adam@1644 2485 \end{itemize}
adam@1644 2486
adam@1644 2487 \item Signals should be treated as an abstract type, manipulated via:
adam@1644 2488 \begin{itemize}
adam@1644 2489 \item \cd{sr(v)} and \cd{sb(s, f)}, the ``return'' and ``bind'' monad operators, respectively
adam@1644 2490 \item \cd{ss(s)}, to produce the signal corresponding to source \cd{s}
adam@1644 2491 \item \cd{scur(s)}, to get the current value of signal \cd{s}
adam@1644 2492 \end{itemize}
adam@1644 2493
adam@1644 2494 \item The behavior of the \cd{<dyn>} pseudo-tag may be mimicked by following the right convention in a piece of HTML source code with a type like $\mt{xbody}$. Such a piece of source code may be encoded with a JavaScript string. To insert a dynamic section, include a \cd{<script>} tag whose content is just a call \cd{dyn(pnode, s)}. The argument \cd{pnode} specifies what the relevant enclosing parent tag is. Use value \cd{"tr"} when the immediate parent is \cd{<tr>}, use \cd{"table"} when the immediate parent is \cd{<table>}, and use \cd{"span"} otherwise. The argument \cd{s} is a string-valued signal giving the HTML code to be inserted at this point. As with the usual \cd{<dyn>} tag, that HTML subtree is automatically updated as the value of \cd{s} changes.
adam@1644 2495
adam@1702 2496 \item There is only one supported method of taking HTML values generated in Ur/Web code and adding them to the DOM in FFI JavaScript code: call \cd{setInnerHTML(node, html)} to add HTML content \cd{html} within DOM node \cd{node}. Merely running \cd{node.innerHTML = html} is not guaranteed to get the job done, though programmers familiar with JavaScript will probably find it useful to think of \cd{setInnerHTML} as having this effect. The unusual idiom is required because Ur/Web uses a nonstandard representation of HTML, to support infinite nesting of code that may generate code that may generate code that.... The \cd{node} value must already be in the DOM tree at the point when \cd{setInnerHTML} is called, because some plumbing must be set up to interact sensibly with \cd{<dyn>} tags.
adam@1702 2497
adam@1644 2498 \item It is possible to use the more standard ``IDs and mutation'' style of JavaScript coding, though that style is unidiomatic for Ur/Web and should be avoided wherever possible. Recall the abstract type $\mt{id}$ and its constructor $\mt{fresh}$, which can be used to generate new unique IDs in Ur/Web code. Values of this type are represented as strings in JavaScript, and a function \cd{fresh()} is available to generate new unique IDs. Application-specific ID generation schemes may cause bad interactions with Ur/Web code that also generates IDs, so the recommended approach is to produce IDs only via calls to \cd{fresh()}. FFI code shouldn't depend on the ID generation scheme (on either server side or client side), but it is safe to include these IDs in tag attributes (in either server-side or client-side code) and manipulate the associated DOM nodes in the standard way (in client-side code). Be forewarned that this kind of imperative DOM manipulation may confuse the Ur/Web runtime system and interfere with proper behavior of tags like \cd{<dyn>}!
adam@1644 2499 \end{itemize}
adamc@897 2500
adam@1833 2501 \subsection{Introducing New HTML Tags}
adam@1833 2502
adam@1833 2503 FFI modules may introduce new tags as values with $\mt{Basis.tag}$ types. See \texttt{basis.urs} for examples of how tags are declared. The identifier of a tag value is used as its rendering in HTML. The Ur/Web syntax sugar for XML literals desugars each use of a tag into a reference to an identifier with the same name. There is no need to provide implementations (i.e., in C or JavaScript code) for such identifiers.
adam@1833 2504
adam@1833 2505 The onus is on the coder of a new tag's interface to think about consequences for code injection attacks, messing with the DOM in ways that may break Ur/Web reactive programming, etc.
adam@1833 2506
adamc@897 2507
adamc@552 2508 \section{Compiler Phases}
adamc@552 2509
adamc@552 2510 The Ur/Web compiler is unconventional in that it relies on a kind of \emph{heuristic compilation}. Not all valid programs will compile successfully. Informally, programs fail to compile when they are ``too higher order.'' Compiler phases do their best to eliminate different kinds of higher order-ness, but some programs just won't compile. This is a trade-off for producing very efficient executables. Compiled Ur/Web programs use native C representations and require no garbage collection.
adamc@552 2511
adamc@552 2512 In this section, we step through the main phases of compilation, noting what consequences each phase has for effective programming.
adamc@552 2513
adamc@552 2514 \subsection{Parse}
adamc@552 2515
adamc@552 2516 The compiler reads a \texttt{.urp} file, figures out which \texttt{.urs} and \texttt{.ur} files it references, and combines them all into what is conceptually a single sequence of declarations in the core language of Section \ref{core}.
adamc@552 2517
adamc@552 2518 \subsection{Elaborate}
adamc@552 2519
adamc@552 2520 This is where type inference takes place, translating programs into an explicit form with no more wildcards. This phase is the most likely source of compiler error messages.
adamc@552 2521
adam@1378 2522 Those crawling through the compiler source will also want to be aware of another compiler phase, Explify, that occurs immediately afterward. This phase just translates from an AST language that includes unification variables to a very similar language that doesn't; all variables should have been determined by the end of Elaborate, anyway. The new AST language also drops some features that are used only for static checking and that have no influence on runtime behavior, like disjointness constraints.
adam@1378 2523
adamc@552 2524 \subsection{Unnest}
adamc@552 2525
adamc@552 2526 Named local function definitions are moved to the top level, to avoid the need to generate closures.
