annotate doc/manual.tex @ 1642:c3627f317bfd

Refactor HTML contexts to prevent some illegal nestings (that can crash the JavaScript runtime system)
author Adam Chlipala <adam@chlipala.net>
date Tue, 20 Dec 2011 21:06:25 -0500
parents 68429cfce8db
children b0720700c36e 75cf4a68f6c9
rev   line source
adamc@524 1 \documentclass{article}
adamc@554 2 \usepackage{fullpage,amsmath,amssymb,proof,url}
rmbruijn@1568 3 \usepackage[T1]{fontenc}
adamc@524 4 \newcommand{\cd}[1]{\texttt{#1}}
adamc@524 5 \newcommand{\mt}[1]{\mathsf{#1}}
adamc@524 6
adamc@524 7 \newcommand{\rc}{+ \hspace{-.075in} + \;}
adamc@527 8 \newcommand{\rcut}{\; \texttt{--} \;}
adamc@527 9 \newcommand{\rcutM}{\; \texttt{---} \;}
adamc@524 10
adamc@524 11 \begin{document}
adamc@524 12
adamc@524 13 \title{The Ur/Web Manual}
adamc@524 14 \author{Adam Chlipala}
adamc@524 15
adamc@524 16 \maketitle
adamc@524 17
adamc@540 18 \tableofcontents
adamc@540 19
adamc@554 20
adamc@554 21 \section{Introduction}
adamc@554 22
adamc@1160 23 \emph{Ur} is a programming language designed to introduce richer type system features into functional programming in the tradition of ML and Haskell. Ur is functional, pure, statically-typed, and strict. Ur supports a powerful kind of \emph{metaprogramming} based on \emph{type-level computation with type-level records}.
adamc@554 24
adamc@554 25 \emph{Ur/Web} is Ur plus a special standard library and associated rules for parsing and optimization. Ur/Web supports construction of dynamic web applications backed by SQL databases. The signature of the standard library is such that well-typed Ur/Web programs ``don't go wrong'' in a very broad sense. Not only do they not crash during particular page generations, but they also may not:
adamc@554 26
adamc@554 27 \begin{itemize}
adamc@554 28 \item Suffer from any kinds of code-injection attacks
adamc@554 29 \item Return invalid HTML
adamc@554 30 \item Contain dead intra-application links
adamc@554 31 \item Have mismatches between HTML forms and the fields expected by their handlers
adamc@652 32 \item Include client-side code that makes incorrect assumptions about the ``AJAX''-style services that the remote web server provides
adamc@554 33 \item Attempt invalid SQL queries
adamc@652 34 \item Use improper marshaling or unmarshaling in communication with SQL databases or between browsers and web servers
adamc@554 35 \end{itemize}
adamc@554 36
adamc@554 37 This type safety is just the foundation of the Ur/Web methodology. It is also possible to use metaprogramming to build significant application pieces by analysis of type structure. For instance, the demo includes an ML-style functor for building an admin interface for an arbitrary SQL table. The type system guarantees that the admin interface sub-application that comes out will always be free of the above-listed bugs, no matter which well-typed table description is given as input.
adamc@554 38
adamc@652 39 The Ur/Web compiler also produces very efficient object code that does not use garbage collection. These compiled programs will often be even more efficient than what most programmers would bother to write in C. The compiler also generates JavaScript versions of client-side code, with no need to write those parts of applications in a different language.
adamc@554 40
adamc@554 41 \medskip
adamc@554 42
adamc@554 43 The official web site for Ur is:
adamc@554 44 \begin{center}
adamc@554 45 \url{http://www.impredicative.com/ur/}
adamc@554 46 \end{center}
adamc@554 47
adamc@555 48
adamc@555 49 \section{Installation}
adamc@555 50
adamc@555 51 If you are lucky, then the following standard command sequence will suffice for installation, in a directory to which you have unpacked the latest distribution tarball.
adamc@555 52
adamc@555 53 \begin{verbatim}
adamc@555 54 ./configure
adamc@555 55 make
adamc@555 56 sudo make install
adamc@555 57 \end{verbatim}
adamc@555 58
adam@1523 59 Some other packages must be installed for the above to work. At a minimum, you need a standard UNIX shell, with standard UNIX tools like sed and GCC (or an alternate C compiler) in your execution path; MLton, the whole-program optimizing compiler for Standard ML; and the development files for the OpenSSL C library. As of this writing, in the ``testing'' version of Debian Linux, this command will install the more uncommon of these dependencies:
adamc@896 60 \begin{verbatim}
adam@1368 61 apt-get install mlton libssl-dev
adamc@896 62 \end{verbatim}
adamc@555 63
adamc@896 64 To build programs that access SQL databases, you also need one of these client libraries for supported backends.
adamc@555 65 \begin{verbatim}
adamc@896 66 apt-get install libpq-dev libmysqlclient15-dev libsqlite3-dev
adamc@555 67 \end{verbatim}
adamc@555 68
adamc@555 69 It is also possible to access the modules of the Ur/Web compiler interactively, within Standard ML of New Jersey. To install the prerequisites in Debian testing:
adamc@555 70 \begin{verbatim}
adamc@555 71 apt-get install smlnj libsmlnj-smlnj ml-yacc ml-lpt
adamc@555 72 \end{verbatim}
adamc@555 73
adamc@555 74 To begin an interactive session with the Ur compiler modules, run \texttt{make smlnj}, and then, from within an \texttt{sml} session, run \texttt{CM.make "src/urweb.cm";}. The \texttt{Compiler} module is the main entry point.
adamc@555 75
adamc@896 76 To run an SQL-backed application with a backend besides SQLite, you will probably want to install one of these servers.
adamc@555 77
adamc@555 78 \begin{verbatim}
adam@1400 79 apt-get install postgresql-8.4 mysql-server-5.1
adamc@555 80 \end{verbatim}
adamc@555 81
adamc@555 82 To use the Emacs mode, you must have a modern Emacs installed. We assume that you already know how to do this, if you're in the business of looking for an Emacs mode. The demo generation facility of the compiler will also call out to Emacs to syntax-highlight code, and that process depends on the \texttt{htmlize} module, which can be installed in Debian testing via:
adamc@555 83
adamc@555 84 \begin{verbatim}
adamc@555 85 apt-get install emacs-goodies-el
adamc@555 86 \end{verbatim}
adamc@555 87
adam@1441 88 If you don't want to install the Emacs mode, run \texttt{./configure} with the argument \texttt{--without-emacs}.
adam@1441 89
adam@1523 90 Even with the right packages installed, configuration and building might fail to work. After you run \texttt{./configure}, you will see the values of some named environment variables printed. You may need to adjust these values to get proper installation for your system. To change a value, store your preferred alternative in the corresponding UNIX environment variable, before running \texttt{./configure}. For instance, here is how to change the list of extra arguments that the Ur/Web compiler will pass to the C compiler and linker on every invocation. Some older GCC versions need this setting to mask a bug in function inlining.
adamc@555 91
adamc@555 92 \begin{verbatim}
adam@1523 93 CCARGS=-fno-inline ./configure
adamc@555 94 \end{verbatim}
adamc@555 95
adam@1523 96 Since the author is still getting a handle on the GNU Autotools that provide the build system, you may need to do some further work to get started, especially in environments with significant differences from Linux (where most testing is done). The variables \texttt{PGHEADER}, \texttt{MSHEADER}, and \texttt{SQHEADER} may be used to set the proper C header files to include for the development libraries of PostgreSQL, MySQL, and SQLite, respectively. To get libpq to link, one OS X user reported setting \texttt{CCARGS="-I/opt/local/include -L/opt/local/lib/postgresql84"}, after creating a symbolic link with \texttt{ln -s /opt/local/include/postgresql84 /opt/local/include/postgresql}.
adamc@555 97
adamc@555 98 The Emacs mode can be set to autoload by adding the following to your \texttt{.emacs} file.
adamc@555 99
adamc@555 100 \begin{verbatim}
adamc@555 101 (add-to-list 'load-path "/usr/local/share/emacs/site-lisp/urweb-mode")
adamc@555 102 (load "urweb-mode-startup")
adamc@555 103 \end{verbatim}
adamc@555 104
adamc@555 105 Change the path in the first line if you chose a different Emacs installation path during configuration.
adamc@555 106
adamc@555 107
adamc@556 108 \section{Command-Line Compiler}
adamc@556 109
adam@1604 110 \subsection{\label{cl}Project Files}
adamc@556 111
adamc@556 112 The basic inputs to the \texttt{urweb} compiler are project files, which have the extension \texttt{.urp}. Here is a sample \texttt{.urp} file.
adamc@556 113
adamc@556 114 \begin{verbatim}
adamc@556 115 database dbname=test
adamc@556 116 sql crud1.sql
adamc@556 117
adamc@556 118 crud
adamc@556 119 crud1
adamc@556 120 \end{verbatim}
adamc@556 121
adamc@556 122 The \texttt{database} line gives the database information string to pass to libpq. In this case, the string only says to connect to a local database named \texttt{test}.
adamc@556 123
adamc@556 124 The \texttt{sql} line asks for an SQL source file to be generated, giving the commands to run to create the tables and sequences that this application expects to find. After building this \texttt{.urp} file, the following commands could be used to initialize the database, assuming that the current UNIX user exists as a Postgres user with database creation privileges:
adamc@556 125
adamc@556 126 \begin{verbatim}
adamc@556 127 createdb test
adamc@556 128 psql -f crud1.sql test
adamc@556 129 \end{verbatim}
adamc@556 130
adam@1331 131 A blank line separates the named directives from a list of modules to include in the project. Any line may contain a shell-script-style comment, where any suffix of a line starting at a hash character \texttt{\#} is ignored.
adamc@556 132
adamc@556 133 For each entry \texttt{M} in the module list, the file \texttt{M.urs} is included in the project if it exists, and the file \texttt{M.ur} must exist and is always included.
adamc@556 134
adamc@783 135 Here is the complete list of directive forms. ``FFI'' stands for ``foreign function interface,'' Ur's facility for interaction between Ur programs and C and JavaScript libraries.
adamc@783 136 \begin{itemize}
adam@1465 137 \item \texttt{[allow|deny] [url|mime|requestHeader|responseHeader] PATTERN} registers a rule governing which URLs, MIME types, HTTP request headers, or HTTP response headers are allowed to appear explicitly in this application. The first such rule to match a name determines the verdict. If \texttt{PATTERN} ends in \texttt{*}, it is interpreted as a prefix rule. Otherwise, a string must match it exactly.
adam@1400 138 \item \texttt{alwaysInline PATH} requests that every call to the referenced function be inlined. Section \ref{structure} explains how functions are assigned path strings.
adam@1462 139 \item \texttt{benignEffectful Module.ident} registers an FFI function or transaction as having side effects. The optimizer avoids removing, moving, or duplicating calls to such functions. Every effectful FFI function must be registered, or the optimizer may make invalid transformations. This version of the \texttt{effectful} directive registers that this function only has side effects that remain local to a single page generation.
adamc@783 140 \item \texttt{clientOnly Module.ident} registers an FFI function or transaction that may only be run in client browsers.
adamc@783 141 \item \texttt{clientToServer Module.ident} adds FFI type \texttt{Module.ident} to the list of types that are OK to marshal from clients to servers. Values like XML trees and SQL queries are hard to marshal without introducing expensive validity checks, so it's easier to ensure that the server never trusts clients to send such values. The file \texttt{include/urweb.h} shows examples of the C support functions that are required of any type that may be marshalled. These include \texttt{attrify}, \texttt{urlify}, and \texttt{unurlify} functions.
adamc@783 142 \item \texttt{database DBSTRING} sets the string to pass to libpq to open a database connection.
adamc@783 143 \item \texttt{debug} saves some intermediate C files, which is mostly useful to help in debugging the compiler itself.
adamc@783 144 \item \texttt{effectful Module.ident} registers an FFI function or transaction as having side effects. The optimizer avoids removing, moving, or duplicating calls to such functions. Every effectful FFI function must be registered, or the optimizer may make invalid transformations.
adamc@783 145 \item \texttt{exe FILENAME} sets the filename to which to write the output executable. The default for file \texttt{P.urp} is \texttt{P.exe}.
adamc@783 146 \item \texttt{ffi FILENAME} reads the file \texttt{FILENAME.urs} to determine the interface to a new FFI module. The name of the module is calculated from \texttt{FILENAME} in the same way as for normal source files. See the files \texttt{include/urweb.h} and \texttt{src/c/urweb.c} for examples of C headers and implementations for FFI modules. In general, every type or value \texttt{Module.ident} becomes \texttt{uw\_Module\_ident} in C.
adamc@1099 147 \item \texttt{include FILENAME} adds \texttt{FILENAME} to the list of files to be \texttt{\#include}d in C sources. This is most useful for interfacing with new FFI modules.
adamc@783 148 \item \texttt{jsFunc Module.ident=name} gives the JavaScript name of an FFI value.
adamc@1089 149 \item \texttt{library FILENAME} parses \texttt{FILENAME.urp} and merges its contents with the rest of the current file's contents. If \texttt{FILENAME.urp} doesn't exist, the compiler also tries \texttt{FILENAME/lib.urp}.
adam@1309 150 \item \texttt{limit class num} sets a resource usage limit for generated applications. The limit \texttt{class} will be set to the non-negative integer \texttt{num}. The classes are:
adam@1309 151 \begin{itemize}
adam@1309 152 \item \texttt{cleanup}: maximum number of cleanup operations (e.g., entries recording the need to deallocate certain temporary objects) that may be active at once per request
adam@1309 153 \item \texttt{database}: maximum size of database files (currently only used by SQLite)
adam@1309 154 \item \texttt{deltas}: maximum number of messages sendable in a single request handler with \texttt{Basis.send}
adam@1309 155 \item \texttt{globals}: maximum number of global variables that FFI libraries may set in a single request context
adam@1309 156 \item \texttt{headers}: maximum size (in bytes) of per-request buffer used to hold HTTP headers for generated pages
adam@1309 157 \item \texttt{heap}: maximum size (in bytes) of per-request heap for dynamically-allocated data
adam@1309 158 \item \texttt{inputs}: maximum number of top-level form fields per request
adam@1309 159 \item \texttt{messages}: maximum size (in bytes) of per-request buffer used to hold a single outgoing message sent with \texttt{Basis.send}
adam@1309 160 \item \texttt{page}: maximum size (in bytes) of per-request buffer used to hold HTML content of generated pages
adam@1309 161 \item \texttt{script}: maximum size (in bytes) of per-request buffer used to hold JavaScript content of generated pages
adam@1309 162 \item \texttt{subinputs}: maximum number of form fields per request, excluding top-level fields
adam@1309 163 \item \texttt{time}: maximum running time of a single page request, in units of approximately 0.1 seconds
adam@1309 164 \item \texttt{transactionals}: maximum number of custom transactional actions (e.g., sending an e-mail) that may be run in a single page generation
adam@1309 165 \end{itemize}
adam@1523 166 \item \texttt{link FILENAME} adds \texttt{FILENAME} to the list of files to be passed to the linker at the end of compilation. This is most useful for importing extra libraries needed by new FFI modules.
adam@1332 167 \item \texttt{minHeap NUMBYTES} sets the initial size for thread-local heaps used in handling requests. These heaps grow automatically as needed (up to any maximum set with \texttt{limit}), but each regrow requires restarting the request handling process.
adam@1478 168 \item \texttt{noXsrfProtection URIPREFIX} turns off automatic cross-site request forgery protection for the page handler identified by the given URI prefix. This will avoid checking cryptographic signatures on cookies, which is generally a reasonable idea for some pages, such as login pages that are going to discard all old cookie values, anyway.
adam@1297 169 \item \texttt{onError Module.var} changes the handling of fatal application errors. Instead of displaying a default, ugly error 500 page, the error page will be generated by calling function \texttt{Module.var} on a piece of XML representing the error message. The error handler should have type $\mt{xbody} \to \mt{transaction} \; \mt{page}$. Note that the error handler \emph{cannot} be in the application's main module, since that would register it as explicitly callable via URLs.
adamc@852 170 \item \texttt{path NAME=VALUE} creates a mapping from \texttt{NAME} to \texttt{VALUE}. This mapping may be used at the beginnings of filesystem paths given to various other configuration directives. A path like \texttt{\$NAME/rest} is expanded to \texttt{VALUE/rest}. There is an initial mapping from the empty name (for paths like \texttt{\$/list}) to the directory where the Ur/Web standard library is installed. If you accept the default \texttt{configure} options, this directory is \texttt{/usr/local/lib/urweb/ur}.
adamc@783 171 \item \texttt{prefix PREFIX} sets the prefix included before every URI within the generated application. The default is \texttt{/}.
adamc@783 172 \item \texttt{profile} generates an executable that may be used with gprof.
adam@1300 173 \item \texttt{rewrite KIND FROM TO} gives a rule for rewriting canonical module paths. For instance, the canonical path of a page may be \texttt{Mod1.Mod2.mypage}, while you would rather the page were accessed via a URL containing only \texttt{page}. The directive \texttt{rewrite url Mod1/Mod2/mypage page} would accomplish that. The possible values of \texttt{KIND} determine which kinds of objects are affected. The kind \texttt{all} matches any object, and \texttt{url} matches page URLs. The kinds \texttt{table}, \texttt{sequence}, and \texttt{view} match those sorts of SQL entities, and \texttt{relation} matches any of those three. \texttt{cookie} matches HTTP cookies, and \texttt{style} matches CSS class names. If \texttt{FROM} ends in \texttt{/*}, it is interpreted as a prefix matching rule, and rewriting occurs by replacing only the appropriate prefix of a path with \texttt{TO}. The \texttt{TO} field may be left empty to express the idea of deleting a prefix. For instance, \texttt{rewrite url Main/*} will strip all \texttt{Main/} prefixes from URLs. While the actual external names of relations and styles have parts separated by underscores instead of slashes, all rewrite rules must be written in terms of slashes.
adamc@1183 174 \item \texttt{safeGet URI} asks to allow the page handler assigned this canonical URI prefix to cause persistent side effects, even if accessed via an HTTP \cd{GET} request.
adamc@783 175 \item \texttt{script URL} adds \texttt{URL} to the list of extra JavaScript files to be included at the beginning of any page that uses JavaScript. This is most useful for importing JavaScript versions of functions found in new FFI modules.
adamc@783 176 \item \texttt{serverOnly Module.ident} registers an FFI function or transaction that may only be run on the server.
adamc@1164 177 \item \texttt{sigfile PATH} sets a path where your application should look for a key to use in cryptographic signing. This is used to prevent cross-site request forgery attacks for any form handler that both reads a cookie and creates side effects. If the referenced file doesn't exist, an application will create it and read its saved data on future invocations. You can also initialize the file manually with any contents at least 16 bytes long; the first 16 bytes will be treated as the key.
adamc@783 178 \item \texttt{sql FILENAME} sets where to write an SQL file with the commands to create the expected database schema. The default is not to create such a file.
adam@1629 179 \item \texttt{timeFormat FMT} accepts a time format string, as processed by the POSIX C function \texttt{strftime()}. This controls the default rendering of $\mt{time}$ values, via the $\mt{show}$ instance for $\mt{time}$.
adamc@783 180 \item \texttt{timeout N} sets to \texttt{N} seconds the amount of time that the generated server will wait after the last contact from a client before determining that that client has exited the application. Clients that remain active will take the timeout setting into account in determining how often to ping the server, so it only makes sense to set a high timeout to cope with browser and network delays and failures. Higher timeouts can lead to more unnecessary client information taking up memory on the server. The timeout goes unused by any page that doesn't involve the \texttt{recv} function, since the server only needs to store per-client information for clients that receive asynchronous messages.
adamc@783 181 \end{itemize}
adamc@701 182
adamc@701 183
adamc@557 184 \subsection{Building an Application}
adamc@557 185
adamc@557 186 To compile project \texttt{P.urp}, simply run
adamc@557 187 \begin{verbatim}
adamc@557 188 urweb P
adamc@557 189 \end{verbatim}
adamc@1198 190 The output executable is a standalone web server. Run it with the command-line argument \texttt{-h} to see which options it takes. If the project file lists a database, the web server will attempt to connect to that database on startup. See Section \ref{structure} for an explanation of the URI mapping convention, which determines how each page of your application may be accessed via URLs.
adamc@557 191
adamc@557 192 To time how long the different compiler phases run, without generating an executable, run
adamc@557 193 \begin{verbatim}
adamc@557 194 urweb -timing P
adamc@557 195 \end{verbatim}
adamc@557 196
adamc@1086 197 To stop the compilation process after type-checking, run
adamc@1086 198 \begin{verbatim}
adamc@1086 199 urweb -tc P
adamc@1086 200 \end{verbatim}
adam@1530 201 It is often worthwhile to run \cd{urweb} in this mode, because later phases of compilation can take significantly longer than type-checking alone, and the type checker catches many errors that would traditionally be found through debugging a running application.
adamc@1086 202
adam@1531 203 A related option is \cd{-dumpTypes}, which, as long as parsing succeeds, outputs to stdout a summary of the kinds of all identifiers declared with \cd{con} and the types of all identifiers declared with \cd{val} or \cd{val rec}. This information is dumped even if there are errors during type inference. Compiler error messages go to stderr, not stdout, so it is easy to distinguish the two kinds of output programmatically.
adam@1531 204
adamc@1170 205 To output information relevant to CSS stylesheets (and not finish regular compilation), run
adamc@1170 206 \begin{verbatim}
adamc@1170 207 urweb -css P
adamc@1170 208 \end{verbatim}
adamc@1170 209 The first output line is a list of categories of CSS properties that would be worth setting on the document body. The remaining lines are space-separated pairs of CSS class names and categories of properties that would be worth setting for that class. The category codes are divided into two varieties. Codes that reveal properties of a tag or its (recursive) children are \cd{B} for block-level elements, \cd{C} for table captions, \cd{D} for table cells, \cd{L} for lists, and \cd{T} for tables. Codes that reveal properties of the precise tag that uses a class are \cd{b} for block-level elements, \cd{t} for tables, \cd{d} for table cells, \cd{-} for table rows, \cd{H} for the possibility to set a height, \cd{N} for non-replaced inline-level elements, \cd{R} for replaced inline elements, and \cd{W} for the possibility to set a width.
adamc@1170 210
adamc@896 211 Some other command-line parameters are accepted:
adamc@896 212 \begin{itemize}
adamc@896 213 \item \texttt{-db <DBSTRING>}: Set database connection information, using the format expected by Postgres's \texttt{PQconnectdb()}, which is \texttt{name1=value1 ... nameN=valueN}. The same format is also parsed and used to discover connection parameters for MySQL and SQLite. The only significant settings for MySQL are \texttt{host}, \texttt{hostaddr}, \texttt{port}, \texttt{dbname}, \texttt{user}, and \texttt{password}. The only significant setting for SQLite is \texttt{dbname}, which is interpreted as the filesystem path to the database. Additionally, when using SQLite, a database string may be just a file path.
adamc@896 214
adamc@896 215 \item \texttt{-dbms [postgres|mysql|sqlite]}: Sets the database backend to use.
adamc@896 216 \begin{itemize}
adamc@896 217 \item \texttt{postgres}: This is PostgreSQL, the default. Among the supported engines, Postgres best matches the design philosophy behind Ur, with a focus on consistent views of data, even in the face of much concurrency. Different database engines have different quirks of SQL syntax. Ur/Web tends to use Postgres idioms where there are choices to be made, though the compiler translates SQL as needed to support other backends.
adamc@896 218
adamc@896 219 A command sequence like this can initialize a Postgres database, using a file \texttt{app.sql} generated by the compiler:
adamc@896 220 \begin{verbatim}
adamc@896 221 createdb app
adamc@896 222 psql -f app.sql app
adamc@896 223 \end{verbatim}
adamc@896 224
adamc@896 225 \item \texttt{mysql}: This is MySQL, another popular relational database engine that uses persistent server processes. Ur/Web needs transactions to function properly. Many installations of MySQL use non-transactional storage engines by default. Ur/Web generates table definitions that try to use MySQL's InnoDB engine, which supports transactions. You can edit the first line of a generated \texttt{.sql} file to change this behavior, but it really is true that Ur/Web applications will exhibit bizarre behavior if you choose an engine that ignores transaction commands.
adamc@896 226
adamc@896 227 A command sequence like this can initialize a MySQL database:
adamc@896 228 \begin{verbatim}
adamc@896 229 echo "CREATE DATABASE app" | mysql
adamc@896 230 mysql -D app <app.sql
adamc@896 231 \end{verbatim}
adamc@896 232
adamc@896 233 \item \texttt{sqlite}: This is SQLite, a simple filesystem-based transactional database engine. With this backend, Ur/Web applications can run without any additional server processes. The other engines are generally preferred for large-workload performance and full admin feature sets, while SQLite is popular for its low resource footprint and ease of set-up.
adamc@896 234
adamc@896 235 A command like this can initialize an SQLite database:
adamc@896 236 \begin{verbatim}
adamc@896 237 sqlite3 path/to/database/file <app.sql
adamc@896 238 \end{verbatim}
adamc@896 239 \end{itemize}
adamc@896 240
adam@1309 241 \item \texttt{-limit class num}: Equivalent to the \texttt{limit} directive from \texttt{.urp} files
adam@1309 242
adamc@896 243 \item \texttt{-output FILENAME}: Set where the application executable is written.
adamc@896 244
adamc@1127 245 \item \texttt{-path NAME VALUE}: Set the value of path variable \texttt{\$NAME} to \texttt{VALUE}, for use in \texttt{.urp} files.
adamc@1127 246
adam@1335 247 \item \texttt{-prefix PREFIX}: Equivalent to the \texttt{prefix} directive from \texttt{.urp} files
adam@1335 248
adamc@896 249 \item \texttt{-protocol [http|cgi|fastcgi]}: Set the protocol that the generated application speaks.
adamc@896 250 \begin{itemize}
adamc@896 251 \item \texttt{http}: This is the default. It is for building standalone web servers that can be accessed by web browsers directly.
adamc@896 252
adamc@896 253 \item \texttt{cgi}: This is the classic protocol that web servers use to generate dynamic content by spawning new processes. While Ur/Web programs may in general use message-passing with the \texttt{send} and \texttt{recv} functions, that functionality is not yet supported in CGI, since CGI needs a fresh process for each request, and message-passing needs to use persistent sockets to deliver messages.
adamc@896 254
adamc@896 255 Since Ur/Web treats paths in an unusual way, a configuration line like this one can be used to configure an application that was built with URL prefix \texttt{/Hello}:
adamc@896 256 \begin{verbatim}
adamc@896 257 ScriptAlias /Hello /path/to/hello.exe
adamc@896 258 \end{verbatim}
adamc@896 259
adamc@1163 260 A different method can be used for, e.g., a shared host, where you can only configure Apache via \texttt{.htaccess} files. Drop the generated executable into your web space and mark it as CGI somehow. For instance, if the script ends in \texttt{.exe}, you might put this in \texttt{.htaccess} in the directory containing the script:
adamc@1163 261 \begin{verbatim}
adamc@1163 262 Options +ExecCGI
adamc@1163 263 AddHandler cgi-script .exe
adamc@1163 264 \end{verbatim}
adamc@1163 265
adamc@1163 266 Additionally, make sure that Ur/Web knows the proper URI prefix for your script. For instance, if the script is accessed via \texttt{http://somewhere/dir/script.exe}, then include this line in your \texttt{.urp} file:
adamc@1163 267 \begin{verbatim}
adamc@1163 268 prefix /dir/script.exe/
adamc@1163 269 \end{verbatim}
adamc@1163 270
adamc@1163 271 To access the \texttt{foo} function in the \texttt{Bar} module, you would then hit \texttt{http://somewhere/dir/script.exe/Bar/foo}.
adamc@1163 272
adamc@1164 273 If your application contains form handlers that read cookies before causing side effects, then you will need to use the \texttt{sigfile} \texttt{.urp} directive, too.
adamc@1164 274
adamc@896 275 \item \texttt{fastcgi}: This is a newer protocol inspired by CGI, wherein web servers can start and reuse persistent external processes to generate dynamic content. Ur/Web doesn't implement the whole protocol, but Ur/Web's support has been tested to work with the \texttt{mod\_fastcgi}s of Apache and lighttpd.
adamc@896 276
adamc@896 277 To configure a FastCGI program with Apache, one could combine the above \texttt{ScriptAlias} line with a line like this:
adamc@896 278 \begin{verbatim}
adamc@896 279 FastCgiServer /path/to/hello.exe -idle-timeout 99999
adamc@896 280 \end{verbatim}
adamc@896 281 The idle timeout is only important for applications that use message-passing. Client connections may go long periods without receiving messages, and Apache tries to be helpful and garbage collect them in such cases. To prevent that behavior, we specify how long a connection must be idle to be collected.
adamc@896 282
adamc@896 283 Here is some lighttpd configuration for the same application.
adamc@896 284 \begin{verbatim}
adamc@896 285 fastcgi.server = (
adamc@896 286 "/Hello/" =>
adamc@896 287 (( "bin-path" => "/path/to/hello.exe",
adamc@896 288 "socket" => "/tmp/hello",
adamc@896 289 "check-local" => "disable",
adamc@896 290 "docroot" => "/",
adamc@896 291 "max-procs" => "1"
adamc@896 292 ))
adamc@896 293 )
adamc@896 294 \end{verbatim}
adamc@896 295 The least obvious requirement is setting \texttt{max-procs} to 1, so that lighttpd doesn't try to multiplex requests across multiple external processes. This is required for message-passing applications, where a single database of client connections is maintained within a multi-threaded server process. Multiple processes may, however, be used safely with applications that don't use message-passing.
adamc@896 296
adamc@896 297 A FastCGI process reads the environment variable \texttt{URWEB\_NUM\_THREADS} to determine how many threads to spawn for handling client requests. The default is 1.
adam@1509 298
adam@1509 299 \item \texttt{static}: This protocol may be used to generate static web pages from Ur/Web code. The output executable expects a single command-line argument, giving the URI of a page to generate. For instance, this argument might be \cd{/main}, in which case a static HTTP response for that page will be written to stdout.
adamc@896 300 \end{itemize}
adamc@896 301
adamc@1127 302 \item \texttt{-root Name PATH}: Trigger an alternate module convention for all source files found in directory \texttt{PATH} or any of its subdirectories. Any file \texttt{PATH/foo.ur} defines a module \texttt{Name.Foo} instead of the usual \texttt{Foo}. Any file \texttt{PATH/subdir/foo.ur} defines a module \texttt{Name.Subdir.Foo}, and so on for arbitrary nesting of subdirectories.
adamc@1127 303
adamc@1164 304 \item \texttt{-sigfile PATH}: Same as the \texttt{sigfile} directive in \texttt{.urp} files
adamc@1164 305
adamc@896 306 \item \texttt{-sql FILENAME}: Set where a database set-up SQL script is written.
adamc@1095 307
adamc@1095 308 \item \texttt{-static}: Link the runtime system statically. The default is to link against dynamic libraries.
adamc@896 309 \end{itemize}
adamc@896 310
adam@1297 311 There is an additional convenience method for invoking \texttt{urweb}. If the main argument is \texttt{FOO}, and \texttt{FOO.ur} exists but \texttt{FOO.urp} doesn't, then the invocation is interpreted as if called on a \texttt{.urp} file containing \texttt{FOO} as its only main entry, with an additional \texttt{rewrite all FOO/*} directive.
