annotate doc/manual.tex @ 1695:385a1b799a74

Handle recursive RPC handlers
author Adam Chlipala <adam@chlipala.net>
date Sun, 11 Mar 2012 21:20:09 -0400
parents 27d68ccb2c9e
children 3320eba6bad5
rev   line source
adamc@524 1 \documentclass{article}
adamc@554 2 \usepackage{fullpage,amsmath,amssymb,proof,url}
rmbruijn@1568 3 \usepackage[T1]{fontenc}
adamc@524 4 \newcommand{\cd}[1]{\texttt{#1}}
adamc@524 5 \newcommand{\mt}[1]{\mathsf{#1}}
adamc@524 6
adamc@524 7 \newcommand{\rc}{+ \hspace{-.075in} + \;}
adamc@527 8 \newcommand{\rcut}{\; \texttt{--} \;}
adamc@527 9 \newcommand{\rcutM}{\; \texttt{---} \;}
adamc@524 10
adamc@524 11 \begin{document}
adamc@524 12
adamc@524 13 \title{The Ur/Web Manual}
adamc@524 14 \author{Adam Chlipala}
adamc@524 15
adamc@524 16 \maketitle
adamc@524 17
adamc@540 18 \tableofcontents
adamc@540 19
adamc@554 20
adamc@554 21 \section{Introduction}
adamc@554 22
adamc@1160 23 \emph{Ur} is a programming language designed to introduce richer type system features into functional programming in the tradition of ML and Haskell. Ur is functional, pure, statically-typed, and strict. Ur supports a powerful kind of \emph{metaprogramming} based on \emph{type-level computation with type-level records}.
adamc@554 24
adamc@554 25 \emph{Ur/Web} is Ur plus a special standard library and associated rules for parsing and optimization. Ur/Web supports construction of dynamic web applications backed by SQL databases. The signature of the standard library is such that well-typed Ur/Web programs ``don't go wrong'' in a very broad sense. Not only do they not crash during particular page generations, but they also may not:
adamc@554 26
adamc@554 27 \begin{itemize}
adamc@554 28 \item Suffer from any kinds of code-injection attacks
adamc@554 29 \item Return invalid HTML
adamc@554 30 \item Contain dead intra-application links
adamc@554 31 \item Have mismatches between HTML forms and the fields expected by their handlers
adamc@652 32 \item Include client-side code that makes incorrect assumptions about the ``AJAX''-style services that the remote web server provides
adamc@554 33 \item Attempt invalid SQL queries
adamc@652 34 \item Use improper marshaling or unmarshaling in communication with SQL databases or between browsers and web servers
adamc@554 35 \end{itemize}
adamc@554 36
adamc@554 37 This type safety is just the foundation of the Ur/Web methodology. It is also possible to use metaprogramming to build significant application pieces by analysis of type structure. For instance, the demo includes an ML-style functor for building an admin interface for an arbitrary SQL table. The type system guarantees that the admin interface sub-application that comes out will always be free of the above-listed bugs, no matter which well-typed table description is given as input.
adamc@554 38
adamc@652 39 The Ur/Web compiler also produces very efficient object code that does not use garbage collection. These compiled programs will often be even more efficient than what most programmers would bother to write in C. The compiler also generates JavaScript versions of client-side code, with no need to write those parts of applications in a different language.
adamc@554 40
adamc@554 41 \medskip
adamc@554 42
adamc@554 43 The official web site for Ur is:
adamc@554 44 \begin{center}
adamc@554 45 \url{http://www.impredicative.com/ur/}
adamc@554 46 \end{center}
adamc@554 47
adamc@555 48
adamc@555 49 \section{Installation}
adamc@555 50
adamc@555 51 If you are lucky, then the following standard command sequence will suffice for installation, in a directory to which you have unpacked the latest distribution tarball.
adamc@555 52
adamc@555 53 \begin{verbatim}
adamc@555 54 ./configure
adamc@555 55 make
adamc@555 56 sudo make install
adamc@555 57 \end{verbatim}
adamc@555 58
adam@1523 59 Some other packages must be installed for the above to work. At a minimum, you need a standard UNIX shell, with standard UNIX tools like sed and GCC (or an alternate C compiler) in your execution path; MLton, the whole-program optimizing compiler for Standard ML; and the development files for the OpenSSL C library. As of this writing, in the ``testing'' version of Debian Linux, this command will install the more uncommon of these dependencies:
adamc@896 60 \begin{verbatim}
adam@1368 61 apt-get install mlton libssl-dev
adamc@896 62 \end{verbatim}
adamc@555 63
adamc@896 64 To build programs that access SQL databases, you also need one of these client libraries for supported backends.
adamc@555 65 \begin{verbatim}
adamc@896 66 apt-get install libpq-dev libmysqlclient15-dev libsqlite3-dev
adamc@555 67 \end{verbatim}
adamc@555 68
adamc@555 69 It is also possible to access the modules of the Ur/Web compiler interactively, within Standard ML of New Jersey. To install the prerequisites in Debian testing:
adamc@555 70 \begin{verbatim}
adamc@555 71 apt-get install smlnj libsmlnj-smlnj ml-yacc ml-lpt
adamc@555 72 \end{verbatim}
adamc@555 73
adamc@555 74 To begin an interactive session with the Ur compiler modules, run \texttt{make smlnj}, and then, from within an \texttt{sml} session, run \texttt{CM.make "src/urweb.cm";}. The \texttt{Compiler} module is the main entry point.
adamc@555 75
adamc@896 76 To run an SQL-backed application with a backend besides SQLite, you will probably want to install one of these servers.
adamc@555 77
adamc@555 78 \begin{verbatim}
adam@1400 79 apt-get install postgresql-8.4 mysql-server-5.1
adamc@555 80 \end{verbatim}
adamc@555 81
adamc@555 82 To use the Emacs mode, you must have a modern Emacs installed. We assume that you already know how to do this, if you're in the business of looking for an Emacs mode. The demo generation facility of the compiler will also call out to Emacs to syntax-highlight code, and that process depends on the \texttt{htmlize} module, which can be installed in Debian testing via:
adamc@555 83
adamc@555 84 \begin{verbatim}
adamc@555 85 apt-get install emacs-goodies-el
adamc@555 86 \end{verbatim}
adamc@555 87
adam@1441 88 If you don't want to install the Emacs mode, run \texttt{./configure} with the argument \texttt{--without-emacs}.
adam@1441 89
adam@1523 90 Even with the right packages installed, configuration and building might fail to work. After you run \texttt{./configure}, you will see the values of some named environment variables printed. You may need to adjust these values to get proper installation for your system. To change a value, store your preferred alternative in the corresponding UNIX environment variable, before running \texttt{./configure}. For instance, here is how to change the list of extra arguments that the Ur/Web compiler will pass to the C compiler and linker on every invocation. Some older GCC versions need this setting to mask a bug in function inlining.
adamc@555 91
adamc@555 92 \begin{verbatim}
adam@1523 93 CCARGS=-fno-inline ./configure
adamc@555 94 \end{verbatim}
adamc@555 95
adam@1523 96 Since the author is still getting a handle on the GNU Autotools that provide the build system, you may need to do some further work to get started, especially in environments with significant differences from Linux (where most testing is done). The variables \texttt{PGHEADER}, \texttt{MSHEADER}, and \texttt{SQHEADER} may be used to set the proper C header files to include for the development libraries of PostgreSQL, MySQL, and SQLite, respectively. To get libpq to link, one OS X user reported setting \texttt{CCARGS="-I/opt/local/include -L/opt/local/lib/postgresql84"}, after creating a symbolic link with \texttt{ln -s /opt/local/include/postgresql84 /opt/local/include/postgresql}.
adamc@555 97
adamc@555 98 The Emacs mode can be set to autoload by adding the following to your \texttt{.emacs} file.
adamc@555 99
adamc@555 100 \begin{verbatim}
adamc@555 101 (add-to-list 'load-path "/usr/local/share/emacs/site-lisp/urweb-mode")
adamc@555 102 (load "urweb-mode-startup")
adamc@555 103 \end{verbatim}
adamc@555 104
adamc@555 105 Change the path in the first line if you chose a different Emacs installation path during configuration.
adamc@555 106
adamc@555 107
adamc@556 108 \section{Command-Line Compiler}
adamc@556 109
adam@1604 110 \subsection{\label{cl}Project Files}
adamc@556 111
adamc@556 112 The basic inputs to the \texttt{urweb} compiler are project files, which have the extension \texttt{.urp}. Here is a sample \texttt{.urp} file.
adamc@556 113
adamc@556 114 \begin{verbatim}
adamc@556 115 database dbname=test
adamc@556 116 sql crud1.sql
adamc@556 117
adamc@556 118 crud
adamc@556 119 crud1
adamc@556 120 \end{verbatim}
adamc@556 121
adamc@556 122 The \texttt{database} line gives the database information string to pass to libpq. In this case, the string only says to connect to a local database named \texttt{test}.
adamc@556 123
adamc@556 124 The \texttt{sql} line asks for an SQL source file to be generated, giving the commands to run to create the tables and sequences that this application expects to find. After building this \texttt{.urp} file, the following commands could be used to initialize the database, assuming that the current UNIX user exists as a Postgres user with database creation privileges:
adamc@556 125
adamc@556 126 \begin{verbatim}
adamc@556 127 createdb test
adamc@556 128 psql -f crud1.sql test
adamc@556 129 \end{verbatim}
adamc@556 130
adam@1331 131 A blank line separates the named directives from a list of modules to include in the project. Any line may contain a shell-script-style comment, where any suffix of a line starting at a hash character \texttt{\#} is ignored.
adamc@556 132
adamc@556 133 For each entry \texttt{M} in the module list, the file \texttt{M.urs} is included in the project if it exists, and the file \texttt{M.ur} must exist and is always included.
adamc@556 134
adamc@783 135 Here is the complete list of directive forms. ``FFI'' stands for ``foreign function interface,'' Ur's facility for interaction between Ur programs and C and JavaScript libraries.
adamc@783 136 \begin{itemize}
adam@1465 137 \item \texttt{[allow|deny] [url|mime|requestHeader|responseHeader] PATTERN} registers a rule governing which URLs, MIME types, HTTP request headers, or HTTP response headers are allowed to appear explicitly in this application. The first such rule to match a name determines the verdict. If \texttt{PATTERN} ends in \texttt{*}, it is interpreted as a prefix rule. Otherwise, a string must match it exactly.
adam@1400 138 \item \texttt{alwaysInline PATH} requests that every call to the referenced function be inlined. Section \ref{structure} explains how functions are assigned path strings.
adam@1462 139 \item \texttt{benignEffectful Module.ident} registers an FFI function or transaction as having side effects. The optimizer avoids removing, moving, or duplicating calls to such functions. Every effectful FFI function must be registered, or the optimizer may make invalid transformations. This version of the \texttt{effectful} directive registers that this function only has side effects that remain local to a single page generation.
adamc@783 140 \item \texttt{clientOnly Module.ident} registers an FFI function or transaction that may only be run in client browsers.
adamc@783 141 \item \texttt{clientToServer Module.ident} adds FFI type \texttt{Module.ident} to the list of types that are OK to marshal from clients to servers. Values like XML trees and SQL queries are hard to marshal without introducing expensive validity checks, so it's easier to ensure that the server never trusts clients to send such values. The file \texttt{include/urweb.h} shows examples of the C support functions that are required of any type that may be marshalled. These include \texttt{attrify}, \texttt{urlify}, and \texttt{unurlify} functions.
adamc@783 142 \item \texttt{database DBSTRING} sets the string to pass to libpq to open a database connection.
adamc@783 143 \item \texttt{debug} saves some intermediate C files, which is mostly useful to help in debugging the compiler itself.
adamc@783 144 \item \texttt{effectful Module.ident} registers an FFI function or transaction as having side effects. The optimizer avoids removing, moving, or duplicating calls to such functions. Every effectful FFI function must be registered, or the optimizer may make invalid transformations.
adamc@783 145 \item \texttt{exe FILENAME} sets the filename to which to write the output executable. The default for file \texttt{P.urp} is \texttt{P.exe}.
adamc@783 146 \item \texttt{ffi FILENAME} reads the file \texttt{FILENAME.urs} to determine the interface to a new FFI module. The name of the module is calculated from \texttt{FILENAME} in the same way as for normal source files. See the files \texttt{include/urweb.h} and \texttt{src/c/urweb.c} for examples of C headers and implementations for FFI modules. In general, every type or value \texttt{Module.ident} becomes \texttt{uw\_Module\_ident} in C.
adamc@1099 147 \item \texttt{include FILENAME} adds \texttt{FILENAME} to the list of files to be \texttt{\#include}d in C sources. This is most useful for interfacing with new FFI modules.
adamc@783 148 \item \texttt{jsFunc Module.ident=name} gives the JavaScript name of an FFI value.
adamc@1089 149 \item \texttt{library FILENAME} parses \texttt{FILENAME.urp} and merges its contents with the rest of the current file's contents. If \texttt{FILENAME.urp} doesn't exist, the compiler also tries \texttt{FILENAME/lib.urp}.
adam@1309 150 \item \texttt{limit class num} sets a resource usage limit for generated applications. The limit \texttt{class} will be set to the non-negative integer \texttt{num}. The classes are:
adam@1309 151 \begin{itemize}
adam@1309 152 \item \texttt{cleanup}: maximum number of cleanup operations (e.g., entries recording the need to deallocate certain temporary objects) that may be active at once per request
adam@1309 153 \item \texttt{database}: maximum size of database files (currently only used by SQLite)
adam@1309 154 \item \texttt{deltas}: maximum number of messages sendable in a single request handler with \texttt{Basis.send}
adam@1309 155 \item \texttt{globals}: maximum number of global variables that FFI libraries may set in a single request context
adam@1309 156 \item \texttt{headers}: maximum size (in bytes) of per-request buffer used to hold HTTP headers for generated pages
adam@1309 157 \item \texttt{heap}: maximum size (in bytes) of per-request heap for dynamically-allocated data
adam@1309 158 \item \texttt{inputs}: maximum number of top-level form fields per request
adam@1309 159 \item \texttt{messages}: maximum size (in bytes) of per-request buffer used to hold a single outgoing message sent with \texttt{Basis.send}
adam@1309 160 \item \texttt{page}: maximum size (in bytes) of per-request buffer used to hold HTML content of generated pages
adam@1309 161 \item \texttt{script}: maximum size (in bytes) of per-request buffer used to hold JavaScript content of generated pages
adam@1309 162 \item \texttt{subinputs}: maximum number of form fields per request, excluding top-level fields
adam@1309 163 \item \texttt{time}: maximum running time of a single page request, in units of approximately 0.1 seconds
adam@1309 164 \item \texttt{transactionals}: maximum number of custom transactional actions (e.g., sending an e-mail) that may be run in a single page generation
adam@1309 165 \end{itemize}
adam@1523 166 \item \texttt{link FILENAME} adds \texttt{FILENAME} to the list of files to be passed to the linker at the end of compilation. This is most useful for importing extra libraries needed by new FFI modules.
adam@1332 167 \item \texttt{minHeap NUMBYTES} sets the initial size for thread-local heaps used in handling requests. These heaps grow automatically as needed (up to any maximum set with \texttt{limit}), but each regrow requires restarting the request handling process.
adam@1478 168 \item \texttt{noXsrfProtection URIPREFIX} turns off automatic cross-site request forgery protection for the page handler identified by the given URI prefix. This will avoid checking cryptographic signatures on cookies, which is generally a reasonable idea for some pages, such as login pages that are going to discard all old cookie values, anyway.
adam@1297 169 \item \texttt{onError Module.var} changes the handling of fatal application errors. Instead of displaying a default, ugly error 500 page, the error page will be generated by calling function \texttt{Module.var} on a piece of XML representing the error message. The error handler should have type $\mt{xbody} \to \mt{transaction} \; \mt{page}$. Note that the error handler \emph{cannot} be in the application's main module, since that would register it as explicitly callable via URLs.
adamc@852 170 \item \texttt{path NAME=VALUE} creates a mapping from \texttt{NAME} to \texttt{VALUE}. This mapping may be used at the beginnings of filesystem paths given to various other configuration directives. A path like \texttt{\$NAME/rest} is expanded to \texttt{VALUE/rest}. There is an initial mapping from the empty name (for paths like \texttt{\$/list}) to the directory where the Ur/Web standard library is installed. If you accept the default \texttt{configure} options, this directory is \texttt{/usr/local/lib/urweb/ur}.
adamc@783 171 \item \texttt{prefix PREFIX} sets the prefix included before every URI within the generated application. The default is \texttt{/}.
adamc@783 172 \item \texttt{profile} generates an executable that may be used with gprof.
adam@1300 173 \item \texttt{rewrite KIND FROM TO} gives a rule for rewriting canonical module paths. For instance, the canonical path of a page may be \texttt{Mod1.Mod2.mypage}, while you would rather the page were accessed via a URL containing only \texttt{page}. The directive \texttt{rewrite url Mod1/Mod2/mypage page} would accomplish that. The possible values of \texttt{KIND} determine which kinds of objects are affected. The kind \texttt{all} matches any object, and \texttt{url} matches page URLs. The kinds \texttt{table}, \texttt{sequence}, and \texttt{view} match those sorts of SQL entities, and \texttt{relation} matches any of those three. \texttt{cookie} matches HTTP cookies, and \texttt{style} matches CSS class names. If \texttt{FROM} ends in \texttt{/*}, it is interpreted as a prefix matching rule, and rewriting occurs by replacing only the appropriate prefix of a path with \texttt{TO}. The \texttt{TO} field may be left empty to express the idea of deleting a prefix. For instance, \texttt{rewrite url Main/*} will strip all \texttt{Main/} prefixes from URLs. While the actual external names of relations and styles have parts separated by underscores instead of slashes, all rewrite rules must be written in terms of slashes.
adamc@1183 174 \item \texttt{safeGet URI} asks to allow the page handler assigned this canonical URI prefix to cause persistent side effects, even if accessed via an HTTP \cd{GET} request.
adamc@783 175 \item \texttt{script URL} adds \texttt{URL} to the list of extra JavaScript files to be included at the beginning of any page that uses JavaScript. This is most useful for importing JavaScript versions of functions found in new FFI modules.
adamc@783 176 \item \texttt{serverOnly Module.ident} registers an FFI function or transaction that may only be run on the server.
adamc@1164 177 \item \texttt{sigfile PATH} sets a path where your application should look for a key to use in cryptographic signing. This is used to prevent cross-site request forgery attacks for any form handler that both reads a cookie and creates side effects. If the referenced file doesn't exist, an application will create it and read its saved data on future invocations. You can also initialize the file manually with any contents at least 16 bytes long; the first 16 bytes will be treated as the key.
adamc@783 178 \item \texttt{sql FILENAME} sets where to write an SQL file with the commands to create the expected database schema. The default is not to create such a file.
adam@1629 179 \item \texttt{timeFormat FMT} accepts a time format string, as processed by the POSIX C function \texttt{strftime()}. This controls the default rendering of $\mt{time}$ values, via the $\mt{show}$ instance for $\mt{time}$.
adamc@783 180 \item \texttt{timeout N} sets to \texttt{N} seconds the amount of time that the generated server will wait after the last contact from a client before determining that that client has exited the application. Clients that remain active will take the timeout setting into account in determining how often to ping the server, so it only makes sense to set a high timeout to cope with browser and network delays and failures. Higher timeouts can lead to more unnecessary client information taking up memory on the server. The timeout goes unused by any page that doesn't involve the \texttt{recv} function, since the server only needs to store per-client information for clients that receive asynchronous messages.
adamc@783 181 \end{itemize}
adamc@701 182
adamc@701 183
adamc@557 184 \subsection{Building an Application}
adamc@557 185
adamc@557 186 To compile project \texttt{P.urp}, simply run
adamc@557 187 \begin{verbatim}
adamc@557 188 urweb P
adamc@557 189 \end{verbatim}
adamc@1198 190 The output executable is a standalone web server. Run it with the command-line argument \texttt{-h} to see which options it takes. If the project file lists a database, the web server will attempt to connect to that database on startup. See Section \ref{structure} for an explanation of the URI mapping convention, which determines how each page of your application may be accessed via URLs.
adamc@557 191
adamc@557 192 To time how long the different compiler phases run, without generating an executable, run
adamc@557 193 \begin{verbatim}
adamc@557 194 urweb -timing P
adamc@557 195 \end{verbatim}
adamc@557 196
adamc@1086 197 To stop the compilation process after type-checking, run
adamc@1086 198 \begin{verbatim}
adamc@1086 199 urweb -tc P
adamc@1086 200 \end{verbatim}
adam@1530 201 It is often worthwhile to run \cd{urweb} in this mode, because later phases of compilation can take significantly longer than type-checking alone, and the type checker catches many errors that would traditionally be found through debugging a running application.
adamc@1086 202
adam@1531 203 A related option is \cd{-dumpTypes}, which, as long as parsing succeeds, outputs to stdout a summary of the kinds of all identifiers declared with \cd{con} and the types of all identifiers declared with \cd{val} or \cd{val rec}. This information is dumped even if there are errors during type inference. Compiler error messages go to stderr, not stdout, so it is easy to distinguish the two kinds of output programmatically.
adam@1531 204
adamc@1170 205 To output information relevant to CSS stylesheets (and not finish regular compilation), run
adamc@1170 206 \begin{verbatim}
adamc@1170 207 urweb -css P
adamc@1170 208 \end{verbatim}
adamc@1170 209 The first output line is a list of categories of CSS properties that would be worth setting on the document body. The remaining lines are space-separated pairs of CSS class names and categories of properties that would be worth setting for that class. The category codes are divided into two varieties. Codes that reveal properties of a tag or its (recursive) children are \cd{B} for block-level elements, \cd{C} for table captions, \cd{D} for table cells, \cd{L} for lists, and \cd{T} for tables. Codes that reveal properties of the precise tag that uses a class are \cd{b} for block-level elements, \cd{t} for tables, \cd{d} for table cells, \cd{-} for table rows, \cd{H} for the possibility to set a height, \cd{N} for non-replaced inline-level elements, \cd{R} for replaced inline elements, and \cd{W} for the possibility to set a width.
adamc@1170 210
adamc@896 211 Some other command-line parameters are accepted:
adamc@896 212 \begin{itemize}
adamc@896 213 \item \texttt{-db <DBSTRING>}: Set database connection information, using the format expected by Postgres's \texttt{PQconnectdb()}, which is \texttt{name1=value1 ... nameN=valueN}. The same format is also parsed and used to discover connection parameters for MySQL and SQLite. The only significant settings for MySQL are \texttt{host}, \texttt{hostaddr}, \texttt{port}, \texttt{dbname}, \texttt{user}, and \texttt{password}. The only significant setting for SQLite is \texttt{dbname}, which is interpreted as the filesystem path to the database. Additionally, when using SQLite, a database string may be just a file path.
adamc@896 214
adamc@896 215 \item \texttt{-dbms [postgres|mysql|sqlite]}: Sets the database backend to use.
adamc@896 216 \begin{itemize}
adamc@896 217 \item \texttt{postgres}: This is PostgreSQL, the default. Among the supported engines, Postgres best matches the design philosophy behind Ur, with a focus on consistent views of data, even in the face of much concurrency. Different database engines have different quirks of SQL syntax. Ur/Web tends to use Postgres idioms where there are choices to be made, though the compiler translates SQL as needed to support other backends.
adamc@896 218
adamc@896 219 A command sequence like this can initialize a Postgres database, using a file \texttt{app.sql} generated by the compiler:
adamc@896 220 \begin{verbatim}
adamc@896 221 createdb app
adamc@896 222 psql -f app.sql app
adamc@896 223 \end{verbatim}
adamc@896 224
adamc@896 225 \item \texttt{mysql}: This is MySQL, another popular relational database engine that uses persistent server processes. Ur/Web needs transactions to function properly. Many installations of MySQL use non-transactional storage engines by default. Ur/Web generates table definitions that try to use MySQL's InnoDB engine, which supports transactions. You can edit the first line of a generated \texttt{.sql} file to change this behavior, but it really is true that Ur/Web applications will exhibit bizarre behavior if you choose an engine that ignores transaction commands.
adamc@896 226
adamc@896 227 A command sequence like this can initialize a MySQL database:
adamc@896 228 \begin{verbatim}
adamc@896 229 echo "CREATE DATABASE app" | mysql
adamc@896 230 mysql -D app <app.sql
adamc@896 231 \end{verbatim}
adamc@896 232
adamc@896 233 \item \texttt{sqlite}: This is SQLite, a simple filesystem-based transactional database engine. With this backend, Ur/Web applications can run without any additional server processes. The other engines are generally preferred for large-workload performance and full admin feature sets, while SQLite is popular for its low resource footprint and ease of set-up.
adamc@896 234
adamc@896 235 A command like this can initialize an SQLite database:
adamc@896 236 \begin{verbatim}
adamc@896 237 sqlite3 path/to/database/file <app.sql
adamc@896 238 \end{verbatim}
adamc@896 239 \end{itemize}
adamc@896 240
adam@1693 241 \item \texttt{-dumpSource}: When compilation fails, output to stderr the complete source code of the last intermediate program before the compilation phase that signaled the error. (Warning: these outputs can be very long and aren't especially optimized for readability!)
adam@1693 242
adam@1309 243 \item \texttt{-limit class num}: Equivalent to the \texttt{limit} directive from \texttt{.urp} files
adam@1309 244
adamc@896 245 \item \texttt{-output FILENAME}: Set where the application executable is written.
adamc@896 246
adamc@1127 247 \item \texttt{-path NAME VALUE}: Set the value of path variable \texttt{\$NAME} to \texttt{VALUE}, for use in \texttt{.urp} files.
adamc@1127 248
adam@1335 249 \item \texttt{-prefix PREFIX}: Equivalent to the \texttt{prefix} directive from \texttt{.urp} files
adam@1335 250
adamc@896 251 \item \texttt{-protocol [http|cgi|fastcgi]}: Set the protocol that the generated application speaks.
adamc@896 252 \begin{itemize}
adamc@896 253 \item \texttt{http}: This is the default. It is for building standalone web servers that can be accessed by web browsers directly.
adamc@896 254
adamc@896 255 \item \texttt{cgi}: This is the classic protocol that web servers use to generate dynamic content by spawning new processes. While Ur/Web programs may in general use message-passing with the \texttt{send} and \texttt{recv} functions, that functionality is not yet supported in CGI, since CGI needs a fresh process for each request, and message-passing needs to use persistent sockets to deliver messages.
adamc@896 256
adamc@896 257 Since Ur/Web treats paths in an unusual way, a configuration line like this one can be used to configure an application that was built with URL prefix \texttt{/Hello}:
adamc@896 258 \begin{verbatim}
adamc@896 259 ScriptAlias /Hello /path/to/hello.exe
adamc@896 260 \end{verbatim}
adamc@896 261
adamc@1163 262 A different method can be used for, e.g., a shared host, where you can only configure Apache via \texttt{.htaccess} files. Drop the generated executable into your web space and mark it as CGI somehow. For instance, if the script ends in \texttt{.exe}, you might put this in \texttt{.htaccess} in the directory containing the script:
adamc@1163 263 \begin{verbatim}
adamc@1163 264 Options +ExecCGI
adamc@1163 265 AddHandler cgi-script .exe
adamc@1163 266 \end{verbatim}
adamc@1163 267
adamc@1163 268 Additionally, make sure that Ur/Web knows the proper URI prefix for your script. For instance, if the script is accessed via \texttt{http://somewhere/dir/script.exe}, then include this line in your \texttt{.urp} file:
adamc@1163 269 \begin{verbatim}
adamc@1163 270 prefix /dir/script.exe/
adamc@1163 271 \end{verbatim}
adamc@1163 272
adamc@1163 273 To access the \texttt{foo} function in the \texttt{Bar} module, you would then hit \texttt{http://somewhere/dir/script.exe/Bar/foo}.
adamc@1163 274
adamc@1164 275 If your application contains form handlers that read cookies before causing side effects, then you will need to use the \texttt{sigfile} \texttt{.urp} directive, too.
adamc@1164 276
adamc@896 277 \item \texttt{fastcgi}: This is a newer protocol inspired by CGI, wherein web servers can start and reuse persistent external processes to generate dynamic content. Ur/Web doesn't implement the whole protocol, but Ur/Web's support has been tested to work with the \texttt{mod\_fastcgi}s of Apache and lighttpd.
adamc@896 278
adamc@896 279 To configure a FastCGI program with Apache, one could combine the above \texttt{ScriptAlias} line with a line like this:
adamc@896 280 \begin{verbatim}
adamc@896 281 FastCgiServer /path/to/hello.exe -idle-timeout 99999
adamc@896 282 \end{verbatim}
adamc@896 283 The idle timeout is only important for applications that use message-passing. Client connections may go long periods without receiving messages, and Apache tries to be helpful and garbage collect them in such cases. To prevent that behavior, we specify how long a connection must be idle to be collected.
adamc@896 284
adamc@896 285 Here is some lighttpd configuration for the same application.
adamc@896 286 \begin{verbatim}
adamc@896 287 fastcgi.server = (
adamc@896 288 "/Hello/" =>
adamc@896 289 (( "bin-path" => "/path/to/hello.exe",
adamc@896 290 "socket" => "/tmp/hello",
adamc@896 291 "check-local" => "disable",
adamc@896 292 "docroot" => "/",
adamc@896 293 "max-procs" => "1"
adamc@896 294 ))
adamc@896 295 )
adamc@896 296 \end{verbatim}
adamc@896 297 The least obvious requirement is setting \texttt{max-procs} to 1, so that lighttpd doesn't try to multiplex requests across multiple external processes. This is required for message-passing applications, where a single database of client connections is maintained within a multi-threaded server process. Multiple processes may, however, be used safely with applications that don't use message-passing.
adamc@896 298
adamc@896 299 A FastCGI process reads the environment variable \texttt{URWEB\_NUM\_THREADS} to determine how many threads to spawn for handling client requests. The default is 1.
adam@1509 300
adam@1509 301 \item \texttt{static}: This protocol may be used to generate static web pages from Ur/Web code. The output executable expects a single command-line argument, giving the URI of a page to generate. For instance, this argument might be \cd{/main}, in which case a static HTTP response for that page will be written to stdout.
adamc@896 302 \end{itemize}
adamc@896 303
adamc@1127 304 \item \texttt{-root Name PATH}: Trigger an alternate module convention for all source files found in directory \texttt{PATH} or any of its subdirectories. Any file \texttt{PATH/foo.ur} defines a module \texttt{Name.Foo} instead of the usual \texttt{Foo}. Any file \texttt{PATH/subdir/foo.ur} defines a module \texttt{Name.Subdir.Foo}, and so on for arbitrary nesting of subdirectories.
adamc@1127 305
adamc@1164 306 \item \texttt{-sigfile PATH}: Same as the \texttt{sigfile} directive in \texttt{.urp} files
adamc@1164 307
adamc@896 308 \item \texttt{-sql FILENAME}: Set where a database set-up SQL script is written.
adamc@1095 309
adamc@1095 310 \item \texttt{-static}: Link the runtime system statically. The default is to link against dynamic libraries.
adamc@896 311 \end{itemize}
adamc@896 312
adam@1297 313 There is an additional convenience method for invoking \texttt{urweb}. If the main argument is \texttt{FOO}, and \texttt{FOO.ur} exists but \texttt{FOO.urp} doesn't, then the invocation is interpreted as if called on a \texttt{.urp} file containing \texttt{FOO} as its only main entry, with an additional \texttt{rewrite all FOO/*} directive.
adamc@556 314
adam@1509 315 \subsection{Tutorial Formatting}
adam@1509 316
adam@1509 317 The Ur/Web compiler also supports rendering of nice HTML tutorials from Ur source files, when invoked like \cd{urweb -tutorial DIR}. The directory \cd{DIR} is examined for files whose names end in \cd{.ur}. Every such file is translated into a \cd{.html} version.
adam@1509 318
adam@1509 319 These input files follow normal Ur syntax, with a few exceptions:
adam@1509 320 \begin{itemize}
adam@1509 321 \item The first line must be a comment like \cd{(* TITLE *)}, where \cd{TITLE} is a string of your choice that will be used as the title of the output page.
adam@1509 322 \item While most code in the output HTML will be formatted as a monospaced code listing, text in regular Ur comments is formatted as normal English text.