adamc@552 2527
adamc@552 2528 \subsection{Corify}
adamc@552 2529
adamc@552 2530 Module system features are compiled away, through inlining of functor definitions at application sites. Afterward, most abstraction boundaries are broken, facilitating optimization.
adamc@552 2531
adamc@552 2532 \subsection{Especialize}
adamc@552 2533
adam@1356 2534 Functions are specialized to particular argument patterns. This is an important trick for avoiding the need to maintain any closures at runtime. Currently, specialization only happens for prefixes of a function's full list of parameters, so you may need to take care to put arguments of function types before other arguments. The optimizer will not be effective enough if you use arguments that mix functions and values that must be calculated at run-time. For instance, a tuple of a function and an integer counter would not lead to successful code generation; these should be split into separate arguments via currying.
adamc@552 2535
adamc@552 2536 \subsection{Untangle}
adamc@552 2537
adam@1797 2538 Remove unnecessary mutual recursion, splitting recursive groups into strongly connected components.
adamc@552 2539
adamc@552 2540 \subsection{Shake}
adamc@552 2541
adamc@552 2542 Remove all definitions not needed to run the page handlers that are visible in the signature of the last module listed in the \texttt{.urp} file.
adamc@552 2543
adamc@661 2544 \subsection{Rpcify}
adamc@661 2545
adamc@661 2546 Pieces of code are determined to be client-side, server-side, neither, or both, by figuring out which standard library functions might be needed to execute them. Calls to server-side functions (e.g., $\mt{query}$) within mixed client-server code are identified and replaced with explicit remote calls. Some mixed functions may be converted to continuation-passing style to facilitate this transformation.
adamc@661 2547
adamc@661 2548 \subsection{Untangle, Shake}
adamc@661 2549
adamc@661 2550 Repeat these simplifications.
adamc@661 2551
adamc@553 2552 \subsection{\label{tag}Tag}
adamc@552 2553
adamc@552 2554 Assign a URL name to each link and form action. It is important that these links and actions are written as applications of named functions, because such names are used to generate URL patterns. A URL pattern has a name built from the full module path of the named function, followed by the function name, with all pieces separated by slashes. The path of a functor application is based on the name given to the result, rather than the path of the functor itself.
adamc@552 2555
adamc@552 2556 \subsection{Reduce}
adamc@552 2557
adamc@552 2558 Apply definitional equality rules to simplify the program as much as possible. This effectively includes inlining of every non-recursive definition.
adamc@552 2559
adamc@552 2560 \subsection{Unpoly}
adamc@552 2561
adamc@552 2562 This phase specializes polymorphic functions to the specific arguments passed to them in the program. If the program contains real polymorphic recursion, Unpoly will be insufficient to avoid later error messages about too much polymorphism.
adamc@552 2563
adamc@552 2564 \subsection{Specialize}
adamc@552 2565
adamc@558 2566 Replace uses of parameterized datatypes with versions specialized to specific parameters. As for Unpoly, this phase will not be effective enough in the presence of polymorphic recursion or other fancy uses of impredicative polymorphism.
adamc@552 2567
adamc@552 2568 \subsection{Shake}
adamc@552 2569
adamc@558 2570 Here the compiler repeats the earlier Shake phase.
adamc@552 2571
adamc@552 2572 \subsection{Monoize}
adamc@552 2573
adamc@552 2574 Programs are translated to a new intermediate language without polymorphism or non-$\mt{Type}$ constructors. Error messages may pop up here if earlier phases failed to remove such features.
adamc@552 2575
adamc@552 2576 This is the stage at which concrete names are generated for cookies, tables, and sequences. They are named following the same convention as for links and actions, based on module path information saved from earlier stages. Table and sequence names separate path elements with underscores instead of slashes, and they are prefixed by \texttt{uw\_}.
adamc@664 2577
adamc@552 2578 \subsection{MonoOpt}
adamc@552 2579
adamc@552 2580 Simple algebraic laws are applied to simplify the program, focusing especially on efficient imperative generation of HTML pages.
adamc@552 2581
adamc@552 2582 \subsection{MonoUntangle}
adamc@552 2583
adamc@552 2584 Unnecessary mutual recursion is broken up again.
adamc@552 2585
adamc@552 2586 \subsection{MonoReduce}
adamc@552 2587
adamc@552 2588 Equivalents of the definitional equality rules are applied to simplify programs, with inlining again playing a major role.
adamc@552 2589
adamc@552 2590 \subsection{MonoShake, MonoOpt}
adamc@552 2591
adamc@552 2592 Unneeded declarations are removed, and basic optimizations are repeated.
adamc@552 2593
adamc@552 2594 \subsection{Fuse}
adamc@552 2595
adamc@552 2596 The compiler tries to simplify calls to recursive functions whose results are immediately written as page output. The write action is pushed inside the function definitions to avoid allocation of intermediate results.
adamc@552 2597
adamc@552 2598 \subsection{MonoUntangle, MonoShake}
adamc@552 2599
adamc@552 2600 Fuse often creates more opportunities to remove spurious mutual recursion.
adamc@552 2601
adamc@552 2602 \subsection{Pathcheck}
adamc@552 2603
adamc@552 2604 The compiler checks that no link or action name has been used more than once.
adamc@552 2605
adamc@552 2606 \subsection{Cjrize}
adamc@552 2607
adamc@552 2608 The program is translated to what is more or less a subset of C. If any use of functions as data remains at this point, the compiler will complain.
adamc@552 2609
adamc@552 2610 \subsection{C Compilation and Linking}
adamc@552 2611
adam@1523 2612 The output of the last phase is pretty-printed as C source code and passed to the C compiler.
adamc@552 2613
adamc@552 2614
as@1564 2615 \end{document}