adamc@556 312
adam@1509 313 \subsection{Tutorial Formatting}
adam@1509 314
adam@1509 315 The Ur/Web compiler also supports rendering of nice HTML tutorials from Ur source files, when invoked like \cd{urweb -tutorial DIR}. The directory \cd{DIR} is examined for files whose names end in \cd{.ur}. Every such file is translated into a \cd{.html} version.
adam@1509 316
adam@1509 317 These input files follow normal Ur syntax, with a few exceptions:
adam@1509 318 \begin{itemize}
adam@1509 319 \item The first line must be a comment like \cd{(* TITLE *)}, where \cd{TITLE} is a string of your choice that will be used as the title of the output page.
adam@1509 320 \item While most code in the output HTML will be formatted as a monospaced code listing, text in regular Ur comments is formatted as normal English text.
adam@1509 321 \item A comment like \cd{(* * HEADING *)} introduces a section heading, with text \cd{HEADING} of your choice.
adam@1509 322 \item To include both a rendering of an Ur expression and a pretty-printed version of its value, bracket the expression with \cd{(* begin eval *)} and \cd{(* end *)}. The result of expression evaluation is pretty-printed with \cd{show}, so the expression type must belong to that type class.
adam@1509 323 \item To include code that should not be shown in the tutorial (e.g., to add a \cd{show} instance to use with \cd{eval}), bracket the code with \cd{(* begin hide *)} and \cd{(* end *)}.
adam@1509 324 \end{itemize}
adam@1509 325
adam@1509 326 A word of warning: as for demo generation, tutorial generation calls Emacs to syntax-highlight Ur code.
adam@1509 327
adam@1522 328 \subsection{Run-Time Options}
adam@1522 329
adam@1522 330 Compiled applications consult a few environment variables to modify their behavior:
adam@1522 331
adam@1522 332 \begin{itemize}
adam@1522 333 \item \cd{URWEB\_NUM\_THREADS}: alternative to the \cd{-t} command-line argument (currently used only by FastCGI)
adam@1522 334 \item \cd{URWEB\_STACK\_SIZE}: size of per-thread stacks, in bytes
as@1564 335 \item \cd{URWEB\_PQ\_CON}: when using PostgreSQL, overrides the compiled-in connection string
adam@1522 336 \end{itemize}
adam@1522 337
adam@1509 338
adamc@529 339 \section{Ur Syntax}
adamc@529 340
adamc@784 341 In this section, we describe the syntax of Ur, deferring to a later section discussion of most of the syntax specific to SQL and XML. The sole exceptions are the declaration forms for relations, cookies, and styles.
adamc@524 342
adamc@524 343 \subsection{Lexical Conventions}
adamc@524 344
adamc@524 345 We give the Ur language definition in \LaTeX $\;$ math mode, since that is prettier than monospaced ASCII. The corresponding ASCII syntax can be read off directly. Here is the key for mapping math symbols to ASCII character sequences.
adamc@524 346
adamc@524 347 \begin{center}
adamc@524 348 \begin{tabular}{rl}
adamc@524 349 \textbf{\LaTeX} & \textbf{ASCII} \\
adamc@524 350 $\to$ & \cd{->} \\
adamc@652 351 $\longrightarrow$ & \cd{-->} \\
adamc@524 352 $\times$ & \cd{*} \\
adamc@524 353 $\lambda$ & \cd{fn} \\
adamc@524 354 $\Rightarrow$ & \cd{=>} \\
adamc@652 355 $\Longrightarrow$ & \cd{==>} \\
adamc@529 356 $\neq$ & \cd{<>} \\
adamc@529 357 $\leq$ & \cd{<=} \\
adamc@529 358 $\geq$ & \cd{>=} \\
adamc@524 359 \\
adamc@524 360 $x$ & Normal textual identifier, not beginning with an uppercase letter \\
adamc@525 361 $X$ & Normal textual identifier, beginning with an uppercase letter \\
adamc@524 362 \end{tabular}
adamc@524 363 \end{center}
adamc@524 364
adamc@525 365 We often write syntax like $e^*$ to indicate zero or more copies of $e$, $e^+$ to indicate one or more copies, and $e,^*$ and $e,^+$ to indicate multiple copies separated by commas. Another separator may be used in place of a comma. The $e$ term may be surrounded by parentheses to indicate grouping; those parentheses should not be included in the actual ASCII.
adamc@524 366
adamc@873 367 We write $\ell$ for literals of the primitive types, for the most part following C conventions. There are $\mt{int}$, $\mt{float}$, $\mt{char}$, and $\mt{string}$ literals. Character literals follow the SML convention instead of the C convention, written like \texttt{\#"a"} instead of \texttt{'a'}.
adamc@526 368
adamc@527 369 This version of the manual doesn't include operator precedences; see \texttt{src/urweb.grm} for that.
adamc@527 370
adam@1297 371 As in the ML language family, the syntax \texttt{(* ... *)} is used for (nestable) comments. Within XML literals, Ur/Web also supports the usual \texttt{<!-- ... -->} XML comments.
adam@1297 372
adamc@552 373 \subsection{\label{core}Core Syntax}
adamc@524 374
adamc@524 375 \emph{Kinds} classify types and other compile-time-only entities. Each kind in the grammar is listed with a description of the sort of data it classifies.
adamc@524 376 $$\begin{array}{rrcll}
adamc@524 377 \textrm{Kinds} & \kappa &::=& \mt{Type} & \textrm{proper types} \\
adamc@525 378 &&& \mt{Unit} & \textrm{the trivial constructor} \\
adamc@525 379 &&& \mt{Name} & \textrm{field names} \\
adamc@525 380 &&& \kappa \to \kappa & \textrm{type-level functions} \\
adamc@525 381 &&& \{\kappa\} & \textrm{type-level records} \\
adamc@525 382 &&& (\kappa\times^+) & \textrm{type-level tuples} \\
adamc@652 383 &&& X & \textrm{variable} \\
adam@1574 384 &&& X \longrightarrow \kappa & \textrm{kind-polymorphic type-level function} \\
adamc@529 385 &&& \_\_ & \textrm{wildcard} \\
adamc@525 386 &&& (\kappa) & \textrm{explicit precedence} \\
adamc@524 387 \end{array}$$
adamc@524 388
adamc@524 389 Ur supports several different notions of functions that take types as arguments. These arguments can be either implicit, causing them to be inferred at use sites; or explicit, forcing them to be specified manually at use sites. There is a common explicitness annotation convention applied at the definitions of and in the types of such functions.
adamc@524 390 $$\begin{array}{rrcll}
adamc@524 391 \textrm{Explicitness} & ? &::=& :: & \textrm{explicit} \\
adamc@558 392 &&& ::: & \textrm{implicit}
adamc@524 393 \end{array}$$
adamc@524 394
adamc@524 395 \emph{Constructors} are the main class of compile-time-only data. They include proper types and are classified by kinds.
adamc@524 396 $$\begin{array}{rrcll}
adamc@524 397 \textrm{Constructors} & c, \tau &::=& (c) :: \kappa & \textrm{kind annotation} \\
adamc@530 398 &&& \hat{x} & \textrm{constructor variable} \\
adamc@524 399 \\
adamc@525 400 &&& \tau \to \tau & \textrm{function type} \\
adamc@525 401 &&& x \; ? \; \kappa \to \tau & \textrm{polymorphic function type} \\
adamc@652 402 &&& X \longrightarrow \tau & \textrm{kind-polymorphic function type} \\
adamc@525 403 &&& \$ c & \textrm{record type} \\
adamc@524 404 \\
adamc@525 405 &&& c \; c & \textrm{type-level function application} \\
adamc@530 406 &&& \lambda x \; :: \; \kappa \Rightarrow c & \textrm{type-level function abstraction} \\
adamc@524 407 \\
adamc@652 408 &&& X \Longrightarrow c & \textrm{type-level kind-polymorphic function abstraction} \\
adamc@655 409 &&& c [\kappa] & \textrm{type-level kind-polymorphic function application} \\
adamc@652 410 \\
adamc@525 411 &&& () & \textrm{type-level unit} \\
adamc@525 412 &&& \#X & \textrm{field name} \\
adamc@524 413 \\
adamc@525 414 &&& [(c = c)^*] & \textrm{known-length type-level record} \\
adamc@525 415 &&& c \rc c & \textrm{type-level record concatenation} \\
adamc@652 416 &&& \mt{map} & \textrm{type-level record map} \\
adamc@524 417 \\
adamc@558 418 &&& (c,^+) & \textrm{type-level tuple} \\
adamc@525 419 &&& c.n & \textrm{type-level tuple projection ($n \in \mathbb N^+$)} \\
adamc@524 420 \\
adamc@652 421 &&& [c \sim c] \Rightarrow \tau & \textrm{guarded type} \\
adamc@524 422 \\
adamc@529 423 &&& \_ :: \kappa & \textrm{wildcard} \\
adamc@525 424 &&& (c) & \textrm{explicit precedence} \\
adamc@530 425 \\
adamc@530 426 \textrm{Qualified uncapitalized variables} & \hat{x} &::=& x & \textrm{not from a module} \\
adamc@530 427 &&& M.x & \textrm{projection from a module} \\
adamc@525 428 \end{array}$$
adamc@525 429
adam@1579 430 We include both abstraction and application for kind polymorphism, but applications are only inferred internally; they may not be written explicitly in source programs. Also, in the ``known-length type-level record'' form, in $c_1 = c_2$ terms, the parser currently only allows $c_1$ to be of the forms $X$ (as a shorthand for $\#X$) or $x$, or a natural number to stand for the corresponding field name (e.g., for tuples).
adamc@655 431
adamc@525 432 Modules of the module system are described by \emph{signatures}.
adamc@525 433 $$\begin{array}{rrcll}
adamc@525 434 \textrm{Signatures} & S &::=& \mt{sig} \; s^* \; \mt{end} & \textrm{constant} \\
adamc@525 435 &&& X & \textrm{variable} \\
adamc@525 436 &&& \mt{functor}(X : S) : S & \textrm{functor} \\
adamc@529 437 &&& S \; \mt{where} \; \mt{con} \; x = c & \textrm{concretizing an abstract constructor} \\
adamc@525 438 &&& M.X & \textrm{projection from a module} \\
adamc@525 439 \\
adamc@525 440 \textrm{Signature items} & s &::=& \mt{con} \; x :: \kappa & \textrm{abstract constructor} \\
adamc@525 441 &&& \mt{con} \; x :: \kappa = c & \textrm{concrete constructor} \\
adamc@528 442 &&& \mt{datatype} \; x \; x^* = dc\mid^+ & \textrm{algebraic datatype definition} \\
adamc@529 443 &&& \mt{datatype} \; x = \mt{datatype} \; M.x & \textrm{algebraic datatype import} \\
adamc@525 444 &&& \mt{val} \; x : \tau & \textrm{value} \\
adamc@525 445 &&& \mt{structure} \; X : S & \textrm{sub-module} \\
adamc@525 446 &&& \mt{signature} \; X = S & \textrm{sub-signature} \\
adamc@525 447 &&& \mt{include} \; S & \textrm{signature inclusion} \\
adamc@525 448 &&& \mt{constraint} \; c \sim c & \textrm{record disjointness constraint} \\
adamc@654 449 &&& \mt{class} \; x :: \kappa & \textrm{abstract constructor class} \\
adamc@654 450 &&& \mt{class} \; x :: \kappa = c & \textrm{concrete constructor class} \\
adamc@525 451 \\
adamc@525 452 \textrm{Datatype constructors} & dc &::=& X & \textrm{nullary constructor} \\
adamc@525 453 &&& X \; \mt{of} \; \tau & \textrm{unary constructor} \\
adamc@524 454 \end{array}$$
adamc@524 455
adamc@526 456 \emph{Patterns} are used to describe structural conditions on expressions, such that expressions may be tested against patterns, generating assignments to pattern variables if successful.
adamc@526 457 $$\begin{array}{rrcll}
adamc@526 458 \textrm{Patterns} & p &::=& \_ & \textrm{wildcard} \\
adamc@526 459 &&& x & \textrm{variable} \\
adamc@526 460 &&& \ell & \textrm{constant} \\
adamc@526 461 &&& \hat{X} & \textrm{nullary constructor} \\
adamc@526 462 &&& \hat{X} \; p & \textrm{unary constructor} \\
adamc@526 463 &&& \{(x = p,)^*\} & \textrm{rigid record pattern} \\
adamc@526 464 &&& \{(x = p,)^+, \ldots\} & \textrm{flexible record pattern} \\
adamc@852 465 &&& p : \tau & \textrm{type annotation} \\
adamc@527 466 &&& (p) & \textrm{explicit precedence} \\
adamc@526 467 \\
adamc@529 468 \textrm{Qualified capitalized variables} & \hat{X} &::=& X & \textrm{not from a module} \\
adamc@526 469 &&& M.X & \textrm{projection from a module} \\
adamc@526 470 \end{array}$$
adamc@526 471
adamc@527 472 \emph{Expressions} are the main run-time entities, corresponding to both ``expressions'' and ``statements'' in mainstream imperative languages.
adamc@527 473 $$\begin{array}{rrcll}
adamc@527 474 \textrm{Expressions} & e &::=& e : \tau & \textrm{type annotation} \\
adamc@529 475 &&& \hat{x} & \textrm{variable} \\
adamc@529 476 &&& \hat{X} & \textrm{datatype constructor} \\
adamc@527 477 &&& \ell & \textrm{constant} \\
adamc@527 478 \\
adamc@527 479 &&& e \; e & \textrm{function application} \\
adamc@527 480 &&& \lambda x : \tau \Rightarrow e & \textrm{function abstraction} \\
adamc@527 481 &&& e [c] & \textrm{polymorphic function application} \\
adamc@852 482 &&& \lambda [x \; ? \; \kappa] \Rightarrow e & \textrm{polymorphic function abstraction} \\
adamc@655 483 &&& e [\kappa] & \textrm{kind-polymorphic function application} \\
adamc@652 484 &&& X \Longrightarrow e & \textrm{kind-polymorphic function abstraction} \\
adamc@527 485 \\
adamc@527 486 &&& \{(c = e,)^*\} & \textrm{known-length record} \\
adamc@527 487 &&& e.c & \textrm{record field projection} \\
adamc@527 488 &&& e \rc e & \textrm{record concatenation} \\
adamc@527 489 &&& e \rcut c & \textrm{removal of a single record field} \\
adamc@527 490 &&& e \rcutM c & \textrm{removal of multiple record fields} \\
adamc@527 491 \\
adamc@527 492 &&& \mt{let} \; ed^* \; \mt{in} \; e \; \mt{end} & \textrm{local definitions} \\
adamc@527 493 \\
adamc@527 494 &&& \mt{case} \; e \; \mt{of} \; (p \Rightarrow e|)^+ & \textrm{pattern matching} \\
adamc@527 495 \\
adamc@654 496 &&& \lambda [c \sim c] \Rightarrow e & \textrm{guarded expression abstraction} \\
adamc@654 497 &&& e \; ! & \textrm{guarded expression application} \\
adamc@527 498 \\
adamc@527 499 &&& \_ & \textrm{wildcard} \\
adamc@527 500 &&& (e) & \textrm{explicit precedence} \\
adamc@527 501 \\
adamc@527 502 \textrm{Local declarations} & ed &::=& \cd{val} \; x : \tau = e & \textrm{non-recursive value} \\
adamc@527 503 &&& \cd{val} \; \cd{rec} \; (x : \tau = e \; \cd{and})^+ & \textrm{mutually-recursive values} \\
adamc@527 504 \end{array}$$
adamc@527 505
adamc@655 506 As with constructors, we include both abstraction and application for kind polymorphism, but applications are only inferred internally.
adamc@655 507
adamc@528 508 \emph{Declarations} primarily bring new symbols into context.
adamc@528 509 $$\begin{array}{rrcll}
adamc@528 510 \textrm{Declarations} & d &::=& \mt{con} \; x :: \kappa = c & \textrm{constructor synonym} \\
adamc@528 511 &&& \mt{datatype} \; x \; x^* = dc\mid^+ & \textrm{algebraic datatype definition} \\
adamc@529 512 &&& \mt{datatype} \; x = \mt{datatype} \; M.x & \textrm{algebraic datatype import} \\
adamc@528 513 &&& \mt{val} \; x : \tau = e & \textrm{value} \\
adamc@528 514 &&& \mt{val} \; \cd{rec} \; (x : \tau = e \; \mt{and})^+ & \textrm{mutually-recursive values} \\
adamc@528 515 &&& \mt{structure} \; X : S = M & \textrm{module definition} \\
adamc@528 516 &&& \mt{signature} \; X = S & \textrm{signature definition} \\
adamc@528 517 &&& \mt{open} \; M & \textrm{module inclusion} \\
adamc@528 518 &&& \mt{constraint} \; c \sim c & \textrm{record disjointness constraint} \\
adamc@528 519 &&& \mt{open} \; \mt{constraints} \; M & \textrm{inclusion of just the constraints from a module} \\
adamc@528 520 &&& \mt{table} \; x : c & \textrm{SQL table} \\
adam@1594 521 &&& \mt{view} \; x = e & \textrm{SQL view} \\
adamc@528 522 &&& \mt{sequence} \; x & \textrm{SQL sequence} \\
adamc@535 523 &&& \mt{cookie} \; x : \tau & \textrm{HTTP cookie} \\
adamc@784 524 &&& \mt{style} \; x : \tau & \textrm{CSS class} \\
adamc@654 525 &&& \mt{class} \; x :: \kappa = c & \textrm{concrete constructor class} \\
adamc@1085 526 &&& \mt{task} \; e = e & \textrm{recurring task} \\
adamc@528 527 \\
adamc@529 528 \textrm{Modules} & M &::=& \mt{struct} \; d^* \; \mt{end} & \textrm{constant} \\
adamc@529 529 &&& X & \textrm{variable} \\
adamc@529 530 &&& M.X & \textrm{projection} \\
adamc@529 531 &&& M(M) & \textrm{functor application} \\
adamc@529 532 &&& \mt{functor}(X : S) : S = M & \textrm{functor abstraction} \\
adamc@528 533 \end{array}$$
adamc@528 534
adamc@528 535 There are two kinds of Ur files. A file named $M\texttt{.ur}$ is an \emph{implementation file}, and it should contain a sequence of declarations $d^*$. A file named $M\texttt{.urs}$ is an \emph{interface file}; it must always have a matching $M\texttt{.ur}$ and should contain a sequence of signature items $s^*$. When both files are present, the overall effect is the same as a monolithic declaration $\mt{structure} \; M : \mt{sig} \; s^* \; \mt{end} = \mt{struct} \; d^* \; \mt{end}$. When no interface file is included, the overall effect is similar, with a signature for module $M$ being inferred rather than just checked against an interface.
adamc@527 536
adam@1594 537 We omit some extra possibilities in $\mt{table}$ syntax, deferring them to Section \ref{tables}. The concrete syntax of $\mt{view}$ declarations is also more complex than shown in the table above, with details deferred to Section \ref{tables}.
adamc@784 538
adamc@529 539 \subsection{Shorthands}
adamc@529 540
adamc@529 541 There are a variety of derived syntactic forms that elaborate into the core syntax from the last subsection. We will present the additional forms roughly following the order in which we presented the constructs that they elaborate into.
adamc@529 542
adamc@529 543 In many contexts where record fields are expected, like in a projection $e.c$, a constant field may be written as simply $X$, rather than $\#X$.
adamc@529 544
adamc@529 545 A record type may be written $\{(c = c,)^*\}$, which elaborates to $\$[(c = c,)^*]$.
adamc@529 546
adamc@533 547 The notation $[c_1, \ldots, c_n]$ is shorthand for $[c_1 = (), \ldots, c_n = ()]$.
adamc@533 548
adam@1350 549 A tuple type $\tau_1 \times \ldots \times \tau_n$ expands to a record type $\{1 : \tau_1, \ldots, n : \tau_n\}$, with natural numbers as field names. A tuple expression $(e_1, \ldots, e_n)$ expands to a record expression $\{1 = e_1, \ldots, n = e_n\}$. A tuple pattern $(p_1, \ldots, p_n)$ expands to a rigid record pattern $\{1 = p_1, \ldots, n = p_n\}$. Positive natural numbers may be used in most places where field names would be allowed.
adamc@529 550
adamc@852 551 In general, several adjacent $\lambda$ forms may be combined into one, and kind and type annotations may be omitted, in which case they are implicitly included as wildcards. More formally, for constructor-level abstractions, we can define a new non-terminal $b ::= x \mid (x :: \kappa) \mid X$ and allow composite abstractions of the form $\lambda b^+ \Rightarrow c$, elaborating into the obvious sequence of one core $\lambda$ per element of $b^+$.
adamc@529 552
adam@1574 553 Further, the signature item or declaration syntax $\mt{con} \; x \; b^+ = c$ is shorthand for wrapping of the appropriate $\lambda$s around the righthand side $c$. The $b$ elements may not include $X$, and there may also be an optional $:: \kappa$ before the $=$.
adam@1574 554
adam@1306 555 In some contexts, the parser isn't happy with token sequences like $x :: \_$, to indicate a constructor variable of wildcard kind. In such cases, write the second two tokens as $::\hspace{-.05in}\_$, with no intervening spaces. Analogous syntax $:::\hspace{-.05in}\_$ is available for implicit constructor arguments.
adam@1302 556
adamc@529 557 For any signature item or declaration that defines some entity to be equal to $A$ with classification annotation $B$ (e.g., $\mt{val} \; x : B = A$), $B$ and the preceding colon (or similar punctuation) may be omitted, in which case it is filled in as a wildcard.
adamc@529 558
adamc@529 559 A signature item or declaration $\mt{type} \; x$ or $\mt{type} \; x = \tau$ is elaborated into $\mt{con} \; x :: \mt{Type}$ or $\mt{con} \; x :: \mt{Type} = \tau$, respectively.
adamc@529 560
adamc@654 561 A signature item or declaration $\mt{class} \; x = \lambda y \Rightarrow c$ may be abbreviated $\mt{class} \; x \; y = c$.
adamc@529 562
adam@1482 563 Handling of implicit and explicit constructor arguments may be tweaked with some prefixes to variable references. An expression $@x$ is a version of $x$ where all type class instance and disjointness arguments have been made explicit. (For the purposes of this paragraph, the type family $\mt{Top.folder}$ is a type class, though it isn't marked as one by the usual means.) An expression $@@x$ achieves the same effect, additionally making explicit all implicit constructor arguments. The default is that implicit arguments are inserted automatically after any reference to a variable, or after any application of a variable to one or more arguments. For such an expression, implicit wildcard arguments are added for the longest prefix of the expression's type consisting only of implicit polymorphism, type class instances, and disjointness obligations. The same syntax works for variables projected out of modules and for capitalized variables (datatype constructors).
adamc@529 564
adamc@852 565 At the expression level, an analogue is available of the composite $\lambda$ form for constructors. We define the language of binders as $b ::= p \mid [x] \mid [x \; ? \; \kappa] \mid X \mid [c \sim c]$. A lone variable $[x]$ stands for an implicit constructor variable of unspecified kind. The standard value-level function binder is recovered as the type-annotated pattern form $x : \tau$. It is a compile-time error to include a pattern $p$ that does not match every value of the appropriate type.
adamc@529 566
adamc@852 567 A local $\mt{val}$ declaration may bind a pattern instead of just a plain variable. As for function arguments, only irrefutable patterns are legal.
adamc@852 568
adamc@852 569 The keyword $\mt{fun}$ is a shorthand for $\mt{val} \; \mt{rec}$ that allows arguments to be specified before the equal sign in the definition of each mutually-recursive function, as in SML. Each curried argument must follow the grammar of the $b$ non-terminal introduced two paragraphs ago. A $\mt{fun}$ declaration is elaborated into a version that adds additional $\lambda$s to the fronts of the righthand sides, as appropriate.
adamc@529 570
adamc@529 571 A signature item $\mt{functor} \; X_1 \; (X_2 : S_1) : S_2$ is elaborated into $\mt{structure} \; X_1 : \mt{functor}(X_2 : S_1) : S_2$. A declaration $\mt{functor} \; X_1 \; (X_2 : S_1) : S_2 = M$ is elaborated into $\mt{structure} \; X_1 : \mt{functor}(X_2 : S_1) : S_2 = \mt{functor}(X_2 : S_1) : S_2 = M$.
adamc@529 572
adamc@852 573 An $\mt{open} \; \mt{constraints}$ declaration is implicitly inserted for the argument of every functor at the beginning of the functor body. For every declaration of the form $\mt{structure} \; X : S = \mt{struct} \ldots \mt{end}$, an $\mt{open} \; \mt{constraints} \; X$ declaration is implicitly inserted immediately afterward.
adamc@852 574
adamc@853 575 A declaration $\mt{table} \; x : \{(c = c,)^*\}$ is elaborated into $\mt{table} \; x : [(c = c,)^*]$.
adamc@529 576
adamc@529 577 The syntax $\mt{where} \; \mt{type}$ is an alternate form of $\mt{where} \; \mt{con}$.
adamc@529 578
adamc@529 579 The syntax $\mt{if} \; e \; \mt{then} \; e_1 \; \mt{else} \; e_2$ expands to $\mt{case} \; e \; \mt{of} \; \mt{Basis}.\mt{True} \Rightarrow e_1 \mid \mt{Basis}.\mt{False} \Rightarrow e_2$.
adamc@529 580
adamc@529 581 There are infix operator syntaxes for a number of functions defined in the $\mt{Basis}$ module. There is $=$ for $\mt{eq}$, $\neq$ for $\mt{neq}$, $-$ for $\mt{neg}$ (as a prefix operator) and $\mt{minus}$, $+$ for $\mt{plus}$, $\times$ for $\mt{times}$, $/$ for $\mt{div}$, $\%$ for $\mt{mod}$, $<$ for $\mt{lt}$, $\leq$ for $\mt{le}$, $>$ for $\mt{gt}$, and $\geq$ for $\mt{ge}$.
adamc@529 582
adamc@784 583 A signature item $\mt{table} \; x : c$ is shorthand for $\mt{val} \; x : \mt{Basis}.\mt{sql\_table} \; c \; []$. $\mt{view} \; x : c$ is shorthand for $\mt{val} \; x : \mt{Basis}.\mt{sql\_view} \; c$, $\mt{sequence} \; x$ is short for $\mt{val} \; x : \mt{Basis}.\mt{sql\_sequence}$. $\mt{cookie} \; x : \tau$ is shorthand for $\mt{val} \; x : \mt{Basis}.\mt{http\_cookie} \; \tau$, and $\mt{style} \; x$ is shorthand for $\mt{val} \; x : \mt{Basis}.\mt{css\_class}$.
adamc@529 584
adamc@530 585
adamc@530 586 \section{Static Semantics}
adamc@530 587
adamc@530 588 In this section, we give a declarative presentation of Ur's typing rules and related judgments. Inference is the subject of the next section; here, we assume that an oracle has filled in all wildcards with concrete values.
adamc@530 589
adamc@530 590 Since there is significant mutual recursion among the judgments, we introduce them all before beginning to give rules. We use the same variety of contexts throughout this section, implicitly introducing new sorts of context entries as needed.
adamc@530 591 \begin{itemize}
adamc@655 592 \item $\Gamma \vdash \kappa$ expresses kind well-formedness.
adamc@530 593 \item $\Gamma \vdash c :: \kappa$ assigns a kind to a constructor in a context.
adamc@530 594 \item $\Gamma \vdash c \sim c$ proves the disjointness of two record constructors; that is, that they share no field names. We overload the judgment to apply to pairs of field names as well.
adamc@531 595 \item $\Gamma \vdash c \hookrightarrow C$ proves that record constructor $c$ decomposes into set $C$ of field names and record constructors.
adamc@530 596 \item $\Gamma \vdash c \equiv c$ proves the computational equivalence of two constructors. This is often called a \emph{definitional equality} in the world of type theory.
adamc@530 597 \item $\Gamma \vdash e : \tau$ is a standard typing judgment.
adamc@534 598 \item $\Gamma \vdash p \leadsto \Gamma; \tau$ combines typing of patterns with calculation of which new variables they bind.
adamc@537 599 \item $\Gamma \vdash d \leadsto \Gamma$ expresses how a declaration modifies a context. We overload this judgment to apply to sequences of declarations, as well as to signature items and sequences of signature items.
adamc@537 600 \item $\Gamma \vdash S \equiv S$ is the signature equivalence judgment.
adamc@536 601 \item $\Gamma \vdash S \leq S$ is the signature compatibility judgment. We write $\Gamma \vdash S$ as shorthand for $\Gamma \vdash S \leq S$.
adamc@530 602 \item $\Gamma \vdash M : S$ is the module signature checking judgment.
adamc@537 603 \item $\mt{proj}(M, \overline{s}, V)$ is a partial function for projecting a signature item from $\overline{s}$, given the module $M$ that we project from. $V$ may be $\mt{con} \; x$, $\mt{datatype} \; x$, $\mt{val} \; x$, $\mt{signature} \; X$, or $\mt{structure} \; X$. The parameter $M$ is needed because the projected signature item may refer to other items from $\overline{s}$.
adamc@539 604 \item $\mt{selfify}(M, \overline{s})$ adds information to signature items $\overline{s}$ to reflect the fact that we are concerned with the particular module $M$. This function is overloaded to work over individual signature items as well.
adamc@530 605 \end{itemize}
adamc@530 606
adamc@655 607
adamc@655 608 \subsection{Kind Well-Formedness}
adamc@655 609
adamc@655 610 $$\infer{\Gamma \vdash \mt{Type}}{}
adamc@655 611 \quad \infer{\Gamma \vdash \mt{Unit}}{}
adamc@655 612 \quad \infer{\Gamma \vdash \mt{Name}}{}
adamc@655 613 \quad \infer{\Gamma \vdash \kappa_1 \to \kappa_2}{
adamc@655 614 \Gamma \vdash \kappa_1
adamc@655 615 & \Gamma \vdash \kappa_2
adamc@655 616 }
adamc@655 617 \quad \infer{\Gamma \vdash \{\kappa\}}{
adamc@655 618 \Gamma \vdash \kappa
adamc@655 619 }
adamc@655 620 \quad \infer{\Gamma \vdash (\kappa_1 \times \ldots \times \kappa_n)}{
adamc@655 621 \forall i: \Gamma \vdash \kappa_i
adamc@655 622 }$$
adamc@655 623
adamc@655 624 $$\infer{\Gamma \vdash X}{
adamc@655 625 X \in \Gamma
adamc@655 626 }
adamc@655 627 \quad \infer{\Gamma \vdash X \longrightarrow \kappa}{
adamc@655 628 \Gamma, X \vdash \kappa
adamc@655 629 }$$
adamc@655 630
adamc@530 631 \subsection{Kinding}
adamc@530 632
adamc@655 633 We write $[X \mapsto \kappa_1]\kappa_2$ for capture-avoiding substitution of $\kappa_1$ for $X$ in $\kappa_2$.