adam@1509 323 \item A comment like \cd{(* * HEADING *)} introduces a section heading, with text \cd{HEADING} of your choice.
adam@1509 324 \item To include both a rendering of an Ur expression and a pretty-printed version of its value, bracket the expression with \cd{(* begin eval *)} and \cd{(* end *)}. The result of expression evaluation is pretty-printed with \cd{show}, so the expression type must belong to that type class.
adam@1509 325 \item To include code that should not be shown in the tutorial (e.g., to add a \cd{show} instance to use with \cd{eval}), bracket the code with \cd{(* begin hide *)} and \cd{(* end *)}.
adam@1509 326 \end{itemize}
adam@1509 327
adam@1509 328 A word of warning: as for demo generation, tutorial generation calls Emacs to syntax-highlight Ur code.
adam@1509 329
adam@1522 330 \subsection{Run-Time Options}
adam@1522 331
adam@1522 332 Compiled applications consult a few environment variables to modify their behavior:
adam@1522 333
adam@1522 334 \begin{itemize}
adam@1522 335 \item \cd{URWEB\_NUM\_THREADS}: alternative to the \cd{-t} command-line argument (currently used only by FastCGI)
adam@1522 336 \item \cd{URWEB\_STACK\_SIZE}: size of per-thread stacks, in bytes
as@1564 337 \item \cd{URWEB\_PQ\_CON}: when using PostgreSQL, overrides the compiled-in connection string
adam@1522 338 \end{itemize}
adam@1522 339
adam@1509 340
adamc@529 341 \section{Ur Syntax}
adamc@529 342
adamc@784 343 In this section, we describe the syntax of Ur, deferring to a later section discussion of most of the syntax specific to SQL and XML. The sole exceptions are the declaration forms for relations, cookies, and styles.
adamc@524 344
adamc@524 345 \subsection{Lexical Conventions}
adamc@524 346
adamc@524 347 We give the Ur language definition in \LaTeX $\;$ math mode, since that is prettier than monospaced ASCII. The corresponding ASCII syntax can be read off directly. Here is the key for mapping math symbols to ASCII character sequences.
adamc@524 348
adamc@524 349 \begin{center}
adamc@524 350 \begin{tabular}{rl}
adamc@524 351 \textbf{\LaTeX} & \textbf{ASCII} \\
adamc@524 352 $\to$ & \cd{->} \\
adam@1687 353 $\longrightarrow$ & \cd{-{}->} \\
adamc@524 354 $\times$ & \cd{*} \\
adamc@524 355 $\lambda$ & \cd{fn} \\
adamc@524 356 $\Rightarrow$ & \cd{=>} \\
adamc@652 357 $\Longrightarrow$ & \cd{==>} \\
adamc@529 358 $\neq$ & \cd{<>} \\
adamc@529 359 $\leq$ & \cd{<=} \\
adamc@529 360 $\geq$ & \cd{>=} \\
adamc@524 361 \\
adamc@524 362 $x$ & Normal textual identifier, not beginning with an uppercase letter \\
adamc@525 363 $X$ & Normal textual identifier, beginning with an uppercase letter \\
adamc@524 364 \end{tabular}
adamc@524 365 \end{center}
adamc@524 366
adamc@525 367 We often write syntax like $e^*$ to indicate zero or more copies of $e$, $e^+$ to indicate one or more copies, and $e,^*$ and $e,^+$ to indicate multiple copies separated by commas. Another separator may be used in place of a comma. The $e$ term may be surrounded by parentheses to indicate grouping; those parentheses should not be included in the actual ASCII.
adamc@524 368
adamc@873 369 We write $\ell$ for literals of the primitive types, for the most part following C conventions. There are $\mt{int}$, $\mt{float}$, $\mt{char}$, and $\mt{string}$ literals. Character literals follow the SML convention instead of the C convention, written like \texttt{\#"a"} instead of \texttt{'a'}.
adamc@526 370
adamc@527 371 This version of the manual doesn't include operator precedences; see \texttt{src/urweb.grm} for that.
adamc@527 372
adam@1297 373 As in the ML language family, the syntax \texttt{(* ... *)} is used for (nestable) comments. Within XML literals, Ur/Web also supports the usual \texttt{<!-- ... -->} XML comments.
adam@1297 374
adamc@552 375 \subsection{\label{core}Core Syntax}
adamc@524 376
adamc@524 377 \emph{Kinds} classify types and other compile-time-only entities. Each kind in the grammar is listed with a description of the sort of data it classifies.
adamc@524 378 $$\begin{array}{rrcll}
adamc@524 379 \textrm{Kinds} & \kappa &::=& \mt{Type} & \textrm{proper types} \\
adamc@525 380 &&& \mt{Unit} & \textrm{the trivial constructor} \\
adamc@525 381 &&& \mt{Name} & \textrm{field names} \\
adamc@525 382 &&& \kappa \to \kappa & \textrm{type-level functions} \\
adamc@525 383 &&& \{\kappa\} & \textrm{type-level records} \\
adamc@525 384 &&& (\kappa\times^+) & \textrm{type-level tuples} \\
adamc@652 385 &&& X & \textrm{variable} \\
adam@1574 386 &&& X \longrightarrow \kappa & \textrm{kind-polymorphic type-level function} \\
adamc@529 387 &&& \_\_ & \textrm{wildcard} \\
adamc@525 388 &&& (\kappa) & \textrm{explicit precedence} \\
adamc@524 389 \end{array}$$
adamc@524 390
adamc@524 391 Ur supports several different notions of functions that take types as arguments. These arguments can be either implicit, causing them to be inferred at use sites; or explicit, forcing them to be specified manually at use sites. There is a common explicitness annotation convention applied at the definitions of and in the types of such functions.
adamc@524 392 $$\begin{array}{rrcll}
adamc@524 393 \textrm{Explicitness} & ? &::=& :: & \textrm{explicit} \\
adamc@558 394 &&& ::: & \textrm{implicit}
adamc@524 395 \end{array}$$
adamc@524 396
adamc@524 397 \emph{Constructors} are the main class of compile-time-only data. They include proper types and are classified by kinds.
adamc@524 398 $$\begin{array}{rrcll}
adamc@524 399 \textrm{Constructors} & c, \tau &::=& (c) :: \kappa & \textrm{kind annotation} \\
adamc@530 400 &&& \hat{x} & \textrm{constructor variable} \\
adamc@524 401 \\
adamc@525 402 &&& \tau \to \tau & \textrm{function type} \\
adamc@525 403 &&& x \; ? \; \kappa \to \tau & \textrm{polymorphic function type} \\
adamc@652 404 &&& X \longrightarrow \tau & \textrm{kind-polymorphic function type} \\
adamc@525 405 &&& \$ c & \textrm{record type} \\
adamc@524 406 \\
adamc@525 407 &&& c \; c & \textrm{type-level function application} \\
adamc@530 408 &&& \lambda x \; :: \; \kappa \Rightarrow c & \textrm{type-level function abstraction} \\
adamc@524 409 \\
adamc@652 410 &&& X \Longrightarrow c & \textrm{type-level kind-polymorphic function abstraction} \\
adamc@655 411 &&& c [\kappa] & \textrm{type-level kind-polymorphic function application} \\
adamc@652 412 \\
adamc@525 413 &&& () & \textrm{type-level unit} \\
adamc@525 414 &&& \#X & \textrm{field name} \\
adamc@524 415 \\
adamc@525 416 &&& [(c = c)^*] & \textrm{known-length type-level record} \\
adamc@525 417 &&& c \rc c & \textrm{type-level record concatenation} \\
adamc@652 418 &&& \mt{map} & \textrm{type-level record map} \\
adamc@524 419 \\
adamc@558 420 &&& (c,^+) & \textrm{type-level tuple} \\
adamc@525 421 &&& c.n & \textrm{type-level tuple projection ($n \in \mathbb N^+$)} \\
adamc@524 422 \\
adamc@652 423 &&& [c \sim c] \Rightarrow \tau & \textrm{guarded type} \\
adamc@524 424 \\
adamc@529 425 &&& \_ :: \kappa & \textrm{wildcard} \\
adamc@525 426 &&& (c) & \textrm{explicit precedence} \\
adamc@530 427 \\
adamc@530 428 \textrm{Qualified uncapitalized variables} & \hat{x} &::=& x & \textrm{not from a module} \\
adamc@530 429 &&& M.x & \textrm{projection from a module} \\
adamc@525 430 \end{array}$$
adamc@525 431
adam@1579 432 We include both abstraction and application for kind polymorphism, but applications are only inferred internally; they may not be written explicitly in source programs. Also, in the ``known-length type-level record'' form, in $c_1 = c_2$ terms, the parser currently only allows $c_1$ to be of the forms $X$ (as a shorthand for $\#X$) or $x$, or a natural number to stand for the corresponding field name (e.g., for tuples).
adamc@655 433
adamc@525 434 Modules of the module system are described by \emph{signatures}.
adamc@525 435 $$\begin{array}{rrcll}
adamc@525 436 \textrm{Signatures} & S &::=& \mt{sig} \; s^* \; \mt{end} & \textrm{constant} \\
adamc@525 437 &&& X & \textrm{variable} \\
adamc@525 438 &&& \mt{functor}(X : S) : S & \textrm{functor} \\
adamc@529 439 &&& S \; \mt{where} \; \mt{con} \; x = c & \textrm{concretizing an abstract constructor} \\
adamc@525 440 &&& M.X & \textrm{projection from a module} \\
adamc@525 441 \\
adamc@525 442 \textrm{Signature items} & s &::=& \mt{con} \; x :: \kappa & \textrm{abstract constructor} \\
adamc@525 443 &&& \mt{con} \; x :: \kappa = c & \textrm{concrete constructor} \\
adamc@528 444 &&& \mt{datatype} \; x \; x^* = dc\mid^+ & \textrm{algebraic datatype definition} \\
adamc@529 445 &&& \mt{datatype} \; x = \mt{datatype} \; M.x & \textrm{algebraic datatype import} \\
adamc@525 446 &&& \mt{val} \; x : \tau & \textrm{value} \\
adamc@525 447 &&& \mt{structure} \; X : S & \textrm{sub-module} \\
adamc@525 448 &&& \mt{signature} \; X = S & \textrm{sub-signature} \\
adamc@525 449 &&& \mt{include} \; S & \textrm{signature inclusion} \\
adamc@525 450 &&& \mt{constraint} \; c \sim c & \textrm{record disjointness constraint} \\
adamc@654 451 &&& \mt{class} \; x :: \kappa & \textrm{abstract constructor class} \\
adamc@654 452 &&& \mt{class} \; x :: \kappa = c & \textrm{concrete constructor class} \\
adamc@525 453 \\
adamc@525 454 \textrm{Datatype constructors} & dc &::=& X & \textrm{nullary constructor} \\
adamc@525 455 &&& X \; \mt{of} \; \tau & \textrm{unary constructor} \\
adamc@524 456 \end{array}$$
adamc@524 457
adamc@526 458 \emph{Patterns} are used to describe structural conditions on expressions, such that expressions may be tested against patterns, generating assignments to pattern variables if successful.
adamc@526 459 $$\begin{array}{rrcll}
adamc@526 460 \textrm{Patterns} & p &::=& \_ & \textrm{wildcard} \\
adamc@526 461 &&& x & \textrm{variable} \\
adamc@526 462 &&& \ell & \textrm{constant} \\
adamc@526 463 &&& \hat{X} & \textrm{nullary constructor} \\
adamc@526 464 &&& \hat{X} \; p & \textrm{unary constructor} \\
adamc@526 465 &&& \{(x = p,)^*\} & \textrm{rigid record pattern} \\
adamc@526 466 &&& \{(x = p,)^+, \ldots\} & \textrm{flexible record pattern} \\
adamc@852 467 &&& p : \tau & \textrm{type annotation} \\
adamc@527 468 &&& (p) & \textrm{explicit precedence} \\
adamc@526 469 \\
adamc@529 470 \textrm{Qualified capitalized variables} & \hat{X} &::=& X & \textrm{not from a module} \\
adamc@526 471 &&& M.X & \textrm{projection from a module} \\
adamc@526 472 \end{array}$$
adamc@526 473
adamc@527 474 \emph{Expressions} are the main run-time entities, corresponding to both ``expressions'' and ``statements'' in mainstream imperative languages.
adamc@527 475 $$\begin{array}{rrcll}
adamc@527 476 \textrm{Expressions} & e &::=& e : \tau & \textrm{type annotation} \\
adamc@529 477 &&& \hat{x} & \textrm{variable} \\
adamc@529 478 &&& \hat{X} & \textrm{datatype constructor} \\
adamc@527 479 &&& \ell & \textrm{constant} \\
adamc@527 480 \\
adamc@527 481 &&& e \; e & \textrm{function application} \\
adamc@527 482 &&& \lambda x : \tau \Rightarrow e & \textrm{function abstraction} \\
adamc@527 483 &&& e [c] & \textrm{polymorphic function application} \\
adamc@852 484 &&& \lambda [x \; ? \; \kappa] \Rightarrow e & \textrm{polymorphic function abstraction} \\
adamc@655 485 &&& e [\kappa] & \textrm{kind-polymorphic function application} \\
adamc@652 486 &&& X \Longrightarrow e & \textrm{kind-polymorphic function abstraction} \\
adamc@527 487 \\
adamc@527 488 &&& \{(c = e,)^*\} & \textrm{known-length record} \\
adamc@527 489 &&& e.c & \textrm{record field projection} \\
adamc@527 490 &&& e \rc e & \textrm{record concatenation} \\
adamc@527 491 &&& e \rcut c & \textrm{removal of a single record field} \\
adamc@527 492 &&& e \rcutM c & \textrm{removal of multiple record fields} \\
adamc@527 493 \\
adamc@527 494 &&& \mt{let} \; ed^* \; \mt{in} \; e \; \mt{end} & \textrm{local definitions} \\
adamc@527 495 \\
adamc@527 496 &&& \mt{case} \; e \; \mt{of} \; (p \Rightarrow e|)^+ & \textrm{pattern matching} \\
adamc@527 497 \\
adamc@654 498 &&& \lambda [c \sim c] \Rightarrow e & \textrm{guarded expression abstraction} \\
adamc@654 499 &&& e \; ! & \textrm{guarded expression application} \\
adamc@527 500 \\
adamc@527 501 &&& \_ & \textrm{wildcard} \\
adamc@527 502 &&& (e) & \textrm{explicit precedence} \\
adamc@527 503 \\
adamc@527 504 \textrm{Local declarations} & ed &::=& \cd{val} \; x : \tau = e & \textrm{non-recursive value} \\
adamc@527 505 &&& \cd{val} \; \cd{rec} \; (x : \tau = e \; \cd{and})^+ & \textrm{mutually-recursive values} \\
adamc@527 506 \end{array}$$
adamc@527 507
adamc@655 508 As with constructors, we include both abstraction and application for kind polymorphism, but applications are only inferred internally.
adamc@655 509
adamc@528 510 \emph{Declarations} primarily bring new symbols into context.
adamc@528 511 $$\begin{array}{rrcll}
adamc@528 512 \textrm{Declarations} & d &::=& \mt{con} \; x :: \kappa = c & \textrm{constructor synonym} \\
adamc@528 513 &&& \mt{datatype} \; x \; x^* = dc\mid^+ & \textrm{algebraic datatype definition} \\
adamc@529 514 &&& \mt{datatype} \; x = \mt{datatype} \; M.x & \textrm{algebraic datatype import} \\
adamc@528 515 &&& \mt{val} \; x : \tau = e & \textrm{value} \\
adamc@528 516 &&& \mt{val} \; \cd{rec} \; (x : \tau = e \; \mt{and})^+ & \textrm{mutually-recursive values} \\
adamc@528 517 &&& \mt{structure} \; X : S = M & \textrm{module definition} \\
adamc@528 518 &&& \mt{signature} \; X = S & \textrm{signature definition} \\
adamc@528 519 &&& \mt{open} \; M & \textrm{module inclusion} \\
adamc@528 520 &&& \mt{constraint} \; c \sim c & \textrm{record disjointness constraint} \\
adamc@528 521 &&& \mt{open} \; \mt{constraints} \; M & \textrm{inclusion of just the constraints from a module} \\
adamc@528 522 &&& \mt{table} \; x : c & \textrm{SQL table} \\
adam@1594 523 &&& \mt{view} \; x = e & \textrm{SQL view} \\
adamc@528 524 &&& \mt{sequence} \; x & \textrm{SQL sequence} \\
adamc@535 525 &&& \mt{cookie} \; x : \tau & \textrm{HTTP cookie} \\
adamc@784 526 &&& \mt{style} \; x : \tau & \textrm{CSS class} \\
adamc@654 527 &&& \mt{class} \; x :: \kappa = c & \textrm{concrete constructor class} \\
adamc@1085 528 &&& \mt{task} \; e = e & \textrm{recurring task} \\
adamc@528 529 \\
adamc@529 530 \textrm{Modules} & M &::=& \mt{struct} \; d^* \; \mt{end} & \textrm{constant} \\
adamc@529 531 &&& X & \textrm{variable} \\
adamc@529 532 &&& M.X & \textrm{projection} \\
adamc@529 533 &&& M(M) & \textrm{functor application} \\
adamc@529 534 &&& \mt{functor}(X : S) : S = M & \textrm{functor abstraction} \\
adamc@528 535 \end{array}$$
adamc@528 536
adamc@528 537 There are two kinds of Ur files. A file named $M\texttt{.ur}$ is an \emph{implementation file}, and it should contain a sequence of declarations $d^*$. A file named $M\texttt{.urs}$ is an \emph{interface file}; it must always have a matching $M\texttt{.ur}$ and should contain a sequence of signature items $s^*$. When both files are present, the overall effect is the same as a monolithic declaration $\mt{structure} \; M : \mt{sig} \; s^* \; \mt{end} = \mt{struct} \; d^* \; \mt{end}$. When no interface file is included, the overall effect is similar, with a signature for module $M$ being inferred rather than just checked against an interface.
adamc@527 538
adam@1594 539 We omit some extra possibilities in $\mt{table}$ syntax, deferring them to Section \ref{tables}. The concrete syntax of $\mt{view}$ declarations is also more complex than shown in the table above, with details deferred to Section \ref{tables}.
adamc@784 540
adamc@529 541 \subsection{Shorthands}
adamc@529 542
adamc@529 543 There are a variety of derived syntactic forms that elaborate into the core syntax from the last subsection. We will present the additional forms roughly following the order in which we presented the constructs that they elaborate into.
adamc@529 544
adamc@529 545 In many contexts where record fields are expected, like in a projection $e.c$, a constant field may be written as simply $X$, rather than $\#X$.
adamc@529 546
adamc@529 547 A record type may be written $\{(c = c,)^*\}$, which elaborates to $\$[(c = c,)^*]$.
adamc@529 548
adamc@533 549 The notation $[c_1, \ldots, c_n]$ is shorthand for $[c_1 = (), \ldots, c_n = ()]$.
adamc@533 550
adam@1350 551 A tuple type $\tau_1 \times \ldots \times \tau_n$ expands to a record type $\{1 : \tau_1, \ldots, n : \tau_n\}$, with natural numbers as field names. A tuple expression $(e_1, \ldots, e_n)$ expands to a record expression $\{1 = e_1, \ldots, n = e_n\}$. A tuple pattern $(p_1, \ldots, p_n)$ expands to a rigid record pattern $\{1 = p_1, \ldots, n = p_n\}$. Positive natural numbers may be used in most places where field names would be allowed.
adamc@529 552
adam@1687 553 The syntax $()$ expands to $\{\}$ as a pattern or expression.
adam@1687 554
adamc@852 555 In general, several adjacent $\lambda$ forms may be combined into one, and kind and type annotations may be omitted, in which case they are implicitly included as wildcards. More formally, for constructor-level abstractions, we can define a new non-terminal $b ::= x \mid (x :: \kappa) \mid X$ and allow composite abstractions of the form $\lambda b^+ \Rightarrow c$, elaborating into the obvious sequence of one core $\lambda$ per element of $b^+$.
adamc@529 556
adam@1574 557 Further, the signature item or declaration syntax $\mt{con} \; x \; b^+ = c$ is shorthand for wrapping of the appropriate $\lambda$s around the righthand side $c$. The $b$ elements may not include $X$, and there may also be an optional $:: \kappa$ before the $=$.
adam@1574 558
adam@1306 559 In some contexts, the parser isn't happy with token sequences like $x :: \_$, to indicate a constructor variable of wildcard kind. In such cases, write the second two tokens as $::\hspace{-.05in}\_$, with no intervening spaces. Analogous syntax $:::\hspace{-.05in}\_$ is available for implicit constructor arguments.
adam@1302 560
adamc@529 561 For any signature item or declaration that defines some entity to be equal to $A$ with classification annotation $B$ (e.g., $\mt{val} \; x : B = A$), $B$ and the preceding colon (or similar punctuation) may be omitted, in which case it is filled in as a wildcard.
adamc@529 562
adamc@529 563 A signature item or declaration $\mt{type} \; x$ or $\mt{type} \; x = \tau$ is elaborated into $\mt{con} \; x :: \mt{Type}$ or $\mt{con} \; x :: \mt{Type} = \tau$, respectively.
adamc@529 564
adamc@654 565 A signature item or declaration $\mt{class} \; x = \lambda y \Rightarrow c$ may be abbreviated $\mt{class} \; x \; y = c$.
adamc@529 566
adam@1482 567 Handling of implicit and explicit constructor arguments may be tweaked with some prefixes to variable references. An expression $@x$ is a version of $x$ where all type class instance and disjointness arguments have been made explicit. (For the purposes of this paragraph, the type family $\mt{Top.folder}$ is a type class, though it isn't marked as one by the usual means.) An expression $@@x$ achieves the same effect, additionally making explicit all implicit constructor arguments. The default is that implicit arguments are inserted automatically after any reference to a variable, or after any application of a variable to one or more arguments. For such an expression, implicit wildcard arguments are added for the longest prefix of the expression's type consisting only of implicit polymorphism, type class instances, and disjointness obligations. The same syntax works for variables projected out of modules and for capitalized variables (datatype constructors).
adamc@529 568
adamc@852 569 At the expression level, an analogue is available of the composite $\lambda$ form for constructors. We define the language of binders as $b ::= p \mid [x] \mid [x \; ? \; \kappa] \mid X \mid [c \sim c]$. A lone variable $[x]$ stands for an implicit constructor variable of unspecified kind. The standard value-level function binder is recovered as the type-annotated pattern form $x : \tau$. It is a compile-time error to include a pattern $p$ that does not match every value of the appropriate type.
adamc@529 570
adamc@852 571 A local $\mt{val}$ declaration may bind a pattern instead of just a plain variable. As for function arguments, only irrefutable patterns are legal.
adamc@852 572
adamc@852 573 The keyword $\mt{fun}$ is a shorthand for $\mt{val} \; \mt{rec}$ that allows arguments to be specified before the equal sign in the definition of each mutually-recursive function, as in SML. Each curried argument must follow the grammar of the $b$ non-terminal introduced two paragraphs ago. A $\mt{fun}$ declaration is elaborated into a version that adds additional $\lambda$s to the fronts of the righthand sides, as appropriate.
adamc@529 574
adamc@529 575 A signature item $\mt{functor} \; X_1 \; (X_2 : S_1) : S_2$ is elaborated into $\mt{structure} \; X_1 : \mt{functor}(X_2 : S_1) : S_2$. A declaration $\mt{functor} \; X_1 \; (X_2 : S_1) : S_2 = M$ is elaborated into $\mt{structure} \; X_1 : \mt{functor}(X_2 : S_1) : S_2 = \mt{functor}(X_2 : S_1) : S_2 = M$.
adamc@529 576
adamc@852 577 An $\mt{open} \; \mt{constraints}$ declaration is implicitly inserted for the argument of every functor at the beginning of the functor body. For every declaration of the form $\mt{structure} \; X : S = \mt{struct} \ldots \mt{end}$, an $\mt{open} \; \mt{constraints} \; X$ declaration is implicitly inserted immediately afterward.
adamc@852 578
adamc@853 579 A declaration $\mt{table} \; x : \{(c = c,)^*\}$ is elaborated into $\mt{table} \; x : [(c = c,)^*]$.
adamc@529 580
adamc@529 581 The syntax $\mt{where} \; \mt{type}$ is an alternate form of $\mt{where} \; \mt{con}$.
adamc@529 582
adamc@529 583 The syntax $\mt{if} \; e \; \mt{then} \; e_1 \; \mt{else} \; e_2$ expands to $\mt{case} \; e \; \mt{of} \; \mt{Basis}.\mt{True} \Rightarrow e_1 \mid \mt{Basis}.\mt{False} \Rightarrow e_2$.
adamc@529 584
adamc@529 585 There are infix operator syntaxes for a number of functions defined in the $\mt{Basis}$ module. There is $=$ for $\mt{eq}$, $\neq$ for $\mt{neq}$, $-$ for $\mt{neg}$ (as a prefix operator) and $\mt{minus}$, $+$ for $\mt{plus}$, $\times$ for $\mt{times}$, $/$ for $\mt{div}$, $\%$ for $\mt{mod}$, $<$ for $\mt{lt}$, $\leq$ for $\mt{le}$, $>$ for $\mt{gt}$, and $\geq$ for $\mt{ge}$.
adamc@529 586
adamc@784 587 A signature item $\mt{table} \; x : c$ is shorthand for $\mt{val} \; x : \mt{Basis}.\mt{sql\_table} \; c \; []$. $\mt{view} \; x : c$ is shorthand for $\mt{val} \; x : \mt{Basis}.\mt{sql\_view} \; c$, $\mt{sequence} \; x$ is short for $\mt{val} \; x : \mt{Basis}.\mt{sql\_sequence}$. $\mt{cookie} \; x : \tau$ is shorthand for $\mt{val} \; x : \mt{Basis}.\mt{http\_cookie} \; \tau$, and $\mt{style} \; x$ is shorthand for $\mt{val} \; x : \mt{Basis}.\mt{css\_class}$.
adamc@529 588
adamc@530 589
adamc@530 590 \section{Static Semantics}
adamc@530 591
adamc@530 592 In this section, we give a declarative presentation of Ur's typing rules and related judgments. Inference is the subject of the next section; here, we assume that an oracle has filled in all wildcards with concrete values.
adamc@530 593
adamc@530 594 Since there is significant mutual recursion among the judgments, we introduce them all before beginning to give rules. We use the same variety of contexts throughout this section, implicitly introducing new sorts of context entries as needed.
adamc@530 595 \begin{itemize}
adamc@655 596 \item $\Gamma \vdash \kappa$ expresses kind well-formedness.
adamc@530 597 \item $\Gamma \vdash c :: \kappa$ assigns a kind to a constructor in a context.
adamc@530 598 \item $\Gamma \vdash c \sim c$ proves the disjointness of two record constructors; that is, that they share no field names. We overload the judgment to apply to pairs of field names as well.
adamc@531 599 \item $\Gamma \vdash c \hookrightarrow C$ proves that record constructor $c$ decomposes into set $C$ of field names and record constructors.
adamc@530 600 \item $\Gamma \vdash c \equiv c$ proves the computational equivalence of two constructors. This is often called a \emph{definitional equality} in the world of type theory.
adamc@530 601 \item $\Gamma \vdash e : \tau$ is a standard typing judgment.
adamc@534 602 \item $\Gamma \vdash p \leadsto \Gamma; \tau$ combines typing of patterns with calculation of which new variables they bind.
adamc@537 603 \item $\Gamma \vdash d \leadsto \Gamma$ expresses how a declaration modifies a context. We overload this judgment to apply to sequences of declarations, as well as to signature items and sequences of signature items.
adamc@537 604 \item $\Gamma \vdash S \equiv S$ is the signature equivalence judgment.
adamc@536 605 \item $\Gamma \vdash S \leq S$ is the signature compatibility judgment. We write $\Gamma \vdash S$ as shorthand for $\Gamma \vdash S \leq S$.
adamc@530 606 \item $\Gamma \vdash M : S$ is the module signature checking judgment.
adamc@537 607 \item $\mt{proj}(M, \overline{s}, V)$ is a partial function for projecting a signature item from $\overline{s}$, given the module $M$ that we project from. $V$ may be $\mt{con} \; x$, $\mt{datatype} \; x$, $\mt{val} \; x$, $\mt{signature} \; X$, or $\mt{structure} \; X$. The parameter $M$ is needed because the projected signature item may refer to other items from $\overline{s}$.
adamc@539 608 \item $\mt{selfify}(M, \overline{s})$ adds information to signature items $\overline{s}$ to reflect the fact that we are concerned with the particular module $M$. This function is overloaded to work over individual signature items as well.
adamc@530 609 \end{itemize}
adamc@530 610
adamc@655 611
adamc@655 612 \subsection{Kind Well-Formedness}
adamc@655 613
adamc@655 614 $$\infer{\Gamma \vdash \mt{Type}}{}
adamc@655 615 \quad \infer{\Gamma \vdash \mt{Unit}}{}
adamc@655 616 \quad \infer{\Gamma \vdash \mt{Name}}{}
adamc@655 617 \quad \infer{\Gamma \vdash \kappa_1 \to \kappa_2}{
adamc@655 618 \Gamma \vdash \kappa_1
adamc@655 619 & \Gamma \vdash \kappa_2
adamc@655 620 }
adamc@655 621 \quad \infer{\Gamma \vdash \{\kappa\}}{
adamc@655 622 \Gamma \vdash \kappa
adamc@655 623 }
adamc@655 624 \quad \infer{\Gamma \vdash (\kappa_1 \times \ldots \times \kappa_n)}{
adamc@655 625 \forall i: \Gamma \vdash \kappa_i
adamc@655 626 }$$
adamc@655 627
adamc@655 628 $$\infer{\Gamma \vdash X}{
adamc@655 629 X \in \Gamma
adamc@655 630 }
adamc@655 631 \quad \infer{\Gamma \vdash X \longrightarrow \kappa}{
adamc@655 632 \Gamma, X \vdash \kappa
adamc@655 633 }$$
adamc@655 634
adamc@530 635 \subsection{Kinding}
adamc@530 636
adamc@655 637 We write $[X \mapsto \kappa_1]\kappa_2$ for capture-avoiding substitution of $\kappa_1$ for $X$ in $\kappa_2$.