adamc@655 634
adamc@530 635 $$\infer{\Gamma \vdash (c) :: \kappa :: \kappa}{
adamc@530 636 \Gamma \vdash c :: \kappa
adamc@530 637 }
adamc@530 638 \quad \infer{\Gamma \vdash x :: \kappa}{
adamc@530 639 x :: \kappa \in \Gamma
adamc@530 640 }
adamc@530 641 \quad \infer{\Gamma \vdash x :: \kappa}{
adamc@530 642 x :: \kappa = c \in \Gamma
adamc@530 643 }$$
adamc@530 644
adamc@530 645 $$\infer{\Gamma \vdash M.x :: \kappa}{
adamc@537 646 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 647 & \mt{proj}(M, \overline{s}, \mt{con} \; x) = \kappa
adamc@530 648 }
adamc@530 649 \quad \infer{\Gamma \vdash M.x :: \kappa}{
adamc@537 650 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 651 & \mt{proj}(M, \overline{s}, \mt{con} \; x) = (\kappa, c)
adamc@530 652 }$$
adamc@530 653
adamc@530 654 $$\infer{\Gamma \vdash \tau_1 \to \tau_2 :: \mt{Type}}{
adamc@530 655 \Gamma \vdash \tau_1 :: \mt{Type}
adamc@530 656 & \Gamma \vdash \tau_2 :: \mt{Type}
adamc@530 657 }
adamc@530 658 \quad \infer{\Gamma \vdash x \; ? \: \kappa \to \tau :: \mt{Type}}{
adamc@530 659 \Gamma, x :: \kappa \vdash \tau :: \mt{Type}
adamc@530 660 }
adamc@655 661 \quad \infer{\Gamma \vdash X \longrightarrow \tau :: \mt{Type}}{
adamc@655 662 \Gamma, X \vdash \tau :: \mt{Type}
adamc@655 663 }
adamc@530 664 \quad \infer{\Gamma \vdash \$c :: \mt{Type}}{
adamc@530 665 \Gamma \vdash c :: \{\mt{Type}\}
adamc@530 666 }$$
adamc@530 667
adamc@530 668 $$\infer{\Gamma \vdash c_1 \; c_2 :: \kappa_2}{
adamc@530 669 \Gamma \vdash c_1 :: \kappa_1 \to \kappa_2
adamc@530 670 & \Gamma \vdash c_2 :: \kappa_1
adamc@530 671 }
adamc@530 672 \quad \infer{\Gamma \vdash \lambda x \; :: \; \kappa_1 \Rightarrow c :: \kappa_1 \to \kappa_2}{
adamc@530 673 \Gamma, x :: \kappa_1 \vdash c :: \kappa_2
adamc@530 674 }$$
adamc@530 675
adamc@655 676 $$\infer{\Gamma \vdash c[\kappa'] :: [X \mapsto \kappa']\kappa}{
adamc@655 677 \Gamma \vdash c :: X \to \kappa
adamc@655 678 & \Gamma \vdash \kappa'
adamc@655 679 }
adamc@655 680 \quad \infer{\Gamma \vdash X \Longrightarrow c :: X \to \kappa}{
adamc@655 681 \Gamma, X \vdash c :: \kappa
adamc@655 682 }$$
adamc@655 683
adamc@530 684 $$\infer{\Gamma \vdash () :: \mt{Unit}}{}
adamc@530 685 \quad \infer{\Gamma \vdash \#X :: \mt{Name}}{}$$
adamc@530 686
adamc@530 687 $$\infer{\Gamma \vdash [\overline{c_i = c'_i}] :: \{\kappa\}}{
adamc@530 688 \forall i: \Gamma \vdash c_i : \mt{Name}
adamc@530 689 & \Gamma \vdash c'_i :: \kappa
adamc@530 690 & \forall i \neq j: \Gamma \vdash c_i \sim c_j
adamc@530 691 }
adamc@530 692 \quad \infer{\Gamma \vdash c_1 \rc c_2 :: \{\kappa\}}{
adamc@530 693 \Gamma \vdash c_1 :: \{\kappa\}
adamc@530 694 & \Gamma \vdash c_2 :: \{\kappa\}
adamc@530 695 & \Gamma \vdash c_1 \sim c_2
adamc@530 696 }$$
adamc@530 697
adamc@655 698 $$\infer{\Gamma \vdash \mt{map} :: (\kappa_1 \to \kappa_2) \to \{\kappa_1\} \to \{\kappa_2\}}{}$$
adamc@530 699
adamc@573 700 $$\infer{\Gamma \vdash (\overline c) :: (\kappa_1 \times \ldots \times \kappa_n)}{
adamc@573 701 \forall i: \Gamma \vdash c_i :: \kappa_i
adamc@530 702 }
adamc@573 703 \quad \infer{\Gamma \vdash c.i :: \kappa_i}{
adamc@573 704 \Gamma \vdash c :: (\kappa_1 \times \ldots \times \kappa_n)
adamc@530 705 }$$
adamc@530 706
adamc@655 707 $$\infer{\Gamma \vdash \lambda [c_1 \sim c_2] \Rightarrow \tau :: \mt{Type}}{
adamc@655 708 \Gamma \vdash c_1 :: \{\kappa\}
adamc@530 709 & \Gamma \vdash c_2 :: \{\kappa'\}
adamc@655 710 & \Gamma, c_1 \sim c_2 \vdash \tau :: \mt{Type}
adamc@530 711 }$$
adamc@530 712
adamc@531 713 \subsection{Record Disjointness}
adamc@531 714
adamc@531 715 $$\infer{\Gamma \vdash c_1 \sim c_2}{
adamc@558 716 \Gamma \vdash c_1 \hookrightarrow C_1
adamc@558 717 & \Gamma \vdash c_2 \hookrightarrow C_2
adamc@558 718 & \forall c'_1 \in C_1, c'_2 \in C_2: \Gamma \vdash c'_1 \sim c'_2
adamc@531 719 }
adamc@531 720 \quad \infer{\Gamma \vdash X \sim X'}{
adamc@531 721 X \neq X'
adamc@531 722 }$$
adamc@531 723
adamc@531 724 $$\infer{\Gamma \vdash c_1 \sim c_2}{
adamc@531 725 c'_1 \sim c'_2 \in \Gamma
adamc@558 726 & \Gamma \vdash c'_1 \hookrightarrow C_1
adamc@558 727 & \Gamma \vdash c'_2 \hookrightarrow C_2
adamc@558 728 & c_1 \in C_1
adamc@558 729 & c_2 \in C_2
adamc@531 730 }$$
adamc@531 731
adamc@531 732 $$\infer{\Gamma \vdash c \hookrightarrow \{c\}}{}
adamc@531 733 \quad \infer{\Gamma \vdash [\overline{c = c'}] \hookrightarrow \{\overline{c}\}}{}
adamc@531 734 \quad \infer{\Gamma \vdash c_1 \rc c_2 \hookrightarrow C_1 \cup C_2}{
adamc@531 735 \Gamma \vdash c_1 \hookrightarrow C_1
adamc@531 736 & \Gamma \vdash c_2 \hookrightarrow C_2
adamc@531 737 }
adamc@531 738 \quad \infer{\Gamma \vdash c \hookrightarrow C}{
adamc@531 739 \Gamma \vdash c \equiv c'
adamc@531 740 & \Gamma \vdash c' \hookrightarrow C
adamc@531 741 }
adamc@531 742 \quad \infer{\Gamma \vdash \mt{map} \; f \; c \hookrightarrow C}{
adamc@531 743 \Gamma \vdash c \hookrightarrow C
adamc@531 744 }$$
adamc@531 745
adamc@541 746 \subsection{\label{definitional}Definitional Equality}
adamc@532 747
adamc@655 748 We use $\mathcal C$ to stand for a one-hole context that, when filled, yields a constructor. The notation $\mathcal C[c]$ plugs $c$ into $\mathcal C$. We omit the standard definition of one-hole contexts. We write $[x \mapsto c_1]c_2$ for capture-avoiding substitution of $c_1$ for $x$ in $c_2$, with analogous notation for substituting a kind in a constructor.
adamc@532 749
adamc@532 750 $$\infer{\Gamma \vdash c \equiv c}{}
adamc@532 751 \quad \infer{\Gamma \vdash c_1 \equiv c_2}{
adamc@532 752 \Gamma \vdash c_2 \equiv c_1
adamc@532 753 }
adamc@532 754 \quad \infer{\Gamma \vdash c_1 \equiv c_3}{
adamc@532 755 \Gamma \vdash c_1 \equiv c_2
adamc@532 756 & \Gamma \vdash c_2 \equiv c_3
adamc@532 757 }
adamc@532 758 \quad \infer{\Gamma \vdash \mathcal C[c_1] \equiv \mathcal C[c_2]}{
adamc@532 759 \Gamma \vdash c_1 \equiv c_2
adamc@532 760 }$$
adamc@532 761
adamc@532 762 $$\infer{\Gamma \vdash x \equiv c}{
adamc@532 763 x :: \kappa = c \in \Gamma
adamc@532 764 }
adamc@532 765 \quad \infer{\Gamma \vdash M.x \equiv c}{
adamc@537 766 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 767 & \mt{proj}(M, \overline{s}, \mt{con} \; x) = (\kappa, c)
adamc@532 768 }
adamc@532 769 \quad \infer{\Gamma \vdash (\overline c).i \equiv c_i}{}$$
adamc@532 770
adamc@532 771 $$\infer{\Gamma \vdash (\lambda x :: \kappa \Rightarrow c) \; c' \equiv [x \mapsto c'] c}{}
adamc@655 772 \quad \infer{\Gamma \vdash (X \Longrightarrow c) [\kappa] \equiv [X \mapsto \kappa] c}{}$$
adamc@655 773
adamc@655 774 $$\infer{\Gamma \vdash c_1 \rc c_2 \equiv c_2 \rc c_1}{}
adamc@532 775 \quad \infer{\Gamma \vdash c_1 \rc (c_2 \rc c_3) \equiv (c_1 \rc c_2) \rc c_3}{}$$
adamc@532 776
adamc@532 777 $$\infer{\Gamma \vdash [] \rc c \equiv c}{}
adamc@532 778 \quad \infer{\Gamma \vdash [\overline{c_1 = c'_1}] \rc [\overline{c_2 = c'_2}] \equiv [\overline{c_1 = c'_1}, \overline{c_2 = c'_2}]}{}$$
adamc@532 779
adamc@655 780 $$\infer{\Gamma \vdash \mt{map} \; f \; [] \equiv []}{}
adamc@655 781 \quad \infer{\Gamma \vdash \mt{map} \; f \; ([c_1 = c_2] \rc c) \equiv [c_1 = f \; c_2] \rc \mt{map} \; f \; c}{}$$
adamc@532 782
adamc@532 783 $$\infer{\Gamma \vdash \mt{map} \; (\lambda x \Rightarrow x) \; c \equiv c}{}
adamc@655 784 \quad \infer{\Gamma \vdash \mt{map} \; f \; (\mt{map} \; f' \; c)
adamc@655 785 \equiv \mt{map} \; (\lambda x \Rightarrow f \; (f' \; x)) \; c}{}$$
adamc@532 786
adamc@532 787 $$\infer{\Gamma \vdash \mt{map} \; f \; (c_1 \rc c_2) \equiv \mt{map} \; f \; c_1 \rc \mt{map} \; f \; c_2}{}$$
adamc@531 788
adamc@534 789 \subsection{Expression Typing}
adamc@533 790
adamc@873 791 We assume the existence of a function $T$ assigning types to literal constants. It maps integer constants to $\mt{Basis}.\mt{int}$, float constants to $\mt{Basis}.\mt{float}$, character constants to $\mt{Basis}.\mt{char}$, and string constants to $\mt{Basis}.\mt{string}$.
adamc@533 792
adamc@533 793 We also refer to a function $\mathcal I$, such that $\mathcal I(\tau)$ ``uses an oracle'' to instantiate all constructor function arguments at the beginning of $\tau$ that are marked implicit; i.e., replace $x_1 ::: \kappa_1 \to \ldots \to x_n ::: \kappa_n \to \tau$ with $[x_1 \mapsto c_1]\ldots[x_n \mapsto c_n]\tau$, where the $c_i$s are inferred and $\tau$ does not start like $x ::: \kappa \to \tau'$.
adamc@533 794
adamc@533 795 $$\infer{\Gamma \vdash e : \tau : \tau}{
adamc@533 796 \Gamma \vdash e : \tau
adamc@533 797 }
adamc@533 798 \quad \infer{\Gamma \vdash e : \tau}{
adamc@533 799 \Gamma \vdash e : \tau'
adamc@533 800 & \Gamma \vdash \tau' \equiv \tau
adamc@533 801 }
adamc@533 802 \quad \infer{\Gamma \vdash \ell : T(\ell)}{}$$
adamc@533 803
adamc@533 804 $$\infer{\Gamma \vdash x : \mathcal I(\tau)}{
adamc@533 805 x : \tau \in \Gamma
adamc@533 806 }
adamc@533 807 \quad \infer{\Gamma \vdash M.x : \mathcal I(\tau)}{
adamc@537 808 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 809 & \mt{proj}(M, \overline{s}, \mt{val} \; x) = \tau
adamc@533 810 }
adamc@533 811 \quad \infer{\Gamma \vdash X : \mathcal I(\tau)}{
adamc@533 812 X : \tau \in \Gamma
adamc@533 813 }
adamc@533 814 \quad \infer{\Gamma \vdash M.X : \mathcal I(\tau)}{
adamc@537 815 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 816 & \mt{proj}(M, \overline{s}, \mt{val} \; X) = \tau
adamc@533 817 }$$
adamc@533 818
adamc@533 819 $$\infer{\Gamma \vdash e_1 \; e_2 : \tau_2}{
adamc@533 820 \Gamma \vdash e_1 : \tau_1 \to \tau_2
adamc@533 821 & \Gamma \vdash e_2 : \tau_1
adamc@533 822 }
adamc@533 823 \quad \infer{\Gamma \vdash \lambda x : \tau_1 \Rightarrow e : \tau_1 \to \tau_2}{
adamc@533 824 \Gamma, x : \tau_1 \vdash e : \tau_2
adamc@533 825 }$$
adamc@533 826
adamc@533 827 $$\infer{\Gamma \vdash e [c] : [x \mapsto c]\tau}{
adamc@533 828 \Gamma \vdash e : x :: \kappa \to \tau
adamc@533 829 & \Gamma \vdash c :: \kappa
adamc@533 830 }
adamc@852 831 \quad \infer{\Gamma \vdash \lambda [x \; ? \; \kappa] \Rightarrow e : x \; ? \; \kappa \to \tau}{
adamc@533 832 \Gamma, x :: \kappa \vdash e : \tau
adamc@533 833 }$$
adamc@533 834
adamc@655 835 $$\infer{\Gamma \vdash e [\kappa] : [X \mapsto \kappa]\tau}{
adamc@655 836 \Gamma \vdash e : X \longrightarrow \tau
adamc@655 837 & \Gamma \vdash \kappa
adamc@655 838 }
adamc@655 839 \quad \infer{\Gamma \vdash X \Longrightarrow e : X \longrightarrow \tau}{
adamc@655 840 \Gamma, X \vdash e : \tau
adamc@655 841 }$$
adamc@655 842
adamc@533 843 $$\infer{\Gamma \vdash \{\overline{c = e}\} : \{\overline{c : \tau}\}}{
adamc@533 844 \forall i: \Gamma \vdash c_i :: \mt{Name}
adamc@533 845 & \Gamma \vdash e_i : \tau_i
adamc@533 846 & \forall i \neq j: \Gamma \vdash c_i \sim c_j
adamc@533 847 }
adamc@533 848 \quad \infer{\Gamma \vdash e.c : \tau}{
adamc@533 849 \Gamma \vdash e : \$([c = \tau] \rc c')
adamc@533 850 }
adamc@533 851 \quad \infer{\Gamma \vdash e_1 \rc e_2 : \$(c_1 \rc c_2)}{
adamc@533 852 \Gamma \vdash e_1 : \$c_1
adamc@533 853 & \Gamma \vdash e_2 : \$c_2
adamc@573 854 & \Gamma \vdash c_1 \sim c_2
adamc@533 855 }$$
adamc@533 856
adamc@533 857 $$\infer{\Gamma \vdash e \rcut c : \$c'}{
adamc@533 858 \Gamma \vdash e : \$([c = \tau] \rc c')
adamc@533 859 }
adamc@533 860 \quad \infer{\Gamma \vdash e \rcutM c : \$c'}{
adamc@533 861 \Gamma \vdash e : \$(c \rc c')
adamc@533 862 }$$
adamc@533 863
adamc@533 864 $$\infer{\Gamma \vdash \mt{let} \; \overline{ed} \; \mt{in} \; e \; \mt{end} : \tau}{
adamc@533 865 \Gamma \vdash \overline{ed} \leadsto \Gamma'
adamc@533 866 & \Gamma' \vdash e : \tau
adamc@533 867 }
adamc@533 868 \quad \infer{\Gamma \vdash \mt{case} \; e \; \mt{of} \; \overline{p \Rightarrow e} : \tau}{
adamc@533 869 \forall i: \Gamma \vdash p_i \leadsto \Gamma_i, \tau'
adamc@533 870 & \Gamma_i \vdash e_i : \tau
adamc@533 871 }$$
adamc@533 872
adamc@573 873 $$\infer{\Gamma \vdash \lambda [c_1 \sim c_2] \Rightarrow e : \lambda [c_1 \sim c_2] \Rightarrow \tau}{
adamc@533 874 \Gamma \vdash c_1 :: \{\kappa\}
adamc@655 875 & \Gamma \vdash c_2 :: \{\kappa'\}
adamc@533 876 & \Gamma, c_1 \sim c_2 \vdash e : \tau
adamc@662 877 }
adamc@662 878 \quad \infer{\Gamma \vdash e \; ! : \tau}{
adamc@662 879 \Gamma \vdash e : [c_1 \sim c_2] \Rightarrow \tau
adamc@662 880 & \Gamma \vdash c_1 \sim c_2
adamc@533 881 }$$
adamc@533 882
adamc@534 883 \subsection{Pattern Typing}
adamc@534 884
adamc@534 885 $$\infer{\Gamma \vdash \_ \leadsto \Gamma; \tau}{}
adamc@534 886 \quad \infer{\Gamma \vdash x \leadsto \Gamma, x : \tau; \tau}{}
adamc@534 887 \quad \infer{\Gamma \vdash \ell \leadsto \Gamma; T(\ell)}{}$$
adamc@534 888
adamc@534 889 $$\infer{\Gamma \vdash X \leadsto \Gamma; \overline{[x_i \mapsto \tau'_i]}\tau}{
adamc@534 890 X : \overline{x ::: \mt{Type}} \to \tau \in \Gamma
adamc@534 891 & \textrm{$\tau$ not a function type}
adamc@534 892 }
adamc@534 893 \quad \infer{\Gamma \vdash X \; p \leadsto \Gamma'; \overline{[x_i \mapsto \tau'_i]}\tau}{
adamc@534 894 X : \overline{x ::: \mt{Type}} \to \tau'' \to \tau \in \Gamma
adamc@534 895 & \Gamma \vdash p \leadsto \Gamma'; \overline{[x_i \mapsto \tau'_i]}\tau''
adamc@534 896 }$$
adamc@534 897
adamc@534 898 $$\infer{\Gamma \vdash M.X \leadsto \Gamma; \overline{[x_i \mapsto \tau'_i]}\tau}{
adamc@537 899 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 900 & \mt{proj}(M, \overline{s}, \mt{val} \; X) = \overline{x ::: \mt{Type}} \to \tau
adamc@534 901 & \textrm{$\tau$ not a function type}
adamc@534 902 }$$
adamc@534 903
adamc@534 904 $$\infer{\Gamma \vdash M.X \; p \leadsto \Gamma'; \overline{[x_i \mapsto \tau'_i]}\tau}{
adamc@537 905 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 906 & \mt{proj}(M, \overline{s}, \mt{val} \; X) = \overline{x ::: \mt{Type}} \to \tau'' \to \tau
adamc@534 907 & \Gamma \vdash p \leadsto \Gamma'; \overline{[x_i \mapsto \tau'_i]}\tau''
adamc@534 908 }$$
adamc@534 909
adamc@534 910 $$\infer{\Gamma \vdash \{\overline{x = p}\} \leadsto \Gamma_n; \{\overline{x = \tau}\}}{
adamc@534 911 \Gamma_0 = \Gamma
adamc@534 912 & \forall i: \Gamma_i \vdash p_i \leadsto \Gamma_{i+1}; \tau_i
adamc@534 913 }
adamc@534 914 \quad \infer{\Gamma \vdash \{\overline{x = p}, \ldots\} \leadsto \Gamma_n; \$([\overline{x = \tau}] \rc c)}{
adamc@534 915 \Gamma_0 = \Gamma
adamc@534 916 & \forall i: \Gamma_i \vdash p_i \leadsto \Gamma_{i+1}; \tau_i
adamc@534 917 }$$
adamc@534 918
adamc@852 919 $$\infer{\Gamma \vdash p : \tau \leadsto \Gamma'; \tau}{
adamc@852 920 \Gamma \vdash p \leadsto \Gamma'; \tau'
adamc@852 921 & \Gamma \vdash \tau' \equiv \tau
adamc@852 922 }$$
adamc@852 923
adamc@535 924 \subsection{Declaration Typing}
adamc@535 925
adamc@535 926 We use an auxiliary judgment $\overline{y}; x; \Gamma \vdash \overline{dc} \leadsto \Gamma'$, expressing the enrichment of $\Gamma$ with the types of the datatype constructors $\overline{dc}$, when they are known to belong to datatype $x$ with type parameters $\overline{y}$.
adamc@535 927
adamc@655 928 This is the first judgment where we deal with constructor classes, for the $\mt{class}$ declaration form. We will omit their special handling in this formal specification. Section \ref{typeclasses} gives an informal description of how constructor classes influence type inference.
adamc@535 929
adamc@558 930 We presuppose the existence of a function $\mathcal O$, where $\mathcal O(M, \overline{s})$ implements the $\mt{open}$ declaration by producing a context with the appropriate entry for each available component of module $M$ with signature items $\overline{s}$. Where possible, $\mathcal O$ uses ``transparent'' entries (e.g., an abstract type $M.x$ is mapped to $x :: \mt{Type} = M.x$), so that the relationship with $M$ is maintained. A related function $\mathcal O_c$ builds a context containing the disjointness constraints found in $\overline s$.
adamc@537 931 We write $\kappa_1^n \to \kappa$ as a shorthand, where $\kappa_1^0 \to \kappa = \kappa$ and $\kappa_1^{n+1} \to \kappa_2 = \kappa_1 \to (\kappa_1^n \to \kappa_2)$. We write $\mt{len}(\overline{y})$ for the length of vector $\overline{y}$ of variables.
adamc@535 932
adamc@535 933 $$\infer{\Gamma \vdash \cdot \leadsto \Gamma}{}
adamc@535 934 \quad \infer{\Gamma \vdash d, \overline{d} \leadsto \Gamma''}{
adamc@535 935 \Gamma \vdash d \leadsto \Gamma'
adamc@535 936 & \Gamma' \vdash \overline{d} \leadsto \Gamma''
adamc@535 937 }$$
adamc@535 938
adamc@535 939 $$\infer{\Gamma \vdash \mt{con} \; x :: \kappa = c \leadsto \Gamma, x :: \kappa = c}{
adamc@535 940 \Gamma \vdash c :: \kappa
adamc@535 941 }
adamc@535 942 \quad \infer{\Gamma \vdash \mt{datatype} \; x \; \overline{y} = \overline{dc} \leadsto \Gamma'}{
adamc@535 943 \overline{y}; x; \Gamma, x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type} \vdash \overline{dc} \leadsto \Gamma'
adamc@535 944 }$$
adamc@535 945
adamc@535 946 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leadsto \Gamma'}{
adamc@537 947 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 948 & \mt{proj}(M, \overline{s}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})
adamc@535 949 & \overline{y}; x; \Gamma, x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type} = M.z \vdash \overline{dc} \leadsto \Gamma'
adamc@535 950 }$$
adamc@535 951
adamc@535 952 $$\infer{\Gamma \vdash \mt{val} \; x : \tau = e \leadsto \Gamma, x : \tau}{
adamc@535 953 \Gamma \vdash e : \tau
adamc@535 954 }$$
adamc@535 955
adamc@535 956 $$\infer{\Gamma \vdash \mt{val} \; \mt{rec} \; \overline{x : \tau = e} \leadsto \Gamma, \overline{x : \tau}}{
adamc@535 957 \forall i: \Gamma, \overline{x : \tau} \vdash e_i : \tau_i
adamc@535 958 & \textrm{$e_i$ starts with an expression $\lambda$, optionally preceded by constructor and disjointness $\lambda$s}
adamc@535 959 }$$
adamc@535 960
adamc@535 961 $$\infer{\Gamma \vdash \mt{structure} \; X : S = M \leadsto \Gamma, X : S}{
adamc@535 962 \Gamma \vdash M : S
adamc@558 963 & \textrm{ $M$ not a constant or application}
adamc@535 964 }
adamc@558 965 \quad \infer{\Gamma \vdash \mt{structure} \; X : S = M \leadsto \Gamma, X : \mt{selfify}(X, \overline{s})}{
adamc@558 966 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@539 967 }$$
adamc@539 968
adamc@539 969 $$\infer{\Gamma \vdash \mt{signature} \; X = S \leadsto \Gamma, X = S}{
adamc@535 970 \Gamma \vdash S
adamc@535 971 }$$
adamc@535 972
adamc@537 973 $$\infer{\Gamma \vdash \mt{open} \; M \leadsto \Gamma, \mathcal O(M, \overline{s})}{
adamc@537 974 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@535 975 }$$
adamc@535 976
adamc@535 977 $$\infer{\Gamma \vdash \mt{constraint} \; c_1 \sim c_2 \leadsto \Gamma}{
adamc@535 978 \Gamma \vdash c_1 :: \{\kappa\}
adamc@535 979 & \Gamma \vdash c_2 :: \{\kappa\}
adamc@535 980 & \Gamma \vdash c_1 \sim c_2
adamc@535 981 }
adamc@537 982 \quad \infer{\Gamma \vdash \mt{open} \; \mt{constraints} \; M \leadsto \Gamma, \mathcal O_c(M, \overline{s})}{
adamc@537 983 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@535 984 }$$
adamc@535 985
adamc@784 986 $$\infer{\Gamma \vdash \mt{table} \; x : c \leadsto \Gamma, x : \mt{Basis}.\mt{sql\_table} \; c \; []}{
adamc@535 987 \Gamma \vdash c :: \{\mt{Type}\}
adamc@535 988 }
adam@1594 989 \quad \infer{\Gamma \vdash \mt{view} \; x = e \leadsto \Gamma, x : \mt{Basis}.\mt{sql\_view} \; c}{
adam@1594 990 \Gamma \vdash e :: \mt{Basis}.\mt{sql\_query} \; [] \; [] \; (\mt{map} \; (\lambda \_ \Rightarrow []) \; c') \; c
adamc@784 991 }$$
adamc@784 992
adamc@784 993 $$\infer{\Gamma \vdash \mt{sequence} \; x \leadsto \Gamma, x : \mt{Basis}.\mt{sql\_sequence}}{}$$
adamc@535 994
adamc@535 995 $$\infer{\Gamma \vdash \mt{cookie} \; x : \tau \leadsto \Gamma, x : \mt{Basis}.\mt{http\_cookie} \; \tau}{
adamc@535 996 \Gamma \vdash \tau :: \mt{Type}
adamc@784 997 }
adamc@784 998 \quad \infer{\Gamma \vdash \mt{style} \; x \leadsto \Gamma, x : \mt{Basis}.\mt{css\_class}}{}$$
adamc@535 999
adamc@1085 1000 $$\infer{\Gamma \vdash \mt{task} \; e_1 = e_2 \leadsto \Gamma}{
adam@1348 1001 \Gamma \vdash e_1 :: \mt{Basis}.\mt{task\_kind} \; \tau
adam@1348 1002 & \Gamma \vdash e_2 :: \tau \to \mt{Basis}.\mt{transaction} \; \{\}
adamc@1085 1003 }$$
adamc@1085 1004
adamc@784 1005 $$\infer{\Gamma \vdash \mt{class} \; x :: \kappa = c \leadsto \Gamma, x :: \kappa = c}{
adamc@784 1006 \Gamma \vdash c :: \kappa
adamc@535 1007 }$$
adamc@535 1008
adamc@535 1009 $$\infer{\overline{y}; x; \Gamma \vdash \cdot \leadsto \Gamma}{}
adamc@535 1010 \quad \infer{\overline{y}; x; \Gamma \vdash X \mid \overline{dc} \leadsto \Gamma', X : \overline{y ::: \mt{Type}} \to x \; \overline{y}}{
adamc@535 1011 \overline{y}; x; \Gamma \vdash \overline{dc} \leadsto \Gamma'
adamc@535 1012 }
adamc@535 1013 \quad \infer{\overline{y}; x; \Gamma \vdash X \; \mt{of} \; \tau \mid \overline{dc} \leadsto \Gamma', X : \overline{y ::: \mt{Type}} \to \tau \to x \; \overline{y}}{
adamc@535 1014 \overline{y}; x; \Gamma \vdash \overline{dc} \leadsto \Gamma'
adamc@535 1015 }$$
adamc@535 1016
adamc@537 1017 \subsection{Signature Item Typing}
adamc@537 1018
adamc@537 1019 We appeal to a signature item analogue of the $\mathcal O$ function from the last subsection.
adamc@537 1020
adamc@537 1021 $$\infer{\Gamma \vdash \cdot \leadsto \Gamma}{}
adamc@537 1022 \quad \infer{\Gamma \vdash s, \overline{s} \leadsto \Gamma''}{
adamc@537 1023 \Gamma \vdash s \leadsto \Gamma'
adamc@537 1024 & \Gamma' \vdash \overline{s} \leadsto \Gamma''
adamc@537 1025 }$$
adamc@537 1026
adamc@537 1027 $$\infer{\Gamma \vdash \mt{con} \; x :: \kappa \leadsto \Gamma, x :: \kappa}{}
adamc@537 1028 \quad \infer{\Gamma \vdash \mt{con} \; x :: \kappa = c \leadsto \Gamma, x :: \kappa = c}{
adamc@537 1029 \Gamma \vdash c :: \kappa
adamc@537 1030 }
adamc@537 1031 \quad \infer{\Gamma \vdash \mt{datatype} \; x \; \overline{y} = \overline{dc} \leadsto \Gamma'}{
adamc@537 1032 \overline{y}; x; \Gamma, x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type} \vdash \overline{dc} \leadsto \Gamma'
adamc@537 1033 }$$
adamc@537 1034
adamc@537 1035 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leadsto \Gamma'}{
adamc@537 1036 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 1037 & \mt{proj}(M, \overline{s}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})
adamc@537 1038 & \overline{y}; x; \Gamma, x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type} = M.z \vdash \overline{dc} \leadsto \Gamma'
adamc@537 1039 }$$
adamc@537 1040
adamc@537 1041 $$\infer{\Gamma \vdash \mt{val} \; x : \tau \leadsto \Gamma, x : \tau}{
adamc@537 1042 \Gamma \vdash \tau :: \mt{Type}
adamc@537 1043 }$$
adamc@537 1044
adamc@537 1045 $$\infer{\Gamma \vdash \mt{structure} \; X : S \leadsto \Gamma, X : S}{
adamc@537 1046 \Gamma \vdash S
adamc@537 1047 }
adamc@537 1048 \quad \infer{\Gamma \vdash \mt{signature} \; X = S \leadsto \Gamma, X = S}{
adamc@537 1049 \Gamma \vdash S
adamc@537 1050 }$$
adamc@537 1051
adamc@537 1052 $$\infer{\Gamma \vdash \mt{include} \; S \leadsto \Gamma, \mathcal O(\overline{s})}{
adamc@537 1053 \Gamma \vdash S
adamc@537 1054 & \Gamma \vdash S \equiv \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 1055 }$$
adamc@537 1056
adamc@537 1057 $$\infer{\Gamma \vdash \mt{constraint} \; c_1 \sim c_2 \leadsto \Gamma, c_1 \sim c_2}{
adamc@537 1058 \Gamma \vdash c_1 :: \{\kappa\}
adamc@537 1059 & \Gamma \vdash c_2 :: \{\kappa\}
adamc@537 1060 }$$
adamc@537 1061
adamc@784 1062 $$\infer{\Gamma \vdash \mt{class} \; x :: \kappa = c \leadsto \Gamma, x :: \kappa = c}{
adamc@784 1063 \Gamma \vdash c :: \kappa
adamc@537 1064 }
adamc@784 1065 \quad \infer{\Gamma \vdash \mt{class} \; x :: \kappa \leadsto \Gamma, x :: \kappa}{}$$
adamc@537 1066
adamc@536 1067 \subsection{Signature Compatibility}
adamc@536 1068
adamc@558 1069 To simplify the judgments in this section, we assume that all signatures are alpha-varied as necessary to avoid including multiple bindings for the same identifier. This is in addition to the usual alpha-variation of locally-bound variables.