adamc@655 638
adamc@530 639 $$\infer{\Gamma \vdash (c) :: \kappa :: \kappa}{
adamc@530 640 \Gamma \vdash c :: \kappa
adamc@530 641 }
adamc@530 642 \quad \infer{\Gamma \vdash x :: \kappa}{
adamc@530 643 x :: \kappa \in \Gamma
adamc@530 644 }
adamc@530 645 \quad \infer{\Gamma \vdash x :: \kappa}{
adamc@530 646 x :: \kappa = c \in \Gamma
adamc@530 647 }$$
adamc@530 648
adamc@530 649 $$\infer{\Gamma \vdash M.x :: \kappa}{
adamc@537 650 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 651 & \mt{proj}(M, \overline{s}, \mt{con} \; x) = \kappa
adamc@530 652 }
adamc@530 653 \quad \infer{\Gamma \vdash M.x :: \kappa}{
adamc@537 654 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 655 & \mt{proj}(M, \overline{s}, \mt{con} \; x) = (\kappa, c)
adamc@530 656 }$$
adamc@530 657
adamc@530 658 $$\infer{\Gamma \vdash \tau_1 \to \tau_2 :: \mt{Type}}{
adamc@530 659 \Gamma \vdash \tau_1 :: \mt{Type}
adamc@530 660 & \Gamma \vdash \tau_2 :: \mt{Type}
adamc@530 661 }
adamc@530 662 \quad \infer{\Gamma \vdash x \; ? \: \kappa \to \tau :: \mt{Type}}{
adamc@530 663 \Gamma, x :: \kappa \vdash \tau :: \mt{Type}
adamc@530 664 }
adamc@655 665 \quad \infer{\Gamma \vdash X \longrightarrow \tau :: \mt{Type}}{
adamc@655 666 \Gamma, X \vdash \tau :: \mt{Type}
adamc@655 667 }
adamc@530 668 \quad \infer{\Gamma \vdash \$c :: \mt{Type}}{
adamc@530 669 \Gamma \vdash c :: \{\mt{Type}\}
adamc@530 670 }$$
adamc@530 671
adamc@530 672 $$\infer{\Gamma \vdash c_1 \; c_2 :: \kappa_2}{
adamc@530 673 \Gamma \vdash c_1 :: \kappa_1 \to \kappa_2
adamc@530 674 & \Gamma \vdash c_2 :: \kappa_1
adamc@530 675 }
adamc@530 676 \quad \infer{\Gamma \vdash \lambda x \; :: \; \kappa_1 \Rightarrow c :: \kappa_1 \to \kappa_2}{
adamc@530 677 \Gamma, x :: \kappa_1 \vdash c :: \kappa_2
adamc@530 678 }$$
adamc@530 679
adamc@655 680 $$\infer{\Gamma \vdash c[\kappa'] :: [X \mapsto \kappa']\kappa}{
adamc@655 681 \Gamma \vdash c :: X \to \kappa
adamc@655 682 & \Gamma \vdash \kappa'
adamc@655 683 }
adamc@655 684 \quad \infer{\Gamma \vdash X \Longrightarrow c :: X \to \kappa}{
adamc@655 685 \Gamma, X \vdash c :: \kappa
adamc@655 686 }$$
adamc@655 687
adamc@530 688 $$\infer{\Gamma \vdash () :: \mt{Unit}}{}
adamc@530 689 \quad \infer{\Gamma \vdash \#X :: \mt{Name}}{}$$
adamc@530 690
adamc@530 691 $$\infer{\Gamma \vdash [\overline{c_i = c'_i}] :: \{\kappa\}}{
adamc@530 692 \forall i: \Gamma \vdash c_i : \mt{Name}
adamc@530 693 & \Gamma \vdash c'_i :: \kappa
adamc@530 694 & \forall i \neq j: \Gamma \vdash c_i \sim c_j
adamc@530 695 }
adamc@530 696 \quad \infer{\Gamma \vdash c_1 \rc c_2 :: \{\kappa\}}{
adamc@530 697 \Gamma \vdash c_1 :: \{\kappa\}
adamc@530 698 & \Gamma \vdash c_2 :: \{\kappa\}
adamc@530 699 & \Gamma \vdash c_1 \sim c_2
adamc@530 700 }$$
adamc@530 701
adamc@655 702 $$\infer{\Gamma \vdash \mt{map} :: (\kappa_1 \to \kappa_2) \to \{\kappa_1\} \to \{\kappa_2\}}{}$$
adamc@530 703
adamc@573 704 $$\infer{\Gamma \vdash (\overline c) :: (\kappa_1 \times \ldots \times \kappa_n)}{
adamc@573 705 \forall i: \Gamma \vdash c_i :: \kappa_i
adamc@530 706 }
adamc@573 707 \quad \infer{\Gamma \vdash c.i :: \kappa_i}{
adamc@573 708 \Gamma \vdash c :: (\kappa_1 \times \ldots \times \kappa_n)
adamc@530 709 }$$
adamc@530 710
adamc@655 711 $$\infer{\Gamma \vdash \lambda [c_1 \sim c_2] \Rightarrow \tau :: \mt{Type}}{
adamc@655 712 \Gamma \vdash c_1 :: \{\kappa\}
adamc@530 713 & \Gamma \vdash c_2 :: \{\kappa'\}
adamc@655 714 & \Gamma, c_1 \sim c_2 \vdash \tau :: \mt{Type}
adamc@530 715 }$$
adamc@530 716
adamc@531 717 \subsection{Record Disjointness}
adamc@531 718
adamc@531 719 $$\infer{\Gamma \vdash c_1 \sim c_2}{
adamc@558 720 \Gamma \vdash c_1 \hookrightarrow C_1
adamc@558 721 & \Gamma \vdash c_2 \hookrightarrow C_2
adamc@558 722 & \forall c'_1 \in C_1, c'_2 \in C_2: \Gamma \vdash c'_1 \sim c'_2
adamc@531 723 }
adamc@531 724 \quad \infer{\Gamma \vdash X \sim X'}{
adamc@531 725 X \neq X'
adamc@531 726 }$$
adamc@531 727
adamc@531 728 $$\infer{\Gamma \vdash c_1 \sim c_2}{
adamc@531 729 c'_1 \sim c'_2 \in \Gamma
adamc@558 730 & \Gamma \vdash c'_1 \hookrightarrow C_1
adamc@558 731 & \Gamma \vdash c'_2 \hookrightarrow C_2
adamc@558 732 & c_1 \in C_1
adamc@558 733 & c_2 \in C_2
adamc@531 734 }$$
adamc@531 735
adamc@531 736 $$\infer{\Gamma \vdash c \hookrightarrow \{c\}}{}
adamc@531 737 \quad \infer{\Gamma \vdash [\overline{c = c'}] \hookrightarrow \{\overline{c}\}}{}
adamc@531 738 \quad \infer{\Gamma \vdash c_1 \rc c_2 \hookrightarrow C_1 \cup C_2}{
adamc@531 739 \Gamma \vdash c_1 \hookrightarrow C_1
adamc@531 740 & \Gamma \vdash c_2 \hookrightarrow C_2
adamc@531 741 }
adamc@531 742 \quad \infer{\Gamma \vdash c \hookrightarrow C}{
adamc@531 743 \Gamma \vdash c \equiv c'
adamc@531 744 & \Gamma \vdash c' \hookrightarrow C
adamc@531 745 }
adamc@531 746 \quad \infer{\Gamma \vdash \mt{map} \; f \; c \hookrightarrow C}{
adamc@531 747 \Gamma \vdash c \hookrightarrow C
adamc@531 748 }$$
adamc@531 749
adamc@541 750 \subsection{\label{definitional}Definitional Equality}
adamc@532 751
adamc@655 752 We use $\mathcal C$ to stand for a one-hole context that, when filled, yields a constructor. The notation $\mathcal C[c]$ plugs $c$ into $\mathcal C$. We omit the standard definition of one-hole contexts. We write $[x \mapsto c_1]c_2$ for capture-avoiding substitution of $c_1$ for $x$ in $c_2$, with analogous notation for substituting a kind in a constructor.
adamc@532 753
adamc@532 754 $$\infer{\Gamma \vdash c \equiv c}{}
adamc@532 755 \quad \infer{\Gamma \vdash c_1 \equiv c_2}{
adamc@532 756 \Gamma \vdash c_2 \equiv c_1
adamc@532 757 }
adamc@532 758 \quad \infer{\Gamma \vdash c_1 \equiv c_3}{
adamc@532 759 \Gamma \vdash c_1 \equiv c_2
adamc@532 760 & \Gamma \vdash c_2 \equiv c_3
adamc@532 761 }
adamc@532 762 \quad \infer{\Gamma \vdash \mathcal C[c_1] \equiv \mathcal C[c_2]}{
adamc@532 763 \Gamma \vdash c_1 \equiv c_2
adamc@532 764 }$$
adamc@532 765
adamc@532 766 $$\infer{\Gamma \vdash x \equiv c}{
adamc@532 767 x :: \kappa = c \in \Gamma
adamc@532 768 }
adamc@532 769 \quad \infer{\Gamma \vdash M.x \equiv c}{
adamc@537 770 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 771 & \mt{proj}(M, \overline{s}, \mt{con} \; x) = (\kappa, c)
adamc@532 772 }
adamc@532 773 \quad \infer{\Gamma \vdash (\overline c).i \equiv c_i}{}$$
adamc@532 774
adamc@532 775 $$\infer{\Gamma \vdash (\lambda x :: \kappa \Rightarrow c) \; c' \equiv [x \mapsto c'] c}{}
adamc@655 776 \quad \infer{\Gamma \vdash (X \Longrightarrow c) [\kappa] \equiv [X \mapsto \kappa] c}{}$$
adamc@655 777
adamc@655 778 $$\infer{\Gamma \vdash c_1 \rc c_2 \equiv c_2 \rc c_1}{}
adamc@532 779 \quad \infer{\Gamma \vdash c_1 \rc (c_2 \rc c_3) \equiv (c_1 \rc c_2) \rc c_3}{}$$
adamc@532 780
adamc@532 781 $$\infer{\Gamma \vdash [] \rc c \equiv c}{}
adamc@532 782 \quad \infer{\Gamma \vdash [\overline{c_1 = c'_1}] \rc [\overline{c_2 = c'_2}] \equiv [\overline{c_1 = c'_1}, \overline{c_2 = c'_2}]}{}$$
adamc@532 783
adamc@655 784 $$\infer{\Gamma \vdash \mt{map} \; f \; [] \equiv []}{}
adamc@655 785 \quad \infer{\Gamma \vdash \mt{map} \; f \; ([c_1 = c_2] \rc c) \equiv [c_1 = f \; c_2] \rc \mt{map} \; f \; c}{}$$
adamc@532 786
adamc@532 787 $$\infer{\Gamma \vdash \mt{map} \; (\lambda x \Rightarrow x) \; c \equiv c}{}
adamc@655 788 \quad \infer{\Gamma \vdash \mt{map} \; f \; (\mt{map} \; f' \; c)
adamc@655 789 \equiv \mt{map} \; (\lambda x \Rightarrow f \; (f' \; x)) \; c}{}$$
adamc@532 790
adamc@532 791 $$\infer{\Gamma \vdash \mt{map} \; f \; (c_1 \rc c_2) \equiv \mt{map} \; f \; c_1 \rc \mt{map} \; f \; c_2}{}$$
adamc@531 792
adamc@534 793 \subsection{Expression Typing}
adamc@533 794
adamc@873 795 We assume the existence of a function $T$ assigning types to literal constants. It maps integer constants to $\mt{Basis}.\mt{int}$, float constants to $\mt{Basis}.\mt{float}$, character constants to $\mt{Basis}.\mt{char}$, and string constants to $\mt{Basis}.\mt{string}$.
adamc@533 796
adamc@533 797 We also refer to a function $\mathcal I$, such that $\mathcal I(\tau)$ ``uses an oracle'' to instantiate all constructor function arguments at the beginning of $\tau$ that are marked implicit; i.e., replace $x_1 ::: \kappa_1 \to \ldots \to x_n ::: \kappa_n \to \tau$ with $[x_1 \mapsto c_1]\ldots[x_n \mapsto c_n]\tau$, where the $c_i$s are inferred and $\tau$ does not start like $x ::: \kappa \to \tau'$.
adamc@533 798
adamc@533 799 $$\infer{\Gamma \vdash e : \tau : \tau}{
adamc@533 800 \Gamma \vdash e : \tau
adamc@533 801 }
adamc@533 802 \quad \infer{\Gamma \vdash e : \tau}{
adamc@533 803 \Gamma \vdash e : \tau'
adamc@533 804 & \Gamma \vdash \tau' \equiv \tau
adamc@533 805 }
adamc@533 806 \quad \infer{\Gamma \vdash \ell : T(\ell)}{}$$
adamc@533 807
adamc@533 808 $$\infer{\Gamma \vdash x : \mathcal I(\tau)}{
adamc@533 809 x : \tau \in \Gamma
adamc@533 810 }
adamc@533 811 \quad \infer{\Gamma \vdash M.x : \mathcal I(\tau)}{
adamc@537 812 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 813 & \mt{proj}(M, \overline{s}, \mt{val} \; x) = \tau
adamc@533 814 }
adamc@533 815 \quad \infer{\Gamma \vdash X : \mathcal I(\tau)}{
adamc@533 816 X : \tau \in \Gamma
adamc@533 817 }
adamc@533 818 \quad \infer{\Gamma \vdash M.X : \mathcal I(\tau)}{
adamc@537 819 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 820 & \mt{proj}(M, \overline{s}, \mt{val} \; X) = \tau
adamc@533 821 }$$
adamc@533 822
adamc@533 823 $$\infer{\Gamma \vdash e_1 \; e_2 : \tau_2}{
adamc@533 824 \Gamma \vdash e_1 : \tau_1 \to \tau_2
adamc@533 825 & \Gamma \vdash e_2 : \tau_1
adamc@533 826 }
adamc@533 827 \quad \infer{\Gamma \vdash \lambda x : \tau_1 \Rightarrow e : \tau_1 \to \tau_2}{
adamc@533 828 \Gamma, x : \tau_1 \vdash e : \tau_2
adamc@533 829 }$$
adamc@533 830
adamc@533 831 $$\infer{\Gamma \vdash e [c] : [x \mapsto c]\tau}{
adamc@533 832 \Gamma \vdash e : x :: \kappa \to \tau
adamc@533 833 & \Gamma \vdash c :: \kappa
adamc@533 834 }
adamc@852 835 \quad \infer{\Gamma \vdash \lambda [x \; ? \; \kappa] \Rightarrow e : x \; ? \; \kappa \to \tau}{
adamc@533 836 \Gamma, x :: \kappa \vdash e : \tau
adamc@533 837 }$$
adamc@533 838
adamc@655 839 $$\infer{\Gamma \vdash e [\kappa] : [X \mapsto \kappa]\tau}{
adamc@655 840 \Gamma \vdash e : X \longrightarrow \tau
adamc@655 841 & \Gamma \vdash \kappa
adamc@655 842 }
adamc@655 843 \quad \infer{\Gamma \vdash X \Longrightarrow e : X \longrightarrow \tau}{
adamc@655 844 \Gamma, X \vdash e : \tau
adamc@655 845 }$$
adamc@655 846
adamc@533 847 $$\infer{\Gamma \vdash \{\overline{c = e}\} : \{\overline{c : \tau}\}}{
adamc@533 848 \forall i: \Gamma \vdash c_i :: \mt{Name}
adamc@533 849 & \Gamma \vdash e_i : \tau_i
adamc@533 850 & \forall i \neq j: \Gamma \vdash c_i \sim c_j
adamc@533 851 }
adamc@533 852 \quad \infer{\Gamma \vdash e.c : \tau}{
adamc@533 853 \Gamma \vdash e : \$([c = \tau] \rc c')
adamc@533 854 }
adamc@533 855 \quad \infer{\Gamma \vdash e_1 \rc e_2 : \$(c_1 \rc c_2)}{
adamc@533 856 \Gamma \vdash e_1 : \$c_1
adamc@533 857 & \Gamma \vdash e_2 : \$c_2
adamc@573 858 & \Gamma \vdash c_1 \sim c_2
adamc@533 859 }$$
adamc@533 860
adamc@533 861 $$\infer{\Gamma \vdash e \rcut c : \$c'}{
adamc@533 862 \Gamma \vdash e : \$([c = \tau] \rc c')
adamc@533 863 }
adamc@533 864 \quad \infer{\Gamma \vdash e \rcutM c : \$c'}{
adamc@533 865 \Gamma \vdash e : \$(c \rc c')
adamc@533 866 }$$
adamc@533 867
adamc@533 868 $$\infer{\Gamma \vdash \mt{let} \; \overline{ed} \; \mt{in} \; e \; \mt{end} : \tau}{
adamc@533 869 \Gamma \vdash \overline{ed} \leadsto \Gamma'
adamc@533 870 & \Gamma' \vdash e : \tau
adamc@533 871 }
adamc@533 872 \quad \infer{\Gamma \vdash \mt{case} \; e \; \mt{of} \; \overline{p \Rightarrow e} : \tau}{
adamc@533 873 \forall i: \Gamma \vdash p_i \leadsto \Gamma_i, \tau'
adamc@533 874 & \Gamma_i \vdash e_i : \tau
adamc@533 875 }$$
adamc@533 876
adamc@573 877 $$\infer{\Gamma \vdash \lambda [c_1 \sim c_2] \Rightarrow e : \lambda [c_1 \sim c_2] \Rightarrow \tau}{
adamc@533 878 \Gamma \vdash c_1 :: \{\kappa\}
adamc@655 879 & \Gamma \vdash c_2 :: \{\kappa'\}
adamc@533 880 & \Gamma, c_1 \sim c_2 \vdash e : \tau
adamc@662 881 }
adamc@662 882 \quad \infer{\Gamma \vdash e \; ! : \tau}{
adamc@662 883 \Gamma \vdash e : [c_1 \sim c_2] \Rightarrow \tau
adamc@662 884 & \Gamma \vdash c_1 \sim c_2
adamc@533 885 }$$
adamc@533 886
adamc@534 887 \subsection{Pattern Typing}
adamc@534 888
adamc@534 889 $$\infer{\Gamma \vdash \_ \leadsto \Gamma; \tau}{}
adamc@534 890 \quad \infer{\Gamma \vdash x \leadsto \Gamma, x : \tau; \tau}{}
adamc@534 891 \quad \infer{\Gamma \vdash \ell \leadsto \Gamma; T(\ell)}{}$$
adamc@534 892
adamc@534 893 $$\infer{\Gamma \vdash X \leadsto \Gamma; \overline{[x_i \mapsto \tau'_i]}\tau}{
adamc@534 894 X : \overline{x ::: \mt{Type}} \to \tau \in \Gamma
adamc@534 895 & \textrm{$\tau$ not a function type}
adamc@534 896 }
adamc@534 897 \quad \infer{\Gamma \vdash X \; p \leadsto \Gamma'; \overline{[x_i \mapsto \tau'_i]}\tau}{
adamc@534 898 X : \overline{x ::: \mt{Type}} \to \tau'' \to \tau \in \Gamma
adamc@534 899 & \Gamma \vdash p \leadsto \Gamma'; \overline{[x_i \mapsto \tau'_i]}\tau''
adamc@534 900 }$$
adamc@534 901
adamc@534 902 $$\infer{\Gamma \vdash M.X \leadsto \Gamma; \overline{[x_i \mapsto \tau'_i]}\tau}{
adamc@537 903 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 904 & \mt{proj}(M, \overline{s}, \mt{val} \; X) = \overline{x ::: \mt{Type}} \to \tau
adamc@534 905 & \textrm{$\tau$ not a function type}
adamc@534 906 }$$
adamc@534 907
adamc@534 908 $$\infer{\Gamma \vdash M.X \; p \leadsto \Gamma'; \overline{[x_i \mapsto \tau'_i]}\tau}{
adamc@537 909 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 910 & \mt{proj}(M, \overline{s}, \mt{val} \; X) = \overline{x ::: \mt{Type}} \to \tau'' \to \tau
adamc@534 911 & \Gamma \vdash p \leadsto \Gamma'; \overline{[x_i \mapsto \tau'_i]}\tau''
adamc@534 912 }$$
adamc@534 913
adamc@534 914 $$\infer{\Gamma \vdash \{\overline{x = p}\} \leadsto \Gamma_n; \{\overline{x = \tau}\}}{
adamc@534 915 \Gamma_0 = \Gamma
adamc@534 916 & \forall i: \Gamma_i \vdash p_i \leadsto \Gamma_{i+1}; \tau_i
adamc@534 917 }
adamc@534 918 \quad \infer{\Gamma \vdash \{\overline{x = p}, \ldots\} \leadsto \Gamma_n; \$([\overline{x = \tau}] \rc c)}{
adamc@534 919 \Gamma_0 = \Gamma
adamc@534 920 & \forall i: \Gamma_i \vdash p_i \leadsto \Gamma_{i+1}; \tau_i
adamc@534 921 }$$
adamc@534 922
adamc@852 923 $$\infer{\Gamma \vdash p : \tau \leadsto \Gamma'; \tau}{
adamc@852 924 \Gamma \vdash p \leadsto \Gamma'; \tau'
adamc@852 925 & \Gamma \vdash \tau' \equiv \tau
adamc@852 926 }$$
adamc@852 927
adamc@535 928 \subsection{Declaration Typing}
adamc@535 929
adamc@535 930 We use an auxiliary judgment $\overline{y}; x; \Gamma \vdash \overline{dc} \leadsto \Gamma'$, expressing the enrichment of $\Gamma$ with the types of the datatype constructors $\overline{dc}$, when they are known to belong to datatype $x$ with type parameters $\overline{y}$.
adamc@535 931
adamc@655 932 This is the first judgment where we deal with constructor classes, for the $\mt{class}$ declaration form. We will omit their special handling in this formal specification. Section \ref{typeclasses} gives an informal description of how constructor classes influence type inference.
adamc@535 933
adamc@558 934 We presuppose the existence of a function $\mathcal O$, where $\mathcal O(M, \overline{s})$ implements the $\mt{open}$ declaration by producing a context with the appropriate entry for each available component of module $M$ with signature items $\overline{s}$. Where possible, $\mathcal O$ uses ``transparent'' entries (e.g., an abstract type $M.x$ is mapped to $x :: \mt{Type} = M.x$), so that the relationship with $M$ is maintained. A related function $\mathcal O_c$ builds a context containing the disjointness constraints found in $\overline s$.
adamc@537 935 We write $\kappa_1^n \to \kappa$ as a shorthand, where $\kappa_1^0 \to \kappa = \kappa$ and $\kappa_1^{n+1} \to \kappa_2 = \kappa_1 \to (\kappa_1^n \to \kappa_2)$. We write $\mt{len}(\overline{y})$ for the length of vector $\overline{y}$ of variables.
adamc@535 936
adamc@535 937 $$\infer{\Gamma \vdash \cdot \leadsto \Gamma}{}
adamc@535 938 \quad \infer{\Gamma \vdash d, \overline{d} \leadsto \Gamma''}{
adamc@535 939 \Gamma \vdash d \leadsto \Gamma'
adamc@535 940 & \Gamma' \vdash \overline{d} \leadsto \Gamma''
adamc@535 941 }$$
adamc@535 942
adamc@535 943 $$\infer{\Gamma \vdash \mt{con} \; x :: \kappa = c \leadsto \Gamma, x :: \kappa = c}{
adamc@535 944 \Gamma \vdash c :: \kappa
adamc@535 945 }
adamc@535 946 \quad \infer{\Gamma \vdash \mt{datatype} \; x \; \overline{y} = \overline{dc} \leadsto \Gamma'}{
adamc@535 947 \overline{y}; x; \Gamma, x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type} \vdash \overline{dc} \leadsto \Gamma'
adamc@535 948 }$$
adamc@535 949
adamc@535 950 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leadsto \Gamma'}{
adamc@537 951 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 952 & \mt{proj}(M, \overline{s}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})
adamc@535 953 & \overline{y}; x; \Gamma, x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type} = M.z \vdash \overline{dc} \leadsto \Gamma'
adamc@535 954 }$$
adamc@535 955
adamc@535 956 $$\infer{\Gamma \vdash \mt{val} \; x : \tau = e \leadsto \Gamma, x : \tau}{
adamc@535 957 \Gamma \vdash e : \tau
adamc@535 958 }$$
adamc@535 959
adamc@535 960 $$\infer{\Gamma \vdash \mt{val} \; \mt{rec} \; \overline{x : \tau = e} \leadsto \Gamma, \overline{x : \tau}}{
adamc@535 961 \forall i: \Gamma, \overline{x : \tau} \vdash e_i : \tau_i
adamc@535 962 & \textrm{$e_i$ starts with an expression $\lambda$, optionally preceded by constructor and disjointness $\lambda$s}
adamc@535 963 }$$
adamc@535 964
adamc@535 965 $$\infer{\Gamma \vdash \mt{structure} \; X : S = M \leadsto \Gamma, X : S}{
adamc@535 966 \Gamma \vdash M : S
adamc@558 967 & \textrm{ $M$ not a constant or application}
adamc@535 968 }
adamc@558 969 \quad \infer{\Gamma \vdash \mt{structure} \; X : S = M \leadsto \Gamma, X : \mt{selfify}(X, \overline{s})}{
adamc@558 970 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@539 971 }$$
adamc@539 972
adamc@539 973 $$\infer{\Gamma \vdash \mt{signature} \; X = S \leadsto \Gamma, X = S}{
adamc@535 974 \Gamma \vdash S
adamc@535 975 }$$
adamc@535 976
adamc@537 977 $$\infer{\Gamma \vdash \mt{open} \; M \leadsto \Gamma, \mathcal O(M, \overline{s})}{
adamc@537 978 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@535 979 }$$
adamc@535 980
adamc@535 981 $$\infer{\Gamma \vdash \mt{constraint} \; c_1 \sim c_2 \leadsto \Gamma}{
adamc@535 982 \Gamma \vdash c_1 :: \{\kappa\}
adamc@535 983 & \Gamma \vdash c_2 :: \{\kappa\}
adamc@535 984 & \Gamma \vdash c_1 \sim c_2
adamc@535 985 }
adamc@537 986 \quad \infer{\Gamma \vdash \mt{open} \; \mt{constraints} \; M \leadsto \Gamma, \mathcal O_c(M, \overline{s})}{
adamc@537 987 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@535 988 }$$
adamc@535 989
adamc@784 990 $$\infer{\Gamma \vdash \mt{table} \; x : c \leadsto \Gamma, x : \mt{Basis}.\mt{sql\_table} \; c \; []}{
adamc@535 991 \Gamma \vdash c :: \{\mt{Type}\}
adamc@535 992 }
adam@1594 993 \quad \infer{\Gamma \vdash \mt{view} \; x = e \leadsto \Gamma, x : \mt{Basis}.\mt{sql\_view} \; c}{
adam@1594 994 \Gamma \vdash e :: \mt{Basis}.\mt{sql\_query} \; [] \; [] \; (\mt{map} \; (\lambda \_ \Rightarrow []) \; c') \; c
adamc@784 995 }$$
adamc@784 996
adamc@784 997 $$\infer{\Gamma \vdash \mt{sequence} \; x \leadsto \Gamma, x : \mt{Basis}.\mt{sql\_sequence}}{}$$
adamc@535 998
adamc@535 999 $$\infer{\Gamma \vdash \mt{cookie} \; x : \tau \leadsto \Gamma, x : \mt{Basis}.\mt{http\_cookie} \; \tau}{
adamc@535 1000 \Gamma \vdash \tau :: \mt{Type}
adamc@784 1001 }
adamc@784 1002 \quad \infer{\Gamma \vdash \mt{style} \; x \leadsto \Gamma, x : \mt{Basis}.\mt{css\_class}}{}$$
adamc@535 1003
adamc@1085 1004 $$\infer{\Gamma \vdash \mt{task} \; e_1 = e_2 \leadsto \Gamma}{
adam@1348 1005 \Gamma \vdash e_1 :: \mt{Basis}.\mt{task\_kind} \; \tau
adam@1348 1006 & \Gamma \vdash e_2 :: \tau \to \mt{Basis}.\mt{transaction} \; \{\}
adamc@1085 1007 }$$
adamc@1085 1008
adamc@784 1009 $$\infer{\Gamma \vdash \mt{class} \; x :: \kappa = c \leadsto \Gamma, x :: \kappa = c}{
adamc@784 1010 \Gamma \vdash c :: \kappa
adamc@535 1011 }$$
adamc@535 1012
adamc@535 1013 $$\infer{\overline{y}; x; \Gamma \vdash \cdot \leadsto \Gamma}{}
adamc@535 1014 \quad \infer{\overline{y}; x; \Gamma \vdash X \mid \overline{dc} \leadsto \Gamma', X : \overline{y ::: \mt{Type}} \to x \; \overline{y}}{
adamc@535 1015 \overline{y}; x; \Gamma \vdash \overline{dc} \leadsto \Gamma'
adamc@535 1016 }
adamc@535 1017 \quad \infer{\overline{y}; x; \Gamma \vdash X \; \mt{of} \; \tau \mid \overline{dc} \leadsto \Gamma', X : \overline{y ::: \mt{Type}} \to \tau \to x \; \overline{y}}{
adamc@535 1018 \overline{y}; x; \Gamma \vdash \overline{dc} \leadsto \Gamma'
adamc@535 1019 }$$
adamc@535 1020
adamc@537 1021 \subsection{Signature Item Typing}
adamc@537 1022
adamc@537 1023 We appeal to a signature item analogue of the $\mathcal O$ function from the last subsection.
adamc@537 1024
adamc@537 1025 $$\infer{\Gamma \vdash \cdot \leadsto \Gamma}{}
adamc@537 1026 \quad \infer{\Gamma \vdash s, \overline{s} \leadsto \Gamma''}{
adamc@537 1027 \Gamma \vdash s \leadsto \Gamma'
adamc@537 1028 & \Gamma' \vdash \overline{s} \leadsto \Gamma''
adamc@537 1029 }$$
adamc@537 1030
adamc@537 1031 $$\infer{\Gamma \vdash \mt{con} \; x :: \kappa \leadsto \Gamma, x :: \kappa}{}
adamc@537 1032 \quad \infer{\Gamma \vdash \mt{con} \; x :: \kappa = c \leadsto \Gamma, x :: \kappa = c}{
adamc@537 1033 \Gamma \vdash c :: \kappa
adamc@537 1034 }
adamc@537 1035 \quad \infer{\Gamma \vdash \mt{datatype} \; x \; \overline{y} = \overline{dc} \leadsto \Gamma'}{
adamc@537 1036 \overline{y}; x; \Gamma, x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type} \vdash \overline{dc} \leadsto \Gamma'
adamc@537 1037 }$$
adamc@537 1038
adamc@537 1039 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leadsto \Gamma'}{
adamc@537 1040 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 1041 & \mt{proj}(M, \overline{s}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})
adamc@537 1042 & \overline{y}; x; \Gamma, x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type} = M.z \vdash \overline{dc} \leadsto \Gamma'
adamc@537 1043 }$$
adamc@537 1044
adamc@537 1045 $$\infer{\Gamma \vdash \mt{val} \; x : \tau \leadsto \Gamma, x : \tau}{
adamc@537 1046 \Gamma \vdash \tau :: \mt{Type}
adamc@537 1047 }$$
adamc@537 1048
adamc@537 1049 $$\infer{\Gamma \vdash \mt{structure} \; X : S \leadsto \Gamma, X : S}{
adamc@537 1050 \Gamma \vdash S
adamc@537 1051 }
adamc@537 1052 \quad \infer{\Gamma \vdash \mt{signature} \; X = S \leadsto \Gamma, X = S}{
adamc@537 1053 \Gamma \vdash S
adamc@537 1054 }$$
adamc@537 1055
adamc@537 1056 $$\infer{\Gamma \vdash \mt{include} \; S \leadsto \Gamma, \mathcal O(\overline{s})}{
adamc@537 1057 \Gamma \vdash S
adamc@537 1058 & \Gamma \vdash S \equiv \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 1059 }$$
adamc@537 1060
adamc@537 1061 $$\infer{\Gamma \vdash \mt{constraint} \; c_1 \sim c_2 \leadsto \Gamma, c_1 \sim c_2}{
adamc@537 1062 \Gamma \vdash c_1 :: \{\kappa\}
adamc@537 1063 & \Gamma \vdash c_2 :: \{\kappa\}
adamc@537 1064 }$$
adamc@537 1065
adamc@784 1066 $$\infer{\Gamma \vdash \mt{class} \; x :: \kappa = c \leadsto \Gamma, x :: \kappa = c}{
adamc@784 1067 \Gamma \vdash c :: \kappa
adamc@537 1068 }
adamc@784 1069 \quad \infer{\Gamma \vdash \mt{class} \; x :: \kappa \leadsto \Gamma, x :: \kappa}{}$$
adamc@537 1070
adamc@536 1071 \subsection{Signature Compatibility}
adamc@536 1072
adamc@558 1073 To simplify the judgments in this section, we assume that all signatures are alpha-varied as necessary to avoid including multiple bindings for the same identifier. This is in addition to the usual alpha-variation of locally-bound variables.
adamc@537 1074
adamc@537 1075 We rely on a judgment $\Gamma \vdash \overline{s} \leq s'$, which expresses the occurrence in signature items $\overline{s}$ of an item compatible with $s'$. We also use a judgment $\Gamma \vdash \overline{dc} \leq \overline{dc}$, which expresses compatibility of datatype definitions.
adamc@537 1076
adamc@536 1077 $$\infer{\Gamma \vdash S \equiv S}{}
adamc@536 1078 \quad \infer{\Gamma \vdash S_1 \equiv S_2}{
adamc@536 1079 \Gamma \vdash S_2 \equiv S_1
adamc@536 1080 }
adamc@536 1081 \quad \infer{\Gamma \vdash X \equiv S}{
adamc@536 1082 X = S \in \Gamma
adamc@536 1083 }
adamc@536 1084 \quad \infer{\Gamma \vdash M.X \equiv S}{
adamc@537 1085 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 1086 & \mt{proj}(M, \overline{s}, \mt{signature} \; X) = S
adamc@536 1087 }$$
adamc@536 1088
adamc@536 1089 $$\infer{\Gamma \vdash S \; \mt{where} \; \mt{con} \; x = c \equiv \mt{sig} \; \overline{s^1} \; \mt{con} \; x :: \kappa = c \; \overline{s_2} \; \mt{end}}{
adamc@536 1090 \Gamma \vdash S \equiv \mt{sig} \; \overline{s^1} \; \mt{con} \; x :: \kappa \; \overline{s_2} \; \mt{end}
adamc@536 1091 & \Gamma \vdash c :: \kappa
adamc@537 1092 }
adamc@537 1093 \quad \infer{\Gamma \vdash \mt{sig} \; \overline{s^1} \; \mt{include} \; S \; \overline{s^2} \; \mt{end} \equiv \mt{sig} \; \overline{s^1} \; \overline{s} \; \overline{s^2} \; \mt{end}}{
adamc@537 1094 \Gamma \vdash S \equiv \mt{sig} \; \overline{s} \; \mt{end}
adamc@536 1095 }$$
adamc@536 1096
adamc@536 1097 $$\infer{\Gamma \vdash S_1 \leq S_2}{
adamc@536 1098 \Gamma \vdash S_1 \equiv S_2
adamc@536 1099 }
adamc@536 1100 \quad \infer{\Gamma \vdash \mt{sig} \; \overline{s} \; \mt{end} \leq \mt{sig} \; \mt{end}}{}
adamc@537 1101 \quad \infer{\Gamma \vdash \mt{sig} \; \overline{s} \; \mt{end} \leq \mt{sig} \; s' \; \overline{s'} \; \mt{end}}{
adamc@537 1102 \Gamma \vdash \overline{s} \leq s'
adamc@537 1103 & \Gamma \vdash s' \leadsto \Gamma'
adamc@537 1104 & \Gamma' \vdash \mt{sig} \; \overline{s} \; \mt{end} \leq \mt{sig} \; \overline{s'} \; \mt{end}
adamc@537 1105 }$$
adamc@537 1106
adamc@537 1107 $$\infer{\Gamma \vdash s \; \overline{s} \leq s'}{
adamc@537 1108 \Gamma \vdash s \leq s'
adamc@537 1109 }
adamc@537 1110 \quad \infer{\Gamma \vdash s \; \overline{s} \leq s'}{
adamc@537 1111 \Gamma \vdash s \leadsto \Gamma'
adamc@537 1112 & \Gamma' \vdash \overline{s} \leq s'
adamc@536 1113 }$$
adamc@536 1114
adamc@536 1115 $$\infer{\Gamma \vdash \mt{functor} (X : S_1) : S_2 \leq \mt{functor} (X : S'_1) : S'_2}{
adamc@536 1116 \Gamma \vdash S'_1 \leq S_1
adamc@536 1117 & \Gamma, X : S'_1 \vdash S_2 \leq S'_2
adamc@536 1118 }$$
adamc@536 1119
adamc@537 1120 $$\infer{\Gamma \vdash \mt{con} \; x :: \kappa \leq \mt{con} \; x :: \kappa}{}
adamc@537 1121 \quad \infer{\Gamma \vdash \mt{con} \; x :: \kappa = c \leq \mt{con} \; x :: \kappa}{}
adamc@558 1122 \quad \infer{\Gamma \vdash \mt{datatype} \; x \; \overline{y} = \overline{dc} \leq \mt{con} \; x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type}}{}$$
adamc@537 1123
adamc@537 1124 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leq \mt{con} \; x :: \mt{Type}^{\mt{len}(y)} \to \mt{Type}}{
adamc@537 1125 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 1126 & \mt{proj}(M, \overline{s}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})
adamc@537 1127 }$$
adamc@537 1128
adamc@784 1129 $$\infer{\Gamma \vdash \mt{class} \; x :: \kappa \leq \mt{con} \; x :: \kappa}{}
adamc@784 1130 \quad \infer{\Gamma \vdash \mt{class} \; x :: \kappa = c \leq \mt{con} \; x :: \kappa}{}$$
adamc@537 1131
adamc@537 1132 $$\infer{\Gamma \vdash \mt{con} \; x :: \kappa = c_1 \leq \mt{con} \; x :: \mt{\kappa} = c_2}{
adamc@537 1133 \Gamma \vdash c_1 \equiv c_2
adamc@537 1134 }
adamc@784 1135 \quad \infer{\Gamma \vdash \mt{class} \; x :: \kappa = c_1 \leq \mt{con} \; x :: \kappa = c_2}{
adamc@537 1136 \Gamma \vdash c_1 \equiv c_2
adamc@537 1137 }$$
adamc@537 1138
adamc@537 1139 $$\infer{\Gamma \vdash \mt{datatype} \; x \; \overline{y} = \overline{dc} \leq \mt{datatype} \; x \; \overline{y} = \overline{dc'}}{
adamc@537 1140 \Gamma, \overline{y :: \mt{Type}} \vdash \overline{dc} \leq \overline{dc'}
adamc@537 1141 }$$
adamc@537 1142
adamc@537 1143 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leq \mt{datatype} \; x \; \overline{y} = \overline{dc'}}{
adamc@537 1144 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 1145 & \mt{proj}(M, \overline{s}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})
adamc@537 1146 & \Gamma, \overline{y :: \mt{Type}} \vdash \overline{dc} \leq \overline{dc'}
adamc@537 1147 }$$
adamc@537 1148
adamc@537 1149 $$\infer{\Gamma \vdash \cdot \leq \cdot}{}
adamc@537 1150 \quad \infer{\Gamma \vdash X; \overline{dc} \leq X; \overline{dc'}}{
adamc@537 1151 \Gamma \vdash \overline{dc} \leq \overline{dc'}
adamc@537 1152 }
adamc@537 1153 \quad \infer{\Gamma \vdash X \; \mt{of} \; \tau_1; \overline{dc} \leq X \; \mt{of} \; \tau_2; \overline{dc'}}{
adamc@537 1154 \Gamma \vdash \tau_1 \equiv \tau_2
adamc@537 1155 & \Gamma \vdash \overline{dc} \leq \overline{dc'}
adamc@537 1156 }$$
adamc@537 1157
adamc@537 1158 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leq \mt{datatype} \; x = \mt{datatype} \; M'.z'}{
adamc@537 1159 \Gamma \vdash M.z \equiv M'.z'
adamc@537 1160 }$$
adamc@537 1161
adamc@537 1162 $$\infer{\Gamma \vdash \mt{val} \; x : \tau_1 \leq \mt{val} \; x : \tau_2}{
adamc@537 1163 \Gamma \vdash \tau_1 \equiv \tau_2
adamc@537 1164 }
adamc@537 1165 \quad \infer{\Gamma \vdash \mt{structure} \; X : S_1 \leq \mt{structure} \; X : S_2}{
adamc@537 1166 \Gamma \vdash S_1 \leq S_2
adamc@537 1167 }
adamc@537 1168 \quad \infer{\Gamma \vdash \mt{signature} \; X = S_1 \leq \mt{signature} \; X = S_2}{
adamc@537 1169 \Gamma \vdash S_1 \leq S_2
adamc@537 1170 & \Gamma \vdash S_2 \leq S_1
adamc@537 1171 }$$
adamc@537 1172
adamc@537 1173 $$\infer{\Gamma \vdash \mt{constraint} \; c_1 \sim c_2 \leq \mt{constraint} \; c'_1 \sim c'_2}{
adamc@537 1174 \Gamma \vdash c_1 \equiv c'_1
adamc@537 1175 & \Gamma \vdash c_2 \equiv c'_2
adamc@537 1176 }$$
adamc@537 1177
adamc@655 1178 $$\infer{\Gamma \vdash \mt{class} \; x :: \kappa \leq \mt{class} \; x :: \kappa}{}
adamc@655 1179 \quad \infer{\Gamma \vdash \mt{class} \; x :: \kappa = c \leq \mt{class} \; x :: \kappa}{}
adamc@655 1180 \quad \infer{\Gamma \vdash \mt{class} \; x :: \kappa = c_1 \leq \mt{class} \; x :: \kappa = c_2}{
adamc@537 1181 \Gamma \vdash c_1 \equiv c_2
adamc@537 1182 }$$
adamc@537 1183
adamc@538 1184 \subsection{Module Typing}
adamc@538 1185
adamc@538 1186 We use a helper function $\mt{sigOf}$, which converts declarations and sequences of declarations into their principal signature items and sequences of signature items, respectively.
adamc@538 1187
adamc@538 1188 $$\infer{\Gamma \vdash M : S}{
adamc@538 1189 \Gamma \vdash M : S'
adamc@538 1190 & \Gamma \vdash S' \leq S
adamc@538 1191 }
adamc@538 1192 \quad \infer{\Gamma \vdash \mt{struct} \; \overline{d} \; \mt{end} : \mt{sig} \; \mt{sigOf}(\overline{d}) \; \mt{end}}{
adamc@538 1193 \Gamma \vdash \overline{d} \leadsto \Gamma'
adamc@538 1194 }
adamc@538 1195 \quad \infer{\Gamma \vdash X : S}{
adamc@538 1196 X : S \in \Gamma
adamc@538 1197 }$$
adamc@538 1198
adamc@538 1199 $$\infer{\Gamma \vdash M.X : S}{
adamc@538 1200 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@538 1201 & \mt{proj}(M, \overline{s}, \mt{structure} \; X) = S
adamc@538 1202 }$$
adamc@538 1203
adamc@538 1204 $$\infer{\Gamma \vdash M_1(M_2) : [X \mapsto M_2]S_2}{
adamc@538 1205 \Gamma \vdash M_1 : \mt{functor}(X : S_1) : S_2
adamc@538 1206 & \Gamma \vdash M_2 : S_1
adamc@538 1207 }
adamc@538 1208 \quad \infer{\Gamma \vdash \mt{functor} (X : S_1) : S_2 = M : \mt{functor} (X : S_1) : S_2}{
adamc@538 1209 \Gamma \vdash S_1
adamc@538 1210 & \Gamma, X : S_1 \vdash S_2
adamc@538 1211 & \Gamma, X : S_1 \vdash M : S_2
adamc@538 1212 }$$
adamc@538 1213
adamc@538 1214 \begin{eqnarray*}
adamc@538 1215 \mt{sigOf}(\cdot) &=& \cdot \\
adamc@538 1216 \mt{sigOf}(s \; \overline{s'}) &=& \mt{sigOf}(s) \; \mt{sigOf}(\overline{s'}) \\
adamc@538 1217 \\
adamc@538 1218 \mt{sigOf}(\mt{con} \; x :: \kappa = c) &=& \mt{con} \; x :: \kappa = c \\
adamc@538 1219 \mt{sigOf}(\mt{datatype} \; x \; \overline{y} = \overline{dc}) &=& \mt{datatype} \; x \; \overline{y} = \overline{dc} \\
adamc@538 1220 \mt{sigOf}(\mt{datatype} \; x = \mt{datatype} \; M.z) &=& \mt{datatype} \; x = \mt{datatype} \; M.z \\
adamc@538 1221 \mt{sigOf}(\mt{val} \; x : \tau = e) &=& \mt{val} \; x : \tau \\
adamc@538 1222 \mt{sigOf}(\mt{val} \; \mt{rec} \; \overline{x : \tau = e}) &=& \overline{\mt{val} \; x : \tau} \\
adamc@538 1223 \mt{sigOf}(\mt{structure} \; X : S = M) &=& \mt{structure} \; X : S \\
adamc@538 1224 \mt{sigOf}(\mt{signature} \; X = S) &=& \mt{signature} \; X = S \\
adamc@538 1225 \mt{sigOf}(\mt{open} \; M) &=& \mt{include} \; S \textrm{ (where $\Gamma \vdash M : S$)} \\
adamc@538 1226 \mt{sigOf}(\mt{constraint} \; c_1 \sim c_2) &=& \mt{constraint} \; c_1 \sim c_2 \\
adamc@538 1227 \mt{sigOf}(\mt{open} \; \mt{constraints} \; M) &=& \cdot \\
adamc@538 1228 \mt{sigOf}(\mt{table} \; x : c) &=& \mt{table} \; x : c \\
adam@1594 1229 \mt{sigOf}(\mt{view} \; x = e) &=& \mt{view} \; x : c \textrm{ (where $\Gamma \vdash e : \mt{Basis}.\mt{sql\_query} \; [] \; [] \; (\mt{map} \; (\lambda \_ \Rightarrow []) \; c') \; c$)} \\
adamc@538 1230 \mt{sigOf}(\mt{sequence} \; x) &=& \mt{sequence} \; x \\
adamc@538 1231 \mt{sigOf}(\mt{cookie} \; x : \tau) &=& \mt{cookie} \; x : \tau \\
adamc@784 1232 \mt{sigOf}(\mt{style} \; x) &=& \mt{style} \; x \\
adamc@655 1233 \mt{sigOf}(\mt{class} \; x :: \kappa = c) &=& \mt{class} \; x :: \kappa = c \\
adamc@538 1234 \end{eqnarray*}
adamc@539 1235 \begin{eqnarray*}
adamc@539 1236 \mt{selfify}(M, \cdot) &=& \cdot \\
adamc@558 1237 \mt{selfify}(M, s \; \overline{s'}) &=& \mt{selfify}(M, s) \; \mt{selfify}(M, \overline{s'}) \\
adamc@539 1238 \\
adamc@539 1239 \mt{selfify}(M, \mt{con} \; x :: \kappa) &=& \mt{con} \; x :: \kappa = M.x \\
adamc@539 1240 \mt{selfify}(M, \mt{con} \; x :: \kappa = c) &=& \mt{con} \; x :: \kappa = c \\
adamc@539 1241 \mt{selfify}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc}) &=& \mt{datatype} \; x \; \overline{y} = \mt{datatype} \; M.x \\
adamc@539 1242 \mt{selfify}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z) &=& \mt{datatype} \; x = \mt{datatype} \; M'.z \\
adamc@539 1243 \mt{selfify}(M, \mt{val} \; x : \tau) &=& \mt{val} \; x : \tau \\
adamc@539 1244 \mt{selfify}(M, \mt{structure} \; X : S) &=& \mt{structure} \; X : \mt{selfify}(M.X, \overline{s}) \textrm{ (where $\Gamma \vdash S \equiv \mt{sig} \; \overline{s} \; \mt{end}$)} \\
adamc@539 1245 \mt{selfify}(M, \mt{signature} \; X = S) &=& \mt{signature} \; X = S \\
adamc@539 1246 \mt{selfify}(M, \mt{include} \; S) &=& \mt{include} \; S \\
adamc@539 1247 \mt{selfify}(M, \mt{constraint} \; c_1 \sim c_2) &=& \mt{constraint} \; c_1 \sim c_2 \\
adamc@655 1248 \mt{selfify}(M, \mt{class} \; x :: \kappa) &=& \mt{class} \; x :: \kappa = M.x \\
adamc@655 1249 \mt{selfify}(M, \mt{class} \; x :: \kappa = c) &=& \mt{class} \; x :: \kappa = c \\
adamc@539 1250 \end{eqnarray*}
adamc@539 1251
adamc@540 1252 \subsection{Module Projection}
adamc@540 1253
adamc@540 1254 \begin{eqnarray*}
adamc@540 1255 \mt{proj}(M, \mt{con} \; x :: \kappa \; \overline{s}, \mt{con} \; x) &=& \kappa \\
adamc@540 1256 \mt{proj}(M, \mt{con} \; x :: \kappa = c \; \overline{s}, \mt{con} \; x) &=& (\kappa, c) \\
adamc@540 1257 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, \mt{con} \; x) &=& \mt{Type}^{\mt{len}(\overline{y})} \to \mt{Type} \\
adamc@540 1258 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z \; \overline{s}, \mt{con} \; x) &=& (\mt{Type}^{\mt{len}(\overline{y})} \to \mt{Type}, M'.z) \textrm{ (where $\Gamma \vdash M' : \mt{sig} \; \overline{s'} \; \mt{end}$} \\
adamc@540 1259 && \textrm{and $\mt{proj}(M', \overline{s'}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})$)} \\
adamc@655 1260 \mt{proj}(M, \mt{class} \; x :: \kappa \; \overline{s}, \mt{con} \; x) &=& \kappa \to \mt{Type} \\
adamc@655 1261 \mt{proj}(M, \mt{class} \; x :: \kappa = c \; \overline{s}, \mt{con} \; x) &=& (\kappa \to \mt{Type}, c) \\
adamc@540 1262 \\
adamc@540 1263 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, \mt{datatype} \; x) &=& (\overline{y}, \overline{dc}) \\
adamc@540 1264 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z \; \overline{s}, \mt{con} \; x) &=& \mt{proj}(M', \overline{s'}, \mt{datatype} \; z) \textrm{ (where $\Gamma \vdash M' : \mt{sig} \; \overline{s'} \; \mt{end}$)} \\
adamc@540 1265 \\
adamc@540 1266 \mt{proj}(M, \mt{val} \; x : \tau \; \overline{s}, \mt{val} \; x) &=& \tau \\
adamc@540 1267 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, \mt{val} \; X) &=& \overline{y ::: \mt{Type}} \to M.x \; \overline y \textrm{ (where $X \in \overline{dc}$)} \\
adamc@540 1268 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, \mt{val} \; X) &=& \overline{y ::: \mt{Type}} \to \tau \to M.x \; \overline y \textrm{ (where $X \; \mt{of} \; \tau \in \overline{dc}$)} \\
adamc@540 1269 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z, \mt{val} \; X) &=& \overline{y ::: \mt{Type}} \to M.x \; \overline y \textrm{ (where $\Gamma \vdash M' : \mt{sig} \; \overline{s'} \; \mt{end}$} \\
adamc@540 1270 && \textrm{and $\mt{proj}(M', \overline{s'}, \mt{datatype} \; z = (\overline{y}, \overline{dc})$ and $X \in \overline{dc}$)} \\
adamc@540 1271 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z, \mt{val} \; X) &=& \overline{y ::: \mt{Type}} \to \tau \to M.x \; \overline y \textrm{ (where $\Gamma \vdash M' : \mt{sig} \; \overline{s'} \; \mt{end}$} \\
adamc@558 1272 && \textrm{and $\mt{proj}(M', \overline{s'}, \mt{datatype} \; z = (\overline{y}, \overline{dc})$ and $X \; \mt{of} \; \tau \in \overline{dc}$)} \\
adamc@540 1273 \\
adamc@540 1274 \mt{proj}(M, \mt{structure} \; X : S \; \overline{s}, \mt{structure} \; X) &=& S \\
adamc@540 1275 \\
adamc@540 1276 \mt{proj}(M, \mt{signature} \; X = S \; \overline{s}, \mt{signature} \; X) &=& S \\
adamc@540 1277 \\
adamc@540 1278 \mt{proj}(M, \mt{con} \; x :: \kappa \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1279 \mt{proj}(M, \mt{con} \; x :: \kappa = c \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1280 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1281 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1282 \mt{proj}(M, \mt{val} \; x : \tau \; \overline{s}, V) &=& \mt{proj}(M, \overline{s}, V) \\
adamc@540 1283 \mt{proj}(M, \mt{structure} \; X : S \; \overline{s}, V) &=& [X \mapsto M.X]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1284 \mt{proj}(M, \mt{signature} \; X = S \; \overline{s}, V) &=& [X \mapsto M.X]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1285 \mt{proj}(M, \mt{include} \; S \; \overline{s}, V) &=& \mt{proj}(M, \overline{s'} \; \overline{s}, V) \textrm{ (where $\Gamma \vdash S \equiv \mt{sig} \; \overline{s'} \; \mt{end}$)} \\
adamc@540 1286 \mt{proj}(M, \mt{constraint} \; c_1 \sim c_2 \; \overline{s}, V) &=& \mt{proj}(M, \overline{s}, V) \\
adamc@655 1287 \mt{proj}(M, \mt{class} \; x :: \kappa \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@655 1288 \mt{proj}(M, \mt{class} \; x :: \kappa = c \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1289 \end{eqnarray*}
adamc@540 1290
adamc@541 1291
adamc@541 1292 \section{Type Inference}
adamc@541 1293
adamc@541 1294 The Ur/Web compiler uses \emph{heuristic type inference}, with no claims of completeness with respect to the declarative specification of the last section. The rules in use seem to work well in practice. This section summarizes those rules, to help Ur programmers predict what will work and what won't.
adamc@541 1295
adamc@541 1296 \subsection{Basic Unification}
adamc@541 1297
adamc@560 1298 Type-checkers for languages based on the Hindley-Milner type discipline, like ML and Haskell, take advantage of \emph{principal typing} properties, making complete type inference relatively straightforward. Inference algorithms are traditionally implemented using type unification variables, at various points asserting equalities between types, in the process discovering the values of type variables. The Ur/Web compiler uses the same basic strategy, but the complexity of the type system rules out easy completeness.
adamc@541 1299
adamc@656 1300 Type-checking can require evaluating recursive functional programs, thanks to the type-level $\mt{map}$ operator. When a unification variable appears in such a type, the next step of computation can be undetermined. The value of that variable might be determined later, but this would be ``too late'' for the unification problems generated at the first occurrence. This is the essential source of incompleteness.
adamc@541 1301
adamc@541 1302 Nonetheless, the unification engine tends to do reasonably well. Unlike in ML, polymorphism is never inferred in definitions; it must be indicated explicitly by writing out constructor-level parameters. By writing these and other annotations, the programmer can generally get the type inference engine to do most of the type reconstruction work.
adamc@541 1303
adamc@541 1304 \subsection{Unifying Record Types}
adamc@541 1305
adamc@570 1306 The type inference engine tries to take advantage of the algebraic rules governing type-level records, as shown in Section \ref{definitional}. When two constructors of record kind are unified, they are reduced to normal forms, with like terms crossed off from each normal form until, hopefully, nothing remains. This cannot be complete, with the inclusion of unification variables. The type-checker can help you understand what goes wrong when the process fails, as it outputs the unmatched remainders of the two normal forms.
adamc@541 1307
adamc@656 1308 \subsection{\label{typeclasses}Constructor Classes}
adamc@541 1309
adamc@784 1310 Ur includes a constructor class facility inspired by Haskell's. The current version is experimental, with very general Prolog-like facilities that can lead to compile-time non-termination.
adamc@541 1311
adamc@784 1312 Constructor classes are integrated with the module system. A constructor class of kind $\kappa$ is just a constructor of kind $\kappa$. By marking such a constructor $c$ as a constructor class, the programmer instructs the type inference engine to, in each scope, record all values of types $c \; c_1 \; \ldots \; c_n$ as \emph{instances}. Any function argument whose type is of such a form is treated as implicit, to be determined by examining the current instance database.
adamc@541 1313
adamc@656 1314 The ``dictionary encoding'' often used in Haskell implementations is made explicit in Ur. Constructor class instances are just properly-typed values, and they can also be considered as ``proofs'' of membership in the class. In some cases, it is useful to pass these proofs around explicitly. An underscore written where a proof is expected will also be inferred, if possible, from the current instance database.
adamc@541 1315
adamc@656 1316 Just as for constructors, constructors classes may be exported from modules, and they may be exported as concrete or abstract. Concrete constructor classes have their ``real'' definitions exposed, so that client code may add new instances freely. Abstract constructor classes are useful as ``predicates'' that can be used to enforce invariants, as we will see in some definitions of SQL syntax in the Ur/Web standard library.
adamc@541 1317
adamc@541 1318 \subsection{Reverse-Engineering Record Types}
adamc@541 1319
adamc@656 1320 It's useful to write Ur functions and functors that take record constructors as inputs, but these constructors can grow quite long, even though their values are often implied by other arguments. The compiler uses a simple heuristic to infer the values of unification variables that are mapped over, yielding known results. If the result is empty, we're done; if it's not empty, we replace a single unification variable with a new constructor formed from three new unification variables, as in $[\alpha = \beta] \rc \gamma$. This process can often be repeated to determine a unification variable fully.
adamc@541 1321
adamc@541 1322 \subsection{Implicit Arguments in Functor Applications}
adamc@541 1323
adamc@656 1324 Constructor, constraint, and constructor class witness members of structures may be omitted, when those structures are used in contexts where their assigned signatures imply how to fill in those missing members. This feature combines well with reverse-engineering to allow for uses of complicated meta-programming functors with little more code than would be necessary to invoke an untyped, ad-hoc code generator.
adamc@541 1325
adamc@541 1326
adamc@542 1327 \section{The Ur Standard Library}
adamc@542 1328
adamc@542 1329 The built-in parts of the Ur/Web standard library are described by the signature in \texttt{lib/basis.urs} in the distribution. A module $\mt{Basis}$ ascribing to that signature is available in the initial environment, and every program is implicitly prefixed by $\mt{open} \; \mt{Basis}$.
adamc@542 1330
adamc@542 1331 Additionally, other common functions that are definable within Ur are included in \texttt{lib/top.urs} and \texttt{lib/top.ur}. This $\mt{Top}$ module is also opened implicitly.
adamc@542 1332
adamc@542 1333 The idea behind Ur is to serve as the ideal host for embedded domain-specific languages. For now, however, the ``generic'' functionality is intermixed with Ur/Web-specific functionality, including in these two library modules. We hope that these generic library components have types that speak for themselves. The next section introduces the Ur/Web-specific elements. Here, we only give the type declarations from the beginning of $\mt{Basis}$.
adamc@542 1334 $$\begin{array}{l}
adamc@542 1335 \mt{type} \; \mt{int} \\
adamc@542 1336 \mt{type} \; \mt{float} \\
adamc@873 1337 \mt{type} \; \mt{char} \\
adamc@542 1338 \mt{type} \; \mt{string} \\
adamc@542 1339 \mt{type} \; \mt{time} \\
adamc@785 1340 \mt{type} \; \mt{blob} \\
adamc@542 1341 \\
adamc@542 1342 \mt{type} \; \mt{unit} = \{\} \\
adamc@542 1343 \\
adamc@542 1344 \mt{datatype} \; \mt{bool} = \mt{False} \mid \mt{True} \\
adamc@542 1345 \\
adamc@785 1346 \mt{datatype} \; \mt{option} \; \mt{t} = \mt{None} \mid \mt{Some} \; \mt{of} \; \mt{t} \\
adamc@785 1347 \\
adamc@785 1348 \mt{datatype} \; \mt{list} \; \mt{t} = \mt{Nil} \mid \mt{Cons} \; \mt{of} \; \mt{t} \times \mt{list} \; \mt{t}
adamc@542 1349 \end{array}$$
adamc@542 1350
adamc@1123 1351 The only unusual element of this list is the $\mt{blob}$ type, which stands for binary sequences. Simple blobs can be created from strings via $\mt{Basis.textBlob}$. Blobs will also be generated from HTTP file uploads.
adamc@785 1352
adam@1297 1353 Ur also supports \emph{polymorphic variants}, a dual to extensible records that has been popularized by OCaml. A type $\mt{variant} \; r$ represents an $n$-ary sum type, with one constructor for each field of record $r$. Each constructor $c$ takes an argument of type $r.c$; the type $\{\}$ can be used to ``simulate'' a nullary constructor. The \cd{make} function builds a variant value, while \cd{match} implements pattern-matching, with match cases represented as records of functions.
adam@1297 1354 $$\begin{array}{l}
adam@1297 1355 \mt{con} \; \mt{variant} :: \{\mt{Type}\} \to \mt{Type} \\
adam@1297 1356 \mt{val} \; \mt{make} : \mt{nm} :: \mt{Name} \to \mt{t} ::: \mt{Type} \to \mt{ts} ::: \{\mt{Type}\} \to [[\mt{nm}] \sim \mt{ts}] \Rightarrow \mt{t} \to \mt{variant} \; ([\mt{nm} = \mt{t}] \rc \mt{ts}) \\
adam@1297 1357 \mt{val} \; \mt{match} : \mt{ts} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \to \mt{variant} \; \mt{ts} \to \$(\mt{map} \; (\lambda \mt{t'} \Rightarrow \mt{t'} \to \mt{t}) \; \mt{ts}) \to \mt{t}
adam@1297 1358 \end{array}$$
adam@1297 1359
adamc@657 1360 Another important generic Ur element comes at the beginning of \texttt{top.urs}.
adamc@657 1361
adamc@657 1362 $$\begin{array}{l}
adamc@657 1363 \mt{con} \; \mt{folder} :: \mt{K} \longrightarrow \{\mt{K}\} \to \mt{Type} \\
adamc@657 1364 \\
adamc@657 1365 \mt{val} \; \mt{fold} : \mt{K} \longrightarrow \mt{tf} :: (\{\mt{K}\} \to \mt{Type}) \\
adamc@657 1366 \hspace{.1in} \to (\mt{nm} :: \mt{Name} \to \mt{v} :: \mt{K} \to \mt{r} :: \{\mt{K}\} \to [[\mt{nm}] \sim \mt{r}] \Rightarrow \\
adamc@657 1367 \hspace{.2in} \mt{tf} \; \mt{r} \to \mt{tf} \; ([\mt{nm} = \mt{v}] \rc \mt{r})) \\
adamc@657 1368 \hspace{.1in} \to \mt{tf} \; [] \\
adamc@657 1369 \hspace{.1in} \to \mt{r} :: \{\mt{K}\} \to \mt{folder} \; \mt{r} \to \mt{tf} \; \mt{r}
adamc@657 1370 \end{array}$$
adamc@657 1371
adamc@657 1372 For a type-level record $\mt{r}$, a $\mt{folder} \; \mt{r}$ encodes a permutation of $\mt{r}$'s elements. The $\mt{fold}$ function can be called on a $\mt{folder}$ to iterate over the elements of $\mt{r}$ in that order. $\mt{fold}$ is parameterized on a type-level function to be used to calculate the type of each intermediate result of folding. After processing a subset $\mt{r'}$ of $\mt{r}$'s entries, the type of the accumulator should be $\mt{tf} \; \mt{r'}$. The next two expression arguments to $\mt{fold}$ are the usual step function and initial accumulator, familiar from fold functions over lists. The final two arguments are the record to fold over and a $\mt{folder}$ for it.
adamc@657 1373
adamc@664 1374 The Ur compiler treats $\mt{folder}$ like a constructor class, using built-in rules to infer $\mt{folder}$s for records with known structure. The order in which field names are mentioned in source code is used as a hint about the permutation that the programmer would like.
adamc@657 1375
adamc@542 1376
adamc@542 1377 \section{The Ur/Web Standard Library}
adamc@542 1378
adam@1400 1379 Some operations are only allowed in server-side code or only in client-side code. The type system does not enforce such restrictions, but the compiler enforces them in the process of whole-program compilation. In the discussion below, we note when a set of operations has a location restriction.
adam@1400 1380
adamc@658 1381 \subsection{Monads}
adamc@658 1382
adamc@658 1383 The Ur Basis defines the monad constructor class from Haskell.
adamc@658 1384
adamc@658 1385 $$\begin{array}{l}
adamc@658 1386 \mt{class} \; \mt{monad} :: \mt{Type} \to \mt{Type} \\
adamc@658 1387 \mt{val} \; \mt{return} : \mt{m} ::: (\mt{Type} \to \mt{Type}) \to \mt{t} ::: \mt{Type} \\
adamc@658 1388 \hspace{.1in} \to \mt{monad} \; \mt{m} \\
adamc@658 1389 \hspace{.1in} \to \mt{t} \to \mt{m} \; \mt{t} \\
adamc@658 1390 \mt{val} \; \mt{bind} : \mt{m} ::: (\mt{Type} \to \mt{Type}) \to \mt{t1} ::: \mt{Type} \to \mt{t2} ::: \mt{Type} \\
adamc@658 1391 \hspace{.1in} \to \mt{monad} \; \mt{m} \\
adamc@658 1392 \hspace{.1in} \to \mt{m} \; \mt{t1} \to (\mt{t1} \to \mt{m} \; \mt{t2}) \\
adam@1544 1393 \hspace{.1in} \to \mt{m} \; \mt{t2} \\
adam@1544 1394 \mt{val} \; \mt{mkMonad} : \mt{m} ::: (\mt{Type} \to \mt{Type}) \\
adam@1544 1395 \hspace{.1in} \to \{\mt{Return} : \mt{t} ::: \mt{Type} \to \mt{t} \to \mt{m} \; \mt{t}, \\
adam@1544 1396 \hspace{.3in} \mt{Bind} : \mt{t1} ::: \mt{Type} \to \mt{t2} ::: \mt{Type} \to \mt{m} \; \mt{t1} \to (\mt{t1} \to \mt{m} \; \mt{t2}) \to \mt{m} \; \mt{t2}\} \\
adam@1544 1397 \hspace{.1in} \to \mt{monad} \; \mt{m}
adamc@658 1398 \end{array}$$
adamc@658 1399
adam@1687 1400 The Ur/Web compiler provides syntactic sugar for monads, similar to Haskell's \cd{do} notation. An expression $x \leftarrow e_1; e_2$ is desugared to $\mt{bind} \; e_1 \; (\lambda x \Rightarrow e_2)$, and an expression $e_1; e_2$ is desugared to $\mt{bind} \; e_1 \; (\lambda () \Rightarrow e_2)$. Note a difference from Haskell: as the $e_1; e_2$ case desugaring involves a function with $()$ as its formal argument, the type of $e_1$ must be of the form $m \; \{\}$, rather than some arbitrary $m \; t$.