adamc@537 1070
adamc@537 1071 We rely on a judgment $\Gamma \vdash \overline{s} \leq s'$, which expresses the occurrence in signature items $\overline{s}$ of an item compatible with $s'$. We also use a judgment $\Gamma \vdash \overline{dc} \leq \overline{dc}$, which expresses compatibility of datatype definitions.
adamc@537 1072
adamc@536 1073 $$\infer{\Gamma \vdash S \equiv S}{}
adamc@536 1074 \quad \infer{\Gamma \vdash S_1 \equiv S_2}{
adamc@536 1075 \Gamma \vdash S_2 \equiv S_1
adamc@536 1076 }
adamc@536 1077 \quad \infer{\Gamma \vdash X \equiv S}{
adamc@536 1078 X = S \in \Gamma
adamc@536 1079 }
adamc@536 1080 \quad \infer{\Gamma \vdash M.X \equiv S}{
adamc@537 1081 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 1082 & \mt{proj}(M, \overline{s}, \mt{signature} \; X) = S
adamc@536 1083 }$$
adamc@536 1084
adamc@536 1085 $$\infer{\Gamma \vdash S \; \mt{where} \; \mt{con} \; x = c \equiv \mt{sig} \; \overline{s^1} \; \mt{con} \; x :: \kappa = c \; \overline{s_2} \; \mt{end}}{
adamc@536 1086 \Gamma \vdash S \equiv \mt{sig} \; \overline{s^1} \; \mt{con} \; x :: \kappa \; \overline{s_2} \; \mt{end}
adamc@536 1087 & \Gamma \vdash c :: \kappa
adamc@537 1088 }
adamc@537 1089 \quad \infer{\Gamma \vdash \mt{sig} \; \overline{s^1} \; \mt{include} \; S \; \overline{s^2} \; \mt{end} \equiv \mt{sig} \; \overline{s^1} \; \overline{s} \; \overline{s^2} \; \mt{end}}{
adamc@537 1090 \Gamma \vdash S \equiv \mt{sig} \; \overline{s} \; \mt{end}
adamc@536 1091 }$$
adamc@536 1092
adamc@536 1093 $$\infer{\Gamma \vdash S_1 \leq S_2}{
adamc@536 1094 \Gamma \vdash S_1 \equiv S_2
adamc@536 1095 }
adamc@536 1096 \quad \infer{\Gamma \vdash \mt{sig} \; \overline{s} \; \mt{end} \leq \mt{sig} \; \mt{end}}{}
adamc@537 1097 \quad \infer{\Gamma \vdash \mt{sig} \; \overline{s} \; \mt{end} \leq \mt{sig} \; s' \; \overline{s'} \; \mt{end}}{
adamc@537 1098 \Gamma \vdash \overline{s} \leq s'
adamc@537 1099 & \Gamma \vdash s' \leadsto \Gamma'
adamc@537 1100 & \Gamma' \vdash \mt{sig} \; \overline{s} \; \mt{end} \leq \mt{sig} \; \overline{s'} \; \mt{end}
adamc@537 1101 }$$
adamc@537 1102
adamc@537 1103 $$\infer{\Gamma \vdash s \; \overline{s} \leq s'}{
adamc@537 1104 \Gamma \vdash s \leq s'
adamc@537 1105 }
adamc@537 1106 \quad \infer{\Gamma \vdash s \; \overline{s} \leq s'}{
adamc@537 1107 \Gamma \vdash s \leadsto \Gamma'
adamc@537 1108 & \Gamma' \vdash \overline{s} \leq s'
adamc@536 1109 }$$
adamc@536 1110
adamc@536 1111 $$\infer{\Gamma \vdash \mt{functor} (X : S_1) : S_2 \leq \mt{functor} (X : S'_1) : S'_2}{
adamc@536 1112 \Gamma \vdash S'_1 \leq S_1
adamc@536 1113 & \Gamma, X : S'_1 \vdash S_2 \leq S'_2
adamc@536 1114 }$$
adamc@536 1115
adamc@537 1116 $$\infer{\Gamma \vdash \mt{con} \; x :: \kappa \leq \mt{con} \; x :: \kappa}{}
adamc@537 1117 \quad \infer{\Gamma \vdash \mt{con} \; x :: \kappa = c \leq \mt{con} \; x :: \kappa}{}
adamc@558 1118 \quad \infer{\Gamma \vdash \mt{datatype} \; x \; \overline{y} = \overline{dc} \leq \mt{con} \; x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type}}{}$$
adamc@537 1119
adamc@537 1120 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leq \mt{con} \; x :: \mt{Type}^{\mt{len}(y)} \to \mt{Type}}{
adamc@537 1121 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 1122 & \mt{proj}(M, \overline{s}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})
adamc@537 1123 }$$
adamc@537 1124
adamc@784 1125 $$\infer{\Gamma \vdash \mt{class} \; x :: \kappa \leq \mt{con} \; x :: \kappa}{}
adamc@784 1126 \quad \infer{\Gamma \vdash \mt{class} \; x :: \kappa = c \leq \mt{con} \; x :: \kappa}{}$$
adamc@537 1127
adamc@537 1128 $$\infer{\Gamma \vdash \mt{con} \; x :: \kappa = c_1 \leq \mt{con} \; x :: \mt{\kappa} = c_2}{
adamc@537 1129 \Gamma \vdash c_1 \equiv c_2
adamc@537 1130 }
adamc@784 1131 \quad \infer{\Gamma \vdash \mt{class} \; x :: \kappa = c_1 \leq \mt{con} \; x :: \kappa = c_2}{
adamc@537 1132 \Gamma \vdash c_1 \equiv c_2
adamc@537 1133 }$$
adamc@537 1134
adamc@537 1135 $$\infer{\Gamma \vdash \mt{datatype} \; x \; \overline{y} = \overline{dc} \leq \mt{datatype} \; x \; \overline{y} = \overline{dc'}}{
adamc@537 1136 \Gamma, \overline{y :: \mt{Type}} \vdash \overline{dc} \leq \overline{dc'}
adamc@537 1137 }$$
adamc@537 1138
adamc@537 1139 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leq \mt{datatype} \; x \; \overline{y} = \overline{dc'}}{
adamc@537 1140 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 1141 & \mt{proj}(M, \overline{s}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})
adamc@537 1142 & \Gamma, \overline{y :: \mt{Type}} \vdash \overline{dc} \leq \overline{dc'}
adamc@537 1143 }$$
adamc@537 1144
adamc@537 1145 $$\infer{\Gamma \vdash \cdot \leq \cdot}{}
adamc@537 1146 \quad \infer{\Gamma \vdash X; \overline{dc} \leq X; \overline{dc'}}{
adamc@537 1147 \Gamma \vdash \overline{dc} \leq \overline{dc'}
adamc@537 1148 }
adamc@537 1149 \quad \infer{\Gamma \vdash X \; \mt{of} \; \tau_1; \overline{dc} \leq X \; \mt{of} \; \tau_2; \overline{dc'}}{
adamc@537 1150 \Gamma \vdash \tau_1 \equiv \tau_2
adamc@537 1151 & \Gamma \vdash \overline{dc} \leq \overline{dc'}
adamc@537 1152 }$$
adamc@537 1153
adamc@537 1154 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leq \mt{datatype} \; x = \mt{datatype} \; M'.z'}{
adamc@537 1155 \Gamma \vdash M.z \equiv M'.z'
adamc@537 1156 }$$
adamc@537 1157
adamc@537 1158 $$\infer{\Gamma \vdash \mt{val} \; x : \tau_1 \leq \mt{val} \; x : \tau_2}{
adamc@537 1159 \Gamma \vdash \tau_1 \equiv \tau_2
adamc@537 1160 }
adamc@537 1161 \quad \infer{\Gamma \vdash \mt{structure} \; X : S_1 \leq \mt{structure} \; X : S_2}{
adamc@537 1162 \Gamma \vdash S_1 \leq S_2
adamc@537 1163 }
adamc@537 1164 \quad \infer{\Gamma \vdash \mt{signature} \; X = S_1 \leq \mt{signature} \; X = S_2}{
adamc@537 1165 \Gamma \vdash S_1 \leq S_2
adamc@537 1166 & \Gamma \vdash S_2 \leq S_1
adamc@537 1167 }$$
adamc@537 1168
adamc@537 1169 $$\infer{\Gamma \vdash \mt{constraint} \; c_1 \sim c_2 \leq \mt{constraint} \; c'_1 \sim c'_2}{
adamc@537 1170 \Gamma \vdash c_1 \equiv c'_1
adamc@537 1171 & \Gamma \vdash c_2 \equiv c'_2
adamc@537 1172 }$$
adamc@537 1173
adamc@655 1174 $$\infer{\Gamma \vdash \mt{class} \; x :: \kappa \leq \mt{class} \; x :: \kappa}{}
adamc@655 1175 \quad \infer{\Gamma \vdash \mt{class} \; x :: \kappa = c \leq \mt{class} \; x :: \kappa}{}
adamc@655 1176 \quad \infer{\Gamma \vdash \mt{class} \; x :: \kappa = c_1 \leq \mt{class} \; x :: \kappa = c_2}{
adamc@537 1177 \Gamma \vdash c_1 \equiv c_2
adamc@537 1178 }$$
adamc@537 1179
adamc@538 1180 \subsection{Module Typing}
adamc@538 1181
adamc@538 1182 We use a helper function $\mt{sigOf}$, which converts declarations and sequences of declarations into their principal signature items and sequences of signature items, respectively.
adamc@538 1183
adamc@538 1184 $$\infer{\Gamma \vdash M : S}{
adamc@538 1185 \Gamma \vdash M : S'
adamc@538 1186 & \Gamma \vdash S' \leq S
adamc@538 1187 }
adamc@538 1188 \quad \infer{\Gamma \vdash \mt{struct} \; \overline{d} \; \mt{end} : \mt{sig} \; \mt{sigOf}(\overline{d}) \; \mt{end}}{
adamc@538 1189 \Gamma \vdash \overline{d} \leadsto \Gamma'
adamc@538 1190 }
adamc@538 1191 \quad \infer{\Gamma \vdash X : S}{
adamc@538 1192 X : S \in \Gamma
adamc@538 1193 }$$
adamc@538 1194
adamc@538 1195 $$\infer{\Gamma \vdash M.X : S}{
adamc@538 1196 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@538 1197 & \mt{proj}(M, \overline{s}, \mt{structure} \; X) = S
adamc@538 1198 }$$
adamc@538 1199
adamc@538 1200 $$\infer{\Gamma \vdash M_1(M_2) : [X \mapsto M_2]S_2}{
adamc@538 1201 \Gamma \vdash M_1 : \mt{functor}(X : S_1) : S_2
adamc@538 1202 & \Gamma \vdash M_2 : S_1
adamc@538 1203 }
adamc@538 1204 \quad \infer{\Gamma \vdash \mt{functor} (X : S_1) : S_2 = M : \mt{functor} (X : S_1) : S_2}{
adamc@538 1205 \Gamma \vdash S_1
adamc@538 1206 & \Gamma, X : S_1 \vdash S_2
adamc@538 1207 & \Gamma, X : S_1 \vdash M : S_2
adamc@538 1208 }$$
adamc@538 1209
adamc@538 1210 \begin{eqnarray*}
adamc@538 1211 \mt{sigOf}(\cdot) &=& \cdot \\
adamc@538 1212 \mt{sigOf}(s \; \overline{s'}) &=& \mt{sigOf}(s) \; \mt{sigOf}(\overline{s'}) \\
adamc@538 1213 \\
adamc@538 1214 \mt{sigOf}(\mt{con} \; x :: \kappa = c) &=& \mt{con} \; x :: \kappa = c \\
adamc@538 1215 \mt{sigOf}(\mt{datatype} \; x \; \overline{y} = \overline{dc}) &=& \mt{datatype} \; x \; \overline{y} = \overline{dc} \\
adamc@538 1216 \mt{sigOf}(\mt{datatype} \; x = \mt{datatype} \; M.z) &=& \mt{datatype} \; x = \mt{datatype} \; M.z \\
adamc@538 1217 \mt{sigOf}(\mt{val} \; x : \tau = e) &=& \mt{val} \; x : \tau \\
adamc@538 1218 \mt{sigOf}(\mt{val} \; \mt{rec} \; \overline{x : \tau = e}) &=& \overline{\mt{val} \; x : \tau} \\
adamc@538 1219 \mt{sigOf}(\mt{structure} \; X : S = M) &=& \mt{structure} \; X : S \\
adamc@538 1220 \mt{sigOf}(\mt{signature} \; X = S) &=& \mt{signature} \; X = S \\
adamc@538 1221 \mt{sigOf}(\mt{open} \; M) &=& \mt{include} \; S \textrm{ (where $\Gamma \vdash M : S$)} \\
adamc@538 1222 \mt{sigOf}(\mt{constraint} \; c_1 \sim c_2) &=& \mt{constraint} \; c_1 \sim c_2 \\
adamc@538 1223 \mt{sigOf}(\mt{open} \; \mt{constraints} \; M) &=& \cdot \\
adamc@538 1224 \mt{sigOf}(\mt{table} \; x : c) &=& \mt{table} \; x : c \\
adam@1594 1225 \mt{sigOf}(\mt{view} \; x = e) &=& \mt{view} \; x : c \textrm{ (where $\Gamma \vdash e : \mt{Basis}.\mt{sql\_query} \; [] \; [] \; (\mt{map} \; (\lambda \_ \Rightarrow []) \; c') \; c$)} \\
adamc@538 1226 \mt{sigOf}(\mt{sequence} \; x) &=& \mt{sequence} \; x \\
adamc@538 1227 \mt{sigOf}(\mt{cookie} \; x : \tau) &=& \mt{cookie} \; x : \tau \\
adamc@784 1228 \mt{sigOf}(\mt{style} \; x) &=& \mt{style} \; x \\
adamc@655 1229 \mt{sigOf}(\mt{class} \; x :: \kappa = c) &=& \mt{class} \; x :: \kappa = c \\
adamc@538 1230 \end{eqnarray*}
adamc@539 1231 \begin{eqnarray*}
adamc@539 1232 \mt{selfify}(M, \cdot) &=& \cdot \\
adamc@558 1233 \mt{selfify}(M, s \; \overline{s'}) &=& \mt{selfify}(M, s) \; \mt{selfify}(M, \overline{s'}) \\
adamc@539 1234 \\
adamc@539 1235 \mt{selfify}(M, \mt{con} \; x :: \kappa) &=& \mt{con} \; x :: \kappa = M.x \\
adamc@539 1236 \mt{selfify}(M, \mt{con} \; x :: \kappa = c) &=& \mt{con} \; x :: \kappa = c \\
adamc@539 1237 \mt{selfify}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc}) &=& \mt{datatype} \; x \; \overline{y} = \mt{datatype} \; M.x \\
adamc@539 1238 \mt{selfify}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z) &=& \mt{datatype} \; x = \mt{datatype} \; M'.z \\
adamc@539 1239 \mt{selfify}(M, \mt{val} \; x : \tau) &=& \mt{val} \; x : \tau \\
adamc@539 1240 \mt{selfify}(M, \mt{structure} \; X : S) &=& \mt{structure} \; X : \mt{selfify}(M.X, \overline{s}) \textrm{ (where $\Gamma \vdash S \equiv \mt{sig} \; \overline{s} \; \mt{end}$)} \\
adamc@539 1241 \mt{selfify}(M, \mt{signature} \; X = S) &=& \mt{signature} \; X = S \\
adamc@539 1242 \mt{selfify}(M, \mt{include} \; S) &=& \mt{include} \; S \\
adamc@539 1243 \mt{selfify}(M, \mt{constraint} \; c_1 \sim c_2) &=& \mt{constraint} \; c_1 \sim c_2 \\
adamc@655 1244 \mt{selfify}(M, \mt{class} \; x :: \kappa) &=& \mt{class} \; x :: \kappa = M.x \\
adamc@655 1245 \mt{selfify}(M, \mt{class} \; x :: \kappa = c) &=& \mt{class} \; x :: \kappa = c \\
adamc@539 1246 \end{eqnarray*}
adamc@539 1247
adamc@540 1248 \subsection{Module Projection}
adamc@540 1249
adamc@540 1250 \begin{eqnarray*}
adamc@540 1251 \mt{proj}(M, \mt{con} \; x :: \kappa \; \overline{s}, \mt{con} \; x) &=& \kappa \\
adamc@540 1252 \mt{proj}(M, \mt{con} \; x :: \kappa = c \; \overline{s}, \mt{con} \; x) &=& (\kappa, c) \\
adamc@540 1253 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, \mt{con} \; x) &=& \mt{Type}^{\mt{len}(\overline{y})} \to \mt{Type} \\
adamc@540 1254 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z \; \overline{s}, \mt{con} \; x) &=& (\mt{Type}^{\mt{len}(\overline{y})} \to \mt{Type}, M'.z) \textrm{ (where $\Gamma \vdash M' : \mt{sig} \; \overline{s'} \; \mt{end}$} \\
adamc@540 1255 && \textrm{and $\mt{proj}(M', \overline{s'}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})$)} \\
adamc@655 1256 \mt{proj}(M, \mt{class} \; x :: \kappa \; \overline{s}, \mt{con} \; x) &=& \kappa \to \mt{Type} \\
adamc@655 1257 \mt{proj}(M, \mt{class} \; x :: \kappa = c \; \overline{s}, \mt{con} \; x) &=& (\kappa \to \mt{Type}, c) \\
adamc@540 1258 \\
adamc@540 1259 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, \mt{datatype} \; x) &=& (\overline{y}, \overline{dc}) \\
adamc@540 1260 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z \; \overline{s}, \mt{con} \; x) &=& \mt{proj}(M', \overline{s'}, \mt{datatype} \; z) \textrm{ (where $\Gamma \vdash M' : \mt{sig} \; \overline{s'} \; \mt{end}$)} \\
adamc@540 1261 \\
adamc@540 1262 \mt{proj}(M, \mt{val} \; x : \tau \; \overline{s}, \mt{val} \; x) &=& \tau \\
adamc@540 1263 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, \mt{val} \; X) &=& \overline{y ::: \mt{Type}} \to M.x \; \overline y \textrm{ (where $X \in \overline{dc}$)} \\
adamc@540 1264 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, \mt{val} \; X) &=& \overline{y ::: \mt{Type}} \to \tau \to M.x \; \overline y \textrm{ (where $X \; \mt{of} \; \tau \in \overline{dc}$)} \\
adamc@540 1265 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z, \mt{val} \; X) &=& \overline{y ::: \mt{Type}} \to M.x \; \overline y \textrm{ (where $\Gamma \vdash M' : \mt{sig} \; \overline{s'} \; \mt{end}$} \\
adamc@540 1266 && \textrm{and $\mt{proj}(M', \overline{s'}, \mt{datatype} \; z = (\overline{y}, \overline{dc})$ and $X \in \overline{dc}$)} \\
adamc@540 1267 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z, \mt{val} \; X) &=& \overline{y ::: \mt{Type}} \to \tau \to M.x \; \overline y \textrm{ (where $\Gamma \vdash M' : \mt{sig} \; \overline{s'} \; \mt{end}$} \\
adamc@558 1268 && \textrm{and $\mt{proj}(M', \overline{s'}, \mt{datatype} \; z = (\overline{y}, \overline{dc})$ and $X \; \mt{of} \; \tau \in \overline{dc}$)} \\
adamc@540 1269 \\
adamc@540 1270 \mt{proj}(M, \mt{structure} \; X : S \; \overline{s}, \mt{structure} \; X) &=& S \\
adamc@540 1271 \\
adamc@540 1272 \mt{proj}(M, \mt{signature} \; X = S \; \overline{s}, \mt{signature} \; X) &=& S \\
adamc@540 1273 \\
adamc@540 1274 \mt{proj}(M, \mt{con} \; x :: \kappa \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1275 \mt{proj}(M, \mt{con} \; x :: \kappa = c \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1276 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1277 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1278 \mt{proj}(M, \mt{val} \; x : \tau \; \overline{s}, V) &=& \mt{proj}(M, \overline{s}, V) \\
adamc@540 1279 \mt{proj}(M, \mt{structure} \; X : S \; \overline{s}, V) &=& [X \mapsto M.X]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1280 \mt{proj}(M, \mt{signature} \; X = S \; \overline{s}, V) &=& [X \mapsto M.X]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1281 \mt{proj}(M, \mt{include} \; S \; \overline{s}, V) &=& \mt{proj}(M, \overline{s'} \; \overline{s}, V) \textrm{ (where $\Gamma \vdash S \equiv \mt{sig} \; \overline{s'} \; \mt{end}$)} \\
adamc@540 1282 \mt{proj}(M, \mt{constraint} \; c_1 \sim c_2 \; \overline{s}, V) &=& \mt{proj}(M, \overline{s}, V) \\
adamc@655 1283 \mt{proj}(M, \mt{class} \; x :: \kappa \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@655 1284 \mt{proj}(M, \mt{class} \; x :: \kappa = c \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1285 \end{eqnarray*}
adamc@540 1286
adamc@541 1287
adamc@541 1288 \section{Type Inference}
adamc@541 1289
adamc@541 1290 The Ur/Web compiler uses \emph{heuristic type inference}, with no claims of completeness with respect to the declarative specification of the last section. The rules in use seem to work well in practice. This section summarizes those rules, to help Ur programmers predict what will work and what won't.
adamc@541 1291
adamc@541 1292 \subsection{Basic Unification}
adamc@541 1293
adamc@560 1294 Type-checkers for languages based on the Hindley-Milner type discipline, like ML and Haskell, take advantage of \emph{principal typing} properties, making complete type inference relatively straightforward. Inference algorithms are traditionally implemented using type unification variables, at various points asserting equalities between types, in the process discovering the values of type variables. The Ur/Web compiler uses the same basic strategy, but the complexity of the type system rules out easy completeness.
adamc@541 1295
adamc@656 1296 Type-checking can require evaluating recursive functional programs, thanks to the type-level $\mt{map}$ operator. When a unification variable appears in such a type, the next step of computation can be undetermined. The value of that variable might be determined later, but this would be ``too late'' for the unification problems generated at the first occurrence. This is the essential source of incompleteness.
adamc@541 1297
adamc@541 1298 Nonetheless, the unification engine tends to do reasonably well. Unlike in ML, polymorphism is never inferred in definitions; it must be indicated explicitly by writing out constructor-level parameters. By writing these and other annotations, the programmer can generally get the type inference engine to do most of the type reconstruction work.
adamc@541 1299
adamc@541 1300 \subsection{Unifying Record Types}
adamc@541 1301
adamc@570 1302 The type inference engine tries to take advantage of the algebraic rules governing type-level records, as shown in Section \ref{definitional}. When two constructors of record kind are unified, they are reduced to normal forms, with like terms crossed off from each normal form until, hopefully, nothing remains. This cannot be complete, with the inclusion of unification variables. The type-checker can help you understand what goes wrong when the process fails, as it outputs the unmatched remainders of the two normal forms.
adamc@541 1303
adamc@656 1304 \subsection{\label{typeclasses}Constructor Classes}
adamc@541 1305
adamc@784 1306 Ur includes a constructor class facility inspired by Haskell's. The current version is experimental, with very general Prolog-like facilities that can lead to compile-time non-termination.
adamc@541 1307
adamc@784 1308 Constructor classes are integrated with the module system. A constructor class of kind $\kappa$ is just a constructor of kind $\kappa$. By marking such a constructor $c$ as a constructor class, the programmer instructs the type inference engine to, in each scope, record all values of types $c \; c_1 \; \ldots \; c_n$ as \emph{instances}. Any function argument whose type is of such a form is treated as implicit, to be determined by examining the current instance database.
adamc@541 1309
adamc@656 1310 The ``dictionary encoding'' often used in Haskell implementations is made explicit in Ur. Constructor class instances are just properly-typed values, and they can also be considered as ``proofs'' of membership in the class. In some cases, it is useful to pass these proofs around explicitly. An underscore written where a proof is expected will also be inferred, if possible, from the current instance database.
adamc@541 1311
adamc@656 1312 Just as for constructors, constructors classes may be exported from modules, and they may be exported as concrete or abstract. Concrete constructor classes have their ``real'' definitions exposed, so that client code may add new instances freely. Abstract constructor classes are useful as ``predicates'' that can be used to enforce invariants, as we will see in some definitions of SQL syntax in the Ur/Web standard library.
adamc@541 1313
adamc@541 1314 \subsection{Reverse-Engineering Record Types}
adamc@541 1315
adamc@656 1316 It's useful to write Ur functions and functors that take record constructors as inputs, but these constructors can grow quite long, even though their values are often implied by other arguments. The compiler uses a simple heuristic to infer the values of unification variables that are mapped over, yielding known results. If the result is empty, we're done; if it's not empty, we replace a single unification variable with a new constructor formed from three new unification variables, as in $[\alpha = \beta] \rc \gamma$. This process can often be repeated to determine a unification variable fully.
adamc@541 1317
adamc@541 1318 \subsection{Implicit Arguments in Functor Applications}
adamc@541 1319
adamc@656 1320 Constructor, constraint, and constructor class witness members of structures may be omitted, when those structures are used in contexts where their assigned signatures imply how to fill in those missing members. This feature combines well with reverse-engineering to allow for uses of complicated meta-programming functors with little more code than would be necessary to invoke an untyped, ad-hoc code generator.
adamc@541 1321
adamc@541 1322
adamc@542 1323 \section{The Ur Standard Library}
adamc@542 1324
adamc@542 1325 The built-in parts of the Ur/Web standard library are described by the signature in \texttt{lib/basis.urs} in the distribution. A module $\mt{Basis}$ ascribing to that signature is available in the initial environment, and every program is implicitly prefixed by $\mt{open} \; \mt{Basis}$.
adamc@542 1326
adamc@542 1327 Additionally, other common functions that are definable within Ur are included in \texttt{lib/top.urs} and \texttt{lib/top.ur}. This $\mt{Top}$ module is also opened implicitly.
adamc@542 1328
adamc@542 1329 The idea behind Ur is to serve as the ideal host for embedded domain-specific languages. For now, however, the ``generic'' functionality is intermixed with Ur/Web-specific functionality, including in these two library modules. We hope that these generic library components have types that speak for themselves. The next section introduces the Ur/Web-specific elements. Here, we only give the type declarations from the beginning of $\mt{Basis}$.
adamc@542 1330 $$\begin{array}{l}
adamc@542 1331 \mt{type} \; \mt{int} \\
adamc@542 1332 \mt{type} \; \mt{float} \\
adamc@873 1333 \mt{type} \; \mt{char} \\
adamc@542 1334 \mt{type} \; \mt{string} \\
adamc@542 1335 \mt{type} \; \mt{time} \\
adamc@785 1336 \mt{type} \; \mt{blob} \\
adamc@542 1337 \\
adamc@542 1338 \mt{type} \; \mt{unit} = \{\} \\
adamc@542 1339 \\
adamc@542 1340 \mt{datatype} \; \mt{bool} = \mt{False} \mid \mt{True} \\
adamc@542 1341 \\
adamc@785 1342 \mt{datatype} \; \mt{option} \; \mt{t} = \mt{None} \mid \mt{Some} \; \mt{of} \; \mt{t} \\
adamc@785 1343 \\
adamc@785 1344 \mt{datatype} \; \mt{list} \; \mt{t} = \mt{Nil} \mid \mt{Cons} \; \mt{of} \; \mt{t} \times \mt{list} \; \mt{t}
adamc@542 1345 \end{array}$$
adamc@542 1346
adamc@1123 1347 The only unusual element of this list is the $\mt{blob}$ type, which stands for binary sequences. Simple blobs can be created from strings via $\mt{Basis.textBlob}$. Blobs will also be generated from HTTP file uploads.
adamc@785 1348
adam@1297 1349 Ur also supports \emph{polymorphic variants}, a dual to extensible records that has been popularized by OCaml. A type $\mt{variant} \; r$ represents an $n$-ary sum type, with one constructor for each field of record $r$. Each constructor $c$ takes an argument of type $r.c$; the type $\{\}$ can be used to ``simulate'' a nullary constructor. The \cd{make} function builds a variant value, while \cd{match} implements pattern-matching, with match cases represented as records of functions.
adam@1297 1350 $$\begin{array}{l}
adam@1297 1351 \mt{con} \; \mt{variant} :: \{\mt{Type}\} \to \mt{Type} \\
adam@1297 1352 \mt{val} \; \mt{make} : \mt{nm} :: \mt{Name} \to \mt{t} ::: \mt{Type} \to \mt{ts} ::: \{\mt{Type}\} \to [[\mt{nm}] \sim \mt{ts}] \Rightarrow \mt{t} \to \mt{variant} \; ([\mt{nm} = \mt{t}] \rc \mt{ts}) \\
adam@1297 1353 \mt{val} \; \mt{match} : \mt{ts} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \to \mt{variant} \; \mt{ts} \to \$(\mt{map} \; (\lambda \mt{t'} \Rightarrow \mt{t'} \to \mt{t}) \; \mt{ts}) \to \mt{t}
adam@1297 1354 \end{array}$$
adam@1297 1355
adamc@657 1356 Another important generic Ur element comes at the beginning of \texttt{top.urs}.
adamc@657 1357
adamc@657 1358 $$\begin{array}{l}
adamc@657 1359 \mt{con} \; \mt{folder} :: \mt{K} \longrightarrow \{\mt{K}\} \to \mt{Type} \\
adamc@657 1360 \\
adamc@657 1361 \mt{val} \; \mt{fold} : \mt{K} \longrightarrow \mt{tf} :: (\{\mt{K}\} \to \mt{Type}) \\
adamc@657 1362 \hspace{.1in} \to (\mt{nm} :: \mt{Name} \to \mt{v} :: \mt{K} \to \mt{r} :: \{\mt{K}\} \to [[\mt{nm}] \sim \mt{r}] \Rightarrow \\
adamc@657 1363 \hspace{.2in} \mt{tf} \; \mt{r} \to \mt{tf} \; ([\mt{nm} = \mt{v}] \rc \mt{r})) \\
adamc@657 1364 \hspace{.1in} \to \mt{tf} \; [] \\
adamc@657 1365 \hspace{.1in} \to \mt{r} :: \{\mt{K}\} \to \mt{folder} \; \mt{r} \to \mt{tf} \; \mt{r}
adamc@657 1366 \end{array}$$
adamc@657 1367
adamc@657 1368 For a type-level record $\mt{r}$, a $\mt{folder} \; \mt{r}$ encodes a permutation of $\mt{r}$'s elements. The $\mt{fold}$ function can be called on a $\mt{folder}$ to iterate over the elements of $\mt{r}$ in that order. $\mt{fold}$ is parameterized on a type-level function to be used to calculate the type of each intermediate result of folding. After processing a subset $\mt{r'}$ of $\mt{r}$'s entries, the type of the accumulator should be $\mt{tf} \; \mt{r'}$. The next two expression arguments to $\mt{fold}$ are the usual step function and initial accumulator, familiar from fold functions over lists. The final two arguments are the record to fold over and a $\mt{folder}$ for it.