adam@1548 1401
adamc@542 1402 \subsection{Transactions}
adamc@542 1403
adamc@542 1404 Ur is a pure language; we use Haskell's trick to support controlled side effects. The standard library defines a monad $\mt{transaction}$, meant to stand for actions that may be undone cleanly. By design, no other kinds of actions are supported.
adamc@542 1405 $$\begin{array}{l}
adamc@542 1406 \mt{con} \; \mt{transaction} :: \mt{Type} \to \mt{Type} \\
adamc@658 1407 \mt{val} \; \mt{transaction\_monad} : \mt{monad} \; \mt{transaction}
adamc@542 1408 \end{array}$$
adamc@542 1409
adamc@1123 1410 For debugging purposes, a transactional function is provided for outputting a string on the server process' \texttt{stderr}.
adamc@1123 1411 $$\begin{array}{l}
adamc@1123 1412 \mt{val} \; \mt{debug} : \mt{string} \to \mt{transaction} \; \mt{unit}
adamc@1123 1413 \end{array}$$
adamc@1123 1414
adamc@542 1415 \subsection{HTTP}
adamc@542 1416
adam@1400 1417 There are transactions for reading an HTTP header by name and for getting and setting strongly-typed cookies. Cookies may only be created by the $\mt{cookie}$ declaration form, ensuring that they be named consistently based on module structure. For now, cookie operations are server-side only.
adamc@542 1418 $$\begin{array}{l}
adamc@786 1419 \mt{con} \; \mt{http\_cookie} :: \mt{Type} \to \mt{Type} \\
adamc@786 1420 \mt{val} \; \mt{getCookie} : \mt{t} ::: \mt{Type} \to \mt{http\_cookie} \; \mt{t} \to \mt{transaction} \; (\mt{option} \; \mt{t}) \\
adamc@1050 1421 \mt{val} \; \mt{setCookie} : \mt{t} ::: \mt{Type} \to \mt{http\_cookie} \; \mt{t} \to \{\mt{Value} : \mt{t}, \mt{Expires} : \mt{option} \; \mt{time}, \mt{Secure} : \mt{bool}\} \to \mt{transaction} \; \mt{unit} \\
adamc@1050 1422 \mt{val} \; \mt{clearCookie} : \mt{t} ::: \mt{Type} \to \mt{http\_cookie} \; \mt{t} \to \mt{transaction} \; \mt{unit}
adamc@786 1423 \end{array}$$
adamc@786 1424
adamc@786 1425 There are also an abstract $\mt{url}$ type and functions for converting to it, based on the policy defined by \texttt{[allow|deny] url} directives in the project file.
adamc@786 1426 $$\begin{array}{l}
adamc@786 1427 \mt{type} \; \mt{url} \\
adamc@786 1428 \mt{val} \; \mt{bless} : \mt{string} \to \mt{url} \\
adamc@786 1429 \mt{val} \; \mt{checkUrl} : \mt{string} \to \mt{option} \; \mt{url}
adamc@786 1430 \end{array}$$
adamc@786 1431 $\mt{bless}$ raises a runtime error if the string passed to it fails the URL policy.
adamc@786 1432
adam@1400 1433 It is possible to grab the current page's URL or to build a URL for an arbitrary transaction that would also be an acceptable value of a \texttt{link} attribute of the \texttt{a} tag. These are server-side operations.
adamc@1085 1434 $$\begin{array}{l}
adamc@1085 1435 \mt{val} \; \mt{currentUrl} : \mt{transaction} \; \mt{url} \\
adamc@1085 1436 \mt{val} \; \mt{url} : \mt{transaction} \; \mt{page} \to \mt{url}
adamc@1085 1437 \end{array}$$
adamc@1085 1438
adamc@1085 1439 Page generation may be interrupted at any time with a request to redirect to a particular URL instead.
adamc@1085 1440 $$\begin{array}{l}
adamc@1085 1441 \mt{val} \; \mt{redirect} : \mt{t} ::: \mt{Type} \to \mt{url} \to \mt{transaction} \; \mt{t}
adamc@1085 1442 \end{array}$$
adamc@1085 1443
adam@1400 1444 It's possible for pages to return files of arbitrary MIME types. A file can be input from the user using this data type, along with the $\mt{upload}$ form tag. These functions and those described in the following paragraph are server-side.
adamc@786 1445 $$\begin{array}{l}
adamc@786 1446 \mt{type} \; \mt{file} \\
adamc@786 1447 \mt{val} \; \mt{fileName} : \mt{file} \to \mt{option} \; \mt{string} \\
adamc@786 1448 \mt{val} \; \mt{fileMimeType} : \mt{file} \to \mt{string} \\
adamc@786 1449 \mt{val} \; \mt{fileData} : \mt{file} \to \mt{blob}
adamc@786 1450 \end{array}$$
adamc@786 1451
adam@1465 1452 It is also possible to get HTTP request headers and set HTTP response headers, using abstract types similar to the one for URLs.
adam@1465 1453
adam@1465 1454 $$\begin{array}{l}
adam@1465 1455 \mt{type} \; \mt{requestHeader} \\
adam@1465 1456 \mt{val} \; \mt{blessRequestHeader} : \mt{string} \to \mt{requestHeader} \\
adam@1465 1457 \mt{val} \; \mt{checkRequestHeader} : \mt{string} \to \mt{option} \; \mt{requestHeader} \\
adam@1465 1458 \mt{val} \; \mt{getHeader} : \mt{requestHeader} \to \mt{transaction} \; (\mt{option} \; \mt{string}) \\
adam@1465 1459 \\
adam@1465 1460 \mt{type} \; \mt{responseHeader} \\
adam@1465 1461 \mt{val} \; \mt{blessResponseHeader} : \mt{string} \to \mt{responseHeader} \\
adam@1465 1462 \mt{val} \; \mt{checkResponseHeader} : \mt{string} \to \mt{option} \; \mt{responseHeader} \\
adam@1465 1463 \mt{val} \; \mt{setHeader} : \mt{responseHeader} \to \mt{string} \to \mt{transaction} \; \mt{unit}
adam@1465 1464 \end{array}$$
adam@1465 1465
adamc@786 1466 A blob can be extracted from a file and returned as the page result. There are bless and check functions for MIME types analogous to those for URLs.
adamc@786 1467 $$\begin{array}{l}
adamc@786 1468 \mt{type} \; \mt{mimeType} \\
adamc@786 1469 \mt{val} \; \mt{blessMime} : \mt{string} \to \mt{mimeType} \\
adamc@786 1470 \mt{val} \; \mt{checkMime} : \mt{string} \to \mt{option} \; \mt{mimeType} \\
adamc@786 1471 \mt{val} \; \mt{returnBlob} : \mt{t} ::: \mt{Type} \to \mt{blob} \to \mt{mimeType} \to \mt{transaction} \; \mt{t}
adamc@542 1472 \end{array}$$
adamc@542 1473
adamc@543 1474 \subsection{SQL}
adamc@543 1475
adam@1400 1476 Everything about SQL database access is restricted to server-side code.
adam@1400 1477
adamc@543 1478 The fundamental unit of interest in the embedding of SQL is tables, described by a type family and creatable only via the $\mt{table}$ declaration form.
adamc@543 1479 $$\begin{array}{l}
adamc@785 1480 \mt{con} \; \mt{sql\_table} :: \{\mt{Type}\} \to \{\{\mt{Unit}\}\} \to \mt{Type}
adamc@785 1481 \end{array}$$
adamc@785 1482 The first argument to this constructor gives the names and types of a table's columns, and the second argument gives the set of valid keys. Keys are the only subsets of the columns that may be referenced as foreign keys. Each key has a name.
adamc@785 1483
adamc@785 1484 We also have the simpler type family of SQL views, which have no keys.
adamc@785 1485 $$\begin{array}{l}
adamc@785 1486 \mt{con} \; \mt{sql\_view} :: \{\mt{Type}\} \to \mt{Type}
adamc@543 1487 \end{array}$$
adamc@543 1488
adamc@785 1489 A multi-parameter type class is used to allow tables and views to be used interchangeably, with a way of extracting the set of columns from each.
adamc@785 1490 $$\begin{array}{l}
adamc@785 1491 \mt{class} \; \mt{fieldsOf} :: \mt{Type} \to \{\mt{Type}\} \to \mt{Type} \\
adamc@785 1492 \mt{val} \; \mt{fieldsOf\_table} : \mt{fs} ::: \{\mt{Type}\} \to \mt{keys} ::: \{\{\mt{Unit}\}\} \to \mt{fieldsOf} \; (\mt{sql\_table} \; \mt{fs} \; \mt{keys}) \; \mt{fs} \\
adamc@785 1493 \mt{val} \; \mt{fieldsOf\_view} : \mt{fs} ::: \{\mt{Type}\} \to \mt{fieldsOf} \; (\mt{sql\_view} \; \mt{fs}) \; \mt{fs}
adamc@785 1494 \end{array}$$
adamc@785 1495
adamc@785 1496 \subsubsection{Table Constraints}
adamc@785 1497
adamc@785 1498 Tables may be declared with constraints, such that database modifications that violate the constraints are blocked. A table may have at most one \texttt{PRIMARY KEY} constraint, which gives the subset of columns that will most often be used to look up individual rows in the table.
adamc@785 1499
adamc@785 1500 $$\begin{array}{l}
adamc@785 1501 \mt{con} \; \mt{primary\_key} :: \{\mt{Type}\} \to \{\{\mt{Unit}\}\} \to \mt{Type} \\
adamc@785 1502 \mt{val} \; \mt{no\_primary\_key} : \mt{fs} ::: \{\mt{Type}\} \to \mt{primary\_key} \; \mt{fs} \; [] \\
adamc@785 1503 \mt{val} \; \mt{primary\_key} : \mt{rest} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \to \mt{key1} :: \mt{Name} \to \mt{keys} :: \{\mt{Type}\} \\
adamc@785 1504 \hspace{.1in} \to [[\mt{key1}] \sim \mt{keys}] \Rightarrow [[\mt{key1} = \mt{t}] \rc \mt{keys} \sim \mt{rest}] \\
adamc@785 1505 \hspace{.1in} \Rightarrow \$([\mt{key1} = \mt{sql\_injectable\_prim} \; \mt{t}] \rc \mt{map} \; \mt{sql\_injectable\_prim} \; \mt{keys}) \\
adamc@785 1506 \hspace{.1in} \to \mt{primary\_key} \; ([\mt{key1} = \mt{t}] \rc \mt{keys} \rc \mt{rest}) \; [\mt{Pkey} = [\mt{key1}] \rc \mt{map} \; (\lambda \_ \Rightarrow ()) \; \mt{keys}]
adamc@785 1507 \end{array}$$
adamc@785 1508 The type class $\mt{sql\_injectable\_prim}$ characterizes which types are allowed in SQL and are not $\mt{option}$ types. In SQL, a \texttt{PRIMARY KEY} constraint enforces after-the-fact that a column may not contain \texttt{NULL}s, but Ur/Web forces that information to be included in table types from the beginning. Thus, the only effect of this kind of constraint in Ur/Web is to enforce uniqueness of the given key within the table.
adamc@785 1509
adamc@785 1510 A type family stands for sets of named constraints of the remaining varieties.
adamc@785 1511 $$\begin{array}{l}
adamc@785 1512 \mt{con} \; \mt{sql\_constraints} :: \{\mt{Type}\} \to \{\{\mt{Unit}\}\} \to \mt{Type}
adamc@785 1513 \end{array}$$
adamc@785 1514 The first argument gives the column types of the table being constrained, and the second argument maps constraint names to the keys that they define. Constraints that don't define keys are mapped to ``empty keys.''
adamc@785 1515
adamc@785 1516 There is a type family of individual, unnamed constraints.
adamc@785 1517 $$\begin{array}{l}
adamc@785 1518 \mt{con} \; \mt{sql\_constraint} :: \{\mt{Type}\} \to \{\mt{Unit}\} \to \mt{Type}
adamc@785 1519 \end{array}$$
adamc@785 1520 The first argument is the same as above, and the second argument gives the key columns for just this constraint.
adamc@785 1521
adamc@785 1522 We have operations for assembling constraints into constraint sets.
adamc@785 1523 $$\begin{array}{l}
adamc@785 1524 \mt{val} \; \mt{no\_constraint} : \mt{fs} ::: \{\mt{Type}\} \to \mt{sql\_constraints} \; \mt{fs} \; [] \\
adamc@785 1525 \mt{val} \; \mt{one\_constraint} : \mt{fs} ::: \{\mt{Type}\} \to \mt{unique} ::: \{\mt{Unit}\} \to \mt{name} :: \mt{Name} \\
adamc@785 1526 \hspace{.1in} \to \mt{sql\_constraint} \; \mt{fs} \; \mt{unique} \to \mt{sql\_constraints} \; \mt{fs} \; [\mt{name} = \mt{unique}] \\
adamc@785 1527 \mt{val} \; \mt{join\_constraints} : \mt{fs} ::: \{\mt{Type}\} \to \mt{uniques1} ::: \{\{\mt{Unit}\}\} \to \mt{uniques2} ::: \{\{\mt{Unit}\}\} \to [\mt{uniques1} \sim \mt{uniques2}] \\
adamc@785 1528 \hspace{.1in} \Rightarrow \mt{sql\_constraints} \; \mt{fs} \; \mt{uniques1} \to \mt{sql\_constraints} \; \mt{fs} \; \mt{uniques2} \to \mt{sql\_constraints} \; \mt{fs} \; (\mt{uniques1} \rc \mt{uniques2})
adamc@785 1529 \end{array}$$
adamc@785 1530
adamc@785 1531 A \texttt{UNIQUE} constraint forces a set of columns to be a key, which means that no combination of column values may occur more than once in the table. The $\mt{unique1}$ and $\mt{unique}$ arguments are separated out only to ensure that empty \texttt{UNIQUE} constraints are rejected.
adamc@785 1532 $$\begin{array}{l}
adamc@785 1533 \mt{val} \; \mt{unique} : \mt{rest} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \to \mt{unique1} :: \mt{Name} \to \mt{unique} :: \{\mt{Type}\} \\
adamc@785 1534 \hspace{.1in} \to [[\mt{unique1}] \sim \mt{unique}] \Rightarrow [[\mt{unique1} = \mt{t}] \rc \mt{unique} \sim \mt{rest}] \\
adamc@785 1535 \hspace{.1in} \Rightarrow \mt{sql\_constraint} \; ([\mt{unique1} = \mt{t}] \rc \mt{unique} \rc \mt{rest}) \; ([\mt{unique1}] \rc \mt{map} \; (\lambda \_ \Rightarrow ()) \; \mt{unique})
adamc@785 1536 \end{array}$$
adamc@785 1537
adamc@785 1538 A \texttt{FOREIGN KEY} constraint connects a set of local columns to a local or remote key, enforcing that the local columns always reference an existent row of the foreign key's table. A local column of type $\mt{t}$ may be linked to a foreign column of type $\mt{option} \; \mt{t}$, and vice versa. We formalize that notion with a type class.
adamc@785 1539 $$\begin{array}{l}
adamc@785 1540 \mt{class} \; \mt{linkable} :: \mt{Type} \to \mt{Type} \to \mt{Type} \\
adamc@785 1541 \mt{val} \; \mt{linkable\_same} : \mt{t} ::: \mt{Type} \to \mt{linkable} \; \mt{t} \; \mt{t} \\
adamc@785 1542 \mt{val} \; \mt{linkable\_from\_nullable} : \mt{t} ::: \mt{Type} \to \mt{linkable} \; (\mt{option} \; \mt{t}) \; \mt{t} \\
adamc@785 1543 \mt{val} \; \mt{linkable\_to\_nullable} : \mt{t} ::: \mt{Type} \to \mt{linkable} \; \mt{t} \; (\mt{option} \; \mt{t})
adamc@785 1544 \end{array}$$
adamc@785 1545
adamc@785 1546 The $\mt{matching}$ type family uses $\mt{linkable}$ to define when two keys match up type-wise.
adamc@785 1547 $$\begin{array}{l}
adamc@785 1548 \mt{con} \; \mt{matching} :: \{\mt{Type}\} \to \{\mt{Type}\} \to \mt{Type} \\
adamc@785 1549 \mt{val} \; \mt{mat\_nil} : \mt{matching} \; [] \; [] \\
adamc@785 1550 \mt{val} \; \mt{mat\_cons} : \mt{t1} ::: \mt{Type} \to \mt{rest1} ::: \{\mt{Type}\} \to \mt{t2} ::: \mt{Type} \to \mt{rest2} ::: \{\mt{Type}\} \to \mt{nm1} :: \mt{Name} \to \mt{nm2} :: \mt{Name} \\
adamc@785 1551 \hspace{.1in} \to [[\mt{nm1}] \sim \mt{rest1}] \Rightarrow [[\mt{nm2}] \sim \mt{rest2}] \Rightarrow \mt{linkable} \; \mt{t1} \; \mt{t2} \to \mt{matching} \; \mt{rest1} \; \mt{rest2} \\
adamc@785 1552 \hspace{.1in} \to \mt{matching} \; ([\mt{nm1} = \mt{t1}] \rc \mt{rest1}) \; ([\mt{nm2} = \mt{t2}] \rc \mt{rest2})
adamc@785 1553 \end{array}$$
adamc@785 1554
adamc@785 1555 SQL provides a number of different propagation modes for \texttt{FOREIGN KEY} constraints, governing what happens when a row containing a still-referenced foreign key value is deleted or modified to have a different key value. The argument of a propagation mode's type gives the local key type.
adamc@785 1556 $$\begin{array}{l}
adamc@785 1557 \mt{con} \; \mt{propagation\_mode} :: \{\mt{Type}\} \to \mt{Type} \\
adamc@785 1558 \mt{val} \; \mt{restrict} : \mt{fs} ::: \{\mt{Type}\} \to \mt{propagation\_mode} \; \mt{fs} \\
adamc@785 1559 \mt{val} \; \mt{cascade} : \mt{fs} ::: \{\mt{Type}\} \to \mt{propagation\_mode} \; \mt{fs} \\
adamc@785 1560 \mt{val} \; \mt{no\_action} : \mt{fs} ::: \{\mt{Type}\} \to \mt{propagation\_mode} \; \mt{fs} \\
adamc@785 1561 \mt{val} \; \mt{set\_null} : \mt{fs} ::: \{\mt{Type}\} \to \mt{propagation\_mode} \; (\mt{map} \; \mt{option} \; \mt{fs})
adamc@785 1562 \end{array}$$
adamc@785 1563
adamc@785 1564 Finally, we put these ingredient together to define the \texttt{FOREIGN KEY} constraint function.
adamc@785 1565 $$\begin{array}{l}
adamc@785 1566 \mt{val} \; \mt{foreign\_key} : \mt{mine1} ::: \mt{Name} \to \mt{t} ::: \mt{Type} \to \mt{mine} ::: \{\mt{Type}\} \to \mt{munused} ::: \{\mt{Type}\} \to \mt{foreign} ::: \{\mt{Type}\} \\
adamc@785 1567 \hspace{.1in} \to \mt{funused} ::: \{\mt{Type}\} \to \mt{nm} ::: \mt{Name} \to \mt{uniques} ::: \{\{\mt{Unit}\}\} \\
adamc@785 1568 \hspace{.1in} \to [[\mt{mine1}] \sim \mt{mine}] \Rightarrow [[\mt{mine1} = \mt{t}] \rc \mt{mine} \sim \mt{munused}] \Rightarrow [\mt{foreign} \sim \mt{funused}] \Rightarrow [[\mt{nm}] \sim \mt{uniques}] \\
adamc@785 1569 \hspace{.1in} \Rightarrow \mt{matching} \; ([\mt{mine1} = \mt{t}] \rc \mt{mine}) \; \mt{foreign} \\
adamc@785 1570 \hspace{.1in} \to \mt{sql\_table} \; (\mt{foreign} \rc \mt{funused}) \; ([\mt{nm} = \mt{map} \; (\lambda \_ \Rightarrow ()) \; \mt{foreign}] \rc \mt{uniques}) \\
adamc@785 1571 \hspace{.1in} \to \{\mt{OnDelete} : \mt{propagation\_mode} \; ([\mt{mine1} = \mt{t}] \rc \mt{mine}), \\
adamc@785 1572 \hspace{.2in} \mt{OnUpdate} : \mt{propagation\_mode} \; ([\mt{mine1} = \mt{t}] \rc \mt{mine})\} \\
adamc@785 1573 \hspace{.1in} \to \mt{sql\_constraint} \; ([\mt{mine1} = \mt{t}] \rc \mt{mine} \rc \mt{munused}) \; []
adamc@785 1574 \end{array}$$
adamc@785 1575
adamc@785 1576 The last kind of constraint is a \texttt{CHECK} constraint, which attaches a boolean invariant over a row's contents. It is defined using the $\mt{sql\_exp}$ type family, which we discuss in more detail below.
adamc@785 1577 $$\begin{array}{l}
adamc@785 1578 \mt{val} \; \mt{check} : \mt{fs} ::: \{\mt{Type}\} \to \mt{sql\_exp} \; [] \; [] \; \mt{fs} \; \mt{bool} \to \mt{sql\_constraint} \; \mt{fs} \; []
adamc@785 1579 \end{array}$$
adamc@785 1580
adamc@785 1581 Section \ref{tables} shows the expanded syntax of the $\mt{table}$ declaration and signature item that includes constraints. There is no other way to use constraints with SQL in Ur/Web.
adamc@785 1582
adamc@784 1583
adamc@543 1584 \subsubsection{Queries}
adamc@543 1585
adam@1400 1586 A final query is constructed via the $\mt{sql\_query}$ function. Constructor arguments respectively specify the unrestricted free table variables (which will only be available in subqueries), the free table variables that may only be mentioned within arguments to aggregate functions, table fields we select (as records mapping tables to the subsets of their fields that we choose), and the (always named) extra expressions that we select.
adamc@543 1587 $$\begin{array}{l}
adam@1400 1588 \mt{con} \; \mt{sql\_query} :: \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \\
adamc@1193 1589 \mt{val} \; \mt{sql\_query} : \mt{free} ::: \{\{\mt{Type}\}\} \\
adam@1400 1590 \hspace{.1in} \to \mt{afree} ::: \{\{\mt{Type}\}\} \\
adamc@1193 1591 \hspace{.1in} \to \mt{tables} ::: \{\{\mt{Type}\}\} \\
adamc@543 1592 \hspace{.1in} \to \mt{selectedFields} ::: \{\{\mt{Type}\}\} \\
adamc@543 1593 \hspace{.1in} \to \mt{selectedExps} ::: \{\mt{Type}\} \\
adamc@1193 1594 \hspace{.1in} \to [\mt{free} \sim \mt{tables}] \\
adam@1400 1595 \hspace{.1in} \Rightarrow \{\mt{Rows} : \mt{sql\_query1} \; \mt{free} \; \mt{afree} \; \mt{tables} \; \mt{selectedFields} \; \mt{selectedExps}, \\
adamc@1193 1596 \hspace{.2in} \mt{OrderBy} : \mt{sql\_order\_by} \; (\mt{free} \rc \mt{tables}) \; \mt{selectedExps}, \\
adamc@543 1597 \hspace{.2in} \mt{Limit} : \mt{sql\_limit}, \\
adamc@543 1598 \hspace{.2in} \mt{Offset} : \mt{sql\_offset}\} \\
adam@1400 1599 \hspace{.1in} \to \mt{sql\_query} \; \mt{free} \; \mt{afree} \; \mt{selectedFields} \; \mt{selectedExps}
adamc@543 1600 \end{array}$$
adamc@543 1601
adamc@545 1602 Queries are used by folding over their results inside transactions.
adamc@545 1603 $$\begin{array}{l}
adam@1400 1604 \mt{val} \; \mt{query} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to [\mt{tables} \sim \mt{exps}] \Rightarrow \mt{state} ::: \mt{Type} \to \mt{sql\_query} \; [] \; [] \; \mt{tables} \; \mt{exps} \\
adamc@658 1605 \hspace{.1in} \to (\$(\mt{exps} \rc \mt{map} \; (\lambda \mt{fields} :: \{\mt{Type}\} \Rightarrow \$\mt{fields}) \; \mt{tables}) \\
adamc@545 1606 \hspace{.2in} \to \mt{state} \to \mt{transaction} \; \mt{state}) \\
adamc@545 1607 \hspace{.1in} \to \mt{state} \to \mt{transaction} \; \mt{state}
adamc@545 1608 \end{array}$$
adamc@545 1609
adam@1400 1610 Most of the complexity of the query encoding is in the type $\mt{sql\_query1}$, which includes simple queries and derived queries based on relational operators. Constructor arguments respectively specify the unrestricted free table veriables, the aggregate-only free table variables, the tables we select from, the subset of fields that we keep from each table for the result rows, and the extra expressions that we select.
adamc@543 1611 $$\begin{array}{l}
adam@1400 1612 \mt{con} \; \mt{sql\_query1} :: \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \\
adamc@543 1613 \\
adamc@543 1614 \mt{type} \; \mt{sql\_relop} \\
adamc@543 1615 \mt{val} \; \mt{sql\_union} : \mt{sql\_relop} \\
adamc@543 1616 \mt{val} \; \mt{sql\_intersect} : \mt{sql\_relop} \\
adamc@543 1617 \mt{val} \; \mt{sql\_except} : \mt{sql\_relop} \\
adam@1400 1618 \mt{val} \; \mt{sql\_relop} : \mt{free} ::: \{\{\mt{Type}\}\} \\
adam@1400 1619 \hspace{.1in} \to \mt{afree} ::: \{\{\mt{Type}\}\} \\
adam@1400 1620 \hspace{.1in} \to \mt{tables1} ::: \{\{\mt{Type}\}\} \\
adamc@543 1621 \hspace{.1in} \to \mt{tables2} ::: \{\{\mt{Type}\}\} \\
adamc@543 1622 \hspace{.1in} \to \mt{selectedFields} ::: \{\{\mt{Type}\}\} \\
adamc@543 1623 \hspace{.1in} \to \mt{selectedExps} ::: \{\mt{Type}\} \\
adamc@543 1624 \hspace{.1in} \to \mt{sql\_relop} \\
adam@1458 1625 \hspace{.1in} \to \mt{bool} \; (* \; \mt{ALL} \; *) \\
adam@1400 1626 \hspace{.1in} \to \mt{sql\_query1} \; \mt{free} \; \mt{afree} \; \mt{tables1} \; \mt{selectedFields} \; \mt{selectedExps} \\
adam@1400 1627 \hspace{.1in} \to \mt{sql\_query1} \; \mt{free} \; \mt{afree} \; \mt{tables2} \; \mt{selectedFields} \; \mt{selectedExps} \\
adam@1400 1628 \hspace{.1in} \to \mt{sql\_query1} \; \mt{free} \; \mt{afree} \; \mt{selectedFields} \; \mt{selectedFields} \; \mt{selectedExps}
adamc@543 1629 \end{array}$$
adamc@543 1630
adamc@543 1631 $$\begin{array}{l}
adamc@1193 1632 \mt{val} \; \mt{sql\_query1} : \mt{free} ::: \{\{\mt{Type}\}\} \\
adam@1400 1633 \hspace{.1in} \to \mt{afree} ::: \{\{\mt{Type}\}\} \\
adamc@1193 1634 \hspace{.1in} \to \mt{tables} ::: \{\{\mt{Type}\}\} \\
adamc@543 1635 \hspace{.1in} \to \mt{grouped} ::: \{\{\mt{Type}\}\} \\
adamc@543 1636 \hspace{.1in} \to \mt{selectedFields} ::: \{\{\mt{Type}\}\} \\
adamc@543 1637 \hspace{.1in} \to \mt{selectedExps} ::: \{\mt{Type}\} \\
adamc@1085 1638 \hspace{.1in} \to \mt{empties} :: \{\mt{Unit}\} \\
adamc@1193 1639 \hspace{.1in} \to [\mt{free} \sim \mt{tables}] \\
adamc@1193 1640 \hspace{.1in} \Rightarrow [\mt{free} \sim \mt{grouped}] \\
adam@1400 1641 \hspace{.1in} \Rightarrow [\mt{afree} \sim \mt{tables}] \\
adamc@1193 1642 \hspace{.1in} \Rightarrow [\mt{empties} \sim \mt{selectedFields}] \\
adamc@1085 1643 \hspace{.1in} \Rightarrow \{\mt{Distinct} : \mt{bool}, \\
adamc@1193 1644 \hspace{.2in} \mt{From} : \mt{sql\_from\_items} \; \mt{free} \; \mt{tables}, \\
adam@1400 1645 \hspace{.2in} \mt{Where} : \mt{sql\_exp} \; (\mt{free} \rc \mt{tables}) \; \mt{afree} \; [] \; \mt{bool}, \\
adamc@543 1646 \hspace{.2in} \mt{GroupBy} : \mt{sql\_subset} \; \mt{tables} \; \mt{grouped}, \\
adam@1400 1647 \hspace{.2in} \mt{Having} : \mt{sql\_exp} \; (\mt{free} \rc \mt{grouped}) \; (\mt{afree} \rc \mt{tables}) \; [] \; \mt{bool}, \\
adamc@1085 1648 \hspace{.2in} \mt{SelectFields} : \mt{sql\_subset} \; \mt{grouped} \; (\mt{map} \; (\lambda \_ \Rightarrow []) \; \mt{empties} \rc \mt{selectedFields}), \\
adam@1400 1649 \hspace{.2in} \mt {SelectExps} : \$(\mt{map} \; (\mt{sql\_exp} \; (\mt{free} \rc \mt{grouped}) \; (\mt{afree} \rc \mt{tables}) \; []) \; \mt{selectedExps}) \} \\
adam@1400 1650 \hspace{.1in} \to \mt{sql\_query1} \; \mt{free} \; \mt{afree} \; \mt{tables} \; \mt{selectedFields} \; \mt{selectedExps}
adamc@543 1651 \end{array}$$
adamc@543 1652
adamc@543 1653 To encode projection of subsets of fields in $\mt{SELECT}$ clauses, and to encode $\mt{GROUP} \; \mt{BY}$ clauses, we rely on a type family $\mt{sql\_subset}$, capturing what it means for one record of table fields to be a subset of another. The main constructor $\mt{sql\_subset}$ ``proves subset facts'' by requiring a split of a record into kept and dropped parts. The extra constructor $\mt{sql\_subset\_all}$ is a convenience for keeping all fields of a record.
adamc@543 1654 $$\begin{array}{l}
adamc@543 1655 \mt{con} \; \mt{sql\_subset} :: \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \mt{Type} \\
adamc@543 1656 \mt{val} \; \mt{sql\_subset} : \mt{keep\_drop} :: \{(\{\mt{Type}\} \times \{\mt{Type}\})\} \\
adamc@543 1657 \hspace{.1in} \to \mt{sql\_subset} \\
adamc@658 1658 \hspace{.2in} (\mt{map} \; (\lambda \mt{fields} :: (\{\mt{Type}\} \times \{\mt{Type}\}) \Rightarrow \mt{fields}.1 \rc \mt{fields}.2)\; \mt{keep\_drop}) \\
adamc@658 1659 \hspace{.2in} (\mt{map} \; (\lambda \mt{fields} :: (\{\mt{Type}\} \times \{\mt{Type}\}) \Rightarrow \mt{fields}.1) \; \mt{keep\_drop}) \\
adamc@543 1660 \mt{val} \; \mt{sql\_subset\_all} : \mt{tables} :: \{\{\mt{Type}\}\} \to \mt{sql\_subset} \; \mt{tables} \; \mt{tables}
adamc@543 1661 \end{array}$$
adamc@543 1662
adamc@560 1663 SQL expressions are used in several places, including $\mt{SELECT}$, $\mt{WHERE}$, $\mt{HAVING}$, and $\mt{ORDER} \; \mt{BY}$ clauses. They reify a fragment of the standard SQL expression language, while making it possible to inject ``native'' Ur values in some places. The arguments to the $\mt{sql\_exp}$ type family respectively give the unrestricted-availability table fields, the table fields that may only be used in arguments to aggregate functions, the available selected expressions, and the type of the expression.
adamc@543 1664 $$\begin{array}{l}
adamc@543 1665 \mt{con} \; \mt{sql\_exp} :: \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \to \mt{Type}
adamc@543 1666 \end{array}$$
adamc@543 1667
adamc@543 1668 Any field in scope may be converted to an expression.
adamc@543 1669 $$\begin{array}{l}
adamc@543 1670 \mt{val} \; \mt{sql\_field} : \mt{otherTabs} ::: \{\{\mt{Type}\}\} \to \mt{otherFields} ::: \{\mt{Type}\} \\
adamc@543 1671 \hspace{.1in} \to \mt{fieldType} ::: \mt{Type} \to \mt{agg} ::: \{\{\mt{Type}\}\} \\
adamc@543 1672 \hspace{.1in} \to \mt{exps} ::: \{\mt{Type}\} \\
adamc@543 1673 \hspace{.1in} \to \mt{tab} :: \mt{Name} \to \mt{field} :: \mt{Name} \\
adamc@543 1674 \hspace{.1in} \to \mt{sql\_exp} \; ([\mt{tab} = [\mt{field} = \mt{fieldType}] \rc \mt{otherFields}] \rc \mt{otherTabs}) \; \mt{agg} \; \mt{exps} \; \mt{fieldType}
adamc@543 1675 \end{array}$$
adamc@543 1676
adamc@544 1677 There is an analogous function for referencing named expressions.
adamc@544 1678 $$\begin{array}{l}
adamc@544 1679 \mt{val} \; \mt{sql\_exp} : \mt{tabs} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{t} ::: \mt{Type} \to \mt{rest} ::: \{\mt{Type}\} \to \mt{nm} :: \mt{Name} \\
adamc@544 1680 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tabs} \; \mt{agg} \; ([\mt{nm} = \mt{t}] \rc \mt{rest}) \; \mt{t}
adamc@544 1681 \end{array}$$
adamc@544 1682
adamc@544 1683 Ur values of appropriate types may be injected into SQL expressions.
adamc@544 1684 $$\begin{array}{l}
adamc@786 1685 \mt{class} \; \mt{sql\_injectable\_prim} \\
adamc@786 1686 \mt{val} \; \mt{sql\_bool} : \mt{sql\_injectable\_prim} \; \mt{bool} \\
adamc@786 1687 \mt{val} \; \mt{sql\_int} : \mt{sql\_injectable\_prim} \; \mt{int} \\
adamc@786 1688 \mt{val} \; \mt{sql\_float} : \mt{sql\_injectable\_prim} \; \mt{float} \\
adamc@786 1689 \mt{val} \; \mt{sql\_string} : \mt{sql\_injectable\_prim} \; \mt{string} \\
adamc@786 1690 \mt{val} \; \mt{sql\_time} : \mt{sql\_injectable\_prim} \; \mt{time} \\
adamc@786 1691 \mt{val} \; \mt{sql\_blob} : \mt{sql\_injectable\_prim} \; \mt{blob} \\
adamc@786 1692 \mt{val} \; \mt{sql\_channel} : \mt{t} ::: \mt{Type} \to \mt{sql\_injectable\_prim} \; (\mt{channel} \; \mt{t}) \\
adamc@786 1693 \mt{val} \; \mt{sql\_client} : \mt{sql\_injectable\_prim} \; \mt{client} \\
adamc@786 1694 \\
adamc@544 1695 \mt{class} \; \mt{sql\_injectable} \\
adamc@786 1696 \mt{val} \; \mt{sql\_prim} : \mt{t} ::: \mt{Type} \to \mt{sql\_injectable\_prim} \; \mt{t} \to \mt{sql\_injectable} \; \mt{t} \\
adamc@786 1697 \mt{val} \; \mt{sql\_option\_prim} : \mt{t} ::: \mt{Type} \to \mt{sql\_injectable\_prim} \; \mt{t} \to \mt{sql\_injectable} \; (\mt{option} \; \mt{t}) \\
adamc@786 1698 \\
adamc@544 1699 \mt{val} \; \mt{sql\_inject} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \to \mt{sql\_injectable} \; \mt{t} \\
adamc@544 1700 \hspace{.1in} \to \mt{t} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t}
adamc@544 1701 \end{array}$$
adamc@544 1702
adamc@1123 1703 Additionally, most function-free types may be injected safely, via the $\mt{serialized}$ type family.
adamc@1123 1704 $$\begin{array}{l}
adamc@1123 1705 \mt{con} \; \mt{serialized} :: \mt{Type} \to \mt{Type} \\
adamc@1123 1706 \mt{val} \; \mt{serialize} : \mt{t} ::: \mt{Type} \to \mt{t} \to \mt{serialized} \; \mt{t} \\
adamc@1123 1707 \mt{val} \; \mt{deserialize} : \mt{t} ::: \mt{Type} \to \mt{serialized} \; \mt{t} \to \mt{t} \\
adamc@1123 1708 \mt{val} \; \mt{sql\_serialized} : \mt{t} ::: \mt{Type} \to \mt{sql\_injectable\_prim} \; (\mt{serialized} \; \mt{t})
adamc@1123 1709 \end{array}$$
adamc@1123 1710
adamc@544 1711 We have the SQL nullness test, which is necessary because of the strange SQL semantics of equality in the presence of null values.
adamc@544 1712 $$\begin{array}{l}
adamc@544 1713 \mt{val} \; \mt{sql\_is\_null} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \\
adamc@544 1714 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; (\mt{option} \; \mt{t}) \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{bool}
adamc@544 1715 \end{array}$$
adamc@544 1716
adam@1602 1717 As another way of dealing with null values, there is also a restricted form of the standard \cd{COALESCE} function.
adam@1602 1718 $$\begin{array}{l}
adam@1602 1719 \mt{val} \; \mt{sql\_coalesce} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \\
adam@1602 1720 \hspace{.1in} \to \mt{t} ::: \mt{Type} \\
adam@1602 1721 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; (\mt{option} \; \mt{t}) \\
adam@1602 1722 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t} \\
adam@1602 1723 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t}
adam@1602 1724 \end{array}$$
adam@1602 1725
adamc@559 1726 We have generic nullary, unary, and binary operators.
adamc@544 1727 $$\begin{array}{l}
adamc@544 1728 \mt{con} \; \mt{sql\_nfunc} :: \mt{Type} \to \mt{Type} \\
adamc@544 1729 \mt{val} \; \mt{sql\_current\_timestamp} : \mt{sql\_nfunc} \; \mt{time} \\
adamc@544 1730 \mt{val} \; \mt{sql\_nfunc} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \\
adamc@544 1731 \hspace{.1in} \to \mt{sql\_nfunc} \; \mt{t} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t} \\\end{array}$$
adamc@544 1732
adamc@544 1733 $$\begin{array}{l}
adamc@544 1734 \mt{con} \; \mt{sql\_unary} :: \mt{Type} \to \mt{Type} \to \mt{Type} \\
adamc@544 1735 \mt{val} \; \mt{sql\_not} : \mt{sql\_unary} \; \mt{bool} \; \mt{bool} \\
adamc@544 1736 \mt{val} \; \mt{sql\_unary} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{arg} ::: \mt{Type} \to \mt{res} ::: \mt{Type} \\
adamc@544 1737 \hspace{.1in} \to \mt{sql\_unary} \; \mt{arg} \; \mt{res} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{arg} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{res} \\
adamc@544 1738 \end{array}$$
adamc@544 1739
adamc@544 1740 $$\begin{array}{l}
adamc@544 1741 \mt{con} \; \mt{sql\_binary} :: \mt{Type} \to \mt{Type} \to \mt{Type} \to \mt{Type} \\
adamc@544 1742 \mt{val} \; \mt{sql\_and} : \mt{sql\_binary} \; \mt{bool} \; \mt{bool} \; \mt{bool} \\
adamc@544 1743 \mt{val} \; \mt{sql\_or} : \mt{sql\_binary} \; \mt{bool} \; \mt{bool} \; \mt{bool} \\
adamc@544 1744 \mt{val} \; \mt{sql\_binary} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{arg_1} ::: \mt{Type} \to \mt{arg_2} ::: \mt{Type} \to \mt{res} ::: \mt{Type} \\
adamc@544 1745 \hspace{.1in} \to \mt{sql\_binary} \; \mt{arg_1} \; \mt{arg_2} \; \mt{res} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{arg_1} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{arg_2} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{res}
adamc@544 1746 \end{array}$$
adamc@544 1747
adamc@544 1748 $$\begin{array}{l}
adamc@559 1749 \mt{class} \; \mt{sql\_arith} \\
adamc@559 1750 \mt{val} \; \mt{sql\_int\_arith} : \mt{sql\_arith} \; \mt{int} \\
adamc@559 1751 \mt{val} \; \mt{sql\_float\_arith} : \mt{sql\_arith} \; \mt{float} \\
adamc@559 1752 \mt{val} \; \mt{sql\_neg} : \mt{t} ::: \mt{Type} \to \mt{sql\_arith} \; \mt{t} \to \mt{sql\_unary} \; \mt{t} \; \mt{t} \\
adamc@559 1753 \mt{val} \; \mt{sql\_plus} : \mt{t} ::: \mt{Type} \to \mt{sql\_arith} \; \mt{t} \to \mt{sql\_binary} \; \mt{t} \; \mt{t} \; \mt{t} \\
adamc@559 1754 \mt{val} \; \mt{sql\_minus} : \mt{t} ::: \mt{Type} \to \mt{sql\_arith} \; \mt{t} \to \mt{sql\_binary} \; \mt{t} \; \mt{t} \; \mt{t} \\
adamc@559 1755 \mt{val} \; \mt{sql\_times} : \mt{t} ::: \mt{Type} \to \mt{sql\_arith} \; \mt{t} \to \mt{sql\_binary} \; \mt{t} \; \mt{t} \; \mt{t} \\
adamc@559 1756 \mt{val} \; \mt{sql\_div} : \mt{t} ::: \mt{Type} \to \mt{sql\_arith} \; \mt{t} \to \mt{sql\_binary} \; \mt{t} \; \mt{t} \; \mt{t} \\
adamc@559 1757 \mt{val} \; \mt{sql\_mod} : \mt{sql\_binary} \; \mt{int} \; \mt{int} \; \mt{int}
adamc@559 1758 \end{array}$$
adamc@544 1759
adamc@656 1760 Finally, we have aggregate functions. The $\mt{COUNT(\ast)}$ syntax is handled specially, since it takes no real argument. The other aggregate functions are placed into a general type family, using constructor classes to restrict usage to properly-typed arguments. The key aspect of the $\mt{sql\_aggregate}$ function's type is the shift of aggregate-function-only fields into unrestricted fields.
adamc@544 1761 $$\begin{array}{l}
adamc@544 1762 \mt{val} \; \mt{sql\_count} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{int}
adamc@544 1763 \end{array}$$
adamc@544 1764
adamc@544 1765 $$\begin{array}{l}
adamc@1188 1766 \mt{con} \; \mt{sql\_aggregate} :: \mt{Type} \to \mt{Type} \to \mt{Type} \\
adamc@1188 1767 \mt{val} \; \mt{sql\_aggregate} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{dom} ::: \mt{Type} \to \mt{ran} ::: \mt{Type} \\
adamc@1188 1768 \hspace{.1in} \to \mt{sql\_aggregate} \; \mt{dom} \; \mt{ran} \to \mt{sql\_exp} \; \mt{agg} \; \mt{agg} \; \mt{exps} \; \mt{dom} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{ran}
adamc@1188 1769 \end{array}$$
adamc@1188 1770
adamc@1188 1771 $$\begin{array}{l}
adamc@1188 1772 \mt{val} \; \mt{sql\_count\_col} : \mt{t} ::: \mt{Type} \to \mt{sql\_aggregate} \; (\mt{option} \; \mt{t}) \; \mt{int}
adamc@544 1773 \end{array}$$
adam@1400 1774
adam@1400 1775 Most aggregate functions are typed using a two-parameter constructor class $\mt{nullify}$ which maps $\mt{option}$ types to themselves and adds $\mt{option}$ to others. That is, this constructor class represents the process of making an SQL type ``nullable.''
adamc@544 1776
adamc@544 1777 $$\begin{array}{l}
adamc@544 1778 \mt{class} \; \mt{sql\_summable} \\
adamc@544 1779 \mt{val} \; \mt{sql\_summable\_int} : \mt{sql\_summable} \; \mt{int} \\
adamc@544 1780 \mt{val} \; \mt{sql\_summable\_float} : \mt{sql\_summable} \; \mt{float} \\
adam@1400 1781 \mt{val} \; \mt{sql\_avg} : \mt{t} ::: \mt{Type} \to \mt{nt} ::: \mt{Type} \to \mt{sql\_summable} \; \mt{t} \to \mt{nullify} \; \mt{t} \; \mt{nt} \to \mt{sql\_aggregate} \; \mt{t} \; \mt{nt} \\
adam@1400 1782 \mt{val} \; \mt{sql\_sum} : \mt{t} ::: \mt{Type} \to \mt{nt} ::: \mt{Type} \to \mt{sql\_summable} \; \mt{t} \to \mt{nullify} \; \mt{t} \; \mt{nt} \to \mt{sql\_aggregate} \; \mt{t} \; \mt{nt}
adamc@544 1783 \end{array}$$
adamc@544 1784
adamc@544 1785 $$\begin{array}{l}
adamc@544 1786 \mt{class} \; \mt{sql\_maxable} \\
adamc@544 1787 \mt{val} \; \mt{sql\_maxable\_int} : \mt{sql\_maxable} \; \mt{int} \\
adamc@544 1788 \mt{val} \; \mt{sql\_maxable\_float} : \mt{sql\_maxable} \; \mt{float} \\
adamc@544 1789 \mt{val} \; \mt{sql\_maxable\_string} : \mt{sql\_maxable} \; \mt{string} \\
adamc@544 1790 \mt{val} \; \mt{sql\_maxable\_time} : \mt{sql\_maxable} \; \mt{time} \\
adam@1400 1791 \mt{val} \; \mt{sql\_max} : \mt{t} ::: \mt{Type} \to \mt{nt} ::: \mt{Type} \to \mt{sql\_maxable} \; \mt{t} \to \mt{nullify} \; \mt{t} \; \mt{nt} \to \mt{sql\_aggregate} \; \mt{t} \; \mt{nt} \\
adam@1400 1792 \mt{val} \; \mt{sql\_min} : \mt{t} ::: \mt{Type} \to \mt{nt} ::: \mt{Type} \to \mt{sql\_maxable} \; \mt{t} \to \mt{nullify} \; \mt{t} \; \mt{nt} \to \mt{sql\_aggregate} \; \mt{t} \; \mt{nt}
adamc@544 1793 \end{array}$$
adamc@544 1794
adamc@1193 1795 Any SQL query that returns single columns may be turned into a subquery expression.
adamc@1193 1796
adamc@786 1797 $$\begin{array}{l}
adam@1421 1798 \mt{val} \; \mt{sql\_subquery} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{nm} ::: \mt{Name} \to \mt{t} ::: \mt{Type} \to \mt{nt} ::: \mt{Type} \\
adam@1421 1799 \hspace{.1in} \to \mt{nullify} \; \mt{t} \; \mt{nt} \to \mt{sql\_query} \; \mt{tables} \; \mt{agg} \; [\mt{nm} = \mt{t}] \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{nt}
adamc@1193 1800 \end{array}$$
adamc@1193 1801
adam@1573 1802 There is also an \cd{IF..THEN..ELSE..} construct that is compiled into standard SQL \cd{CASE} expressions.
adam@1573 1803 $$\begin{array}{l}
adam@1573 1804 \mt{val} \; \mt{sql\_if\_then\_else} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \\
adam@1573 1805 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{bool} \\
adam@1573 1806 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t} \\
adam@1573 1807 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t} \\
adam@1573 1808 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t}
adam@1573 1809 \end{array}$$
adam@1573 1810
adamc@1193 1811 \texttt{FROM} clauses are specified using a type family, whose arguments are the free table variables and the table variables bound by this clause.
adamc@1193 1812 $$\begin{array}{l}
adamc@1193 1813 \mt{con} \; \mt{sql\_from\_items} :: \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \mt{Type} \\
adamc@1193 1814 \mt{val} \; \mt{sql\_from\_table} : \mt{free} ::: \{\{\mt{Type}\}\} \\
adamc@1193 1815 \hspace{.1in} \to \mt{t} ::: \mt{Type} \to \mt{fs} ::: \{\mt{Type}\} \to \mt{fieldsOf} \; \mt{t} \; \mt{fs} \to \mt{name} :: \mt{Name} \to \mt{t} \to \mt{sql\_from\_items} \; \mt{free} \; [\mt{name} = \mt{fs}] \\
adamc@1193 1816 \mt{val} \; \mt{sql\_from\_query} : \mt{free} ::: \{\{\mt{Type}\}\} \to \mt{fs} ::: \{\mt{Type}\} \to \mt{name} :: \mt{Name} \to \mt{sql\_query} \; \mt{free} \; [] \; \mt{fs} \to \mt{sql\_from\_items} \; \mt{free} \; [\mt{name} = \mt{fs}] \\
adamc@1193 1817 \mt{val} \; \mt{sql\_from\_comma} : \mt{free} ::: \mt{tabs1} ::: \{\{\mt{Type}\}\} \to \mt{tabs2} ::: \{\{\mt{Type}\}\} \to [\mt{tabs1} \sim \mt{tabs2}] \\
adamc@1193 1818 \hspace{.1in} \Rightarrow \mt{sql\_from\_items} \; \mt{free} \; \mt{tabs1} \to \mt{sql\_from\_items} \; \mt{free} \; \mt{tabs2} \\
adamc@1193 1819 \hspace{.1in} \to \mt{sql\_from\_items} \; \mt{free} \; (\mt{tabs1} \rc \mt{tabs2}) \\
adamc@1193 1820 \mt{val} \; \mt{sql\_inner\_join} : \mt{free} ::: \{\{\mt{Type}\}\} \to \mt{tabs1} ::: \{\{\mt{Type}\}\} \to \mt{tabs2} ::: \{\{\mt{Type}\}\} \\
adamc@1193 1821 \hspace{.1in} \to [\mt{free} \sim \mt{tabs1}] \Rightarrow [\mt{free} \sim \mt{tabs2}] \Rightarrow [\mt{tabs1} \sim \mt{tabs2}] \\
adamc@1193 1822 \hspace{.1in} \Rightarrow \mt{sql\_from\_items} \; \mt{free} \; \mt{tabs1} \to \mt{sql\_from\_items} \; \mt{free} \; \mt{tabs2} \\
adamc@1193 1823 \hspace{.1in} \to \mt{sql\_exp} \; (\mt{free} \rc \mt{tabs1} \rc \mt{tabs2}) \; [] \; [] \; \mt{bool} \\
adamc@1193 1824 \hspace{.1in} \to \mt{sql\_from\_items} \; \mt{free} \; (\mt{tabs1} \rc \mt{tabs2})
adamc@786 1825 \end{array}$$
adamc@786 1826
adamc@786 1827 Besides these basic cases, outer joins are supported, which requires a type class for turning non-$\mt{option}$ columns into $\mt{option}$ columns.
adamc@786 1828 $$\begin{array}{l}
adamc@786 1829 \mt{class} \; \mt{nullify} :: \mt{Type} \to \mt{Type} \to \mt{Type} \\
adamc@786 1830 \mt{val} \; \mt{nullify\_option} : \mt{t} ::: \mt{Type} \to \mt{nullify} \; (\mt{option} \; \mt{t}) \; (\mt{option} \; \mt{t}) \\
adamc@786 1831 \mt{val} \; \mt{nullify\_prim} : \mt{t} ::: \mt{Type} \to \mt{sql\_injectable\_prim} \; \mt{t} \to \mt{nullify} \; \mt{t} \; (\mt{option} \; \mt{t})
adamc@786 1832 \end{array}$$
adamc@786 1833
adamc@786 1834 Left, right, and full outer joins can now be expressed using functions that accept records of $\mt{nullify}$ instances. Here, we give only the type for a left join as an example.
adamc@786 1835
adamc@786 1836 $$\begin{array}{l}
adamc@1193 1837 \mt{val} \; \mt{sql\_left\_join} : \mt{free} ::: \{\{\mt{Type}\}\} \to \mt{tabs1} ::: \{\{\mt{Type}\}\} \to \mt{tabs2} ::: \{\{(\mt{Type} \times \mt{Type})\}\} \\
adamc@1193 1838 \hspace{.1in} \to [\mt{free} \sim \mt{tabs1}] \Rightarrow [\mt{free} \sim \mt{tabs2}] \Rightarrow [\mt{tabs1} \sim \mt{tabs2}] \\
adamc@786 1839 \hspace{.1in} \Rightarrow \$(\mt{map} \; (\lambda \mt{r} \Rightarrow \$(\mt{map} \; (\lambda \mt{p} :: (\mt{Type} \times \mt{Type}) \Rightarrow \mt{nullify} \; \mt{p}.1 \; \mt{p}.2) \; \mt{r})) \; \mt{tabs2}) \\
adamc@1193 1840 \hspace{.1in} \to \mt{sql\_from\_items} \; \mt{free} \; \mt{tabs1} \to \mt{sql\_from\_items} \; \mt{free} \; (\mt{map} \; (\mt{map} \; (\lambda \mt{p} :: (\mt{Type} \times \mt{Type}) \Rightarrow \mt{p}.1)) \; \mt{tabs2}) \\
adamc@1193 1841 \hspace{.1in} \to \mt{sql\_exp} \; (\mt{free} \rc \mt{tabs1} \rc \mt{map} \; (\mt{map} \; (\lambda \mt{p} :: (\mt{Type} \times \mt{Type}) \Rightarrow \mt{p}.1)) \; \mt{tabs2}) \; [] \; [] \; \mt{bool} \\
adamc@1193 1842 \hspace{.1in} \to \mt{sql\_from\_items} \; \mt{free} \; (\mt{tabs1} \rc \mt{map} \; (\mt{map} \; (\lambda \mt{p} :: (\mt{Type} \times \mt{Type}) \Rightarrow \mt{p}.2)) \; \mt{tabs2})
adamc@786 1843 \end{array}$$
adamc@786 1844
adamc@544 1845 We wrap up the definition of query syntax with the types used in representing $\mt{ORDER} \; \mt{BY}$, $\mt{LIMIT}$, and $\mt{OFFSET}$ clauses.
adamc@544 1846 $$\begin{array}{l}
adamc@544 1847 \mt{type} \; \mt{sql\_direction} \\
adamc@544 1848 \mt{val} \; \mt{sql\_asc} : \mt{sql\_direction} \\
adamc@544 1849 \mt{val} \; \mt{sql\_desc} : \mt{sql\_direction} \\
adamc@544 1850 \\
adamc@544 1851 \mt{con} \; \mt{sql\_order\_by} :: \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \\
adamc@544 1852 \mt{val} \; \mt{sql\_order\_by\_Nil} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{exps} :: \{\mt{Type}\} \to \mt{sql\_order\_by} \; \mt{tables} \; \mt{exps} \\
adamc@544 1853 \mt{val} \; \mt{sql\_order\_by\_Cons} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \\
adamc@544 1854 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tables} \; [] \; \mt{exps} \; \mt{t} \to \mt{sql\_direction} \to \mt{sql\_order\_by} \; \mt{tables} \; \mt{exps} \to \mt{sql\_order\_by} \; \mt{tables} \; \mt{exps} \\
adam@1684 1855 \mt{val} \; \mt{sql\_order\_by\_random} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{sql\_order\_by} \; \mt{tables} \; \mt{exps} \\
adamc@544 1856 \\
adamc@544 1857 \mt{type} \; \mt{sql\_limit} \\
adamc@544 1858 \mt{val} \; \mt{sql\_no\_limit} : \mt{sql\_limit} \\
adamc@544 1859 \mt{val} \; \mt{sql\_limit} : \mt{int} \to \mt{sql\_limit} \\
adamc@544 1860 \\
adamc@544 1861 \mt{type} \; \mt{sql\_offset} \\
adamc@544 1862 \mt{val} \; \mt{sql\_no\_offset} : \mt{sql\_offset} \\
adamc@544 1863 \mt{val} \; \mt{sql\_offset} : \mt{int} \to \mt{sql\_offset}
adamc@544 1864 \end{array}$$
adamc@544 1865
adamc@545 1866
adamc@545 1867 \subsubsection{DML}
adamc@545 1868
adamc@545 1869 The Ur/Web library also includes an embedding of a fragment of SQL's DML, the Data Manipulation Language, for modifying database tables. Any piece of DML may be executed in a transaction.
adamc@545 1870
adamc@545 1871 $$\begin{array}{l}
adamc@545 1872 \mt{type} \; \mt{dml} \\
adamc@545 1873 \mt{val} \; \mt{dml} : \mt{dml} \to \mt{transaction} \; \mt{unit}
adamc@545 1874 \end{array}$$
adamc@545 1875
adam@1297 1876 The function $\mt{Basis.dml}$ will trigger a fatal application error if the command fails, for instance, because a data integrity constraint is violated. An alternate function returns an error message as a string instead.
adam@1297 1877
adam@1297 1878 $$\begin{array}{l}
adam@1297 1879 \mt{val} \; \mt{tryDml} : \mt{dml} \to \mt{transaction} \; (\mt{option} \; \mt{string})
adam@1297 1880 \end{array}$$
adam@1297 1881
adamc@545 1882 Properly-typed records may be used to form $\mt{INSERT}$ commands.
adamc@545 1883 $$\begin{array}{l}
adamc@545 1884 \mt{val} \; \mt{insert} : \mt{fields} ::: \{\mt{Type}\} \to \mt{sql\_table} \; \mt{fields} \\
adamc@658 1885 \hspace{.1in} \to \$(\mt{map} \; (\mt{sql\_exp} \; [] \; [] \; []) \; \mt{fields}) \to \mt{dml}
adamc@545 1886 \end{array}$$
adamc@545 1887
adam@1578 1888 An $\mt{UPDATE}$ command is formed from a choice of which table fields to leave alone and which to change, along with an expression to use to compute the new value of each changed field and a $\mt{WHERE}$ clause. Note that, in the table environment applied to expressions, the table being updated is hardcoded at the name $\mt{T}$. The parsing extension for $\mt{UPDATE}$ will elaborate all table-free field references to use table variable $\mt{T}$.
adamc@545 1889 $$\begin{array}{l}
adam@1380 1890 \mt{val} \; \mt{update} : \mt{unchanged} ::: \{\mt{Type}\} \to \mt{changed} :: \{\mt{Type}\} \to [\mt{changed} \sim \mt{unchanged}] \\
adamc@658 1891 \hspace{.1in} \Rightarrow \$(\mt{map} \; (\mt{sql\_exp} \; [\mt{T} = \mt{changed} \rc \mt{unchanged}] \; [] \; []) \; \mt{changed}) \\
adamc@545 1892 \hspace{.1in} \to \mt{sql\_table} \; (\mt{changed} \rc \mt{unchanged}) \to \mt{sql\_exp} \; [\mt{T} = \mt{changed} \rc \mt{unchanged}] \; [] \; [] \; \mt{bool} \to \mt{dml}
adamc@545 1893 \end{array}$$
adamc@545 1894
adam@1578 1895 A $\mt{DELETE}$ command is formed from a table and a $\mt{WHERE}$ clause. The above use of $\mt{T}$ is repeated.
adamc@545 1896 $$\begin{array}{l}
adamc@545 1897 \mt{val} \; \mt{delete} : \mt{fields} ::: \{\mt{Type}\} \to \mt{sql\_table} \; \mt{fields} \to \mt{sql\_exp} \; [\mt{T} = \mt{fields}] \; [] \; [] \; \mt{bool} \to \mt{dml}
adamc@545 1898 \end{array}$$
adamc@545 1899
adamc@546 1900 \subsubsection{Sequences}
adamc@546 1901
adamc@546 1902 SQL sequences are counters with concurrency control, often used to assign unique IDs. Ur/Web supports them via a simple interface. The only way to create a sequence is with the $\mt{sequence}$ declaration form.
adamc@546 1903
adamc@546 1904 $$\begin{array}{l}
adamc@546 1905 \mt{type} \; \mt{sql\_sequence} \\
adamc@1085 1906 \mt{val} \; \mt{nextval} : \mt{sql\_sequence} \to \mt{transaction} \; \mt{int} \\
adamc@1085 1907 \mt{val} \; \mt{setval} : \mt{sql\_sequence} \to \mt{int} \to \mt{transaction} \; \mt{unit}
adamc@546 1908 \end{array}$$
adamc@546 1909
adamc@546 1910
adam@1648 1911 \subsection{\label{xml}XML}
adamc@547 1912
adam@1333 1913 Ur/Web's library contains an encoding of XML syntax and semantic constraints. We make no effort to follow the standards governing XML schemas. Rather, XML fragments are viewed more as values of ML datatypes, and we only track which tags are allowed inside which other tags. The Ur/Web standard library encodes a very loose version of XHTML, where it is very easy to produce documents which are invalid XHTML, but which still display properly in all major browsers. The main purposes of the invariants that are enforced are first, to provide some documentation about the places where it would make sense to insert XML fragments; and second, to rule out code injection attacks and other abstraction violations related to HTML syntax.
adamc@547 1914
adam@1642 1915 The basic XML type family has arguments respectively indicating the \emph{context} of a fragment, the fields that the fragment expects to be bound on entry (and their types), and the fields that the fragment will bind (and their types). Contexts are a record-based ``poor man's subtyping'' encoding, with each possible set of valid tags corresponding to a different context record. For instance, the context for the \texttt{<td>} tag is $[\mt{Dyn}, \mt{MakeForm}, \mt{Tr}]$, to indicate nesting inside a \texttt{<tr>} tag with the ability to nest \texttt{<form>} and \texttt{<dyn>} tags (see below). Contexts are maintained in a somewhat ad-hoc way; the only definitive reference for their meanings is the types of the tag values in \texttt{basis.urs}. The arguments dealing with field binding are only relevant to HTML forms.
adamc@547 1916 $$\begin{array}{l}
adamc@547 1917 \mt{con} \; \mt{xml} :: \{\mt{Unit}\} \to \{\mt{Type}\} \to \{\mt{Type}\} \to \mt{Type}
adamc@547 1918 \end{array}$$
adamc@547 1919
adamc@547 1920 We also have a type family of XML tags, indexed respectively by the record of optional attributes accepted by the tag, the context in which the tag may be placed, the context required of children of the tag, which form fields the tag uses, and which fields the tag defines.
adamc@547 1921 $$\begin{array}{l}
adamc@547 1922 \mt{con} \; \mt{tag} :: \{\mt{Type}\} \to \{\mt{Unit}\} \to \{\mt{Unit}\} \to \{\mt{Type}\} \to \{\mt{Type}\} \to \mt{Type}
adamc@547 1923 \end{array}$$
adamc@547 1924
adamc@547 1925 Literal text may be injected into XML as ``CDATA.''
adamc@547 1926 $$\begin{array}{l}
adamc@547 1927 \mt{val} \; \mt{cdata} : \mt{ctx} ::: \{\mt{Unit}\} \to \mt{use} ::: \{\mt{Type}\} \to \mt{string} \to \mt{xml} \; \mt{ctx} \; \mt{use} \; []
adamc@547 1928 \end{array}$$
adamc@547 1929
adam@1358 1930 There is also a function to insert the literal value of a character. Since Ur/Web uses the UTF-8 text encoding, the $\mt{cdata}$ function is only sufficient to encode characters with ASCII codes below 128. Higher codes have alternate meanings in UTF-8 than in usual ASCII, so this alternate function should be used with them.