adamc@657 1369
adamc@664 1370 The Ur compiler treats $\mt{folder}$ like a constructor class, using built-in rules to infer $\mt{folder}$s for records with known structure. The order in which field names are mentioned in source code is used as a hint about the permutation that the programmer would like.
adamc@657 1371
adamc@542 1372
adamc@542 1373 \section{The Ur/Web Standard Library}
adamc@542 1374
adam@1400 1375 Some operations are only allowed in server-side code or only in client-side code. The type system does not enforce such restrictions, but the compiler enforces them in the process of whole-program compilation. In the discussion below, we note when a set of operations has a location restriction.
adam@1400 1376
adamc@658 1377 \subsection{Monads}
adamc@658 1378
adamc@658 1379 The Ur Basis defines the monad constructor class from Haskell.
adamc@658 1380
adamc@658 1381 $$\begin{array}{l}
adamc@658 1382 \mt{class} \; \mt{monad} :: \mt{Type} \to \mt{Type} \\
adamc@658 1383 \mt{val} \; \mt{return} : \mt{m} ::: (\mt{Type} \to \mt{Type}) \to \mt{t} ::: \mt{Type} \\
adamc@658 1384 \hspace{.1in} \to \mt{monad} \; \mt{m} \\
adamc@658 1385 \hspace{.1in} \to \mt{t} \to \mt{m} \; \mt{t} \\
adamc@658 1386 \mt{val} \; \mt{bind} : \mt{m} ::: (\mt{Type} \to \mt{Type}) \to \mt{t1} ::: \mt{Type} \to \mt{t2} ::: \mt{Type} \\
adamc@658 1387 \hspace{.1in} \to \mt{monad} \; \mt{m} \\
adamc@658 1388 \hspace{.1in} \to \mt{m} \; \mt{t1} \to (\mt{t1} \to \mt{m} \; \mt{t2}) \\
adam@1544 1389 \hspace{.1in} \to \mt{m} \; \mt{t2} \\
adam@1544 1390 \mt{val} \; \mt{mkMonad} : \mt{m} ::: (\mt{Type} \to \mt{Type}) \\
adam@1544 1391 \hspace{.1in} \to \{\mt{Return} : \mt{t} ::: \mt{Type} \to \mt{t} \to \mt{m} \; \mt{t}, \\
adam@1544 1392 \hspace{.3in} \mt{Bind} : \mt{t1} ::: \mt{Type} \to \mt{t2} ::: \mt{Type} \to \mt{m} \; \mt{t1} \to (\mt{t1} \to \mt{m} \; \mt{t2}) \to \mt{m} \; \mt{t2}\} \\
adam@1544 1393 \hspace{.1in} \to \mt{monad} \; \mt{m}
adamc@658 1394 \end{array}$$
adamc@658 1395
adam@1638 1396 The Ur/Web compiler provides syntactic sugar for monads, similar to Haskell's \cd{do} notation. An expression $x \leftarrow e_1; e_2$ is desugared to $\mt{bind} \; e_1 \; (\lambda x \Rightarrow e_2)$, and an expression $e_1; e_2$ is desugared to $\mt{bind} \; e_1 \; (\lambda () \Rightarrow e_2)$.
adam@1548 1397
adamc@542 1398 \subsection{Transactions}
adamc@542 1399
adamc@542 1400 Ur is a pure language; we use Haskell's trick to support controlled side effects. The standard library defines a monad $\mt{transaction}$, meant to stand for actions that may be undone cleanly. By design, no other kinds of actions are supported.
adamc@542 1401 $$\begin{array}{l}
adamc@542 1402 \mt{con} \; \mt{transaction} :: \mt{Type} \to \mt{Type} \\
adamc@658 1403 \mt{val} \; \mt{transaction\_monad} : \mt{monad} \; \mt{transaction}
adamc@542 1404 \end{array}$$
adamc@542 1405
adamc@1123 1406 For debugging purposes, a transactional function is provided for outputting a string on the server process' \texttt{stderr}.
adamc@1123 1407 $$\begin{array}{l}
adamc@1123 1408 \mt{val} \; \mt{debug} : \mt{string} \to \mt{transaction} \; \mt{unit}
adamc@1123 1409 \end{array}$$
adamc@1123 1410
adamc@542 1411 \subsection{HTTP}
adamc@542 1412
adam@1400 1413 There are transactions for reading an HTTP header by name and for getting and setting strongly-typed cookies. Cookies may only be created by the $\mt{cookie}$ declaration form, ensuring that they be named consistently based on module structure. For now, cookie operations are server-side only.
adamc@542 1414 $$\begin{array}{l}
adamc@786 1415 \mt{con} \; \mt{http\_cookie} :: \mt{Type} \to \mt{Type} \\
adamc@786 1416 \mt{val} \; \mt{getCookie} : \mt{t} ::: \mt{Type} \to \mt{http\_cookie} \; \mt{t} \to \mt{transaction} \; (\mt{option} \; \mt{t}) \\
adamc@1050 1417 \mt{val} \; \mt{setCookie} : \mt{t} ::: \mt{Type} \to \mt{http\_cookie} \; \mt{t} \to \{\mt{Value} : \mt{t}, \mt{Expires} : \mt{option} \; \mt{time}, \mt{Secure} : \mt{bool}\} \to \mt{transaction} \; \mt{unit} \\
adamc@1050 1418 \mt{val} \; \mt{clearCookie} : \mt{t} ::: \mt{Type} \to \mt{http\_cookie} \; \mt{t} \to \mt{transaction} \; \mt{unit}
adamc@786 1419 \end{array}$$
adamc@786 1420
adamc@786 1421 There are also an abstract $\mt{url}$ type and functions for converting to it, based on the policy defined by \texttt{[allow|deny] url} directives in the project file.
adamc@786 1422 $$\begin{array}{l}
adamc@786 1423 \mt{type} \; \mt{url} \\
adamc@786 1424 \mt{val} \; \mt{bless} : \mt{string} \to \mt{url} \\
adamc@786 1425 \mt{val} \; \mt{checkUrl} : \mt{string} \to \mt{option} \; \mt{url}
adamc@786 1426 \end{array}$$
adamc@786 1427 $\mt{bless}$ raises a runtime error if the string passed to it fails the URL policy.
adamc@786 1428
adam@1400 1429 It is possible to grab the current page's URL or to build a URL for an arbitrary transaction that would also be an acceptable value of a \texttt{link} attribute of the \texttt{a} tag. These are server-side operations.
adamc@1085 1430 $$\begin{array}{l}
adamc@1085 1431 \mt{val} \; \mt{currentUrl} : \mt{transaction} \; \mt{url} \\
adamc@1085 1432 \mt{val} \; \mt{url} : \mt{transaction} \; \mt{page} \to \mt{url}
adamc@1085 1433 \end{array}$$
adamc@1085 1434
adamc@1085 1435 Page generation may be interrupted at any time with a request to redirect to a particular URL instead.
adamc@1085 1436 $$\begin{array}{l}
adamc@1085 1437 \mt{val} \; \mt{redirect} : \mt{t} ::: \mt{Type} \to \mt{url} \to \mt{transaction} \; \mt{t}
adamc@1085 1438 \end{array}$$
adamc@1085 1439
adam@1400 1440 It's possible for pages to return files of arbitrary MIME types. A file can be input from the user using this data type, along with the $\mt{upload}$ form tag. These functions and those described in the following paragraph are server-side.
adamc@786 1441 $$\begin{array}{l}
adamc@786 1442 \mt{type} \; \mt{file} \\
adamc@786 1443 \mt{val} \; \mt{fileName} : \mt{file} \to \mt{option} \; \mt{string} \\
adamc@786 1444 \mt{val} \; \mt{fileMimeType} : \mt{file} \to \mt{string} \\
adamc@786 1445 \mt{val} \; \mt{fileData} : \mt{file} \to \mt{blob}
adamc@786 1446 \end{array}$$
adamc@786 1447
adam@1465 1448 It is also possible to get HTTP request headers and set HTTP response headers, using abstract types similar to the one for URLs.
adam@1465 1449
adam@1465 1450 $$\begin{array}{l}
adam@1465 1451 \mt{type} \; \mt{requestHeader} \\
adam@1465 1452 \mt{val} \; \mt{blessRequestHeader} : \mt{string} \to \mt{requestHeader} \\
adam@1465 1453 \mt{val} \; \mt{checkRequestHeader} : \mt{string} \to \mt{option} \; \mt{requestHeader} \\
adam@1465 1454 \mt{val} \; \mt{getHeader} : \mt{requestHeader} \to \mt{transaction} \; (\mt{option} \; \mt{string}) \\
adam@1465 1455 \\
adam@1465 1456 \mt{type} \; \mt{responseHeader} \\
adam@1465 1457 \mt{val} \; \mt{blessResponseHeader} : \mt{string} \to \mt{responseHeader} \\
adam@1465 1458 \mt{val} \; \mt{checkResponseHeader} : \mt{string} \to \mt{option} \; \mt{responseHeader} \\
adam@1465 1459 \mt{val} \; \mt{setHeader} : \mt{responseHeader} \to \mt{string} \to \mt{transaction} \; \mt{unit}
adam@1465 1460 \end{array}$$
adam@1465 1461
adamc@786 1462 A blob can be extracted from a file and returned as the page result. There are bless and check functions for MIME types analogous to those for URLs.
adamc@786 1463 $$\begin{array}{l}
adamc@786 1464 \mt{type} \; \mt{mimeType} \\
adamc@786 1465 \mt{val} \; \mt{blessMime} : \mt{string} \to \mt{mimeType} \\
adamc@786 1466 \mt{val} \; \mt{checkMime} : \mt{string} \to \mt{option} \; \mt{mimeType} \\
adamc@786 1467 \mt{val} \; \mt{returnBlob} : \mt{t} ::: \mt{Type} \to \mt{blob} \to \mt{mimeType} \to \mt{transaction} \; \mt{t}
adamc@542 1468 \end{array}$$
adamc@542 1469
adamc@543 1470 \subsection{SQL}
adamc@543 1471
adam@1400 1472 Everything about SQL database access is restricted to server-side code.
adam@1400 1473
adamc@543 1474 The fundamental unit of interest in the embedding of SQL is tables, described by a type family and creatable only via the $\mt{table}$ declaration form.
adamc@543 1475 $$\begin{array}{l}
adamc@785 1476 \mt{con} \; \mt{sql\_table} :: \{\mt{Type}\} \to \{\{\mt{Unit}\}\} \to \mt{Type}
adamc@785 1477 \end{array}$$
adamc@785 1478 The first argument to this constructor gives the names and types of a table's columns, and the second argument gives the set of valid keys. Keys are the only subsets of the columns that may be referenced as foreign keys. Each key has a name.
adamc@785 1479
adamc@785 1480 We also have the simpler type family of SQL views, which have no keys.
adamc@785 1481 $$\begin{array}{l}
adamc@785 1482 \mt{con} \; \mt{sql\_view} :: \{\mt{Type}\} \to \mt{Type}
adamc@543 1483 \end{array}$$
adamc@543 1484
adamc@785 1485 A multi-parameter type class is used to allow tables and views to be used interchangeably, with a way of extracting the set of columns from each.
adamc@785 1486 $$\begin{array}{l}
adamc@785 1487 \mt{class} \; \mt{fieldsOf} :: \mt{Type} \to \{\mt{Type}\} \to \mt{Type} \\
adamc@785 1488 \mt{val} \; \mt{fieldsOf\_table} : \mt{fs} ::: \{\mt{Type}\} \to \mt{keys} ::: \{\{\mt{Unit}\}\} \to \mt{fieldsOf} \; (\mt{sql\_table} \; \mt{fs} \; \mt{keys}) \; \mt{fs} \\
adamc@785 1489 \mt{val} \; \mt{fieldsOf\_view} : \mt{fs} ::: \{\mt{Type}\} \to \mt{fieldsOf} \; (\mt{sql\_view} \; \mt{fs}) \; \mt{fs}
adamc@785 1490 \end{array}$$
adamc@785 1491
adamc@785 1492 \subsubsection{Table Constraints}
adamc@785 1493
adamc@785 1494 Tables may be declared with constraints, such that database modifications that violate the constraints are blocked. A table may have at most one \texttt{PRIMARY KEY} constraint, which gives the subset of columns that will most often be used to look up individual rows in the table.
adamc@785 1495
adamc@785 1496 $$\begin{array}{l}
adamc@785 1497 \mt{con} \; \mt{primary\_key} :: \{\mt{Type}\} \to \{\{\mt{Unit}\}\} \to \mt{Type} \\
adamc@785 1498 \mt{val} \; \mt{no\_primary\_key} : \mt{fs} ::: \{\mt{Type}\} \to \mt{primary\_key} \; \mt{fs} \; [] \\
adamc@785 1499 \mt{val} \; \mt{primary\_key} : \mt{rest} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \to \mt{key1} :: \mt{Name} \to \mt{keys} :: \{\mt{Type}\} \\
adamc@785 1500 \hspace{.1in} \to [[\mt{key1}] \sim \mt{keys}] \Rightarrow [[\mt{key1} = \mt{t}] \rc \mt{keys} \sim \mt{rest}] \\
adamc@785 1501 \hspace{.1in} \Rightarrow \$([\mt{key1} = \mt{sql\_injectable\_prim} \; \mt{t}] \rc \mt{map} \; \mt{sql\_injectable\_prim} \; \mt{keys}) \\
adamc@785 1502 \hspace{.1in} \to \mt{primary\_key} \; ([\mt{key1} = \mt{t}] \rc \mt{keys} \rc \mt{rest}) \; [\mt{Pkey} = [\mt{key1}] \rc \mt{map} \; (\lambda \_ \Rightarrow ()) \; \mt{keys}]
adamc@785 1503 \end{array}$$
adamc@785 1504 The type class $\mt{sql\_injectable\_prim}$ characterizes which types are allowed in SQL and are not $\mt{option}$ types. In SQL, a \texttt{PRIMARY KEY} constraint enforces after-the-fact that a column may not contain \texttt{NULL}s, but Ur/Web forces that information to be included in table types from the beginning. Thus, the only effect of this kind of constraint in Ur/Web is to enforce uniqueness of the given key within the table.
adamc@785 1505
adamc@785 1506 A type family stands for sets of named constraints of the remaining varieties.
adamc@785 1507 $$\begin{array}{l}
adamc@785 1508 \mt{con} \; \mt{sql\_constraints} :: \{\mt{Type}\} \to \{\{\mt{Unit}\}\} \to \mt{Type}
adamc@785 1509 \end{array}$$
adamc@785 1510 The first argument gives the column types of the table being constrained, and the second argument maps constraint names to the keys that they define. Constraints that don't define keys are mapped to ``empty keys.''
adamc@785 1511
adamc@785 1512 There is a type family of individual, unnamed constraints.
adamc@785 1513 $$\begin{array}{l}
adamc@785 1514 \mt{con} \; \mt{sql\_constraint} :: \{\mt{Type}\} \to \{\mt{Unit}\} \to \mt{Type}
adamc@785 1515 \end{array}$$
adamc@785 1516 The first argument is the same as above, and the second argument gives the key columns for just this constraint.
adamc@785 1517
adamc@785 1518 We have operations for assembling constraints into constraint sets.
adamc@785 1519 $$\begin{array}{l}
adamc@785 1520 \mt{val} \; \mt{no\_constraint} : \mt{fs} ::: \{\mt{Type}\} \to \mt{sql\_constraints} \; \mt{fs} \; [] \\
adamc@785 1521 \mt{val} \; \mt{one\_constraint} : \mt{fs} ::: \{\mt{Type}\} \to \mt{unique} ::: \{\mt{Unit}\} \to \mt{name} :: \mt{Name} \\
adamc@785 1522 \hspace{.1in} \to \mt{sql\_constraint} \; \mt{fs} \; \mt{unique} \to \mt{sql\_constraints} \; \mt{fs} \; [\mt{name} = \mt{unique}] \\
adamc@785 1523 \mt{val} \; \mt{join\_constraints} : \mt{fs} ::: \{\mt{Type}\} \to \mt{uniques1} ::: \{\{\mt{Unit}\}\} \to \mt{uniques2} ::: \{\{\mt{Unit}\}\} \to [\mt{uniques1} \sim \mt{uniques2}] \\
adamc@785 1524 \hspace{.1in} \Rightarrow \mt{sql\_constraints} \; \mt{fs} \; \mt{uniques1} \to \mt{sql\_constraints} \; \mt{fs} \; \mt{uniques2} \to \mt{sql\_constraints} \; \mt{fs} \; (\mt{uniques1} \rc \mt{uniques2})
adamc@785 1525 \end{array}$$
adamc@785 1526
adamc@785 1527 A \texttt{UNIQUE} constraint forces a set of columns to be a key, which means that no combination of column values may occur more than once in the table. The $\mt{unique1}$ and $\mt{unique}$ arguments are separated out only to ensure that empty \texttt{UNIQUE} constraints are rejected.
adamc@785 1528 $$\begin{array}{l}
adamc@785 1529 \mt{val} \; \mt{unique} : \mt{rest} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \to \mt{unique1} :: \mt{Name} \to \mt{unique} :: \{\mt{Type}\} \\
adamc@785 1530 \hspace{.1in} \to [[\mt{unique1}] \sim \mt{unique}] \Rightarrow [[\mt{unique1} = \mt{t}] \rc \mt{unique} \sim \mt{rest}] \\
adamc@785 1531 \hspace{.1in} \Rightarrow \mt{sql\_constraint} \; ([\mt{unique1} = \mt{t}] \rc \mt{unique} \rc \mt{rest}) \; ([\mt{unique1}] \rc \mt{map} \; (\lambda \_ \Rightarrow ()) \; \mt{unique})
adamc@785 1532 \end{array}$$
adamc@785 1533
adamc@785 1534 A \texttt{FOREIGN KEY} constraint connects a set of local columns to a local or remote key, enforcing that the local columns always reference an existent row of the foreign key's table. A local column of type $\mt{t}$ may be linked to a foreign column of type $\mt{option} \; \mt{t}$, and vice versa. We formalize that notion with a type class.
adamc@785 1535 $$\begin{array}{l}
adamc@785 1536 \mt{class} \; \mt{linkable} :: \mt{Type} \to \mt{Type} \to \mt{Type} \\
adamc@785 1537 \mt{val} \; \mt{linkable\_same} : \mt{t} ::: \mt{Type} \to \mt{linkable} \; \mt{t} \; \mt{t} \\
adamc@785 1538 \mt{val} \; \mt{linkable\_from\_nullable} : \mt{t} ::: \mt{Type} \to \mt{linkable} \; (\mt{option} \; \mt{t}) \; \mt{t} \\
adamc@785 1539 \mt{val} \; \mt{linkable\_to\_nullable} : \mt{t} ::: \mt{Type} \to \mt{linkable} \; \mt{t} \; (\mt{option} \; \mt{t})
adamc@785 1540 \end{array}$$
adamc@785 1541
adamc@785 1542 The $\mt{matching}$ type family uses $\mt{linkable}$ to define when two keys match up type-wise.
adamc@785 1543 $$\begin{array}{l}
adamc@785 1544 \mt{con} \; \mt{matching} :: \{\mt{Type}\} \to \{\mt{Type}\} \to \mt{Type} \\
adamc@785 1545 \mt{val} \; \mt{mat\_nil} : \mt{matching} \; [] \; [] \\
adamc@785 1546 \mt{val} \; \mt{mat\_cons} : \mt{t1} ::: \mt{Type} \to \mt{rest1} ::: \{\mt{Type}\} \to \mt{t2} ::: \mt{Type} \to \mt{rest2} ::: \{\mt{Type}\} \to \mt{nm1} :: \mt{Name} \to \mt{nm2} :: \mt{Name} \\
adamc@785 1547 \hspace{.1in} \to [[\mt{nm1}] \sim \mt{rest1}] \Rightarrow [[\mt{nm2}] \sim \mt{rest2}] \Rightarrow \mt{linkable} \; \mt{t1} \; \mt{t2} \to \mt{matching} \; \mt{rest1} \; \mt{rest2} \\
adamc@785 1548 \hspace{.1in} \to \mt{matching} \; ([\mt{nm1} = \mt{t1}] \rc \mt{rest1}) \; ([\mt{nm2} = \mt{t2}] \rc \mt{rest2})
adamc@785 1549 \end{array}$$
adamc@785 1550
adamc@785 1551 SQL provides a number of different propagation modes for \texttt{FOREIGN KEY} constraints, governing what happens when a row containing a still-referenced foreign key value is deleted or modified to have a different key value. The argument of a propagation mode's type gives the local key type.
adamc@785 1552 $$\begin{array}{l}
adamc@785 1553 \mt{con} \; \mt{propagation\_mode} :: \{\mt{Type}\} \to \mt{Type} \\
adamc@785 1554 \mt{val} \; \mt{restrict} : \mt{fs} ::: \{\mt{Type}\} \to \mt{propagation\_mode} \; \mt{fs} \\
adamc@785 1555 \mt{val} \; \mt{cascade} : \mt{fs} ::: \{\mt{Type}\} \to \mt{propagation\_mode} \; \mt{fs} \\
adamc@785 1556 \mt{val} \; \mt{no\_action} : \mt{fs} ::: \{\mt{Type}\} \to \mt{propagation\_mode} \; \mt{fs} \\
adamc@785 1557 \mt{val} \; \mt{set\_null} : \mt{fs} ::: \{\mt{Type}\} \to \mt{propagation\_mode} \; (\mt{map} \; \mt{option} \; \mt{fs})
adamc@785 1558 \end{array}$$
adamc@785 1559
adamc@785 1560 Finally, we put these ingredient together to define the \texttt{FOREIGN KEY} constraint function.
adamc@785 1561 $$\begin{array}{l}
adamc@785 1562 \mt{val} \; \mt{foreign\_key} : \mt{mine1} ::: \mt{Name} \to \mt{t} ::: \mt{Type} \to \mt{mine} ::: \{\mt{Type}\} \to \mt{munused} ::: \{\mt{Type}\} \to \mt{foreign} ::: \{\mt{Type}\} \\
adamc@785 1563 \hspace{.1in} \to \mt{funused} ::: \{\mt{Type}\} \to \mt{nm} ::: \mt{Name} \to \mt{uniques} ::: \{\{\mt{Unit}\}\} \\
adamc@785 1564 \hspace{.1in} \to [[\mt{mine1}] \sim \mt{mine}] \Rightarrow [[\mt{mine1} = \mt{t}] \rc \mt{mine} \sim \mt{munused}] \Rightarrow [\mt{foreign} \sim \mt{funused}] \Rightarrow [[\mt{nm}] \sim \mt{uniques}] \\
adamc@785 1565 \hspace{.1in} \Rightarrow \mt{matching} \; ([\mt{mine1} = \mt{t}] \rc \mt{mine}) \; \mt{foreign} \\
adamc@785 1566 \hspace{.1in} \to \mt{sql\_table} \; (\mt{foreign} \rc \mt{funused}) \; ([\mt{nm} = \mt{map} \; (\lambda \_ \Rightarrow ()) \; \mt{foreign}] \rc \mt{uniques}) \\
adamc@785 1567 \hspace{.1in} \to \{\mt{OnDelete} : \mt{propagation\_mode} \; ([\mt{mine1} = \mt{t}] \rc \mt{mine}), \\
adamc@785 1568 \hspace{.2in} \mt{OnUpdate} : \mt{propagation\_mode} \; ([\mt{mine1} = \mt{t}] \rc \mt{mine})\} \\
adamc@785 1569 \hspace{.1in} \to \mt{sql\_constraint} \; ([\mt{mine1} = \mt{t}] \rc \mt{mine} \rc \mt{munused}) \; []
adamc@785 1570 \end{array}$$
adamc@785 1571
adamc@785 1572 The last kind of constraint is a \texttt{CHECK} constraint, which attaches a boolean invariant over a row's contents. It is defined using the $\mt{sql\_exp}$ type family, which we discuss in more detail below.
adamc@785 1573 $$\begin{array}{l}
adamc@785 1574 \mt{val} \; \mt{check} : \mt{fs} ::: \{\mt{Type}\} \to \mt{sql\_exp} \; [] \; [] \; \mt{fs} \; \mt{bool} \to \mt{sql\_constraint} \; \mt{fs} \; []
adamc@785 1575 \end{array}$$
adamc@785 1576
adamc@785 1577 Section \ref{tables} shows the expanded syntax of the $\mt{table}$ declaration and signature item that includes constraints. There is no other way to use constraints with SQL in Ur/Web.
adamc@785 1578
adamc@784 1579
adamc@543 1580 \subsubsection{Queries}
adamc@543 1581
adam@1400 1582 A final query is constructed via the $\mt{sql\_query}$ function. Constructor arguments respectively specify the unrestricted free table variables (which will only be available in subqueries), the free table variables that may only be mentioned within arguments to aggregate functions, table fields we select (as records mapping tables to the subsets of their fields that we choose), and the (always named) extra expressions that we select.
adamc@543 1583 $$\begin{array}{l}
adam@1400 1584 \mt{con} \; \mt{sql\_query} :: \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \\
adamc@1193 1585 \mt{val} \; \mt{sql\_query} : \mt{free} ::: \{\{\mt{Type}\}\} \\
adam@1400 1586 \hspace{.1in} \to \mt{afree} ::: \{\{\mt{Type}\}\} \\
adamc@1193 1587 \hspace{.1in} \to \mt{tables} ::: \{\{\mt{Type}\}\} \\
adamc@543 1588 \hspace{.1in} \to \mt{selectedFields} ::: \{\{\mt{Type}\}\} \\
adamc@543 1589 \hspace{.1in} \to \mt{selectedExps} ::: \{\mt{Type}\} \\
adamc@1193 1590 \hspace{.1in} \to [\mt{free} \sim \mt{tables}] \\
adam@1400 1591 \hspace{.1in} \Rightarrow \{\mt{Rows} : \mt{sql\_query1} \; \mt{free} \; \mt{afree} \; \mt{tables} \; \mt{selectedFields} \; \mt{selectedExps}, \\
adamc@1193 1592 \hspace{.2in} \mt{OrderBy} : \mt{sql\_order\_by} \; (\mt{free} \rc \mt{tables}) \; \mt{selectedExps}, \\
adamc@543 1593 \hspace{.2in} \mt{Limit} : \mt{sql\_limit}, \\
adamc@543 1594 \hspace{.2in} \mt{Offset} : \mt{sql\_offset}\} \\
adam@1400 1595 \hspace{.1in} \to \mt{sql\_query} \; \mt{free} \; \mt{afree} \; \mt{selectedFields} \; \mt{selectedExps}
adamc@543 1596 \end{array}$$
adamc@543 1597
adamc@545 1598 Queries are used by folding over their results inside transactions.
adamc@545 1599 $$\begin{array}{l}
adam@1400 1600 \mt{val} \; \mt{query} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to [\mt{tables} \sim \mt{exps}] \Rightarrow \mt{state} ::: \mt{Type} \to \mt{sql\_query} \; [] \; [] \; \mt{tables} \; \mt{exps} \\
adamc@658 1601 \hspace{.1in} \to (\$(\mt{exps} \rc \mt{map} \; (\lambda \mt{fields} :: \{\mt{Type}\} \Rightarrow \$\mt{fields}) \; \mt{tables}) \\
adamc@545 1602 \hspace{.2in} \to \mt{state} \to \mt{transaction} \; \mt{state}) \\
adamc@545 1603 \hspace{.1in} \to \mt{state} \to \mt{transaction} \; \mt{state}
adamc@545 1604 \end{array}$$
adamc@545 1605
adam@1400 1606 Most of the complexity of the query encoding is in the type $\mt{sql\_query1}$, which includes simple queries and derived queries based on relational operators. Constructor arguments respectively specify the unrestricted free table veriables, the aggregate-only free table variables, the tables we select from, the subset of fields that we keep from each table for the result rows, and the extra expressions that we select.
adamc@543 1607 $$\begin{array}{l}
adam@1400 1608 \mt{con} \; \mt{sql\_query1} :: \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \\
adamc@543 1609 \\
adamc@543 1610 \mt{type} \; \mt{sql\_relop} \\
adamc@543 1611 \mt{val} \; \mt{sql\_union} : \mt{sql\_relop} \\
adamc@543 1612 \mt{val} \; \mt{sql\_intersect} : \mt{sql\_relop} \\
adamc@543 1613 \mt{val} \; \mt{sql\_except} : \mt{sql\_relop} \\
adam@1400 1614 \mt{val} \; \mt{sql\_relop} : \mt{free} ::: \{\{\mt{Type}\}\} \\
adam@1400 1615 \hspace{.1in} \to \mt{afree} ::: \{\{\mt{Type}\}\} \\
adam@1400 1616 \hspace{.1in} \to \mt{tables1} ::: \{\{\mt{Type}\}\} \\
adamc@543 1617 \hspace{.1in} \to \mt{tables2} ::: \{\{\mt{Type}\}\} \\
adamc@543 1618 \hspace{.1in} \to \mt{selectedFields} ::: \{\{\mt{Type}\}\} \\
adamc@543 1619 \hspace{.1in} \to \mt{selectedExps} ::: \{\mt{Type}\} \\
adamc@543 1620 \hspace{.1in} \to \mt{sql\_relop} \\
adam@1458 1621 \hspace{.1in} \to \mt{bool} \; (* \; \mt{ALL} \; *) \\
adam@1400 1622 \hspace{.1in} \to \mt{sql\_query1} \; \mt{free} \; \mt{afree} \; \mt{tables1} \; \mt{selectedFields} \; \mt{selectedExps} \\
adam@1400 1623 \hspace{.1in} \to \mt{sql\_query1} \; \mt{free} \; \mt{afree} \; \mt{tables2} \; \mt{selectedFields} \; \mt{selectedExps} \\
adam@1400 1624 \hspace{.1in} \to \mt{sql\_query1} \; \mt{free} \; \mt{afree} \; \mt{selectedFields} \; \mt{selectedFields} \; \mt{selectedExps}
adamc@543 1625 \end{array}$$
adamc@543 1626
adamc@543 1627 $$\begin{array}{l}
adamc@1193 1628 \mt{val} \; \mt{sql\_query1} : \mt{free} ::: \{\{\mt{Type}\}\} \\
adam@1400 1629 \hspace{.1in} \to \mt{afree} ::: \{\{\mt{Type}\}\} \\
adamc@1193 1630 \hspace{.1in} \to \mt{tables} ::: \{\{\mt{Type}\}\} \\
adamc@543 1631 \hspace{.1in} \to \mt{grouped} ::: \{\{\mt{Type}\}\} \\
adamc@543 1632 \hspace{.1in} \to \mt{selectedFields} ::: \{\{\mt{Type}\}\} \\
adamc@543 1633 \hspace{.1in} \to \mt{selectedExps} ::: \{\mt{Type}\} \\
adamc@1085 1634 \hspace{.1in} \to \mt{empties} :: \{\mt{Unit}\} \\
adamc@1193 1635 \hspace{.1in} \to [\mt{free} \sim \mt{tables}] \\
adamc@1193 1636 \hspace{.1in} \Rightarrow [\mt{free} \sim \mt{grouped}] \\
adam@1400 1637 \hspace{.1in} \Rightarrow [\mt{afree} \sim \mt{tables}] \\
adamc@1193 1638 \hspace{.1in} \Rightarrow [\mt{empties} \sim \mt{selectedFields}] \\
adamc@1085 1639 \hspace{.1in} \Rightarrow \{\mt{Distinct} : \mt{bool}, \\
adamc@1193 1640 \hspace{.2in} \mt{From} : \mt{sql\_from\_items} \; \mt{free} \; \mt{tables}, \\
adam@1400 1641 \hspace{.2in} \mt{Where} : \mt{sql\_exp} \; (\mt{free} \rc \mt{tables}) \; \mt{afree} \; [] \; \mt{bool}, \\
adamc@543 1642 \hspace{.2in} \mt{GroupBy} : \mt{sql\_subset} \; \mt{tables} \; \mt{grouped}, \\
adam@1400 1643 \hspace{.2in} \mt{Having} : \mt{sql\_exp} \; (\mt{free} \rc \mt{grouped}) \; (\mt{afree} \rc \mt{tables}) \; [] \; \mt{bool}, \\
adamc@1085 1644 \hspace{.2in} \mt{SelectFields} : \mt{sql\_subset} \; \mt{grouped} \; (\mt{map} \; (\lambda \_ \Rightarrow []) \; \mt{empties} \rc \mt{selectedFields}), \\
adam@1400 1645 \hspace{.2in} \mt {SelectExps} : \$(\mt{map} \; (\mt{sql\_exp} \; (\mt{free} \rc \mt{grouped}) \; (\mt{afree} \rc \mt{tables}) \; []) \; \mt{selectedExps}) \} \\
adam@1400 1646 \hspace{.1in} \to \mt{sql\_query1} \; \mt{free} \; \mt{afree} \; \mt{tables} \; \mt{selectedFields} \; \mt{selectedExps}
adamc@543 1647 \end{array}$$
adamc@543 1648
adamc@543 1649 To encode projection of subsets of fields in $\mt{SELECT}$ clauses, and to encode $\mt{GROUP} \; \mt{BY}$ clauses, we rely on a type family $\mt{sql\_subset}$, capturing what it means for one record of table fields to be a subset of another. The main constructor $\mt{sql\_subset}$ ``proves subset facts'' by requiring a split of a record into kept and dropped parts. The extra constructor $\mt{sql\_subset\_all}$ is a convenience for keeping all fields of a record.