adam@1358 1931 $$\begin{array}{l}
adam@1358 1932 \mt{val} \; \mt{cdataChar} : \mt{ctx} ::: \{\mt{Unit}\} \to \mt{use} ::: \{\mt{Type}\} \to \mt{char} \to \mt{xml} \; \mt{ctx} \; \mt{use} \; []
adam@1358 1933 \end{array}$$
adam@1358 1934
adamc@547 1935 There is a function for producing an XML tree with a particular tag at its root.
adamc@547 1936 $$\begin{array}{l}
adamc@547 1937 \mt{val} \; \mt{tag} : \mt{attrsGiven} ::: \{\mt{Type}\} \to \mt{attrsAbsent} ::: \{\mt{Type}\} \to \mt{ctxOuter} ::: \{\mt{Unit}\} \to \mt{ctxInner} ::: \{\mt{Unit}\} \\
adamc@547 1938 \hspace{.1in} \to \mt{useOuter} ::: \{\mt{Type}\} \to \mt{useInner} ::: \{\mt{Type}\} \to \mt{bindOuter} ::: \{\mt{Type}\} \to \mt{bindInner} ::: \{\mt{Type}\} \\
adam@1380 1939 \hspace{.1in} \to [\mt{attrsGiven} \sim \mt{attrsAbsent}] \Rightarrow [\mt{useOuter} \sim \mt{useInner}] \Rightarrow [\mt{bindOuter} \sim \mt{bindInner}] \\
adamc@787 1940 \hspace{.1in} \Rightarrow \mt{option} \; \mt{css\_class} \\
adam@1643 1941 \hspace{.1in} \to \mt{option} \; (\mt{signal} \; \mt{css\_class}) \\
adamc@787 1942 \hspace{.1in} \to \$\mt{attrsGiven} \\
adamc@547 1943 \hspace{.1in} \to \mt{tag} \; (\mt{attrsGiven} \rc \mt{attrsAbsent}) \; \mt{ctxOuter} \; \mt{ctxInner} \; \mt{useOuter} \; \mt{bindOuter} \\
adamc@547 1944 \hspace{.1in} \to \mt{xml} \; \mt{ctxInner} \; \mt{useInner} \; \mt{bindInner} \to \mt{xml} \; \mt{ctxOuter} \; (\mt{useOuter} \rc \mt{useInner}) \; (\mt{bindOuter} \rc \mt{bindInner})
adamc@547 1945 \end{array}$$
adam@1297 1946 Note that any tag may be assigned a CSS class. This is the sole way of making use of the values produced by $\mt{style}$ declarations. Ur/Web itself doesn't deal with the syntax or semantics of style sheets; they can be linked via URLs with \texttt{link} tags. However, Ur/Web does make it easy to calculate upper bounds on usage of CSS classes through program analysis. The function $\mt{Basis.classes}$ can be used to specify a list of CSS classes for a single tag.
adamc@547 1947
adam@1643 1948 Also note that two different arguments are available for setting CSS classes: the first, associated with the \texttt{class} pseudo-attribute syntactic sugar, fixes the class of a tag for the duration of the tag's life; while the second, associated with the \texttt{dynClass} pseudo-attribute, allows the class to vary over the tag's life. See Section \ref{signals} for an introduction to the $\mt{signal}$ type family.
adam@1643 1949
adamc@547 1950 Two XML fragments may be concatenated.
adamc@547 1951 $$\begin{array}{l}
adamc@547 1952 \mt{val} \; \mt{join} : \mt{ctx} ::: \{\mt{Unit}\} \to \mt{use_1} ::: \{\mt{Type}\} \to \mt{bind_1} ::: \{\mt{Type}\} \to \mt{bind_2} ::: \{\mt{Type}\} \\
adam@1380 1953 \hspace{.1in} \to [\mt{use_1} \sim \mt{bind_1}] \Rightarrow [\mt{bind_1} \sim \mt{bind_2}] \\
adamc@547 1954 \hspace{.1in} \Rightarrow \mt{xml} \; \mt{ctx} \; \mt{use_1} \; \mt{bind_1} \to \mt{xml} \; \mt{ctx} \; (\mt{use_1} \rc \mt{bind_1}) \; \mt{bind_2} \to \mt{xml} \; \mt{ctx} \; \mt{use_1} \; (\mt{bind_1} \rc \mt{bind_2})
adamc@547 1955 \end{array}$$
adamc@547 1956
adamc@547 1957 Finally, any XML fragment may be updated to ``claim'' to use more form fields than it does.
adamc@547 1958 $$\begin{array}{l}
adam@1380 1959 \mt{val} \; \mt{useMore} : \mt{ctx} ::: \{\mt{Unit}\} \to \mt{use_1} ::: \{\mt{Type}\} \to \mt{use_2} ::: \{\mt{Type}\} \to \mt{bind} ::: \{\mt{Type}\} \to [\mt{use_1} \sim \mt{use_2}] \\
adamc@547 1960 \hspace{.1in} \Rightarrow \mt{xml} \; \mt{ctx} \; \mt{use_1} \; \mt{bind} \to \mt{xml} \; \mt{ctx} \; (\mt{use_1} \rc \mt{use_2}) \; \mt{bind}
adamc@547 1961 \end{array}$$
adamc@547 1962
adam@1344 1963 We will not list here the different HTML tags and related functions from the standard library. They should be easy enough to understand from the code in \texttt{basis.urs}. The set of tags in the library is not yet claimed to be complete for HTML standards. Also note that there is currently no way for the programmer to add his own tags. It \emph{is} possible to add new tags directly to \texttt{basis.urs}, but this should only be done as a prelude to suggesting a patch to the main distribution.
adamc@547 1964
adamc@547 1965 One last useful function is for aborting any page generation, returning some XML as an error message. This function takes the place of some uses of a general exception mechanism.
adamc@547 1966 $$\begin{array}{l}
adam@1641 1967 \mt{val} \; \mt{error} : \mt{t} ::: \mt{Type} \to \mt{xbody} \to \mt{t}
adamc@547 1968 \end{array}$$
adamc@547 1969
adamc@549 1970
adamc@701 1971 \subsection{Client-Side Programming}
adamc@659 1972
adamc@701 1973 Ur/Web supports running code on web browsers, via automatic compilation to JavaScript.
adamc@701 1974
adamc@701 1975 \subsubsection{The Basics}
adamc@701 1976
adam@1400 1977 All of the functions in this subsection are client-side only.
adam@1400 1978
adam@1297 1979 Clients can open alert and confirm dialog boxes, in the usual annoying JavaScript way.
adamc@701 1980 $$\begin{array}{l}
adam@1297 1981 \mt{val} \; \mt{alert} : \mt{string} \to \mt{transaction} \; \mt{unit} \\
adam@1297 1982 \mt{val} \; \mt{confirm} : \mt{string} \to \mt{transaction} \; \mt{bool}
adamc@701 1983 \end{array}$$
adamc@701 1984
adamc@701 1985 Any transaction may be run in a new thread with the $\mt{spawn}$ function.
adamc@701 1986 $$\begin{array}{l}
adamc@701 1987 \mt{val} \; \mt{spawn} : \mt{transaction} \; \mt{unit} \to \mt{transaction} \; \mt{unit}
adamc@701 1988 \end{array}$$
adamc@701 1989
adamc@701 1990 The current thread can be paused for at least a specified number of milliseconds.
adamc@701 1991 $$\begin{array}{l}
adamc@701 1992 \mt{val} \; \mt{sleep} : \mt{int} \to \mt{transaction} \; \mt{unit}
adamc@701 1993 \end{array}$$
adamc@701 1994
adamc@787 1995 A few functions are available to registers callbacks for particular error events. Respectively, they are triggered on calls to $\mt{error}$, uncaught JavaScript exceptions, failure of remote procedure calls, the severance of the connection serving asynchronous messages, or the occurrence of some other error with that connection. If no handlers are registered for a kind of error, then occurrences of that error are ignored silently.
adamc@787 1996 $$\begin{array}{l}
adamc@787 1997 \mt{val} \; \mt{onError} : (\mt{xbody} \to \mt{transaction} \; \mt{unit}) \to \mt{transaction} \; \mt{unit} \\
adamc@787 1998 \mt{val} \; \mt{onFail} : (\mt{string} \to \mt{transaction} \; \mt{unit}) \to \mt{transaction} \; \mt{unit} \\
adamc@787 1999 \mt{val} \; \mt{onConnectFail} : \mt{transaction} \; \mt{unit} \to \mt{transaction} \; \mt{unit} \\
adamc@787 2000 \mt{val} \; \mt{onDisconnect} : \mt{transaction} \; \mt{unit} \to \mt{transaction} \; \mt{unit} \\
adamc@787 2001 \mt{val} \; \mt{onServerError} : (\mt{string} \to \mt{transaction} \; \mt{unit}) \to \mt{transaction} \; \mt{unit}
adamc@787 2002 \end{array}$$
adamc@787 2003
adam@1555 2004 There are also functions to register standard document-level event handlers.
adam@1555 2005
adam@1555 2006 $$\begin{array}{l}
adam@1555 2007 \mt{val} \; \mt{onClick} : \mt{transaction} \; \mt{unit} \to \mt{transaction} \; \mt{unit} \\
adam@1555 2008 \mt{val} \; \mt{onDblclick} : \mt{transaction} \; \mt{unit} \to \mt{transaction} \; \mt{unit} \\
adam@1555 2009 \mt{val} \; \mt{onKeydown} : (\mt{int} \to \mt{transaction} \; \mt{unit}) \to \mt{transaction} \; \mt{unit} \\
adam@1555 2010 \mt{val} \; \mt{onKeypress} : (\mt{int} \to \mt{transaction} \; \mt{unit}) \to \mt{transaction} \; \mt{unit} \\
adam@1555 2011 \mt{val} \; \mt{onKeyup} : (\mt{int} \to \mt{transaction} \; \mt{unit}) \to \mt{transaction} \; \mt{unit} \\
adam@1555 2012 \mt{val} \; \mt{onMousedown} : \mt{transaction} \; \mt{unit} \to \mt{transaction} \; \mt{unit} \\
adam@1555 2013 \mt{val} \; \mt{onMouseup} : \mt{transaction} \; \mt{unit} \to \mt{transaction} \; \mt{unit}
adam@1555 2014 \end{array}$$
adam@1555 2015
adam@1559 2016 Versions of standard JavaScript functions are provided that event handlers may call to mask default handling or prevent bubbling of events up to parent DOM nodes, respectively.
adam@1559 2017
adam@1559 2018 $$\begin{array}{l}
adam@1559 2019 \mt{val} \; \mt{preventDefault} : \mt{transaction} \; \mt{unit} \\
adam@1559 2020 \mt{val} \; \mt{stopPropagation} : \mt{transaction} \; \mt{unit}
adam@1559 2021 \end{array}$$
adam@1559 2022
adam@1556 2023 \subsubsection{Node IDs}
adam@1556 2024
adam@1556 2025 There is an abstract type of node IDs that may be assigned to \cd{id} attributes of most HTML tags.
adam@1556 2026
adam@1556 2027 $$\begin{array}{l}
adam@1556 2028 \mt{type} \; \mt{id} \\
adam@1556 2029 \mt{val} \; \mt{fresh} : \mt{transaction} \; \mt{id}
adam@1556 2030 \end{array}$$
adam@1556 2031
adam@1556 2032 The \cd{fresh} function is allowed on both server and client, but there is no other way to create IDs, which includes lack of a way to force an ID to match a particular string. The only semantic importance of IDs within Ur/Web is in uses of the HTML \cd{<label>} tag. IDs play a much more central role in mainstream JavaScript programming, but Ur/Web uses a very different model to enable changes to particular nodes of a page tree, as the next manual subsection explains. IDs may still be useful in interfacing with JavaScript code (for instance, through Ur/Web's FFI).
adam@1556 2033
adam@1643 2034 \subsubsection{\label{signals}Functional-Reactive Page Generation}
adamc@701 2035
adamc@701 2036 Most approaches to ``AJAX''-style coding involve imperative manipulation of the DOM tree representing an HTML document's structure. Ur/Web follows the \emph{functional-reactive} approach instead. Programs may allocate mutable \emph{sources} of arbitrary types, and an HTML page is effectively a pure function over the latest values of the sources. The page is not mutated directly, but rather it changes automatically as the sources are mutated.
adamc@659 2037
adam@1403 2038 More operationally, you can think of a source as a mutable cell with facilities for subscription to change notifications. That level of detail is hidden behind a monadic facility to be described below. First, there are three primitive operations for working with sources just as if they were ML \cd{ref} cells, corresponding to ML's \cd{ref}, \cd{:=}, and \cd{!} operations.
adam@1403 2039
adamc@659 2040 $$\begin{array}{l}
adamc@659 2041 \mt{con} \; \mt{source} :: \mt{Type} \to \mt{Type} \\
adamc@659 2042 \mt{val} \; \mt{source} : \mt{t} ::: \mt{Type} \to \mt{t} \to \mt{transaction} \; (\mt{source} \; \mt{t}) \\
adamc@659 2043 \mt{val} \; \mt{set} : \mt{t} ::: \mt{Type} \to \mt{source} \; \mt{t} \to \mt{t} \to \mt{transaction} \; \mt{unit} \\
adamc@659 2044 \mt{val} \; \mt{get} : \mt{t} ::: \mt{Type} \to \mt{source} \; \mt{t} \to \mt{transaction} \; \mt{t}
adamc@659 2045 \end{array}$$
adamc@659 2046
adam@1400 2047 Only source creation and setting are supported server-side, as a convenience to help in setting up a page, where you may wish to allocate many sources that will be referenced through the page. All server-side storage of values inside sources uses string serializations of values, while client-side storage uses normal JavaScript values.
adam@1400 2048
adam@1608 2049 Pure functions over arbitrary numbers of sources are represented in a monad of \emph{signals}, which may only be used in client-side code. This is presented to the programmer in the form of a monad $\mt{signal}$, each of whose values represents (conceptually) some pure function over all sources that may be allocated in the course of program execution. A monad operation $\mt{signal}$ denotes the identity function over a particular source. By using $\mt{signal}$ on a source, you implicitly subscribe to change notifications for that source. That is, your signal will automatically be recomputed as that source changes. The usual monad operators make it possible to build up complex signals that depend on multiple sources; automatic updating upon source-value changes still happens automatically. There is also an operator for computing a signal's current value within a transaction.
adamc@659 2050
adamc@659 2051 $$\begin{array}{l}
adamc@659 2052 \mt{con} \; \mt{signal} :: \mt{Type} \to \mt{Type} \\
adamc@659 2053 \mt{val} \; \mt{signal\_monad} : \mt{monad} \; \mt{signal} \\
adam@1608 2054 \mt{val} \; \mt{signal} : \mt{t} ::: \mt{Type} \to \mt{source} \; \mt{t} \to \mt{signal} \; \mt{t} \\
adam@1608 2055 \mt{val} \; \mt{current} : \mt{t} ::: \mt{Type} \to \mt{signal} \; \mt{t} \to \mt{transaction} \; \mt{t}
adamc@659 2056 \end{array}$$
adamc@659 2057
adamc@659 2058 A reactive portion of an HTML page is injected with a $\mt{dyn}$ tag, which has a signal-valued attribute $\mt{Signal}$.
adamc@659 2059
adamc@659 2060 $$\begin{array}{l}
adam@1641 2061 \mt{val} \; \mt{dyn} : \mt{ctx} ::: \{\mt{Unit}\} \to \mt{use} ::: \{\mt{Type}\} \to \mt{bind} ::: \{\mt{Type}\} \to [\mt{ctx} \sim [\mt{Dyn}]] \Rightarrow \mt{unit} \\
adam@1641 2062 \hspace{.1in} \to \mt{tag} \; [\mt{Signal} = \mt{signal} \; (\mt{xml} \; ([\mt{Dyn}] \rc \mt{ctx}) \; \mt{use} \; \mt{bind})] \; ([\mt{Dyn}] \rc \mt{ctx}) \; [] \; \mt{use} \; \mt{bind}
adamc@659 2063 \end{array}$$
adamc@659 2064
adam@1648 2065 The semantics of \cd{<dyn>} tags is somewhat subtle. When the signal associated with such a tag changes value, the associated subtree of the HTML page is recreated. Some properties of the subtree, such as attributes and client-side widget values, are specified explicitly in the signal value, so these may be counted on to remain the same after recreation. Other properties, like focus and cursor position within textboxes, are \emph{not} specified by signal values, and these properties will be \emph{reset} upon subtree regeneration. Furthermore, user interaction with widgets may not work properly during regeneration. For instance, clicking a button while it is being regenerated may not trigger its \cd{onclick} event code.
adam@1648 2066
adam@1648 2067 Currently, the only way to avoid undesired resets is to avoid regeneration of containing subtrees. There are two main strategies for achieving that goal. First, when changes to a subtree can be confined to CSS classes of tags, the \texttt{dynClass} pseudo-attribute may be used instead (see Section \ref{xml}), as it does not regenerate subtrees. Second, a single \cd{<dyn>} tag may be broken into multiple tags, in a way that makes finer-grained dependency structure explicit. This latter strategy can avoid ``spurious'' regenerations that are not actually required to achieve the intended semantics.
adam@1648 2068
adamc@701 2069 Transactions can be run on the client by including them in attributes like the $\mt{Onclick}$ attribute of $\mt{button}$, and GUI widgets like $\mt{ctextbox}$ have $\mt{Source}$ attributes that can be used to connect them to sources, so that their values can be read by code running because of, e.g., an $\mt{Onclick}$ event.
adamc@701 2070
adamc@914 2071 \subsubsection{Remote Procedure Calls}
adamc@914 2072
adamc@914 2073 Any function call may be made a client-to-server ``remote procedure call'' if the function being called needs no features that are only available to client code. To make a function call an RPC, pass that function call as the argument to $\mt{Basis.rpc}$:
adamc@914 2074
adamc@914 2075 $$\begin{array}{l}
adamc@914 2076 \mt{val} \; \mt{rpc} : \mt{t} ::: \mt{Type} \to \mt{transaction} \; \mt{t} \to \mt{transaction} \; \mt{t}
adamc@914 2077 \end{array}$$
adamc@914 2078
adamc@701 2079 \subsubsection{Asynchronous Message-Passing}
adamc@701 2080
adamc@701 2081 To support asynchronous, ``server push'' delivery of messages to clients, any client that might need to receive an asynchronous message is assigned a unique ID. These IDs may be retrieved both on the client and on the server, during execution of code related to a client.
adamc@701 2082
adamc@701 2083 $$\begin{array}{l}
adamc@701 2084 \mt{type} \; \mt{client} \\
adamc@701 2085 \mt{val} \; \mt{self} : \mt{transaction} \; \mt{client}
adamc@701 2086 \end{array}$$
adamc@701 2087
adamc@701 2088 \emph{Channels} are the means of message-passing. Each channel is created in the context of a client and belongs to that client; no other client may receive the channel's messages. Each channel type includes the type of values that may be sent over the channel. Sending and receiving are asynchronous, in the sense that a client need not be ready to receive a message right away. Rather, sent messages may queue up, waiting to be processed.
adamc@701 2089
adamc@701 2090 $$\begin{array}{l}
adamc@701 2091 \mt{con} \; \mt{channel} :: \mt{Type} \to \mt{Type} \\
adamc@701 2092 \mt{val} \; \mt{channel} : \mt{t} ::: \mt{Type} \to \mt{transaction} \; (\mt{channel} \; \mt{t}) \\
adamc@701 2093 \mt{val} \; \mt{send} : \mt{t} ::: \mt{Type} \to \mt{channel} \; \mt{t} \to \mt{t} \to \mt{transaction} \; \mt{unit} \\
adamc@701 2094 \mt{val} \; \mt{recv} : \mt{t} ::: \mt{Type} \to \mt{channel} \; \mt{t} \to \mt{transaction} \; \mt{t}
adamc@701 2095 \end{array}$$
adamc@701 2096
adamc@701 2097 The $\mt{channel}$ and $\mt{send}$ operations may only be executed on the server, and $\mt{recv}$ may only be executed on a client. Neither clients nor channels may be passed as arguments from clients to server-side functions, so persistent channels can only be maintained by storing them in the database and looking them up using the current client ID or some application-specific value as a key.
adamc@701 2098
adamc@701 2099 Clients and channels live only as long as the web browser page views that they are associated with. When a user surfs away, his client and its channels will be garbage-collected, after that user is not heard from for the timeout period. Garbage collection deletes any database row that contains a client or channel directly. Any reference to one of these types inside an $\mt{option}$ is set to $\mt{None}$ instead. Both kinds of handling have the flavor of weak pointers, and that is a useful way to think about clients and channels in the database.
adamc@701 2100
adam@1551 2101 \emph{Note}: Currently, there are known concurrency issues with multi-threaded applications that employ message-passing on top of database engines that don't support true serializable transactions. Postgres 9.1 is the only supported engine that does this properly.
adam@1551 2102
adamc@659 2103
adamc@549 2104 \section{Ur/Web Syntax Extensions}
adamc@549 2105
adamc@549 2106 Ur/Web features some syntactic shorthands for building values using the functions from the last section. This section sketches the grammar of those extensions. We write spans of syntax inside brackets to indicate that they are optional.
adamc@549 2107
adamc@549 2108 \subsection{SQL}
adamc@549 2109
adamc@786 2110 \subsubsection{\label{tables}Table Declarations}
adamc@786 2111
adamc@788 2112 $\mt{table}$ declarations may include constraints, via these grammar rules.
adamc@788 2113 $$\begin{array}{rrcll}
adam@1594 2114 \textrm{Declarations} & d &::=& \mt{table} \; x : c \; [pk[,]] \; cts \mid \mt{view} \; x = V \\
adamc@788 2115 \textrm{Primary key constraints} & pk &::=& \mt{PRIMARY} \; \mt{KEY} \; K \\
adamc@788 2116 \textrm{Keys} & K &::=& f \mid (f, (f,)^+) \\
adamc@788 2117 \textrm{Constraint sets} & cts &::=& \mt{CONSTRAINT} f \; ct \mid cts, cts \mid \{\{e\}\} \\
adamc@788 2118 \textrm{Constraints} & ct &::=& \mt{UNIQUE} \; K \mid \mt{CHECK} \; E \\
adamc@788 2119 &&& \mid \mt{FOREIGN} \; \mt{KEY} \; K \; \mt{REFERENCES} \; F \; (K) \; [\mt{ON} \; \mt{DELETE} \; pr] \; [\mt{ON} \; \mt{UPDATE} \; pr] \\
adamc@788 2120 \textrm{Foreign tables} & F &::=& x \mid \{\{e\}\} \\
adam@1594 2121 \textrm{Propagation modes} & pr &::=& \mt{NO} \; \mt{ACTION} \mid \mt{RESTRICT} \mid \mt{CASCADE} \mid \mt{SET} \; \mt{NULL} \\
adam@1594 2122 \textrm{View expressions} & V &::=& Q \mid \{e\}
adamc@788 2123 \end{array}$$
adamc@788 2124
adamc@788 2125 A signature item $\mt{table} \; \mt{x} : \mt{c}$ is actually elaborated into two signature items: $\mt{con} \; \mt{x\_hidden\_constraints} :: \{\{\mt{Unit}\}\}$ and $\mt{val} \; \mt{x} : \mt{sql\_table} \; \mt{c} \; \mt{x\_hidden\_constraints}$. This is appropriate for common cases where client code doesn't care which keys a table has. It's also possible to include constraints after a $\mt{table}$ signature item, with the same syntax as for $\mt{table}$ declarations. This may look like dependent typing, but it's just a convenience. The constraints are type-checked to determine a constructor $u$ to include in $\mt{val} \; \mt{x} : \mt{sql\_table} \; \mt{c} \; (u \rc \mt{x\_hidden\_constraints})$, and then the expressions are thrown away. Nonetheless, it can be useful for documentation purposes to include table constraint details in signatures. Note that the automatic generation of $\mt{x\_hidden\_constraints}$ leads to a kind of free subtyping with respect to which constraints are defined.
adamc@788 2126
adamc@788 2127
adamc@549 2128 \subsubsection{Queries}
adamc@549 2129
adamc@550 2130 Queries $Q$ are added to the rules for expressions $e$.
adamc@550 2131
adamc@549 2132 $$\begin{array}{rrcll}
adam@1684 2133 \textrm{Queries} & Q &::=& (q \; [\mt{ORDER} \; \mt{BY} \; O] \; [\mt{LIMIT} \; N] \; [\mt{OFFSET} \; N]) \\
adamc@1085 2134 \textrm{Pre-queries} & q &::=& \mt{SELECT} \; [\mt{DISTINCT}] \; P \; \mt{FROM} \; F,^+ \; [\mt{WHERE} \; E] \; [\mt{GROUP} \; \mt{BY} \; p,^+] \; [\mt{HAVING} \; E] \\
adamc@1085 2135 &&& \mid q \; R \; q \mid \{\{\{e\}\}\} \\
adam@1684 2136 \textrm{Relational operators} & R &::=& \mt{UNION} \mid \mt{INTERSECT} \mid \mt{EXCEPT} \\
adam@1684 2137 \textrm{$\mt{ORDER \; BY}$ items} & O &::=& \mt{RANDOM} [()] \mid E \; [o] \mid E \; [o], O
adamc@549 2138 \end{array}$$
adamc@549 2139
adamc@549 2140 $$\begin{array}{rrcll}
adamc@549 2141 \textrm{Projections} & P &::=& \ast & \textrm{all columns} \\
adamc@549 2142 &&& p,^+ & \textrm{particular columns} \\
adamc@549 2143 \textrm{Pre-projections} & p &::=& t.f & \textrm{one column from a table} \\
adamc@558 2144 &&& t.\{\{c\}\} & \textrm{a record of columns from a table (of kind $\{\mt{Type}\}$)} \\
adam@1627 2145 &&& t.* & \textrm{all columns from a table} \\
adamc@1194 2146 &&& E \; [\mt{AS} \; f] & \textrm{expression column} \\
adamc@549 2147 \textrm{Table names} & t &::=& x & \textrm{constant table name (automatically capitalized)} \\
adamc@549 2148 &&& X & \textrm{constant table name} \\
adamc@549 2149 &&& \{\{c\}\} & \textrm{computed table name (of kind $\mt{Name}$)} \\
adamc@549 2150 \textrm{Column names} & f &::=& X & \textrm{constant column name} \\
adamc@549 2151 &&& \{c\} & \textrm{computed column name (of kind $\mt{Name}$)} \\
adamc@549 2152 \textrm{Tables} & T &::=& x & \textrm{table variable, named locally by its own capitalization} \\
adamc@549 2153 &&& x \; \mt{AS} \; t & \textrm{table variable, with local name} \\
adamc@549 2154 &&& \{\{e\}\} \; \mt{AS} \; t & \textrm{computed table expression, with local name} \\
adamc@1085 2155 \textrm{$\mt{FROM}$ items} & F &::=& T \mid \{\{e\}\} \mid F \; J \; \mt{JOIN} \; F \; \mt{ON} \; E \\
adamc@1085 2156 &&& \mid F \; \mt{CROSS} \; \mt{JOIN} \ F \\
adamc@1193 2157 &&& \mid (Q) \; \mt{AS} \; t \\
adamc@1085 2158 \textrm{Joins} & J &::=& [\mt{INNER}] \\
adamc@1085 2159 &&& \mid [\mt{LEFT} \mid \mt{RIGHT} \mid \mt{FULL}] \; [\mt{OUTER}] \\
adam@1587 2160 \textrm{SQL expressions} & E &::=& t.f & \textrm{column references} \\
adamc@549 2161 &&& X & \textrm{named expression references} \\
adam@1490 2162 &&& \{[e]\} & \textrm{injected native Ur expressions} \\
adamc@549 2163 &&& \{e\} & \textrm{computed expressions, probably using $\mt{sql\_exp}$ directly} \\
adamc@549 2164 &&& \mt{TRUE} \mid \mt{FALSE} & \textrm{boolean constants} \\
adamc@549 2165 &&& \ell & \textrm{primitive type literals} \\
adamc@549 2166 &&& \mt{NULL} & \textrm{null value (injection of $\mt{None}$)} \\
adamc@549 2167 &&& E \; \mt{IS} \; \mt{NULL} & \textrm{nullness test} \\
adam@1602 2168 &&& \mt{COALESCE}(E, E) & \textrm{take first non-null value} \\
adamc@549 2169 &&& n & \textrm{nullary operators} \\
adamc@549 2170 &&& u \; E & \textrm{unary operators} \\
adamc@549 2171 &&& E \; b \; E & \textrm{binary operators} \\
adamc@549 2172 &&& \mt{COUNT}(\ast) & \textrm{count number of rows} \\
adamc@549 2173 &&& a(E) & \textrm{other aggregate function} \\
adam@1573 2174 &&& \mt{IF} \; E \; \mt{THEN} \; E \; \mt{ELSE} \; E & \textrm{conditional} \\
adamc@1193 2175 &&& (Q) & \textrm{subquery (must return a single expression column)} \\
adamc@549 2176 &&& (E) & \textrm{explicit precedence} \\
adamc@549 2177 \textrm{Nullary operators} & n &::=& \mt{CURRENT\_TIMESTAMP} \\
adamc@549 2178 \textrm{Unary operators} & u &::=& \mt{NOT} \\
adam@1688 2179 \textrm{Binary operators} & b &::=& \mt{AND} \mid \mt{OR} \mid = \mid \neq \mid < \mid \leq \mid > \mid \geq \\
adamc@1188 2180 \textrm{Aggregate functions} & a &::=& \mt{COUNT} \mid \mt{AVG} \mid \mt{SUM} \mid \mt{MIN} \mid \mt{MAX} \\
adam@1543 2181 \textrm{Directions} & o &::=& \mt{ASC} \mid \mt{DESC} \mid \{e\} \\
adamc@549 2182 \textrm{SQL integer} & N &::=& n \mid \{e\} \\
adamc@549 2183 \end{array}$$
adamc@549 2184
adamc@1085 2185 Additionally, an SQL expression may be inserted into normal Ur code with the syntax $(\mt{SQL} \; E)$ or $(\mt{WHERE} \; E)$. Similar shorthands exist for other nonterminals, with the prefix $\mt{FROM}$ for $\mt{FROM}$ items and $\mt{SELECT1}$ for pre-queries.
adamc@549 2186
adam@1683 2187 Unnamed expression columns in $\mt{SELECT}$ clauses are assigned consecutive natural numbers, starting with 1. Any expression in a $p$ position that is enclosed in parentheses is treated as an expression column, rather than a column pulled directly out of a table, even if it is only a field projection. (This distinction affects the record type used to describe query results.)
adamc@1194 2188
adamc@550 2189 \subsubsection{DML}
adamc@550 2190
adamc@550 2191 DML commands $D$ are added to the rules for expressions $e$.
adamc@550 2192
adamc@550 2193 $$\begin{array}{rrcll}
adamc@550 2194 \textrm{Commands} & D &::=& (\mt{INSERT} \; \mt{INTO} \; T^E \; (f,^+) \; \mt{VALUES} \; (E,^+)) \\
adamc@550 2195 &&& (\mt{UPDATE} \; T^E \; \mt{SET} \; (f = E,)^+ \; \mt{WHERE} \; E) \\
adamc@550 2196 &&& (\mt{DELETE} \; \mt{FROM} \; T^E \; \mt{WHERE} \; E) \\
adamc@550 2197 \textrm{Table expressions} & T^E &::=& x \mid \{\{e\}\}
adamc@550 2198 \end{array}$$
adamc@550 2199
adamc@550 2200 Inside $\mt{UPDATE}$ and $\mt{DELETE}$ commands, lone variables $X$ are interpreted as references to columns of the implicit table $\mt{T}$, rather than to named expressions.
adamc@549 2201
adamc@551 2202 \subsection{XML}
adamc@551 2203
adamc@551 2204 XML fragments $L$ are added to the rules for expressions $e$.