adamc@543 1650 $$\begin{array}{l}
adamc@543 1651 \mt{con} \; \mt{sql\_subset} :: \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \mt{Type} \\
adamc@543 1652 \mt{val} \; \mt{sql\_subset} : \mt{keep\_drop} :: \{(\{\mt{Type}\} \times \{\mt{Type}\})\} \\
adamc@543 1653 \hspace{.1in} \to \mt{sql\_subset} \\
adamc@658 1654 \hspace{.2in} (\mt{map} \; (\lambda \mt{fields} :: (\{\mt{Type}\} \times \{\mt{Type}\}) \Rightarrow \mt{fields}.1 \rc \mt{fields}.2)\; \mt{keep\_drop}) \\
adamc@658 1655 \hspace{.2in} (\mt{map} \; (\lambda \mt{fields} :: (\{\mt{Type}\} \times \{\mt{Type}\}) \Rightarrow \mt{fields}.1) \; \mt{keep\_drop}) \\
adamc@543 1656 \mt{val} \; \mt{sql\_subset\_all} : \mt{tables} :: \{\{\mt{Type}\}\} \to \mt{sql\_subset} \; \mt{tables} \; \mt{tables}
adamc@543 1657 \end{array}$$
adamc@543 1658
adamc@560 1659 SQL expressions are used in several places, including $\mt{SELECT}$, $\mt{WHERE}$, $\mt{HAVING}$, and $\mt{ORDER} \; \mt{BY}$ clauses. They reify a fragment of the standard SQL expression language, while making it possible to inject ``native'' Ur values in some places. The arguments to the $\mt{sql\_exp}$ type family respectively give the unrestricted-availability table fields, the table fields that may only be used in arguments to aggregate functions, the available selected expressions, and the type of the expression.
adamc@543 1660 $$\begin{array}{l}
adamc@543 1661 \mt{con} \; \mt{sql\_exp} :: \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \to \mt{Type}
adamc@543 1662 \end{array}$$
adamc@543 1663
adamc@543 1664 Any field in scope may be converted to an expression.
adamc@543 1665 $$\begin{array}{l}
adamc@543 1666 \mt{val} \; \mt{sql\_field} : \mt{otherTabs} ::: \{\{\mt{Type}\}\} \to \mt{otherFields} ::: \{\mt{Type}\} \\
adamc@543 1667 \hspace{.1in} \to \mt{fieldType} ::: \mt{Type} \to \mt{agg} ::: \{\{\mt{Type}\}\} \\
adamc@543 1668 \hspace{.1in} \to \mt{exps} ::: \{\mt{Type}\} \\
adamc@543 1669 \hspace{.1in} \to \mt{tab} :: \mt{Name} \to \mt{field} :: \mt{Name} \\
adamc@543 1670 \hspace{.1in} \to \mt{sql\_exp} \; ([\mt{tab} = [\mt{field} = \mt{fieldType}] \rc \mt{otherFields}] \rc \mt{otherTabs}) \; \mt{agg} \; \mt{exps} \; \mt{fieldType}
adamc@543 1671 \end{array}$$
adamc@543 1672
adamc@544 1673 There is an analogous function for referencing named expressions.
adamc@544 1674 $$\begin{array}{l}
adamc@544 1675 \mt{val} \; \mt{sql\_exp} : \mt{tabs} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{t} ::: \mt{Type} \to \mt{rest} ::: \{\mt{Type}\} \to \mt{nm} :: \mt{Name} \\
adamc@544 1676 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tabs} \; \mt{agg} \; ([\mt{nm} = \mt{t}] \rc \mt{rest}) \; \mt{t}
adamc@544 1677 \end{array}$$
adamc@544 1678
adamc@544 1679 Ur values of appropriate types may be injected into SQL expressions.
adamc@544 1680 $$\begin{array}{l}
adamc@786 1681 \mt{class} \; \mt{sql\_injectable\_prim} \\
adamc@786 1682 \mt{val} \; \mt{sql\_bool} : \mt{sql\_injectable\_prim} \; \mt{bool} \\
adamc@786 1683 \mt{val} \; \mt{sql\_int} : \mt{sql\_injectable\_prim} \; \mt{int} \\
adamc@786 1684 \mt{val} \; \mt{sql\_float} : \mt{sql\_injectable\_prim} \; \mt{float} \\
adamc@786 1685 \mt{val} \; \mt{sql\_string} : \mt{sql\_injectable\_prim} \; \mt{string} \\
adamc@786 1686 \mt{val} \; \mt{sql\_time} : \mt{sql\_injectable\_prim} \; \mt{time} \\
adamc@786 1687 \mt{val} \; \mt{sql\_blob} : \mt{sql\_injectable\_prim} \; \mt{blob} \\
adamc@786 1688 \mt{val} \; \mt{sql\_channel} : \mt{t} ::: \mt{Type} \to \mt{sql\_injectable\_prim} \; (\mt{channel} \; \mt{t}) \\
adamc@786 1689 \mt{val} \; \mt{sql\_client} : \mt{sql\_injectable\_prim} \; \mt{client} \\
adamc@786 1690 \\
adamc@544 1691 \mt{class} \; \mt{sql\_injectable} \\
adamc@786 1692 \mt{val} \; \mt{sql\_prim} : \mt{t} ::: \mt{Type} \to \mt{sql\_injectable\_prim} \; \mt{t} \to \mt{sql\_injectable} \; \mt{t} \\
adamc@786 1693 \mt{val} \; \mt{sql\_option\_prim} : \mt{t} ::: \mt{Type} \to \mt{sql\_injectable\_prim} \; \mt{t} \to \mt{sql\_injectable} \; (\mt{option} \; \mt{t}) \\
adamc@786 1694 \\
adamc@544 1695 \mt{val} \; \mt{sql\_inject} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \to \mt{sql\_injectable} \; \mt{t} \\
adamc@544 1696 \hspace{.1in} \to \mt{t} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t}
adamc@544 1697 \end{array}$$
adamc@544 1698
adamc@1123 1699 Additionally, most function-free types may be injected safely, via the $\mt{serialized}$ type family.
adamc@1123 1700 $$\begin{array}{l}
adamc@1123 1701 \mt{con} \; \mt{serialized} :: \mt{Type} \to \mt{Type} \\
adamc@1123 1702 \mt{val} \; \mt{serialize} : \mt{t} ::: \mt{Type} \to \mt{t} \to \mt{serialized} \; \mt{t} \\
adamc@1123 1703 \mt{val} \; \mt{deserialize} : \mt{t} ::: \mt{Type} \to \mt{serialized} \; \mt{t} \to \mt{t} \\
adamc@1123 1704 \mt{val} \; \mt{sql\_serialized} : \mt{t} ::: \mt{Type} \to \mt{sql\_injectable\_prim} \; (\mt{serialized} \; \mt{t})
adamc@1123 1705 \end{array}$$
adamc@1123 1706
adamc@544 1707 We have the SQL nullness test, which is necessary because of the strange SQL semantics of equality in the presence of null values.
adamc@544 1708 $$\begin{array}{l}
adamc@544 1709 \mt{val} \; \mt{sql\_is\_null} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \\
adamc@544 1710 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; (\mt{option} \; \mt{t}) \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{bool}
adamc@544 1711 \end{array}$$
adamc@544 1712
adam@1602 1713 As another way of dealing with null values, there is also a restricted form of the standard \cd{COALESCE} function.
adam@1602 1714 $$\begin{array}{l}
adam@1602 1715 \mt{val} \; \mt{sql\_coalesce} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \\
adam@1602 1716 \hspace{.1in} \to \mt{t} ::: \mt{Type} \\
adam@1602 1717 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; (\mt{option} \; \mt{t}) \\
adam@1602 1718 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t} \\
adam@1602 1719 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t}
adam@1602 1720 \end{array}$$
adam@1602 1721
adamc@559 1722 We have generic nullary, unary, and binary operators.
adamc@544 1723 $$\begin{array}{l}
adamc@544 1724 \mt{con} \; \mt{sql\_nfunc} :: \mt{Type} \to \mt{Type} \\
adamc@544 1725 \mt{val} \; \mt{sql\_current\_timestamp} : \mt{sql\_nfunc} \; \mt{time} \\
adamc@544 1726 \mt{val} \; \mt{sql\_nfunc} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \\
adamc@544 1727 \hspace{.1in} \to \mt{sql\_nfunc} \; \mt{t} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t} \\\end{array}$$
adamc@544 1728
adamc@544 1729 $$\begin{array}{l}
adamc@544 1730 \mt{con} \; \mt{sql\_unary} :: \mt{Type} \to \mt{Type} \to \mt{Type} \\
adamc@544 1731 \mt{val} \; \mt{sql\_not} : \mt{sql\_unary} \; \mt{bool} \; \mt{bool} \\
adamc@544 1732 \mt{val} \; \mt{sql\_unary} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{arg} ::: \mt{Type} \to \mt{res} ::: \mt{Type} \\
adamc@544 1733 \hspace{.1in} \to \mt{sql\_unary} \; \mt{arg} \; \mt{res} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{arg} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{res} \\
adamc@544 1734 \end{array}$$
adamc@544 1735
adamc@544 1736 $$\begin{array}{l}
adamc@544 1737 \mt{con} \; \mt{sql\_binary} :: \mt{Type} \to \mt{Type} \to \mt{Type} \to \mt{Type} \\
adamc@544 1738 \mt{val} \; \mt{sql\_and} : \mt{sql\_binary} \; \mt{bool} \; \mt{bool} \; \mt{bool} \\
adamc@544 1739 \mt{val} \; \mt{sql\_or} : \mt{sql\_binary} \; \mt{bool} \; \mt{bool} \; \mt{bool} \\
adamc@544 1740 \mt{val} \; \mt{sql\_binary} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{arg_1} ::: \mt{Type} \to \mt{arg_2} ::: \mt{Type} \to \mt{res} ::: \mt{Type} \\
adamc@544 1741 \hspace{.1in} \to \mt{sql\_binary} \; \mt{arg_1} \; \mt{arg_2} \; \mt{res} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{arg_1} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{arg_2} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{res}
adamc@544 1742 \end{array}$$
adamc@544 1743
adamc@544 1744 $$\begin{array}{l}
adamc@559 1745 \mt{class} \; \mt{sql\_arith} \\
adamc@559 1746 \mt{val} \; \mt{sql\_int\_arith} : \mt{sql\_arith} \; \mt{int} \\
adamc@559 1747 \mt{val} \; \mt{sql\_float\_arith} : \mt{sql\_arith} \; \mt{float} \\
adamc@559 1748 \mt{val} \; \mt{sql\_neg} : \mt{t} ::: \mt{Type} \to \mt{sql\_arith} \; \mt{t} \to \mt{sql\_unary} \; \mt{t} \; \mt{t} \\
adamc@559 1749 \mt{val} \; \mt{sql\_plus} : \mt{t} ::: \mt{Type} \to \mt{sql\_arith} \; \mt{t} \to \mt{sql\_binary} \; \mt{t} \; \mt{t} \; \mt{t} \\
adamc@559 1750 \mt{val} \; \mt{sql\_minus} : \mt{t} ::: \mt{Type} \to \mt{sql\_arith} \; \mt{t} \to \mt{sql\_binary} \; \mt{t} \; \mt{t} \; \mt{t} \\
adamc@559 1751 \mt{val} \; \mt{sql\_times} : \mt{t} ::: \mt{Type} \to \mt{sql\_arith} \; \mt{t} \to \mt{sql\_binary} \; \mt{t} \; \mt{t} \; \mt{t} \\
adamc@559 1752 \mt{val} \; \mt{sql\_div} : \mt{t} ::: \mt{Type} \to \mt{sql\_arith} \; \mt{t} \to \mt{sql\_binary} \; \mt{t} \; \mt{t} \; \mt{t} \\
adamc@559 1753 \mt{val} \; \mt{sql\_mod} : \mt{sql\_binary} \; \mt{int} \; \mt{int} \; \mt{int}
adamc@559 1754 \end{array}$$
adamc@544 1755
adamc@656 1756 Finally, we have aggregate functions. The $\mt{COUNT(\ast)}$ syntax is handled specially, since it takes no real argument. The other aggregate functions are placed into a general type family, using constructor classes to restrict usage to properly-typed arguments. The key aspect of the $\mt{sql\_aggregate}$ function's type is the shift of aggregate-function-only fields into unrestricted fields.
adamc@544 1757 $$\begin{array}{l}
adamc@544 1758 \mt{val} \; \mt{sql\_count} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{int}
adamc@544 1759 \end{array}$$
adamc@544 1760
adamc@544 1761 $$\begin{array}{l}
adamc@1188 1762 \mt{con} \; \mt{sql\_aggregate} :: \mt{Type} \to \mt{Type} \to \mt{Type} \\
adamc@1188 1763 \mt{val} \; \mt{sql\_aggregate} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{dom} ::: \mt{Type} \to \mt{ran} ::: \mt{Type} \\
adamc@1188 1764 \hspace{.1in} \to \mt{sql\_aggregate} \; \mt{dom} \; \mt{ran} \to \mt{sql\_exp} \; \mt{agg} \; \mt{agg} \; \mt{exps} \; \mt{dom} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{ran}
adamc@1188 1765 \end{array}$$
adamc@1188 1766
adamc@1188 1767 $$\begin{array}{l}
adamc@1188 1768 \mt{val} \; \mt{sql\_count\_col} : \mt{t} ::: \mt{Type} \to \mt{sql\_aggregate} \; (\mt{option} \; \mt{t}) \; \mt{int}
adamc@544 1769 \end{array}$$
adam@1400 1770
adam@1400 1771 Most aggregate functions are typed using a two-parameter constructor class $\mt{nullify}$ which maps $\mt{option}$ types to themselves and adds $\mt{option}$ to others. That is, this constructor class represents the process of making an SQL type ``nullable.''
adamc@544 1772
adamc@544 1773 $$\begin{array}{l}
adamc@544 1774 \mt{class} \; \mt{sql\_summable} \\
adamc@544 1775 \mt{val} \; \mt{sql\_summable\_int} : \mt{sql\_summable} \; \mt{int} \\
adamc@544 1776 \mt{val} \; \mt{sql\_summable\_float} : \mt{sql\_summable} \; \mt{float} \\
adam@1400 1777 \mt{val} \; \mt{sql\_avg} : \mt{t} ::: \mt{Type} \to \mt{nt} ::: \mt{Type} \to \mt{sql\_summable} \; \mt{t} \to \mt{nullify} \; \mt{t} \; \mt{nt} \to \mt{sql\_aggregate} \; \mt{t} \; \mt{nt} \\
adam@1400 1778 \mt{val} \; \mt{sql\_sum} : \mt{t} ::: \mt{Type} \to \mt{nt} ::: \mt{Type} \to \mt{sql\_summable} \; \mt{t} \to \mt{nullify} \; \mt{t} \; \mt{nt} \to \mt{sql\_aggregate} \; \mt{t} \; \mt{nt}
adamc@544 1779 \end{array}$$
adamc@544 1780
adamc@544 1781 $$\begin{array}{l}
adamc@544 1782 \mt{class} \; \mt{sql\_maxable} \\
adamc@544 1783 \mt{val} \; \mt{sql\_maxable\_int} : \mt{sql\_maxable} \; \mt{int} \\
adamc@544 1784 \mt{val} \; \mt{sql\_maxable\_float} : \mt{sql\_maxable} \; \mt{float} \\
adamc@544 1785 \mt{val} \; \mt{sql\_maxable\_string} : \mt{sql\_maxable} \; \mt{string} \\
adamc@544 1786 \mt{val} \; \mt{sql\_maxable\_time} : \mt{sql\_maxable} \; \mt{time} \\
adam@1400 1787 \mt{val} \; \mt{sql\_max} : \mt{t} ::: \mt{Type} \to \mt{nt} ::: \mt{Type} \to \mt{sql\_maxable} \; \mt{t} \to \mt{nullify} \; \mt{t} \; \mt{nt} \to \mt{sql\_aggregate} \; \mt{t} \; \mt{nt} \\
adam@1400 1788 \mt{val} \; \mt{sql\_min} : \mt{t} ::: \mt{Type} \to \mt{nt} ::: \mt{Type} \to \mt{sql\_maxable} \; \mt{t} \to \mt{nullify} \; \mt{t} \; \mt{nt} \to \mt{sql\_aggregate} \; \mt{t} \; \mt{nt}
adamc@544 1789 \end{array}$$
adamc@544 1790
adamc@1193 1791 Any SQL query that returns single columns may be turned into a subquery expression.
adamc@1193 1792
adamc@786 1793 $$\begin{array}{l}
adam@1421 1794 \mt{val} \; \mt{sql\_subquery} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{nm} ::: \mt{Name} \to \mt{t} ::: \mt{Type} \to \mt{nt} ::: \mt{Type} \\
adam@1421 1795 \hspace{.1in} \to \mt{nullify} \; \mt{t} \; \mt{nt} \to \mt{sql\_query} \; \mt{tables} \; \mt{agg} \; [\mt{nm} = \mt{t}] \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{nt}
adamc@1193 1796 \end{array}$$
adamc@1193 1797
adam@1573 1798 There is also an \cd{IF..THEN..ELSE..} construct that is compiled into standard SQL \cd{CASE} expressions.
adam@1573 1799 $$\begin{array}{l}
adam@1573 1800 \mt{val} \; \mt{sql\_if\_then\_else} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \\
adam@1573 1801 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{bool} \\
adam@1573 1802 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t} \\
adam@1573 1803 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t} \\
adam@1573 1804 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t}
adam@1573 1805 \end{array}$$
adam@1573 1806
adamc@1193 1807 \texttt{FROM} clauses are specified using a type family, whose arguments are the free table variables and the table variables bound by this clause.
adamc@1193 1808 $$\begin{array}{l}
adamc@1193 1809 \mt{con} \; \mt{sql\_from\_items} :: \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \mt{Type} \\
adamc@1193 1810 \mt{val} \; \mt{sql\_from\_table} : \mt{free} ::: \{\{\mt{Type}\}\} \\
adamc@1193 1811 \hspace{.1in} \to \mt{t} ::: \mt{Type} \to \mt{fs} ::: \{\mt{Type}\} \to \mt{fieldsOf} \; \mt{t} \; \mt{fs} \to \mt{name} :: \mt{Name} \to \mt{t} \to \mt{sql\_from\_items} \; \mt{free} \; [\mt{name} = \mt{fs}] \\
adamc@1193 1812 \mt{val} \; \mt{sql\_from\_query} : \mt{free} ::: \{\{\mt{Type}\}\} \to \mt{fs} ::: \{\mt{Type}\} \to \mt{name} :: \mt{Name} \to \mt{sql\_query} \; \mt{free} \; [] \; \mt{fs} \to \mt{sql\_from\_items} \; \mt{free} \; [\mt{name} = \mt{fs}] \\
adamc@1193 1813 \mt{val} \; \mt{sql\_from\_comma} : \mt{free} ::: \mt{tabs1} ::: \{\{\mt{Type}\}\} \to \mt{tabs2} ::: \{\{\mt{Type}\}\} \to [\mt{tabs1} \sim \mt{tabs2}] \\
adamc@1193 1814 \hspace{.1in} \Rightarrow \mt{sql\_from\_items} \; \mt{free} \; \mt{tabs1} \to \mt{sql\_from\_items} \; \mt{free} \; \mt{tabs2} \\
adamc@1193 1815 \hspace{.1in} \to \mt{sql\_from\_items} \; \mt{free} \; (\mt{tabs1} \rc \mt{tabs2}) \\
adamc@1193 1816 \mt{val} \; \mt{sql\_inner\_join} : \mt{free} ::: \{\{\mt{Type}\}\} \to \mt{tabs1} ::: \{\{\mt{Type}\}\} \to \mt{tabs2} ::: \{\{\mt{Type}\}\} \\
adamc@1193 1817 \hspace{.1in} \to [\mt{free} \sim \mt{tabs1}] \Rightarrow [\mt{free} \sim \mt{tabs2}] \Rightarrow [\mt{tabs1} \sim \mt{tabs2}] \\
adamc@1193 1818 \hspace{.1in} \Rightarrow \mt{sql\_from\_items} \; \mt{free} \; \mt{tabs1} \to \mt{sql\_from\_items} \; \mt{free} \; \mt{tabs2} \\
adamc@1193 1819 \hspace{.1in} \to \mt{sql\_exp} \; (\mt{free} \rc \mt{tabs1} \rc \mt{tabs2}) \; [] \; [] \; \mt{bool} \\
adamc@1193 1820 \hspace{.1in} \to \mt{sql\_from\_items} \; \mt{free} \; (\mt{tabs1} \rc \mt{tabs2})
adamc@786 1821 \end{array}$$
adamc@786 1822
adamc@786 1823 Besides these basic cases, outer joins are supported, which requires a type class for turning non-$\mt{option}$ columns into $\mt{option}$ columns.
adamc@786 1824 $$\begin{array}{l}
adamc@786 1825 \mt{class} \; \mt{nullify} :: \mt{Type} \to \mt{Type} \to \mt{Type} \\
adamc@786 1826 \mt{val} \; \mt{nullify\_option} : \mt{t} ::: \mt{Type} \to \mt{nullify} \; (\mt{option} \; \mt{t}) \; (\mt{option} \; \mt{t}) \\
adamc@786 1827 \mt{val} \; \mt{nullify\_prim} : \mt{t} ::: \mt{Type} \to \mt{sql\_injectable\_prim} \; \mt{t} \to \mt{nullify} \; \mt{t} \; (\mt{option} \; \mt{t})
adamc@786 1828 \end{array}$$
adamc@786 1829
adamc@786 1830 Left, right, and full outer joins can now be expressed using functions that accept records of $\mt{nullify}$ instances. Here, we give only the type for a left join as an example.
adamc@786 1831
adamc@786 1832 $$\begin{array}{l}
adamc@1193 1833 \mt{val} \; \mt{sql\_left\_join} : \mt{free} ::: \{\{\mt{Type}\}\} \to \mt{tabs1} ::: \{\{\mt{Type}\}\} \to \mt{tabs2} ::: \{\{(\mt{Type} \times \mt{Type})\}\} \\
adamc@1193 1834 \hspace{.1in} \to [\mt{free} \sim \mt{tabs1}] \Rightarrow [\mt{free} \sim \mt{tabs2}] \Rightarrow [\mt{tabs1} \sim \mt{tabs2}] \\
adamc@786 1835 \hspace{.1in} \Rightarrow \$(\mt{map} \; (\lambda \mt{r} \Rightarrow \$(\mt{map} \; (\lambda \mt{p} :: (\mt{Type} \times \mt{Type}) \Rightarrow \mt{nullify} \; \mt{p}.1 \; \mt{p}.2) \; \mt{r})) \; \mt{tabs2}) \\
adamc@1193 1836 \hspace{.1in} \to \mt{sql\_from\_items} \; \mt{free} \; \mt{tabs1} \to \mt{sql\_from\_items} \; \mt{free} \; (\mt{map} \; (\mt{map} \; (\lambda \mt{p} :: (\mt{Type} \times \mt{Type}) \Rightarrow \mt{p}.1)) \; \mt{tabs2}) \\
adamc@1193 1837 \hspace{.1in} \to \mt{sql\_exp} \; (\mt{free} \rc \mt{tabs1} \rc \mt{map} \; (\mt{map} \; (\lambda \mt{p} :: (\mt{Type} \times \mt{Type}) \Rightarrow \mt{p}.1)) \; \mt{tabs2}) \; [] \; [] \; \mt{bool} \\
adamc@1193 1838 \hspace{.1in} \to \mt{sql\_from\_items} \; \mt{free} \; (\mt{tabs1} \rc \mt{map} \; (\mt{map} \; (\lambda \mt{p} :: (\mt{Type} \times \mt{Type}) \Rightarrow \mt{p}.2)) \; \mt{tabs2})
adamc@786 1839 \end{array}$$
adamc@786 1840
adamc@544 1841 We wrap up the definition of query syntax with the types used in representing $\mt{ORDER} \; \mt{BY}$, $\mt{LIMIT}$, and $\mt{OFFSET}$ clauses.
adamc@544 1842 $$\begin{array}{l}
adamc@544 1843 \mt{type} \; \mt{sql\_direction} \\
adamc@544 1844 \mt{val} \; \mt{sql\_asc} : \mt{sql\_direction} \\
adamc@544 1845 \mt{val} \; \mt{sql\_desc} : \mt{sql\_direction} \\
adamc@544 1846 \\
adamc@544 1847 \mt{con} \; \mt{sql\_order\_by} :: \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \\
adamc@544 1848 \mt{val} \; \mt{sql\_order\_by\_Nil} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{exps} :: \{\mt{Type}\} \to \mt{sql\_order\_by} \; \mt{tables} \; \mt{exps} \\
adamc@544 1849 \mt{val} \; \mt{sql\_order\_by\_Cons} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \\
adamc@544 1850 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tables} \; [] \; \mt{exps} \; \mt{t} \to \mt{sql\_direction} \to \mt{sql\_order\_by} \; \mt{tables} \; \mt{exps} \to \mt{sql\_order\_by} \; \mt{tables} \; \mt{exps} \\
adamc@544 1851 \\
adamc@544 1852 \mt{type} \; \mt{sql\_limit} \\
adamc@544 1853 \mt{val} \; \mt{sql\_no\_limit} : \mt{sql\_limit} \\
adamc@544 1854 \mt{val} \; \mt{sql\_limit} : \mt{int} \to \mt{sql\_limit} \\
adamc@544 1855 \\
adamc@544 1856 \mt{type} \; \mt{sql\_offset} \\
adamc@544 1857 \mt{val} \; \mt{sql\_no\_offset} : \mt{sql\_offset} \\
adamc@544 1858 \mt{val} \; \mt{sql\_offset} : \mt{int} \to \mt{sql\_offset}
adamc@544 1859 \end{array}$$
adamc@544 1860
adamc@545 1861
adamc@545 1862 \subsubsection{DML}
adamc@545 1863
adamc@545 1864 The Ur/Web library also includes an embedding of a fragment of SQL's DML, the Data Manipulation Language, for modifying database tables. Any piece of DML may be executed in a transaction.
adamc@545 1865
adamc@545 1866 $$\begin{array}{l}
adamc@545 1867 \mt{type} \; \mt{dml} \\
adamc@545 1868 \mt{val} \; \mt{dml} : \mt{dml} \to \mt{transaction} \; \mt{unit}
adamc@545 1869 \end{array}$$
adamc@545 1870
adam@1297 1871 The function $\mt{Basis.dml}$ will trigger a fatal application error if the command fails, for instance, because a data integrity constraint is violated. An alternate function returns an error message as a string instead.
adam@1297 1872
adam@1297 1873 $$\begin{array}{l}
adam@1297 1874 \mt{val} \; \mt{tryDml} : \mt{dml} \to \mt{transaction} \; (\mt{option} \; \mt{string})
adam@1297 1875 \end{array}$$
adam@1297 1876
adamc@545 1877 Properly-typed records may be used to form $\mt{INSERT}$ commands.
adamc@545 1878 $$\begin{array}{l}
adamc@545 1879 \mt{val} \; \mt{insert} : \mt{fields} ::: \{\mt{Type}\} \to \mt{sql\_table} \; \mt{fields} \\
adamc@658 1880 \hspace{.1in} \to \$(\mt{map} \; (\mt{sql\_exp} \; [] \; [] \; []) \; \mt{fields}) \to \mt{dml}
adamc@545 1881 \end{array}$$
adamc@545 1882
adam@1578 1883 An $\mt{UPDATE}$ command is formed from a choice of which table fields to leave alone and which to change, along with an expression to use to compute the new value of each changed field and a $\mt{WHERE}$ clause. Note that, in the table environment applied to expressions, the table being updated is hardcoded at the name $\mt{T}$. The parsing extension for $\mt{UPDATE}$ will elaborate all table-free field references to use table variable $\mt{T}$.
adamc@545 1884 $$\begin{array}{l}
adam@1380 1885 \mt{val} \; \mt{update} : \mt{unchanged} ::: \{\mt{Type}\} \to \mt{changed} :: \{\mt{Type}\} \to [\mt{changed} \sim \mt{unchanged}] \\
adamc@658 1886 \hspace{.1in} \Rightarrow \$(\mt{map} \; (\mt{sql\_exp} \; [\mt{T} = \mt{changed} \rc \mt{unchanged}] \; [] \; []) \; \mt{changed}) \\
adamc@545 1887 \hspace{.1in} \to \mt{sql\_table} \; (\mt{changed} \rc \mt{unchanged}) \to \mt{sql\_exp} \; [\mt{T} = \mt{changed} \rc \mt{unchanged}] \; [] \; [] \; \mt{bool} \to \mt{dml}
adamc@545 1888 \end{array}$$
adamc@545 1889
adam@1578 1890 A $\mt{DELETE}$ command is formed from a table and a $\mt{WHERE}$ clause. The above use of $\mt{T}$ is repeated.