adamc@551 2205
adamc@551 2206 $$\begin{array}{rrcll}
adamc@551 2207 \textrm{XML fragments} & L &::=& \texttt{<xml/>} \mid \texttt{<xml>}l^*\texttt{</xml>} \\
adamc@551 2208 \textrm{XML pieces} & l &::=& \textrm{text} & \textrm{cdata} \\
adamc@551 2209 &&& \texttt{<}g\texttt{/>} & \textrm{tag with no children} \\
adamc@551 2210 &&& \texttt{<}g\texttt{>}l^*\texttt{</}x\texttt{>} & \textrm{tag with children} \\
adamc@559 2211 &&& \{e\} & \textrm{computed XML fragment} \\
adamc@559 2212 &&& \{[e]\} & \textrm{injection of an Ur expression, via the $\mt{Top}.\mt{txt}$ function} \\
adamc@551 2213 \textrm{Tag} & g &::=& h \; (x = v)^* \\
adamc@551 2214 \textrm{Tag head} & h &::=& x & \textrm{tag name} \\
adamc@551 2215 &&& h\{c\} & \textrm{constructor parameter} \\
adamc@551 2216 \textrm{Attribute value} & v &::=& \ell & \textrm{literal value} \\
adamc@551 2217 &&& \{e\} & \textrm{computed value} \\
adamc@551 2218 \end{array}$$
adamc@551 2219
adamc@552 2220
adamc@1198 2221 \section{\label{structure}The Structure of Web Applications}
adamc@553 2222
adam@1604 2223 A web application is built from a series of modules, with one module, the last one appearing in the \texttt{.urp} file, designated as the main module. The signature of the main module determines the URL entry points to the application. Such an entry point should have type $\mt{t1} \to \ldots \to \mt{tn} \to \mt{transaction} \; \mt{page}$, for any integer $n \geq 0$, where $\mt{page}$ is a type synonym for top-level HTML pages, defined in $\mt{Basis}$. If such a function is at the top level of main module $M$, with $n = 0$, it will be accessible at URI \texttt{/M/f}, and so on for more deeply-nested functions, as described in Section \ref{tag} below. See Section \ref{cl} for information on the \texttt{prefix} and \texttt{rewrite url} directives, which can be used to rewrite the default URIs of different entry point functions. The final URL of a function is its default module-based URI, with \texttt{rewrite url} rules applied, and with the \texttt{prefix} prepended. Arguments to an entry-point function are deserialized from the part of the URI following \texttt{f}.
adamc@553 2224
adam@1532 2225 Elements of modules beside the main module, including page handlers, will only be included in the final application if they are transitive dependencies of the handlers in the main module.
adam@1532 2226
adam@1347 2227 Normal links are accessible via HTTP \texttt{GET}, which the relevant standard says should never cause side effects. To export a page which may cause side effects, accessible only via HTTP \texttt{POST}, include one argument of the page handler of type $\mt{Basis.postBody}$. When the handler is called, this argument will receive a value that can be deconstructed into a MIME type (with $\mt{Basis.postType}$) and payload (with $\mt{Basis.postData}$). This kind of handler will only work with \texttt{POST} payloads of MIME types besides those associated with HTML forms; for these, use Ur/Web's built-in support, as described below.
adam@1347 2228
adam@1370 2229 Any normal page handler may also include arguments of type $\mt{option \; Basis.queryString}$, which will be handled specially. Rather than being deserialized from the current URI, such an argument is passed the whole query string that the handler received. The string may be analyzed by calling $\mt{Basis.show}$ on it. A handler of this kind may be passed as an argument to $\mt{Basis.effectfulUrl}$ to generate a URL to a page that may be used as a ``callback'' by an external service, such that the handler is allowed to cause side effects.
adam@1370 2230
adamc@553 2231 When the standalone web server receives a request for a known page, it calls the function for that page, ``running'' the resulting transaction to produce the page to return to the client. Pages link to other pages with the \texttt{link} attribute of the \texttt{a} HTML tag. A link has type $\mt{transaction} \; \mt{page}$, and the semantics of a link are that this transaction should be run to compute the result page, when the link is followed. Link targets are assigned URL names in the same way as top-level entry points.
adamc@553 2232
adamc@553 2233 HTML forms are handled in a similar way. The $\mt{action}$ attribute of a $\mt{submit}$ form tag takes a value of type $\$\mt{use} \to \mt{transaction} \; \mt{page}$, where $\mt{use}$ is a kind-$\{\mt{Type}\}$ record of the form fields used by this action handler. Action handlers are assigned URL patterns in the same way as above.
adamc@553 2234
adam@1653 2235 For both links and actions, direct arguments and local variables mentioned implicitly via closures are automatically included in serialized form in URLs, in the order in which they appear in the source code. Such serialized values may only be drawn from a limited set of types, and programs will fail to compile when the (implicit or explicit) arguments of page handler functions involve disallowed types. (Keep in mind that every free variable of a function is an implicit argument if it was not defined at the top level of a module.) For instance:
adam@1653 2236 \begin{itemize}
adam@1653 2237 \item Functions are disallowed, since there is no obvious way to serialize them safely.
adam@1653 2238 \item XML fragments are disallowed, since it is unclear how to check client-provided XML to be sure it doesn't break the HTML invariants of the application (for instance, by mutating the DOM in the conventional way, interfering with Ur/Web's functional-reactive regime).
adam@1653 2239 \item Blobs (``files'') are disallowed, since they can easily have very large serializations that could not fit within most web servers' URL size limits. (And you probably don't want to be serializing, e.g., image files in URLs, anyway.)
adam@1653 2240 \end{itemize}
adamc@553 2241
adamc@660 2242 Ur/Web programs generally mix server- and client-side code in a fairly transparent way. The one important restriction is that mixed client-server code must encapsulate all server-side pieces within named functions. This is because execution of such pieces will be implemented by explicit calls to the remote web server, and it is useful to get the programmer's help in designing the interface to be used. For example, this makes it easier to allow a client running an old version of an application to continue interacting with a server that has been upgraded to a new version, if the programmer took care to keep the interfaces of all of the old remote calls the same. The functions implementing these services are assigned names in the same way as normal web entry points, by using module structure.
adamc@660 2243
adamc@789 2244 \medskip
adamc@789 2245
adam@1347 2246 The HTTP standard suggests that GET requests only be used in ways that generate no side effects. Side effecting operations should use POST requests instead. The Ur/Web compiler enforces this rule strictly, via a simple conservative program analysis. Any page that may have a side effect must be accessed through a form, all of which use POST requests, or via a direct call to a page handler with some argument of type $\mt{Basis.postBody}$. A page is judged to have a side effect if its code depends syntactically on any of the side-effecting, server-side FFI functions. Links, forms, and most client-side event handlers are not followed during this syntactic traversal, but \texttt{<body onload=\{...\}>} handlers \emph{are} examined, since they run right away and could just as well be considered parts of main page handlers.
adamc@789 2247
adamc@789 2248 Ur/Web includes a kind of automatic protection against cross site request forgery attacks. Whenever any page execution can have side effects and can also read at least one cookie value, all cookie values must be signed cryptographically, to ensure that the user has come to the current page by submitting a form on a real page generated by the proper server. Signing and signature checking are inserted automatically by the compiler. This prevents attacks like phishing schemes where users are directed to counterfeit pages with forms that submit to your application, where a user's cookies might be submitted without his knowledge, causing some undesired side effect.
adamc@789 2249
adam@1348 2250 \subsection{Tasks}
adam@1348 2251
adam@1348 2252 In many web applications, it's useful to run code at points other than requests from browsers. Ur/Web's \emph{task} mechanism facilitates this. A type family of \emph{task kinds} is in the standard library:
adam@1348 2253
adam@1348 2254 $$\begin{array}{l}
adam@1348 2255 \mt{con} \; \mt{task\_kind} :: \mt{Type} \to \mt{Type} \\
adam@1348 2256 \mt{val} \; \mt{initialize} : \mt{task\_kind} \; \mt{unit} \\
adam@1349 2257 \mt{val} \; \mt{clientLeaves} : \mt{task\_kind} \; \mt{client} \\
adam@1349 2258 \mt{val} \; \mt{periodic} : \mt{int} \to \mt{task\_kind} \; \mt{unit}
adam@1348 2259 \end{array}$$
adam@1348 2260
adam@1348 2261 A task kind names a particular extension point of generated applications, where the type parameter of a task kind describes which extra input data is available at that extension point. Add task code with the special declaration form $\mt{task} \; e_1 = e_2$, where $e_1$ is a task kind with data $\tau$, and $e_2$ is a function from $\tau$ to $\mt{transaction} \; \mt{unit}$.
adam@1348 2262
adam@1348 2263 The currently supported task kinds are:
adam@1348 2264 \begin{itemize}
adam@1349 2265 \item $\mt{initialize}$: Code that is run when the application starts up.
adam@1348 2266 \item $\mt{clientLeaves}$: Code that is run for each client that the runtime system decides has surfed away. When a request that generates a new client handle is aborted, that handle will still eventually be passed to $\mt{clientLeaves}$ task code, even though the corresponding browser was never informed of the client handle's existence. In other words, in general, $\mt{clientLeaves}$ handlers will be called more times than there are actual clients.
adam@1349 2267 \item $\mt{periodic} \; n$: Code that is run when the application starts up and then every $n$ seconds thereafter.
adam@1348 2268 \end{itemize}
adam@1348 2269
adamc@553 2270
adamc@897 2271 \section{The Foreign Function Interface}
adamc@897 2272
adamc@897 2273 It is possible to call your own C and JavaScript code from Ur/Web applications, via the foreign function interface (FFI). The starting point for a new binding is a \texttt{.urs} signature file that presents your external library as a single Ur/Web module (with no nested modules). Compilation conventions map the types and values that you use into C and/or JavaScript types and values.
adamc@897 2274
adamc@897 2275 It is most convenient to encapsulate an FFI binding with a new \texttt{.urp} file, which applications can include with the \texttt{library} directive in their own \texttt{.urp} files. A number of directives are likely to show up in the library's project file.
adamc@897 2276
adamc@897 2277 \begin{itemize}
adamc@897 2278 \item \texttt{clientOnly Module.ident} registers a value as being allowed only in client-side code.
adamc@897 2279 \item \texttt{clientToServer Module.ident} declares a type as OK to marshal between clients and servers. By default, abstract FFI types are not allowed to be marshalled, since your library might be maintaining invariants that the simple serialization code doesn't check.
adamc@897 2280 \item \texttt{effectful Module.ident} registers a function that can have side effects. It is important to remember to use this directive for each such function, or else the optimizer might change program semantics.
adamc@897 2281 \item \texttt{ffi FILE.urs} names the file giving your library's signature. You can include multiple such files in a single \texttt{.urp} file, and each file \texttt{mod.urp} defines an FFI module \texttt{Mod}.
adamc@1099 2282 \item \texttt{include FILE} requests inclusion of a C header file.
adamc@897 2283 \item \texttt{jsFunc Module.ident=name} gives a mapping from an Ur name for a value to a JavaScript name.
adamc@897 2284 \item \texttt{link FILE} requests that \texttt{FILE} be linked into applications. It should be a C object or library archive file, and you are responsible for generating it with your own build process.
adamc@897 2285 \item \texttt{script URL} requests inclusion of a JavaScript source file within application HTML.
adamc@897 2286 \item \texttt{serverOnly Module.ident} registers a value as being allowed only in server-side code.
adamc@897 2287 \end{itemize}
adamc@897 2288
adamc@897 2289 \subsection{Writing C FFI Code}
adamc@897 2290
adamc@897 2291 A server-side FFI type or value \texttt{Module.ident} must have a corresponding type or value definition \texttt{uw\_Module\_ident} in C code. With the current Ur/Web version, it's not generally possible to work with Ur records or complex datatypes in C code, but most other kinds of types are fair game.
adamc@897 2292
adamc@897 2293 \begin{itemize}
adamc@897 2294 \item Primitive types defined in \texttt{Basis} are themselves using the standard FFI interface, so you may refer to them like \texttt{uw\_Basis\_t}. See \texttt{include/types.h} for their definitions.
adamc@897 2295 \item Enumeration datatypes, which have only constructors that take no arguments, should be defined using C \texttt{enum}s. The type is named as for any other type identifier, and each constructor \texttt{c} gets an enumeration constant named \texttt{uw\_Module\_c}.
adamc@897 2296 \item A datatype \texttt{dt} (such as \texttt{Basis.option}) that has one non-value-carrying constructor \texttt{NC} and one value-carrying constructor \texttt{C} gets special treatment. Where \texttt{T} is the type of \texttt{C}'s argument, and where we represent \texttt{T} as \texttt{t} in C, we represent \texttt{NC} with \texttt{NULL}. The representation of \texttt{C} depends on whether we're sure that we don't need to use \texttt{NULL} to represent \texttt{t} values; this condition holds only for strings and complex datatypes. For such types, \texttt{C v} is represented with the C encoding of \texttt{v}, such that the translation of \texttt{dt} is \texttt{t}. For other types, \texttt{C v} is represented with a pointer to the C encoding of v, such that the translation of \texttt{dt} is \texttt{t*}.
adam@1686 2297 \item Ur/Web involves many types of program syntax, such as for HTML and SQL code. All of these types are implemented with normal C strings, and you may take advantage of that encoding to manipulate code as strings in C FFI code. Be mindful that, in writing such code, it is your responsibility to maintain the appropriate code invariants, or you may reintroduce the code injection vulnerabilities that Ur/Web rules out. The most convenient way to extend Ur/Web with functions that, e.g., use natively unsupported HTML tags is to generate the HTML code with the FFI.
adamc@897 2298 \end{itemize}
adamc@897 2299
adamc@897 2300 The C FFI version of a Ur function with type \texttt{T1 -> ... -> TN -> R} or \texttt{T1 -> ... -> TN -> transaction R} has a C prototype like \texttt{R uw\_Module\_ident(uw\_context, T1, ..., TN)}. Only functions with types of the second form may have side effects. \texttt{uw\_context} is the type of state that persists across handling a client request. Many functions that operate on contexts are prototyped in \texttt{include/urweb.h}. Most should only be used internally by the compiler. A few are useful in general FFI implementation:
adamc@897 2301 \begin{itemize}
adamc@897 2302 \item \begin{verbatim}
adamc@897 2303 void uw_error(uw_context, failure_kind, const char *fmt, ...);
adamc@897 2304 \end{verbatim}
adamc@897 2305 Abort the current request processing, giving a \texttt{printf}-style format string and arguments for generating an error message. The \texttt{failure\_kind} argument can be \texttt{FATAL}, to abort the whole execution; \texttt{BOUNDED\_RETRY}, to try processing the request again from the beginning, but failing if this happens too many times; or \texttt{UNLIMITED\_RETRY}, to repeat processing, with no cap on how many times this can recur.
adamc@897 2306
adam@1329 2307 All pointers to the context-local heap (see description below of \texttt{uw\_malloc()}) become invalid at the start and end of any execution of a main entry point function of an application. For example, if the request handler is restarted because of a \texttt{uw\_error()} call with \texttt{BOUNDED\_RETRY} or for any other reason, it is unsafe to access any local heap pointers that may have been stashed somewhere beforehand.
adam@1329 2308
adamc@897 2309 \item \begin{verbatim}
adam@1469 2310 void uw_set_error_message(uw_context, const char *fmt, ...);
adam@1469 2311 \end{verbatim}
adam@1469 2312 This simpler form of \texttt{uw\_error()} saves an error message without immediately aborting execution.
adam@1469 2313
adam@1469 2314 \item \begin{verbatim}
adamc@897 2315 void uw_push_cleanup(uw_context, void (*func)(void *), void *arg);
adamc@897 2316 void uw_pop_cleanup(uw_context);
adamc@897 2317 \end{verbatim}
adam@1329 2318 Manipulate a stack of actions that should be taken if any kind of error condition arises. Calling the ``pop'' function both removes an action from the stack and executes it. It is a bug to let a page request handler finish successfully with unpopped cleanup actions.
adam@1329 2319
adam@1329 2320 Pending cleanup actions aren't intended to have any complex relationship amongst themselves, so, upon request handler abort, pending actions are executed in first-in-first-out order.
adamc@897 2321
adamc@897 2322 \item \begin{verbatim}
adamc@897 2323 void *uw_malloc(uw_context, size_t);
adamc@897 2324 \end{verbatim}
adam@1329 2325 A version of \texttt{malloc()} that allocates memory inside a context's heap, which is managed with region allocation. Thus, there is no \texttt{uw\_free()}, but you need to be careful not to keep ad-hoc C pointers to this area of memory. In general, \texttt{uw\_malloc()}ed memory should only be used in ways compatible with the computation model of pure Ur. This means it is fine to allocate and return a value that could just as well have been built with core Ur code. In contrast, it is almost never safe to store \texttt{uw\_malloc()}ed pointers in global variables, including when the storage happens implicitly by registering a callback that would take the pointer as an argument.
adam@1329 2326
adam@1329 2327 For performance and correctness reasons, it is usually preferable to use \texttt{uw\_malloc()} instead of \texttt{malloc()}. The former manipulates a local heap that can be kept allocated across page requests, while the latter uses global data structures that may face contention during concurrent execution. However, we emphasize again that \texttt{uw\_malloc()} should never be used to implement some logic that couldn't be implemented trivially by a constant-valued expression in Ur.
adamc@897 2328
adamc@897 2329 \item \begin{verbatim}
adamc@897 2330 typedef void (*uw_callback)(void *);
adam@1328 2331 typedef void (*uw_callback_with_retry)(void *, int will_retry);
adamc@897 2332 void uw_register_transactional(uw_context, void *data, uw_callback commit,
adam@1328 2333 uw_callback rollback, uw_callback_with_retry free);
adamc@897 2334 \end{verbatim}
adam@1328 2335 All side effects in Ur/Web programs need to be compatible with transactions, such that any set of actions can be undone at any time. Thus, you should not perform actions with non-local side effects directly; instead, register handlers to be called when the current transaction is committed or rolled back. The arguments here give an arbitary piece of data to be passed to callbacks, a function to call on commit, a function to call on rollback, and a function to call afterward in either case to clean up any allocated resources. A rollback handler may be called after the associated commit handler has already been called, if some later part of the commit process fails. A free handler is told whether the runtime system expects to retry the current page request after rollback finishes.
adamc@897 2336
adamc@1085 2337 Any of the callbacks may be \texttt{NULL}. To accommodate some stubbornly non-transactional real-world actions like sending an e-mail message, Ur/Web treats \texttt{NULL} \texttt{rollback} callbacks specially. When a transaction commits, all \texttt{commit} actions that have non-\texttt{NULL} rollback actions are tried before any \texttt{commit} actions that have \texttt{NULL} rollback actions. Thus, if a single execution uses only one non-transactional action, and if that action never fails partway through its execution while still causing an observable side effect, then Ur/Web can maintain the transactional abstraction.
adamc@1085 2338
adam@1329 2339 When a request handler ends with multiple pending transactional actions, their handlers are run in a first-in-last-out stack-like order, wherever the order would otherwise be ambiguous.
adam@1329 2340
adam@1329 2341 It is not safe for any of these handlers to access a context-local heap through a pointer returned previously by \texttt{uw\_malloc()}, nor should any new calls to that function be made. Think of the context-local heap as meant for use by the Ur/Web code itself, while transactional handlers execute after the Ur/Web code has finished.
adam@1329 2342
adam@1469 2343 A handler may signal an error by calling \texttt{uw\_set\_error\_message()}, but it is not safe to call \texttt{uw\_error()} from a handler. Signaling an error in a commit handler will cause the runtime system to switch to aborting the transaction, immediately after the current commit handler returns.
adam@1469 2344
adamc@1085 2345 \item \begin{verbatim}
adamc@1085 2346 void *uw_get_global(uw_context, char *name);
adamc@1085 2347 void uw_set_global(uw_context, char *name, void *data, uw_callback free);
adamc@1085 2348 \end{verbatim}
adam@1329 2349 Different FFI-based extensions may want to associate their own pieces of data with contexts. The global interface provides a way of doing that, where each extension must come up with its own unique key. The \texttt{free} argument to \texttt{uw\_set\_global()} explains how to deallocate the saved data. It is never safe to store \texttt{uw\_malloc()}ed pointers in global variable slots.
adamc@1085 2350
adamc@897 2351 \end{itemize}
adamc@897 2352
adamc@897 2353 \subsection{Writing JavaScript FFI Code}
adamc@897 2354
adamc@897 2355 JavaScript is dynamically typed, so Ur/Web type definitions imply no JavaScript code. The JavaScript identifier for each FFI function is set with the \texttt{jsFunc} directive. Each identifier can be defined in any JavaScript file that you ask to include with the \texttt{script} directive.
adamc@897 2356
adamc@897 2357 In contrast to C FFI code, JavaScript FFI functions take no extra context argument. Their argument lists are as you would expect from their Ur types. Only functions whose ranges take the form \texttt{transaction T} should have side effects; the JavaScript ``return type'' of such a function is \texttt{T}. Here are the conventions for representing Ur values in JavaScript.
adamc@897 2358
adamc@897 2359 \begin{itemize}
adamc@897 2360 \item Integers, floats, strings, characters, and booleans are represented in the usual JavaScript way.
adam@1644 2361 \item Ur functions are represented in an unspecified way. This means that you should not rely on any details of function representation. Named FFI functions are represented as JavaScript functions with as many arguments as their Ur types specify. To call a non-FFI function \texttt{f} on argument \texttt{x}, run \texttt{execF(f, x)}. To lift a normal JavaScript function \cd{f} into an Ur/Web JavaScript function, run \cd{flift(f)}.
adamc@897 2362 \item An Ur record is represented with a JavaScript record, where Ur field name \texttt{N} translates to JavaScript field name \texttt{\_N}. An exception to this rule is that the empty record is encoded as \texttt{null}.
adamc@897 2363 \item \texttt{option}-like types receive special handling similar to their handling in C. The ``\texttt{None}'' constructor is \texttt{null}, and a use of the ``\texttt{Some}'' constructor on a value \texttt{v} is either \texttt{v}, if the underlying type doesn't need to use \texttt{null}; or \texttt{\{v:v\}} otherwise.
adamc@985 2364 \item Any other datatypes represent a non-value-carrying constructor \texttt{C} as \texttt{"C"} and an application of a constructor \texttt{C} to value \texttt{v} as \texttt{\{n:"C", v:v\}}. This rule only applies to datatypes defined in FFI module signatures; the compiler is free to optimize the representations of other, non-\texttt{option}-like datatypes in arbitrary ways.
adam@1686 2365 \item As in the C FFI, all abstract types of program syntax are implemented with strings in JavaScript.
adamc@897 2366 \end{itemize}
adamc@897 2367
adam@1644 2368 It is possible to write JavaScript FFI code that interacts with the functional-reactive structure of a document. Here is a quick summary of some of the simpler functions to use; descriptions of fancier stuff may be added later on request (and such stuff should be considered ``undocumented features'' until then).
adam@1644 2369
adam@1644 2370 \begin{itemize}
adam@1644 2371 \item Sources should be treated as an abstract type, manipulated via:
adam@1644 2372 \begin{itemize}
adam@1644 2373 \item \cd{sc(v)}, to create a source initialized to \cd{v}
adam@1644 2374 \item \cd{sg(s)}, to retrieve the current value of source \cd{s}
adam@1644 2375 \item \cd{sv(s, v)}, to set source \cd{s} to value \cd{v}
adam@1644 2376 \end{itemize}
adam@1644 2377
adam@1644 2378 \item Signals should be treated as an abstract type, manipulated via:
adam@1644 2379 \begin{itemize}
adam@1644 2380 \item \cd{sr(v)} and \cd{sb(s, f)}, the ``return'' and ``bind'' monad operators, respectively
adam@1644 2381 \item \cd{ss(s)}, to produce the signal corresponding to source \cd{s}
adam@1644 2382 \item \cd{scur(s)}, to get the current value of signal \cd{s}
adam@1644 2383 \end{itemize}
adam@1644 2384
adam@1644 2385 \item The behavior of the \cd{<dyn>} pseudo-tag may be mimicked by following the right convention in a piece of HTML source code with a type like $\mt{xbody}$. Such a piece of source code may be encoded with a JavaScript string. To insert a dynamic section, include a \cd{<script>} tag whose content is just a call \cd{dyn(pnode, s)}. The argument \cd{pnode} specifies what the relevant enclosing parent tag is. Use value \cd{"tr"} when the immediate parent is \cd{<tr>}, use \cd{"table"} when the immediate parent is \cd{<table>}, and use \cd{"span"} otherwise. The argument \cd{s} is a string-valued signal giving the HTML code to be inserted at this point. As with the usual \cd{<dyn>} tag, that HTML subtree is automatically updated as the value of \cd{s} changes.
adam@1644 2386
adam@1644 2387 \item It is possible to use the more standard ``IDs and mutation'' style of JavaScript coding, though that style is unidiomatic for Ur/Web and should be avoided wherever possible. Recall the abstract type $\mt{id}$ and its constructor $\mt{fresh}$, which can be used to generate new unique IDs in Ur/Web code. Values of this type are represented as strings in JavaScript, and a function \cd{fresh()} is available to generate new unique IDs. Application-specific ID generation schemes may cause bad interactions with Ur/Web code that also generates IDs, so the recommended approach is to produce IDs only via calls to \cd{fresh()}. FFI code shouldn't depend on the ID generation scheme (on either server side or client side), but it is safe to include these IDs in tag attributes (in either server-side or client-side code) and manipulate the associated DOM nodes in the standard way (in client-side code). Be forewarned that this kind of imperative DOM manipulation may confuse the Ur/Web runtime system and interfere with proper behavior of tags like \cd{<dyn>}!
adam@1644 2388 \end{itemize}
adamc@897 2389
adamc@897 2390
adamc@552 2391 \section{Compiler Phases}
adamc@552 2392
adamc@552 2393 The Ur/Web compiler is unconventional in that it relies on a kind of \emph{heuristic compilation}. Not all valid programs will compile successfully. Informally, programs fail to compile when they are ``too higher order.'' Compiler phases do their best to eliminate different kinds of higher order-ness, but some programs just won't compile. This is a trade-off for producing very efficient executables. Compiled Ur/Web programs use native C representations and require no garbage collection.
adamc@552 2394
adamc@552 2395 In this section, we step through the main phases of compilation, noting what consequences each phase has for effective programming.
adamc@552 2396
adamc@552 2397 \subsection{Parse}
adamc@552 2398
adamc@552 2399 The compiler reads a \texttt{.urp} file, figures out which \texttt{.urs} and \texttt{.ur} files it references, and combines them all into what is conceptually a single sequence of declarations in the core language of Section \ref{core}.
adamc@552 2400
adamc@552 2401 \subsection{Elaborate}
adamc@552 2402
adamc@552 2403 This is where type inference takes place, translating programs into an explicit form with no more wildcards. This phase is the most likely source of compiler error messages.
adamc@552 2404
adam@1378 2405 Those crawling through the compiler source will also want to be aware of another compiler phase, Explify, that occurs immediately afterward. This phase just translates from an AST language that includes unification variables to a very similar language that doesn't; all variables should have been determined by the end of Elaborate, anyway. The new AST language also drops some features that are used only for static checking and that have no influence on runtime behavior, like disjointness constraints.
adam@1378 2406
adamc@552 2407 \subsection{Unnest}
adamc@552 2408
adamc@552 2409 Named local function definitions are moved to the top level, to avoid the need to generate closures.
adamc@552 2410
adamc@552 2411 \subsection{Corify}
adamc@552 2412
adamc@552 2413 Module system features are compiled away, through inlining of functor definitions at application sites. Afterward, most abstraction boundaries are broken, facilitating optimization.
adamc@552 2414
adamc@552 2415 \subsection{Especialize}
adamc@552 2416
adam@1356 2417 Functions are specialized to particular argument patterns. This is an important trick for avoiding the need to maintain any closures at runtime. Currently, specialization only happens for prefixes of a function's full list of parameters, so you may need to take care to put arguments of function types before other arguments. The optimizer will not be effective enough if you use arguments that mix functions and values that must be calculated at run-time. For instance, a tuple of a function and an integer counter would not lead to successful code generation; these should be split into separate arguments via currying.
adamc@552 2418
adamc@552 2419 \subsection{Untangle}
adamc@552 2420
adamc@552 2421 Remove unnecessary mutual recursion, splitting recursive groups into strongly-connected components.
adamc@552 2422
adamc@552 2423 \subsection{Shake}
adamc@552 2424
adamc@552 2425 Remove all definitions not needed to run the page handlers that are visible in the signature of the last module listed in the \texttt{.urp} file.
adamc@552 2426
adamc@661 2427 \subsection{Rpcify}
adamc@661 2428
adamc@661 2429 Pieces of code are determined to be client-side, server-side, neither, or both, by figuring out which standard library functions might be needed to execute them. Calls to server-side functions (e.g., $\mt{query}$) within mixed client-server code are identified and replaced with explicit remote calls. Some mixed functions may be converted to continuation-passing style to facilitate this transformation.
adamc@661 2430
adamc@661 2431 \subsection{Untangle, Shake}
adamc@661 2432
adamc@661 2433 Repeat these simplifications.
adamc@661 2434
adamc@553 2435 \subsection{\label{tag}Tag}
adamc@552 2436
adamc@552 2437 Assign a URL name to each link and form action. It is important that these links and actions are written as applications of named functions, because such names are used to generate URL patterns. A URL pattern has a name built from the full module path of the named function, followed by the function name, with all pieces separated by slashes. The path of a functor application is based on the name given to the result, rather than the path of the functor itself.
adamc@552 2438
adamc@552 2439 \subsection{Reduce}
adamc@552 2440
adamc@552 2441 Apply definitional equality rules to simplify the program as much as possible. This effectively includes inlining of every non-recursive definition.
adamc@552 2442
adamc@552 2443 \subsection{Unpoly}
adamc@552 2444
adamc@552 2445 This phase specializes polymorphic functions to the specific arguments passed to them in the program. If the program contains real polymorphic recursion, Unpoly will be insufficient to avoid later error messages about too much polymorphism.
adamc@552 2446
adamc@552 2447 \subsection{Specialize}
adamc@552 2448
adamc@558 2449 Replace uses of parameterized datatypes with versions specialized to specific parameters. As for Unpoly, this phase will not be effective enough in the presence of polymorphic recursion or other fancy uses of impredicative polymorphism.
adamc@552 2450
adamc@552 2451 \subsection{Shake}
adamc@552 2452
adamc@558 2453 Here the compiler repeats the earlier Shake phase.
adamc@552 2454
adamc@552 2455 \subsection{Monoize}
adamc@552 2456
adamc@552 2457 Programs are translated to a new intermediate language without polymorphism or non-$\mt{Type}$ constructors. Error messages may pop up here if earlier phases failed to remove such features.
adamc@552 2458
adamc@552 2459 This is the stage at which concrete names are generated for cookies, tables, and sequences. They are named following the same convention as for links and actions, based on module path information saved from earlier stages. Table and sequence names separate path elements with underscores instead of slashes, and they are prefixed by \texttt{uw\_}.
adamc@664 2460
adamc@552 2461 \subsection{MonoOpt}
adamc@552 2462
adamc@552 2463 Simple algebraic laws are applied to simplify the program, focusing especially on efficient imperative generation of HTML pages.
adamc@552 2464
adamc@552 2465 \subsection{MonoUntangle}
adamc@552 2466
adamc@552 2467 Unnecessary mutual recursion is broken up again.
adamc@552 2468
adamc@552 2469 \subsection{MonoReduce}
adamc@552 2470
adamc@552 2471 Equivalents of the definitional equality rules are applied to simplify programs, with inlining again playing a major role.
adamc@552 2472
adamc@552 2473 \subsection{MonoShake, MonoOpt}
adamc@552 2474
adamc@552 2475 Unneeded declarations are removed, and basic optimizations are repeated.
adamc@552 2476
adamc@552 2477 \subsection{Fuse}
adamc@552 2478
adamc@552 2479 The compiler tries to simplify calls to recursive functions whose results are immediately written as page output. The write action is pushed inside the function definitions to avoid allocation of intermediate results.
adamc@552 2480
adamc@552 2481 \subsection{MonoUntangle, MonoShake}
adamc@552 2482
adamc@552 2483 Fuse often creates more opportunities to remove spurious mutual recursion.
adamc@552 2484
adamc@552 2485 \subsection{Pathcheck}
adamc@552 2486
adamc@552 2487 The compiler checks that no link or action name has been used more than once.
adamc@552 2488
adamc@552 2489 \subsection{Cjrize}
adamc@552 2490
adamc@552 2491 The program is translated to what is more or less a subset of C. If any use of functions as data remains at this point, the compiler will complain.
adamc@552 2492
adamc@552 2493 \subsection{C Compilation and Linking}
adamc@552 2494
adam@1523 2495 The output of the last phase is pretty-printed as C source code and passed to the C compiler.
adamc@552 2496
adamc@552 2497
as@1564 2498 \end{document}