adamc@545 1891 $$\begin{array}{l}
adamc@545 1892 \mt{val} \; \mt{delete} : \mt{fields} ::: \{\mt{Type}\} \to \mt{sql\_table} \; \mt{fields} \to \mt{sql\_exp} \; [\mt{T} = \mt{fields}] \; [] \; [] \; \mt{bool} \to \mt{dml}
adamc@545 1893 \end{array}$$
adamc@545 1894
adamc@546 1895 \subsubsection{Sequences}
adamc@546 1896
adamc@546 1897 SQL sequences are counters with concurrency control, often used to assign unique IDs. Ur/Web supports them via a simple interface. The only way to create a sequence is with the $\mt{sequence}$ declaration form.
adamc@546 1898
adamc@546 1899 $$\begin{array}{l}
adamc@546 1900 \mt{type} \; \mt{sql\_sequence} \\
adamc@1085 1901 \mt{val} \; \mt{nextval} : \mt{sql\_sequence} \to \mt{transaction} \; \mt{int} \\
adamc@1085 1902 \mt{val} \; \mt{setval} : \mt{sql\_sequence} \to \mt{int} \to \mt{transaction} \; \mt{unit}
adamc@546 1903 \end{array}$$
adamc@546 1904
adamc@546 1905
adamc@547 1906 \subsection{XML}
adamc@547 1907
adam@1333 1908 Ur/Web's library contains an encoding of XML syntax and semantic constraints. We make no effort to follow the standards governing XML schemas. Rather, XML fragments are viewed more as values of ML datatypes, and we only track which tags are allowed inside which other tags. The Ur/Web standard library encodes a very loose version of XHTML, where it is very easy to produce documents which are invalid XHTML, but which still display properly in all major browsers. The main purposes of the invariants that are enforced are first, to provide some documentation about the places where it would make sense to insert XML fragments; and second, to rule out code injection attacks and other abstraction violations related to HTML syntax.
adamc@547 1909
adam@1642 1910 The basic XML type family has arguments respectively indicating the \emph{context} of a fragment, the fields that the fragment expects to be bound on entry (and their types), and the fields that the fragment will bind (and their types). Contexts are a record-based ``poor man's subtyping'' encoding, with each possible set of valid tags corresponding to a different context record. For instance, the context for the \texttt{<td>} tag is $[\mt{Dyn}, \mt{MakeForm}, \mt{Tr}]$, to indicate nesting inside a \texttt{<tr>} tag with the ability to nest \texttt{<form>} and \texttt{<dyn>} tags (see below). Contexts are maintained in a somewhat ad-hoc way; the only definitive reference for their meanings is the types of the tag values in \texttt{basis.urs}. The arguments dealing with field binding are only relevant to HTML forms.
adamc@547 1911 $$\begin{array}{l}
adamc@547 1912 \mt{con} \; \mt{xml} :: \{\mt{Unit}\} \to \{\mt{Type}\} \to \{\mt{Type}\} \to \mt{Type}
adamc@547 1913 \end{array}$$
adamc@547 1914
adamc@547 1915 We also have a type family of XML tags, indexed respectively by the record of optional attributes accepted by the tag, the context in which the tag may be placed, the context required of children of the tag, which form fields the tag uses, and which fields the tag defines.
adamc@547 1916 $$\begin{array}{l}
adamc@547 1917 \mt{con} \; \mt{tag} :: \{\mt{Type}\} \to \{\mt{Unit}\} \to \{\mt{Unit}\} \to \{\mt{Type}\} \to \{\mt{Type}\} \to \mt{Type}
adamc@547 1918 \end{array}$$
adamc@547 1919
adamc@547 1920 Literal text may be injected into XML as ``CDATA.''
adamc@547 1921 $$\begin{array}{l}
adamc@547 1922 \mt{val} \; \mt{cdata} : \mt{ctx} ::: \{\mt{Unit}\} \to \mt{use} ::: \{\mt{Type}\} \to \mt{string} \to \mt{xml} \; \mt{ctx} \; \mt{use} \; []
adamc@547 1923 \end{array}$$
adamc@547 1924
adam@1358 1925 There is also a function to insert the literal value of a character. Since Ur/Web uses the UTF-8 text encoding, the $\mt{cdata}$ function is only sufficient to encode characters with ASCII codes below 128. Higher codes have alternate meanings in UTF-8 than in usual ASCII, so this alternate function should be used with them.
adam@1358 1926 $$\begin{array}{l}
adam@1358 1927 \mt{val} \; \mt{cdataChar} : \mt{ctx} ::: \{\mt{Unit}\} \to \mt{use} ::: \{\mt{Type}\} \to \mt{char} \to \mt{xml} \; \mt{ctx} \; \mt{use} \; []
adam@1358 1928 \end{array}$$
adam@1358 1929
adamc@547 1930 There is a function for producing an XML tree with a particular tag at its root.
adamc@547 1931 $$\begin{array}{l}
adamc@547 1932 \mt{val} \; \mt{tag} : \mt{attrsGiven} ::: \{\mt{Type}\} \to \mt{attrsAbsent} ::: \{\mt{Type}\} \to \mt{ctxOuter} ::: \{\mt{Unit}\} \to \mt{ctxInner} ::: \{\mt{Unit}\} \\
adamc@547 1933 \hspace{.1in} \to \mt{useOuter} ::: \{\mt{Type}\} \to \mt{useInner} ::: \{\mt{Type}\} \to \mt{bindOuter} ::: \{\mt{Type}\} \to \mt{bindInner} ::: \{\mt{Type}\} \\
adam@1380 1934 \hspace{.1in} \to [\mt{attrsGiven} \sim \mt{attrsAbsent}] \Rightarrow [\mt{useOuter} \sim \mt{useInner}] \Rightarrow [\mt{bindOuter} \sim \mt{bindInner}] \\
adamc@787 1935 \hspace{.1in} \Rightarrow \mt{option} \; \mt{css\_class} \\
adamc@787 1936 \hspace{.1in} \to \$\mt{attrsGiven} \\
adamc@547 1937 \hspace{.1in} \to \mt{tag} \; (\mt{attrsGiven} \rc \mt{attrsAbsent}) \; \mt{ctxOuter} \; \mt{ctxInner} \; \mt{useOuter} \; \mt{bindOuter} \\
adamc@547 1938 \hspace{.1in} \to \mt{xml} \; \mt{ctxInner} \; \mt{useInner} \; \mt{bindInner} \to \mt{xml} \; \mt{ctxOuter} \; (\mt{useOuter} \rc \mt{useInner}) \; (\mt{bindOuter} \rc \mt{bindInner})
adamc@547 1939 \end{array}$$
adam@1297 1940 Note that any tag may be assigned a CSS class. This is the sole way of making use of the values produced by $\mt{style}$ declarations. Ur/Web itself doesn't deal with the syntax or semantics of style sheets; they can be linked via URLs with \texttt{link} tags. However, Ur/Web does make it easy to calculate upper bounds on usage of CSS classes through program analysis. The function $\mt{Basis.classes}$ can be used to specify a list of CSS classes for a single tag.
adamc@547 1941
adamc@547 1942 Two XML fragments may be concatenated.
adamc@547 1943 $$\begin{array}{l}
adamc@547 1944 \mt{val} \; \mt{join} : \mt{ctx} ::: \{\mt{Unit}\} \to \mt{use_1} ::: \{\mt{Type}\} \to \mt{bind_1} ::: \{\mt{Type}\} \to \mt{bind_2} ::: \{\mt{Type}\} \\
adam@1380 1945 \hspace{.1in} \to [\mt{use_1} \sim \mt{bind_1}] \Rightarrow [\mt{bind_1} \sim \mt{bind_2}] \\
adamc@547 1946 \hspace{.1in} \Rightarrow \mt{xml} \; \mt{ctx} \; \mt{use_1} \; \mt{bind_1} \to \mt{xml} \; \mt{ctx} \; (\mt{use_1} \rc \mt{bind_1}) \; \mt{bind_2} \to \mt{xml} \; \mt{ctx} \; \mt{use_1} \; (\mt{bind_1} \rc \mt{bind_2})
adamc@547 1947 \end{array}$$
adamc@547 1948
adamc@547 1949 Finally, any XML fragment may be updated to ``claim'' to use more form fields than it does.
adamc@547 1950 $$\begin{array}{l}
adam@1380 1951 \mt{val} \; \mt{useMore} : \mt{ctx} ::: \{\mt{Unit}\} \to \mt{use_1} ::: \{\mt{Type}\} \to \mt{use_2} ::: \{\mt{Type}\} \to \mt{bind} ::: \{\mt{Type}\} \to [\mt{use_1} \sim \mt{use_2}] \\
adamc@547 1952 \hspace{.1in} \Rightarrow \mt{xml} \; \mt{ctx} \; \mt{use_1} \; \mt{bind} \to \mt{xml} \; \mt{ctx} \; (\mt{use_1} \rc \mt{use_2}) \; \mt{bind}
adamc@547 1953 \end{array}$$
adamc@547 1954
adam@1344 1955 We will not list here the different HTML tags and related functions from the standard library. They should be easy enough to understand from the code in \texttt{basis.urs}. The set of tags in the library is not yet claimed to be complete for HTML standards. Also note that there is currently no way for the programmer to add his own tags. It \emph{is} possible to add new tags directly to \texttt{basis.urs}, but this should only be done as a prelude to suggesting a patch to the main distribution.
adamc@547 1956
adamc@547 1957 One last useful function is for aborting any page generation, returning some XML as an error message. This function takes the place of some uses of a general exception mechanism.
adamc@547 1958 $$\begin{array}{l}
adam@1641 1959 \mt{val} \; \mt{error} : \mt{t} ::: \mt{Type} \to \mt{xbody} \to \mt{t}
adamc@547 1960 \end{array}$$
adamc@547 1961
adamc@549 1962
adamc@701 1963 \subsection{Client-Side Programming}
adamc@659 1964
adamc@701 1965 Ur/Web supports running code on web browsers, via automatic compilation to JavaScript.
adamc@701 1966
adamc@701 1967 \subsubsection{The Basics}
adamc@701 1968
adam@1400 1969 All of the functions in this subsection are client-side only.
adam@1400 1970
adam@1297 1971 Clients can open alert and confirm dialog boxes, in the usual annoying JavaScript way.
adamc@701 1972 $$\begin{array}{l}
adam@1297 1973 \mt{val} \; \mt{alert} : \mt{string} \to \mt{transaction} \; \mt{unit} \\
adam@1297 1974 \mt{val} \; \mt{confirm} : \mt{string} \to \mt{transaction} \; \mt{bool}
adamc@701 1975 \end{array}$$
adamc@701 1976
adamc@701 1977 Any transaction may be run in a new thread with the $\mt{spawn}$ function.
adamc@701 1978 $$\begin{array}{l}
adamc@701 1979 \mt{val} \; \mt{spawn} : \mt{transaction} \; \mt{unit} \to \mt{transaction} \; \mt{unit}
adamc@701 1980 \end{array}$$
adamc@701 1981
adamc@701 1982 The current thread can be paused for at least a specified number of milliseconds.
adamc@701 1983 $$\begin{array}{l}
adamc@701 1984 \mt{val} \; \mt{sleep} : \mt{int} \to \mt{transaction} \; \mt{unit}
adamc@701 1985 \end{array}$$
adamc@701 1986
adamc@787 1987 A few functions are available to registers callbacks for particular error events. Respectively, they are triggered on calls to $\mt{error}$, uncaught JavaScript exceptions, failure of remote procedure calls, the severance of the connection serving asynchronous messages, or the occurrence of some other error with that connection. If no handlers are registered for a kind of error, then occurrences of that error are ignored silently.
adamc@787 1988 $$\begin{array}{l}
adamc@787 1989 \mt{val} \; \mt{onError} : (\mt{xbody} \to \mt{transaction} \; \mt{unit}) \to \mt{transaction} \; \mt{unit} \\
adamc@787 1990 \mt{val} \; \mt{onFail} : (\mt{string} \to \mt{transaction} \; \mt{unit}) \to \mt{transaction} \; \mt{unit} \\
adamc@787 1991 \mt{val} \; \mt{onConnectFail} : \mt{transaction} \; \mt{unit} \to \mt{transaction} \; \mt{unit} \\
adamc@787 1992 \mt{val} \; \mt{onDisconnect} : \mt{transaction} \; \mt{unit} \to \mt{transaction} \; \mt{unit} \\
adamc@787 1993 \mt{val} \; \mt{onServerError} : (\mt{string} \to \mt{transaction} \; \mt{unit}) \to \mt{transaction} \; \mt{unit}
adamc@787 1994 \end{array}$$
adamc@787 1995
adam@1555 1996 There are also functions to register standard document-level event handlers.
adam@1555 1997
adam@1555 1998 $$\begin{array}{l}
adam@1555 1999 \mt{val} \; \mt{onClick} : \mt{transaction} \; \mt{unit} \to \mt{transaction} \; \mt{unit} \\
adam@1555 2000 \mt{val} \; \mt{onDblclick} : \mt{transaction} \; \mt{unit} \to \mt{transaction} \; \mt{unit} \\
adam@1555 2001 \mt{val} \; \mt{onKeydown} : (\mt{int} \to \mt{transaction} \; \mt{unit}) \to \mt{transaction} \; \mt{unit} \\
adam@1555 2002 \mt{val} \; \mt{onKeypress} : (\mt{int} \to \mt{transaction} \; \mt{unit}) \to \mt{transaction} \; \mt{unit} \\
adam@1555 2003 \mt{val} \; \mt{onKeyup} : (\mt{int} \to \mt{transaction} \; \mt{unit}) \to \mt{transaction} \; \mt{unit} \\
adam@1555 2004 \mt{val} \; \mt{onMousedown} : \mt{transaction} \; \mt{unit} \to \mt{transaction} \; \mt{unit} \\
adam@1555 2005 \mt{val} \; \mt{onMouseup} : \mt{transaction} \; \mt{unit} \to \mt{transaction} \; \mt{unit}
adam@1555 2006 \end{array}$$
adam@1555 2007
adam@1559 2008 Versions of standard JavaScript functions are provided that event handlers may call to mask default handling or prevent bubbling of events up to parent DOM nodes, respectively.
adam@1559 2009
adam@1559 2010 $$\begin{array}{l}
adam@1559 2011 \mt{val} \; \mt{preventDefault} : \mt{transaction} \; \mt{unit} \\
adam@1559 2012 \mt{val} \; \mt{stopPropagation} : \mt{transaction} \; \mt{unit}
adam@1559 2013 \end{array}$$
adam@1559 2014
adam@1556 2015 \subsubsection{Node IDs}
adam@1556 2016
adam@1556 2017 There is an abstract type of node IDs that may be assigned to \cd{id} attributes of most HTML tags.
adam@1556 2018
adam@1556 2019 $$\begin{array}{l}
adam@1556 2020 \mt{type} \; \mt{id} \\
adam@1556 2021 \mt{val} \; \mt{fresh} : \mt{transaction} \; \mt{id}
adam@1556 2022 \end{array}$$
adam@1556 2023
adam@1556 2024 The \cd{fresh} function is allowed on both server and client, but there is no other way to create IDs, which includes lack of a way to force an ID to match a particular string. The only semantic importance of IDs within Ur/Web is in uses of the HTML \cd{<label>} tag. IDs play a much more central role in mainstream JavaScript programming, but Ur/Web uses a very different model to enable changes to particular nodes of a page tree, as the next manual subsection explains. IDs may still be useful in interfacing with JavaScript code (for instance, through Ur/Web's FFI).
adam@1556 2025
adamc@701 2026 \subsubsection{Functional-Reactive Page Generation}
adamc@701 2027
adamc@701 2028 Most approaches to ``AJAX''-style coding involve imperative manipulation of the DOM tree representing an HTML document's structure. Ur/Web follows the \emph{functional-reactive} approach instead. Programs may allocate mutable \emph{sources} of arbitrary types, and an HTML page is effectively a pure function over the latest values of the sources. The page is not mutated directly, but rather it changes automatically as the sources are mutated.
adamc@659 2029
adam@1403 2030 More operationally, you can think of a source as a mutable cell with facilities for subscription to change notifications. That level of detail is hidden behind a monadic facility to be described below. First, there are three primitive operations for working with sources just as if they were ML \cd{ref} cells, corresponding to ML's \cd{ref}, \cd{:=}, and \cd{!} operations.
adam@1403 2031
adamc@659 2032 $$\begin{array}{l}
adamc@659 2033 \mt{con} \; \mt{source} :: \mt{Type} \to \mt{Type} \\
adamc@659 2034 \mt{val} \; \mt{source} : \mt{t} ::: \mt{Type} \to \mt{t} \to \mt{transaction} \; (\mt{source} \; \mt{t}) \\
adamc@659 2035 \mt{val} \; \mt{set} : \mt{t} ::: \mt{Type} \to \mt{source} \; \mt{t} \to \mt{t} \to \mt{transaction} \; \mt{unit} \\
adamc@659 2036 \mt{val} \; \mt{get} : \mt{t} ::: \mt{Type} \to \mt{source} \; \mt{t} \to \mt{transaction} \; \mt{t}
adamc@659 2037 \end{array}$$
adamc@659 2038
adam@1400 2039 Only source creation and setting are supported server-side, as a convenience to help in setting up a page, where you may wish to allocate many sources that will be referenced through the page. All server-side storage of values inside sources uses string serializations of values, while client-side storage uses normal JavaScript values.
adam@1400 2040
adam@1608 2041 Pure functions over arbitrary numbers of sources are represented in a monad of \emph{signals}, which may only be used in client-side code. This is presented to the programmer in the form of a monad $\mt{signal}$, each of whose values represents (conceptually) some pure function over all sources that may be allocated in the course of program execution. A monad operation $\mt{signal}$ denotes the identity function over a particular source. By using $\mt{signal}$ on a source, you implicitly subscribe to change notifications for that source. That is, your signal will automatically be recomputed as that source changes. The usual monad operators make it possible to build up complex signals that depend on multiple sources; automatic updating upon source-value changes still happens automatically. There is also an operator for computing a signal's current value within a transaction.
adamc@659 2042
adamc@659 2043 $$\begin{array}{l}
adamc@659 2044 \mt{con} \; \mt{signal} :: \mt{Type} \to \mt{Type} \\
adamc@659 2045 \mt{val} \; \mt{signal\_monad} : \mt{monad} \; \mt{signal} \\
adam@1608 2046 \mt{val} \; \mt{signal} : \mt{t} ::: \mt{Type} \to \mt{source} \; \mt{t} \to \mt{signal} \; \mt{t} \\
adam@1608 2047 \mt{val} \; \mt{current} : \mt{t} ::: \mt{Type} \to \mt{signal} \; \mt{t} \to \mt{transaction} \; \mt{t}
adamc@659 2048 \end{array}$$
adamc@659 2049
adamc@659 2050 A reactive portion of an HTML page is injected with a $\mt{dyn}$ tag, which has a signal-valued attribute $\mt{Signal}$.
adamc@659 2051
adamc@659 2052 $$\begin{array}{l}
adam@1641 2053 \mt{val} \; \mt{dyn} : \mt{ctx} ::: \{\mt{Unit}\} \to \mt{use} ::: \{\mt{Type}\} \to \mt{bind} ::: \{\mt{Type}\} \to [\mt{ctx} \sim [\mt{Dyn}]] \Rightarrow \mt{unit} \\
adam@1641 2054 \hspace{.1in} \to \mt{tag} \; [\mt{Signal} = \mt{signal} \; (\mt{xml} \; ([\mt{Dyn}] \rc \mt{ctx}) \; \mt{use} \; \mt{bind})] \; ([\mt{Dyn}] \rc \mt{ctx}) \; [] \; \mt{use} \; \mt{bind}
adamc@659 2055 \end{array}$$
adamc@659 2056
adamc@701 2057 Transactions can be run on the client by including them in attributes like the $\mt{Onclick}$ attribute of $\mt{button}$, and GUI widgets like $\mt{ctextbox}$ have $\mt{Source}$ attributes that can be used to connect them to sources, so that their values can be read by code running because of, e.g., an $\mt{Onclick}$ event.
adamc@701 2058
adamc@914 2059 \subsubsection{Remote Procedure Calls}
adamc@914 2060
adamc@914 2061 Any function call may be made a client-to-server ``remote procedure call'' if the function being called needs no features that are only available to client code. To make a function call an RPC, pass that function call as the argument to $\mt{Basis.rpc}$:
adamc@914 2062
adamc@914 2063 $$\begin{array}{l}
adamc@914 2064 \mt{val} \; \mt{rpc} : \mt{t} ::: \mt{Type} \to \mt{transaction} \; \mt{t} \to \mt{transaction} \; \mt{t}
adamc@914 2065 \end{array}$$
adamc@914 2066
adamc@701 2067 \subsubsection{Asynchronous Message-Passing}
adamc@701 2068
adamc@701 2069 To support asynchronous, ``server push'' delivery of messages to clients, any client that might need to receive an asynchronous message is assigned a unique ID. These IDs may be retrieved both on the client and on the server, during execution of code related to a client.
adamc@701 2070
adamc@701 2071 $$\begin{array}{l}
adamc@701 2072 \mt{type} \; \mt{client} \\
adamc@701 2073 \mt{val} \; \mt{self} : \mt{transaction} \; \mt{client}
adamc@701 2074 \end{array}$$
adamc@701 2075
adamc@701 2076 \emph{Channels} are the means of message-passing. Each channel is created in the context of a client and belongs to that client; no other client may receive the channel's messages. Each channel type includes the type of values that may be sent over the channel. Sending and receiving are asynchronous, in the sense that a client need not be ready to receive a message right away. Rather, sent messages may queue up, waiting to be processed.
adamc@701 2077
adamc@701 2078 $$\begin{array}{l}
adamc@701 2079 \mt{con} \; \mt{channel} :: \mt{Type} \to \mt{Type} \\
adamc@701 2080 \mt{val} \; \mt{channel} : \mt{t} ::: \mt{Type} \to \mt{transaction} \; (\mt{channel} \; \mt{t}) \\
adamc@701 2081 \mt{val} \; \mt{send} : \mt{t} ::: \mt{Type} \to \mt{channel} \; \mt{t} \to \mt{t} \to \mt{transaction} \; \mt{unit} \\
adamc@701 2082 \mt{val} \; \mt{recv} : \mt{t} ::: \mt{Type} \to \mt{channel} \; \mt{t} \to \mt{transaction} \; \mt{t}
adamc@701 2083 \end{array}$$
adamc@701 2084
adamc@701 2085 The $\mt{channel}$ and $\mt{send}$ operations may only be executed on the server, and $\mt{recv}$ may only be executed on a client. Neither clients nor channels may be passed as arguments from clients to server-side functions, so persistent channels can only be maintained by storing them in the database and looking them up using the current client ID or some application-specific value as a key.
adamc@701 2086
adamc@701 2087 Clients and channels live only as long as the web browser page views that they are associated with. When a user surfs away, his client and its channels will be garbage-collected, after that user is not heard from for the timeout period. Garbage collection deletes any database row that contains a client or channel directly. Any reference to one of these types inside an $\mt{option}$ is set to $\mt{None}$ instead. Both kinds of handling have the flavor of weak pointers, and that is a useful way to think about clients and channels in the database.
adamc@701 2088
adam@1551 2089 \emph{Note}: Currently, there are known concurrency issues with multi-threaded applications that employ message-passing on top of database engines that don't support true serializable transactions. Postgres 9.1 is the only supported engine that does this properly.
adam@1551 2090
adamc@659 2091
adamc@549 2092 \section{Ur/Web Syntax Extensions}
adamc@549 2093
adamc@549 2094 Ur/Web features some syntactic shorthands for building values using the functions from the last section. This section sketches the grammar of those extensions. We write spans of syntax inside brackets to indicate that they are optional.
adamc@549 2095
adamc@549 2096 \subsection{SQL}
adamc@549 2097
adamc@786 2098 \subsubsection{\label{tables}Table Declarations}
adamc@786 2099
adamc@788 2100 $\mt{table}$ declarations may include constraints, via these grammar rules.
adamc@788 2101 $$\begin{array}{rrcll}
adam@1594 2102 \textrm{Declarations} & d &::=& \mt{table} \; x : c \; [pk[,]] \; cts \mid \mt{view} \; x = V \\
adamc@788 2103 \textrm{Primary key constraints} & pk &::=& \mt{PRIMARY} \; \mt{KEY} \; K \\
adamc@788 2104 \textrm{Keys} & K &::=& f \mid (f, (f,)^+) \\
adamc@788 2105 \textrm{Constraint sets} & cts &::=& \mt{CONSTRAINT} f \; ct \mid cts, cts \mid \{\{e\}\} \\
adamc@788 2106 \textrm{Constraints} & ct &::=& \mt{UNIQUE} \; K \mid \mt{CHECK} \; E \\
adamc@788 2107 &&& \mid \mt{FOREIGN} \; \mt{KEY} \; K \; \mt{REFERENCES} \; F \; (K) \; [\mt{ON} \; \mt{DELETE} \; pr] \; [\mt{ON} \; \mt{UPDATE} \; pr] \\
adamc@788 2108 \textrm{Foreign tables} & F &::=& x \mid \{\{e\}\} \\
adam@1594 2109 \textrm{Propagation modes} & pr &::=& \mt{NO} \; \mt{ACTION} \mid \mt{RESTRICT} \mid \mt{CASCADE} \mid \mt{SET} \; \mt{NULL} \\
adam@1594 2110 \textrm{View expressions} & V &::=& Q \mid \{e\}
adamc@788 2111 \end{array}$$
adamc@788 2112
adamc@788 2113 A signature item $\mt{table} \; \mt{x} : \mt{c}$ is actually elaborated into two signature items: $\mt{con} \; \mt{x\_hidden\_constraints} :: \{\{\mt{Unit}\}\}$ and $\mt{val} \; \mt{x} : \mt{sql\_table} \; \mt{c} \; \mt{x\_hidden\_constraints}$. This is appropriate for common cases where client code doesn't care which keys a table has. It's also possible to include constraints after a $\mt{table}$ signature item, with the same syntax as for $\mt{table}$ declarations. This may look like dependent typing, but it's just a convenience. The constraints are type-checked to determine a constructor $u$ to include in $\mt{val} \; \mt{x} : \mt{sql\_table} \; \mt{c} \; (u \rc \mt{x\_hidden\_constraints})$, and then the expressions are thrown away. Nonetheless, it can be useful for documentation purposes to include table constraint details in signatures. Note that the automatic generation of $\mt{x\_hidden\_constraints}$ leads to a kind of free subtyping with respect to which constraints are defined.
adamc@788 2114
adamc@788 2115
adamc@549 2116 \subsubsection{Queries}
adamc@549 2117
adamc@550 2118 Queries $Q$ are added to the rules for expressions $e$.
adamc@550 2119
adamc@549 2120 $$\begin{array}{rrcll}
adamc@550 2121 \textrm{Queries} & Q &::=& (q \; [\mt{ORDER} \; \mt{BY} \; (E \; [o],)^+] \; [\mt{LIMIT} \; N] \; [\mt{OFFSET} \; N]) \\
adamc@1085 2122 \textrm{Pre-queries} & q &::=& \mt{SELECT} \; [\mt{DISTINCT}] \; P \; \mt{FROM} \; F,^+ \; [\mt{WHERE} \; E] \; [\mt{GROUP} \; \mt{BY} \; p,^+] \; [\mt{HAVING} \; E] \\
adamc@1085 2123 &&& \mid q \; R \; q \mid \{\{\{e\}\}\} \\
adamc@549 2124 \textrm{Relational operators} & R &::=& \mt{UNION} \mid \mt{INTERSECT} \mid \mt{EXCEPT}
adamc@549 2125 \end{array}$$
adamc@549 2126
adamc@549 2127 $$\begin{array}{rrcll}
adamc@549 2128 \textrm{Projections} & P &::=& \ast & \textrm{all columns} \\
adamc@549 2129 &&& p,^+ & \textrm{particular columns} \\
adamc@549 2130 \textrm{Pre-projections} & p &::=& t.f & \textrm{one column from a table} \\
adamc@558 2131 &&& t.\{\{c\}\} & \textrm{a record of columns from a table (of kind $\{\mt{Type}\}$)} \\
adam@1627 2132 &&& t.* & \textrm{all columns from a table} \\
adamc@1194 2133 &&& E \; [\mt{AS} \; f] & \textrm{expression column} \\
adamc@549 2134 \textrm{Table names} & t &::=& x & \textrm{constant table name (automatically capitalized)} \\
adamc@549 2135 &&& X & \textrm{constant table name} \\
adamc@549 2136 &&& \{\{c\}\} & \textrm{computed table name (of kind $\mt{Name}$)} \\
adamc@549 2137 \textrm{Column names} & f &::=& X & \textrm{constant column name} \\
adamc@549 2138 &&& \{c\} & \textrm{computed column name (of kind $\mt{Name}$)} \\
adamc@549 2139 \textrm{Tables} & T &::=& x & \textrm{table variable, named locally by its own capitalization} \\
adamc@549 2140 &&& x \; \mt{AS} \; t & \textrm{table variable, with local name} \\
adamc@549 2141 &&& \{\{e\}\} \; \mt{AS} \; t & \textrm{computed table expression, with local name} \\
adamc@1085 2142 \textrm{$\mt{FROM}$ items} & F &::=& T \mid \{\{e\}\} \mid F \; J \; \mt{JOIN} \; F \; \mt{ON} \; E \\
adamc@1085 2143 &&& \mid F \; \mt{CROSS} \; \mt{JOIN} \ F \\
adamc@1193 2144 &&& \mid (Q) \; \mt{AS} \; t \\
adamc@1085 2145 \textrm{Joins} & J &::=& [\mt{INNER}] \\
adamc@1085 2146 &&& \mid [\mt{LEFT} \mid \mt{RIGHT} \mid \mt{FULL}] \; [\mt{OUTER}] \\
adam@1587 2147 \textrm{SQL expressions} & E &::=& t.f & \textrm{column references} \\
adamc@549 2148 &&& X & \textrm{named expression references} \\
adam@1490 2149 &&& \{[e]\} & \textrm{injected native Ur expressions} \\
adamc@549 2150 &&& \{e\} & \textrm{computed expressions, probably using $\mt{sql\_exp}$ directly} \\
adamc@549 2151 &&& \mt{TRUE} \mid \mt{FALSE} & \textrm{boolean constants} \\
adamc@549 2152 &&& \ell & \textrm{primitive type literals} \\
adamc@549 2153 &&& \mt{NULL} & \textrm{null value (injection of $\mt{None}$)} \\
adamc@549 2154 &&& E \; \mt{IS} \; \mt{NULL} & \textrm{nullness test} \\
adam@1602 2155 &&& \mt{COALESCE}(E, E) & \textrm{take first non-null value} \\
adamc@549 2156 &&& n & \textrm{nullary operators} \\
adamc@549 2157 &&& u \; E & \textrm{unary operators} \\
adamc@549 2158 &&& E \; b \; E & \textrm{binary operators} \\
adamc@549 2159 &&& \mt{COUNT}(\ast) & \textrm{count number of rows} \\
adamc@549 2160 &&& a(E) & \textrm{other aggregate function} \\
adam@1573 2161 &&& \mt{IF} \; E \; \mt{THEN} \; E \; \mt{ELSE} \; E & \textrm{conditional} \\
adamc@1193 2162 &&& (Q) & \textrm{subquery (must return a single expression column)} \\
adamc@549 2163 &&& (E) & \textrm{explicit precedence} \\
adamc@549 2164 \textrm{Nullary operators} & n &::=& \mt{CURRENT\_TIMESTAMP} \\
adamc@549 2165 \textrm{Unary operators} & u &::=& \mt{NOT} \\
adamc@549 2166 \textrm{Binary operators} & b &::=& \mt{AND} \mid \mt{OR} \mid \neq \mid < \mid \leq \mid > \mid \geq \\
adamc@1188 2167 \textrm{Aggregate functions} & a &::=& \mt{COUNT} \mid \mt{AVG} \mid \mt{SUM} \mid \mt{MIN} \mid \mt{MAX} \\
adam@1543 2168 \textrm{Directions} & o &::=& \mt{ASC} \mid \mt{DESC} \mid \{e\} \\
adamc@549 2169 \textrm{SQL integer} & N &::=& n \mid \{e\} \\
adamc@549 2170 \end{array}$$
adamc@549 2171
adamc@1085 2172 Additionally, an SQL expression may be inserted into normal Ur code with the syntax $(\mt{SQL} \; E)$ or $(\mt{WHERE} \; E)$. Similar shorthands exist for other nonterminals, with the prefix $\mt{FROM}$ for $\mt{FROM}$ items and $\mt{SELECT1}$ for pre-queries.
adamc@549 2173
adamc@1194 2174 Unnamed expression columns in $\mt{SELECT}$ clauses are assigned consecutive natural numbers, starting with 1.
adamc@1194 2175
adamc@550 2176 \subsubsection{DML}
adamc@550 2177
adamc@550 2178 DML commands $D$ are added to the rules for expressions $e$.
adamc@550 2179
adamc@550 2180 $$\begin{array}{rrcll}
adamc@550 2181 \textrm{Commands} & D &::=& (\mt{INSERT} \; \mt{INTO} \; T^E \; (f,^+) \; \mt{VALUES} \; (E,^+)) \\
adamc@550 2182 &&& (\mt{UPDATE} \; T^E \; \mt{SET} \; (f = E,)^+ \; \mt{WHERE} \; E) \\
adamc@550 2183 &&& (\mt{DELETE} \; \mt{FROM} \; T^E \; \mt{WHERE} \; E) \\
adamc@550 2184 \textrm{Table expressions} & T^E &::=& x \mid \{\{e\}\}
adamc@550 2185 \end{array}$$
adamc@550 2186
adamc@550 2187 Inside $\mt{UPDATE}$ and $\mt{DELETE}$ commands, lone variables $X$ are interpreted as references to columns of the implicit table $\mt{T}$, rather than to named expressions.
adamc@549 2188
adamc@551 2189 \subsection{XML}
adamc@551 2190
adamc@551 2191 XML fragments $L$ are added to the rules for expressions $e$.
adamc@551 2192
adamc@551 2193 $$\begin{array}{rrcll}
adamc@551 2194 \textrm{XML fragments} & L &::=& \texttt{<xml/>} \mid \texttt{<xml>}l^*\texttt{</xml>} \\
adamc@551 2195 \textrm{XML pieces} & l &::=& \textrm{text} & \textrm{cdata} \\
adamc@551 2196 &&& \texttt{<}g\texttt{/>} & \textrm{tag with no children} \\
adamc@551 2197 &&& \texttt{<}g\texttt{>}l^*\texttt{</}x\texttt{>} & \textrm{tag with children} \\
adamc@559 2198 &&& \{e\} & \textrm{computed XML fragment} \\
adamc@559 2199 &&& \{[e]\} & \textrm{injection of an Ur expression, via the $\mt{Top}.\mt{txt}$ function} \\
adamc@551 2200 \textrm{Tag} & g &::=& h \; (x = v)^* \\
adamc@551 2201 \textrm{Tag head} & h &::=& x & \textrm{tag name} \\
adamc@551 2202 &&& h\{c\} & \textrm{constructor parameter} \\
adamc@551 2203 \textrm{Attribute value} & v &::=& \ell & \textrm{literal value} \\
adamc@551 2204 &&& \{e\} & \textrm{computed value} \\
adamc@551 2205 \end{array}$$
adamc@551 2206
adamc@552 2207
adamc@1198 2208 \section{\label{structure}The Structure of Web Applications}
adamc@553 2209
adam@1604 2210 A web application is built from a series of modules, with one module, the last one appearing in the \texttt{.urp} file, designated as the main module. The signature of the main module determines the URL entry points to the application. Such an entry point should have type $\mt{t1} \to \ldots \to \mt{tn} \to \mt{transaction} \; \mt{page}$, for any integer $n \geq 0$, where $\mt{page}$ is a type synonym for top-level HTML pages, defined in $\mt{Basis}$. If such a function is at the top level of main module $M$, with $n = 0$, it will be accessible at URI \texttt{/M/f}, and so on for more deeply-nested functions, as described in Section \ref{tag} below. See Section \ref{cl} for information on the \texttt{prefix} and \texttt{rewrite url} directives, which can be used to rewrite the default URIs of different entry point functions. The final URL of a function is its default module-based URI, with \texttt{rewrite url} rules applied, and with the \texttt{prefix} prepended. Arguments to an entry-point function are deserialized from the part of the URI following \texttt{f}.
adamc@553 2211
adam@1532 2212 Elements of modules beside the main module, including page handlers, will only be included in the final application if they are transitive dependencies of the handlers in the main module.
adam@1532 2213
adam@1347 2214 Normal links are accessible via HTTP \texttt{GET}, which the relevant standard says should never cause side effects. To export a page which may cause side effects, accessible only via HTTP \texttt{POST}, include one argument of the page handler of type $\mt{Basis.postBody}$. When the handler is called, this argument will receive a value that can be deconstructed into a MIME type (with $\mt{Basis.postType}$) and payload (with $\mt{Basis.postData}$). This kind of handler will only work with \texttt{POST} payloads of MIME types besides those associated with HTML forms; for these, use Ur/Web's built-in support, as described below.
adam@1347 2215
adam@1370 2216 Any normal page handler may also include arguments of type $\mt{option \; Basis.queryString}$, which will be handled specially. Rather than being deserialized from the current URI, such an argument is passed the whole query string that the handler received. The string may be analyzed by calling $\mt{Basis.show}$ on it. A handler of this kind may be passed as an argument to $\mt{Basis.effectfulUrl}$ to generate a URL to a page that may be used as a ``callback'' by an external service, such that the handler is allowed to cause side effects.
adam@1370 2217
adamc@553 2218 When the standalone web server receives a request for a known page, it calls the function for that page, ``running'' the resulting transaction to produce the page to return to the client. Pages link to other pages with the \texttt{link} attribute of the \texttt{a} HTML tag. A link has type $\mt{transaction} \; \mt{page}$, and the semantics of a link are that this transaction should be run to compute the result page, when the link is followed. Link targets are assigned URL names in the same way as top-level entry points.
adamc@553 2219
adamc@553 2220 HTML forms are handled in a similar way. The $\mt{action}$ attribute of a $\mt{submit}$ form tag takes a value of type $\$\mt{use} \to \mt{transaction} \; \mt{page}$, where $\mt{use}$ is a kind-$\{\mt{Type}\}$ record of the form fields used by this action handler. Action handlers are assigned URL patterns in the same way as above.
adamc@553 2221
adamc@558 2222 For both links and actions, direct arguments and local variables mentioned implicitly via closures are automatically included in serialized form in URLs, in the order in which they appear in the source code.
adamc@553 2223
adamc@660 2224 Ur/Web programs generally mix server- and client-side code in a fairly transparent way. The one important restriction is that mixed client-server code must encapsulate all server-side pieces within named functions. This is because execution of such pieces will be implemented by explicit calls to the remote web server, and it is useful to get the programmer's help in designing the interface to be used. For example, this makes it easier to allow a client running an old version of an application to continue interacting with a server that has been upgraded to a new version, if the programmer took care to keep the interfaces of all of the old remote calls the same. The functions implementing these services are assigned names in the same way as normal web entry points, by using module structure.
adamc@660 2225
adamc@789 2226 \medskip
adamc@789 2227
adam@1347 2228 The HTTP standard suggests that GET requests only be used in ways that generate no side effects. Side effecting operations should use POST requests instead. The Ur/Web compiler enforces this rule strictly, via a simple conservative program analysis. Any page that may have a side effect must be accessed through a form, all of which use POST requests, or via a direct call to a page handler with some argument of type $\mt{Basis.postBody}$. A page is judged to have a side effect if its code depends syntactically on any of the side-effecting, server-side FFI functions. Links, forms, and most client-side event handlers are not followed during this syntactic traversal, but \texttt{<body onload=\{...\}>} handlers \emph{are} examined, since they run right away and could just as well be considered parts of main page handlers.
adamc@789 2229
adamc@789 2230 Ur/Web includes a kind of automatic protection against cross site request forgery attacks. Whenever any page execution can have side effects and can also read at least one cookie value, all cookie values must be signed cryptographically, to ensure that the user has come to the current page by submitting a form on a real page generated by the proper server. Signing and signature checking are inserted automatically by the compiler. This prevents attacks like phishing schemes where users are directed to counterfeit pages with forms that submit to your application, where a user's cookies might be submitted without his knowledge, causing some undesired side effect.
adamc@789 2231
adam@1348 2232 \subsection{Tasks}
adam@1348 2233
adam@1348 2234 In many web applications, it's useful to run code at points other than requests from browsers. Ur/Web's \emph{task} mechanism facilitates this. A type family of \emph{task kinds} is in the standard library:
adam@1348 2235
adam@1348 2236 $$\begin{array}{l}
adam@1348 2237 \mt{con} \; \mt{task\_kind} :: \mt{Type} \to \mt{Type} \\
adam@1348 2238 \mt{val} \; \mt{initialize} : \mt{task\_kind} \; \mt{unit} \\
adam@1349 2239 \mt{val} \; \mt{clientLeaves} : \mt{task\_kind} \; \mt{client} \\
adam@1349 2240 \mt{val} \; \mt{periodic} : \mt{int} \to \mt{task\_kind} \; \mt{unit}
adam@1348 2241 \end{array}$$
adam@1348 2242
adam@1348 2243 A task kind names a particular extension point of generated applications, where the type parameter of a task kind describes which extra input data is available at that extension point. Add task code with the special declaration form $\mt{task} \; e_1 = e_2$, where $e_1$ is a task kind with data $\tau$, and $e_2$ is a function from $\tau$ to $\mt{transaction} \; \mt{unit}$.
adam@1348 2244
adam@1348 2245 The currently supported task kinds are:
adam@1348 2246 \begin{itemize}
adam@1349 2247 \item $\mt{initialize}$: Code that is run when the application starts up.
adam@1348 2248 \item $\mt{clientLeaves}$: Code that is run for each client that the runtime system decides has surfed away. When a request that generates a new client handle is aborted, that handle will still eventually be passed to $\mt{clientLeaves}$ task code, even though the corresponding browser was never informed of the client handle's existence. In other words, in general, $\mt{clientLeaves}$ handlers will be called more times than there are actual clients.
adam@1349 2249 \item $\mt{periodic} \; n$: Code that is run when the application starts up and then every $n$ seconds thereafter.
adam@1348 2250 \end{itemize}
adam@1348 2251
adamc@553 2252
adamc@897 2253 \section{The Foreign Function Interface}
adamc@897 2254
adamc@897 2255 It is possible to call your own C and JavaScript code from Ur/Web applications, via the foreign function interface (FFI). The starting point for a new binding is a \texttt{.urs} signature file that presents your external library as a single Ur/Web module (with no nested modules). Compilation conventions map the types and values that you use into C and/or JavaScript types and values.
adamc@897 2256
adamc@897 2257 It is most convenient to encapsulate an FFI binding with a new \texttt{.urp} file, which applications can include with the \texttt{library} directive in their own \texttt{.urp} files. A number of directives are likely to show up in the library's project file.
adamc@897 2258
adamc@897 2259 \begin{itemize}
adamc@897 2260 \item \texttt{clientOnly Module.ident} registers a value as being allowed only in client-side code.
adamc@897 2261 \item \texttt{clientToServer Module.ident} declares a type as OK to marshal between clients and servers. By default, abstract FFI types are not allowed to be marshalled, since your library might be maintaining invariants that the simple serialization code doesn't check.
adamc@897 2262 \item \texttt{effectful Module.ident} registers a function that can have side effects. It is important to remember to use this directive for each such function, or else the optimizer might change program semantics.
adamc@897 2263 \item \texttt{ffi FILE.urs} names the file giving your library's signature. You can include multiple such files in a single \texttt{.urp} file, and each file \texttt{mod.urp} defines an FFI module \texttt{Mod}.
adamc@1099 2264 \item \texttt{include FILE} requests inclusion of a C header file.
adamc@897 2265 \item \texttt{jsFunc Module.ident=name} gives a mapping from an Ur name for a value to a JavaScript name.
adamc@897 2266 \item \texttt{link FILE} requests that \texttt{FILE} be linked into applications. It should be a C object or library archive file, and you are responsible for generating it with your own build process.
adamc@897 2267 \item \texttt{script URL} requests inclusion of a JavaScript source file within application HTML.
adamc@897 2268 \item \texttt{serverOnly Module.ident} registers a value as being allowed only in server-side code.
adamc@897 2269 \end{itemize}
adamc@897 2270
adamc@897 2271 \subsection{Writing C FFI Code}
adamc@897 2272
adamc@897 2273 A server-side FFI type or value \texttt{Module.ident} must have a corresponding type or value definition \texttt{uw\_Module\_ident} in C code. With the current Ur/Web version, it's not generally possible to work with Ur records or complex datatypes in C code, but most other kinds of types are fair game.
adamc@897 2274
adamc@897 2275 \begin{itemize}
adamc@897 2276 \item Primitive types defined in \texttt{Basis} are themselves using the standard FFI interface, so you may refer to them like \texttt{uw\_Basis\_t}. See \texttt{include/types.h} for their definitions.
adamc@897 2277 \item Enumeration datatypes, which have only constructors that take no arguments, should be defined using C \texttt{enum}s. The type is named as for any other type identifier, and each constructor \texttt{c} gets an enumeration constant named \texttt{uw\_Module\_c}.
adamc@897 2278 \item A datatype \texttt{dt} (such as \texttt{Basis.option}) that has one non-value-carrying constructor \texttt{NC} and one value-carrying constructor \texttt{C} gets special treatment. Where \texttt{T} is the type of \texttt{C}'s argument, and where we represent \texttt{T} as \texttt{t} in C, we represent \texttt{NC} with \texttt{NULL}. The representation of \texttt{C} depends on whether we're sure that we don't need to use \texttt{NULL} to represent \texttt{t} values; this condition holds only for strings and complex datatypes. For such types, \texttt{C v} is represented with the C encoding of \texttt{v}, such that the translation of \texttt{dt} is \texttt{t}. For other types, \texttt{C v} is represented with a pointer to the C encoding of v, such that the translation of \texttt{dt} is \texttt{t*}.
adamc@897 2279 \end{itemize}
adamc@897 2280
adamc@897 2281 The C FFI version of a Ur function with type \texttt{T1 -> ... -> TN -> R} or \texttt{T1 -> ... -> TN -> transaction R} has a C prototype like \texttt{R uw\_Module\_ident(uw\_context, T1, ..., TN)}. Only functions with types of the second form may have side effects. \texttt{uw\_context} is the type of state that persists across handling a client request. Many functions that operate on contexts are prototyped in \texttt{include/urweb.h}. Most should only be used internally by the compiler. A few are useful in general FFI implementation:
adamc@897 2282 \begin{itemize}
adamc@897 2283 \item \begin{verbatim}
adamc@897 2284 void uw_error(uw_context, failure_kind, const char *fmt, ...);
adamc@897 2285 \end{verbatim}
adamc@897 2286 Abort the current request processing, giving a \texttt{printf}-style format string and arguments for generating an error message. The \texttt{failure\_kind} argument can be \texttt{FATAL}, to abort the whole execution; \texttt{BOUNDED\_RETRY}, to try processing the request again from the beginning, but failing if this happens too many times; or \texttt{UNLIMITED\_RETRY}, to repeat processing, with no cap on how many times this can recur.
adamc@897 2287
adam@1329 2288 All pointers to the context-local heap (see description below of \texttt{uw\_malloc()}) become invalid at the start and end of any execution of a main entry point function of an application. For example, if the request handler is restarted because of a \texttt{uw\_error()} call with \texttt{BOUNDED\_RETRY} or for any other reason, it is unsafe to access any local heap pointers that may have been stashed somewhere beforehand.
adam@1329 2289
adamc@897 2290 \item \begin{verbatim}
adam@1469 2291 void uw_set_error_message(uw_context, const char *fmt, ...);
adam@1469 2292 \end{verbatim}
adam@1469 2293 This simpler form of \texttt{uw\_error()} saves an error message without immediately aborting execution.
adam@1469 2294
adam@1469 2295 \item \begin{verbatim}
adamc@897 2296 void uw_push_cleanup(uw_context, void (*func)(void *), void *arg);
adamc@897 2297 void uw_pop_cleanup(uw_context);
adamc@897 2298 \end{verbatim}
adam@1329 2299 Manipulate a stack of actions that should be taken if any kind of error condition arises. Calling the ``pop'' function both removes an action from the stack and executes it. It is a bug to let a page request handler finish successfully with unpopped cleanup actions.
adam@1329 2300
adam@1329 2301 Pending cleanup actions aren't intended to have any complex relationship amongst themselves, so, upon request handler abort, pending actions are executed in first-in-first-out order.
adamc@897 2302
adamc@897 2303 \item \begin{verbatim}
adamc@897 2304 void *uw_malloc(uw_context, size_t);
adamc@897 2305 \end{verbatim}
adam@1329 2306 A version of \texttt{malloc()} that allocates memory inside a context's heap, which is managed with region allocation. Thus, there is no \texttt{uw\_free()}, but you need to be careful not to keep ad-hoc C pointers to this area of memory. In general, \texttt{uw\_malloc()}ed memory should only be used in ways compatible with the computation model of pure Ur. This means it is fine to allocate and return a value that could just as well have been built with core Ur code. In contrast, it is almost never safe to store \texttt{uw\_malloc()}ed pointers in global variables, including when the storage happens implicitly by registering a callback that would take the pointer as an argument.
adam@1329 2307
adam@1329 2308 For performance and correctness reasons, it is usually preferable to use \texttt{uw\_malloc()} instead of \texttt{malloc()}. The former manipulates a local heap that can be kept allocated across page requests, while the latter uses global data structures that may face contention during concurrent execution. However, we emphasize again that \texttt{uw\_malloc()} should never be used to implement some logic that couldn't be implemented trivially by a constant-valued expression in Ur.
adamc@897 2309
adamc@897 2310 \item \begin{verbatim}
adamc@897 2311 typedef void (*uw_callback)(void *);
adam@1328 2312 typedef void (*uw_callback_with_retry)(void *, int will_retry);
adamc@897 2313 void uw_register_transactional(uw_context, void *data, uw_callback commit,
adam@1328 2314 uw_callback rollback, uw_callback_with_retry free);
adamc@897 2315 \end{verbatim}
adam@1328 2316 All side effects in Ur/Web programs need to be compatible with transactions, such that any set of actions can be undone at any time. Thus, you should not perform actions with non-local side effects directly; instead, register handlers to be called when the current transaction is committed or rolled back. The arguments here give an arbitary piece of data to be passed to callbacks, a function to call on commit, a function to call on rollback, and a function to call afterward in either case to clean up any allocated resources. A rollback handler may be called after the associated commit handler has already been called, if some later part of the commit process fails. A free handler is told whether the runtime system expects to retry the current page request after rollback finishes.
adamc@897 2317
adamc@1085 2318 Any of the callbacks may be \texttt{NULL}. To accommodate some stubbornly non-transactional real-world actions like sending an e-mail message, Ur/Web treats \texttt{NULL} \texttt{rollback} callbacks specially. When a transaction commits, all \texttt{commit} actions that have non-\texttt{NULL} rollback actions are tried before any \texttt{commit} actions that have \texttt{NULL} rollback actions. Thus, if a single execution uses only one non-transactional action, and if that action never fails partway through its execution while still causing an observable side effect, then Ur/Web can maintain the transactional abstraction.
adamc@1085 2319
adam@1329 2320 When a request handler ends with multiple pending transactional actions, their handlers are run in a first-in-last-out stack-like order, wherever the order would otherwise be ambiguous.
adam@1329 2321
adam@1329 2322 It is not safe for any of these handlers to access a context-local heap through a pointer returned previously by \texttt{uw\_malloc()}, nor should any new calls to that function be made. Think of the context-local heap as meant for use by the Ur/Web code itself, while transactional handlers execute after the Ur/Web code has finished.
adam@1329 2323
adam@1469 2324 A handler may signal an error by calling \texttt{uw\_set\_error\_message()}, but it is not safe to call \texttt{uw\_error()} from a handler. Signaling an error in a commit handler will cause the runtime system to switch to aborting the transaction, immediately after the current commit handler returns.
adam@1469 2325
adamc@1085 2326 \item \begin{verbatim}
adamc@1085 2327 void *uw_get_global(uw_context, char *name);
adamc@1085 2328 void uw_set_global(uw_context, char *name, void *data, uw_callback free);
adamc@1085 2329 \end{verbatim}
adam@1329 2330 Different FFI-based extensions may want to associate their own pieces of data with contexts. The global interface provides a way of doing that, where each extension must come up with its own unique key. The \texttt{free} argument to \texttt{uw\_set\_global()} explains how to deallocate the saved data. It is never safe to store \texttt{uw\_malloc()}ed pointers in global variable slots.
adamc@1085 2331
adamc@897 2332 \end{itemize}
adamc@897 2333
adamc@897 2334 \subsection{Writing JavaScript FFI Code}
adamc@897 2335
adamc@897 2336 JavaScript is dynamically typed, so Ur/Web type definitions imply no JavaScript code. The JavaScript identifier for each FFI function is set with the \texttt{jsFunc} directive. Each identifier can be defined in any JavaScript file that you ask to include with the \texttt{script} directive.
adamc@897 2337
adamc@897 2338 In contrast to C FFI code, JavaScript FFI functions take no extra context argument. Their argument lists are as you would expect from their Ur types. Only functions whose ranges take the form \texttt{transaction T} should have side effects; the JavaScript ``return type'' of such a function is \texttt{T}. Here are the conventions for representing Ur values in JavaScript.
adamc@897 2339
adamc@897 2340 \begin{itemize}
adamc@897 2341 \item Integers, floats, strings, characters, and booleans are represented in the usual JavaScript way.
adamc@985 2342 \item Ur functions are represented in an unspecified way. This means that you should not rely on any details of function representation. Named FFI functions are represented as JavaScript functions with as many arguments as their Ur types specify. To call a non-FFI function \texttt{f} on argument \texttt{x}, run \texttt{execF(f, x)}.
adamc@897 2343 \item An Ur record is represented with a JavaScript record, where Ur field name \texttt{N} translates to JavaScript field name \texttt{\_N}. An exception to this rule is that the empty record is encoded as \texttt{null}.
adamc@897 2344 \item \texttt{option}-like types receive special handling similar to their handling in C. The ``\texttt{None}'' constructor is \texttt{null}, and a use of the ``\texttt{Some}'' constructor on a value \texttt{v} is either \texttt{v}, if the underlying type doesn't need to use \texttt{null}; or \texttt{\{v:v\}} otherwise.
adamc@985 2345 \item Any other datatypes represent a non-value-carrying constructor \texttt{C} as \texttt{"C"} and an application of a constructor \texttt{C} to value \texttt{v} as \texttt{\{n:"C", v:v\}}. This rule only applies to datatypes defined in FFI module signatures; the compiler is free to optimize the representations of other, non-\texttt{option}-like datatypes in arbitrary ways.
adamc@897 2346 \end{itemize}
adamc@897 2347
adamc@897 2348 It is possible to write JavaScript FFI code that interacts with the functional-reactive structure of a document, but this version of the manual doesn't cover the details.
adamc@897 2349
adamc@897 2350
adamc@552 2351 \section{Compiler Phases}
adamc@552 2352
adamc@552 2353 The Ur/Web compiler is unconventional in that it relies on a kind of \emph{heuristic compilation}. Not all valid programs will compile successfully. Informally, programs fail to compile when they are ``too higher order.'' Compiler phases do their best to eliminate different kinds of higher order-ness, but some programs just won't compile. This is a trade-off for producing very efficient executables. Compiled Ur/Web programs use native C representations and require no garbage collection.
adamc@552 2354
adamc@552 2355 In this section, we step through the main phases of compilation, noting what consequences each phase has for effective programming.
adamc@552 2356
adamc@552 2357 \subsection{Parse}
adamc@552 2358
adamc@552 2359 The compiler reads a \texttt{.urp} file, figures out which \texttt{.urs} and \texttt{.ur} files it references, and combines them all into what is conceptually a single sequence of declarations in the core language of Section \ref{core}.
adamc@552 2360
adamc@552 2361 \subsection{Elaborate}
adamc@552 2362
adamc@552 2363 This is where type inference takes place, translating programs into an explicit form with no more wildcards. This phase is the most likely source of compiler error messages.
adamc@552 2364
adam@1378 2365 Those crawling through the compiler source will also want to be aware of another compiler phase, Explify, that occurs immediately afterward. This phase just translates from an AST language that includes unification variables to a very similar language that doesn't; all variables should have been determined by the end of Elaborate, anyway. The new AST language also drops some features that are used only for static checking and that have no influence on runtime behavior, like disjointness constraints.
adam@1378 2366
adamc@552 2367 \subsection{Unnest}
adamc@552 2368
adamc@552 2369 Named local function definitions are moved to the top level, to avoid the need to generate closures.
adamc@552 2370
adamc@552 2371 \subsection{Corify}
adamc@552 2372
adamc@552 2373 Module system features are compiled away, through inlining of functor definitions at application sites. Afterward, most abstraction boundaries are broken, facilitating optimization.
adamc@552 2374
adamc@552 2375 \subsection{Especialize}
adamc@552 2376
adam@1356 2377 Functions are specialized to particular argument patterns. This is an important trick for avoiding the need to maintain any closures at runtime. Currently, specialization only happens for prefixes of a function's full list of parameters, so you may need to take care to put arguments of function types before other arguments. The optimizer will not be effective enough if you use arguments that mix functions and values that must be calculated at run-time. For instance, a tuple of a function and an integer counter would not lead to successful code generation; these should be split into separate arguments via currying.
adamc@552 2378
adamc@552 2379 \subsection{Untangle}
adamc@552 2380
adamc@552 2381 Remove unnecessary mutual recursion, splitting recursive groups into strongly-connected components.
adamc@552 2382
adamc@552 2383 \subsection{Shake}
adamc@552 2384
adamc@552 2385 Remove all definitions not needed to run the page handlers that are visible in the signature of the last module listed in the \texttt{.urp} file.
adamc@552 2386
adamc@661 2387 \subsection{Rpcify}
adamc@661 2388
adamc@661 2389 Pieces of code are determined to be client-side, server-side, neither, or both, by figuring out which standard library functions might be needed to execute them. Calls to server-side functions (e.g., $\mt{query}$) within mixed client-server code are identified and replaced with explicit remote calls. Some mixed functions may be converted to continuation-passing style to facilitate this transformation.
adamc@661 2390
adamc@661 2391 \subsection{Untangle, Shake}
adamc@661 2392
adamc@661 2393 Repeat these simplifications.
adamc@661 2394
adamc@553 2395 \subsection{\label{tag}Tag}
adamc@552 2396
adamc@552 2397 Assign a URL name to each link and form action. It is important that these links and actions are written as applications of named functions, because such names are used to generate URL patterns. A URL pattern has a name built from the full module path of the named function, followed by the function name, with all pieces separated by slashes. The path of a functor application is based on the name given to the result, rather than the path of the functor itself.
adamc@552 2398
adamc@552 2399 \subsection{Reduce}
adamc@552 2400
adamc@552 2401 Apply definitional equality rules to simplify the program as much as possible. This effectively includes inlining of every non-recursive definition.
adamc@552 2402
adamc@552 2403 \subsection{Unpoly}
adamc@552 2404
adamc@552 2405 This phase specializes polymorphic functions to the specific arguments passed to them in the program. If the program contains real polymorphic recursion, Unpoly will be insufficient to avoid later error messages about too much polymorphism.
adamc@552 2406
adamc@552 2407 \subsection{Specialize}
adamc@552 2408
adamc@558 2409 Replace uses of parameterized datatypes with versions specialized to specific parameters. As for Unpoly, this phase will not be effective enough in the presence of polymorphic recursion or other fancy uses of impredicative polymorphism.
adamc@552 2410
adamc@552 2411 \subsection{Shake}
adamc@552 2412
adamc@558 2413 Here the compiler repeats the earlier Shake phase.
adamc@552 2414
adamc@552 2415 \subsection{Monoize}
adamc@552 2416
adamc@552 2417 Programs are translated to a new intermediate language without polymorphism or non-$\mt{Type}$ constructors. Error messages may pop up here if earlier phases failed to remove such features.
adamc@552 2418
adamc@552 2419 This is the stage at which concrete names are generated for cookies, tables, and sequences. They are named following the same convention as for links and actions, based on module path information saved from earlier stages. Table and sequence names separate path elements with underscores instead of slashes, and they are prefixed by \texttt{uw\_}.
adamc@664 2420
adamc@552 2421 \subsection{MonoOpt}
adamc@552 2422
adamc@552 2423 Simple algebraic laws are applied to simplify the program, focusing especially on efficient imperative generation of HTML pages.
adamc@552 2424
adamc@552 2425 \subsection{MonoUntangle}
adamc@552 2426
adamc@552 2427 Unnecessary mutual recursion is broken up again.
adamc@552 2428
adamc@552 2429 \subsection{MonoReduce}
adamc@552 2430
adamc@552 2431 Equivalents of the definitional equality rules are applied to simplify programs, with inlining again playing a major role.
adamc@552 2432
adamc@552 2433 \subsection{MonoShake, MonoOpt}
adamc@552 2434
adamc@552 2435 Unneeded declarations are removed, and basic optimizations are repeated.
adamc@552 2436
adamc@552 2437 \subsection{Fuse}
adamc@552 2438
adamc@552 2439 The compiler tries to simplify calls to recursive functions whose results are immediately written as page output. The write action is pushed inside the function definitions to avoid allocation of intermediate results.
adamc@552 2440
adamc@552 2441 \subsection{MonoUntangle, MonoShake}
adamc@552 2442
adamc@552 2443 Fuse often creates more opportunities to remove spurious mutual recursion.
adamc@552 2444
adamc@552 2445 \subsection{Pathcheck}
adamc@552 2446
adamc@552 2447 The compiler checks that no link or action name has been used more than once.
adamc@552 2448
adamc@552 2449 \subsection{Cjrize}
adamc@552 2450
adamc@552 2451 The program is translated to what is more or less a subset of C. If any use of functions as data remains at this point, the compiler will complain.
adamc@552 2452
adamc@552 2453 \subsection{C Compilation and Linking}
adamc@552 2454
adam@1523 2455 The output of the last phase is pretty-printed as C source code and passed to the C compiler.
adamc@552 2456
adamc@552 2457
as@1564 2458 \end{document}