annotate doc/manual.tex @ 2123:1218daa14279

Document new infix operators
author Adam Chlipala <adam@chlipala.net>
date Thu, 05 Mar 2015 14:58:34 -0500
parents 6700f3700328
children 15d46eb02570
rev   line source
adamc@524 1 \documentclass{article}
adamc@554 2 \usepackage{fullpage,amsmath,amssymb,proof,url}
rmbruijn@1568 3 \usepackage[T1]{fontenc}
vshabanoff@1765 4 \usepackage{ae,aecompl}
adamc@524 5 \newcommand{\cd}[1]{\texttt{#1}}
adamc@524 6 \newcommand{\mt}[1]{\mathsf{#1}}
adamc@524 7
adamc@524 8 \newcommand{\rc}{+ \hspace{-.075in} + \;}
adam@2107 9 \newcommand{\rcut}{\; \texttt{-{}-} \;}
adam@2107 10 \newcommand{\rcutM}{\; \texttt{-{}-{}-} \;}
adamc@524 11
adamc@524 12 \begin{document}
adamc@524 13
adamc@524 14 \title{The Ur/Web Manual}
adamc@524 15 \author{Adam Chlipala}
adamc@524 16
adamc@524 17 \maketitle
adamc@524 18
adamc@540 19 \tableofcontents
adamc@540 20
adamc@554 21
adamc@554 22 \section{Introduction}
adamc@554 23
adam@1797 24 \emph{Ur} is a programming language designed to introduce richer type system features into functional programming in the tradition of ML and Haskell. Ur is functional, pure, statically typed, and strict. Ur supports a powerful kind of \emph{metaprogramming} based on \emph{type-level computation with type-level records}.
adamc@554 25
adamc@554 26 \emph{Ur/Web} is Ur plus a special standard library and associated rules for parsing and optimization. Ur/Web supports construction of dynamic web applications backed by SQL databases. The signature of the standard library is such that well-typed Ur/Web programs ``don't go wrong'' in a very broad sense. Not only do they not crash during particular page generations, but they also may not:
adamc@554 27
adamc@554 28 \begin{itemize}
adamc@554 29 \item Suffer from any kinds of code-injection attacks
adamc@554 30 \item Return invalid HTML
adamc@554 31 \item Contain dead intra-application links
adamc@554 32 \item Have mismatches between HTML forms and the fields expected by their handlers
adamc@652 33 \item Include client-side code that makes incorrect assumptions about the ``AJAX''-style services that the remote web server provides
adamc@554 34 \item Attempt invalid SQL queries
adamc@652 35 \item Use improper marshaling or unmarshaling in communication with SQL databases or between browsers and web servers
adamc@554 36 \end{itemize}
adamc@554 37
adamc@554 38 This type safety is just the foundation of the Ur/Web methodology. It is also possible to use metaprogramming to build significant application pieces by analysis of type structure. For instance, the demo includes an ML-style functor for building an admin interface for an arbitrary SQL table. The type system guarantees that the admin interface sub-application that comes out will always be free of the above-listed bugs, no matter which well-typed table description is given as input.
adamc@554 39
adamc@652 40 The Ur/Web compiler also produces very efficient object code that does not use garbage collection. These compiled programs will often be even more efficient than what most programmers would bother to write in C. The compiler also generates JavaScript versions of client-side code, with no need to write those parts of applications in a different language.
adamc@554 41
adamc@554 42 \medskip
adamc@554 43
adamc@554 44 The official web site for Ur is:
adamc@554 45 \begin{center}
adamc@554 46 \url{http://www.impredicative.com/ur/}
adamc@554 47 \end{center}
adamc@554 48
adamc@555 49
adamc@555 50 \section{Installation}
adamc@555 51
adamc@555 52 If you are lucky, then the following standard command sequence will suffice for installation, in a directory to which you have unpacked the latest distribution tarball.
adamc@555 53
adamc@555 54 \begin{verbatim}
adamc@555 55 ./configure
adamc@555 56 make
adamc@555 57 sudo make install
adamc@555 58 \end{verbatim}
adamc@555 59
adam@1523 60 Some other packages must be installed for the above to work. At a minimum, you need a standard UNIX shell, with standard UNIX tools like sed and GCC (or an alternate C compiler) in your execution path; MLton, the whole-program optimizing compiler for Standard ML; and the development files for the OpenSSL C library. As of this writing, in the ``testing'' version of Debian Linux, this command will install the more uncommon of these dependencies:
adamc@896 61 \begin{verbatim}
adam@1368 62 apt-get install mlton libssl-dev
adamc@896 63 \end{verbatim}
adamc@555 64
adam@2016 65 Note that, like the Ur/Web compiler, MLton is a whole-program optimizing compiler, so it frequently requires much more memory than old-fashioned compilers do. Expect building Ur/Web with MLton to require not much less than a gigabyte of RAM. If a \texttt{mlton} invocation ends suspiciously, the most likely explanation is that it has exhausted available memory.
adam@2016 66
adamc@896 67 To build programs that access SQL databases, you also need one of these client libraries for supported backends.
adamc@555 68 \begin{verbatim}
adam@1960 69 apt-get install libpq-dev libmysqlclient-dev libsqlite3-dev
adamc@555 70 \end{verbatim}
adamc@555 71
adamc@555 72 It is also possible to access the modules of the Ur/Web compiler interactively, within Standard ML of New Jersey. To install the prerequisites in Debian testing:
adamc@555 73 \begin{verbatim}
adamc@555 74 apt-get install smlnj libsmlnj-smlnj ml-yacc ml-lpt
adamc@555 75 \end{verbatim}
adamc@555 76
adam@2016 77 To begin an interactive session with the Ur compiler modules, run \texttt{make smlnj}, and then, from within an \texttt{sml} session, run \texttt{CM.make "src/urweb.cm";}. The \texttt{Compiler} module is the main entry point, and you can find its signature in \texttt{src/compiler.sig}.
adamc@555 78
adamc@896 79 To run an SQL-backed application with a backend besides SQLite, you will probably want to install one of these servers.
adamc@555 80
adamc@555 81 \begin{verbatim}
adam@1960 82 apt-get install postgresql mysql-server
adamc@555 83 \end{verbatim}
adamc@555 84
adamc@555 85 To use the Emacs mode, you must have a modern Emacs installed. We assume that you already know how to do this, if you're in the business of looking for an Emacs mode. The demo generation facility of the compiler will also call out to Emacs to syntax-highlight code, and that process depends on the \texttt{htmlize} module, which can be installed in Debian testing via:
adamc@555 86
adamc@555 87 \begin{verbatim}
adamc@555 88 apt-get install emacs-goodies-el
adamc@555 89 \end{verbatim}
adamc@555 90
adam@1441 91 If you don't want to install the Emacs mode, run \texttt{./configure} with the argument \texttt{--without-emacs}.
adam@1441 92
adam@1523 93 Even with the right packages installed, configuration and building might fail to work. After you run \texttt{./configure}, you will see the values of some named environment variables printed. You may need to adjust these values to get proper installation for your system. To change a value, store your preferred alternative in the corresponding UNIX environment variable, before running \texttt{./configure}. For instance, here is how to change the list of extra arguments that the Ur/Web compiler will pass to the C compiler and linker on every invocation. Some older GCC versions need this setting to mask a bug in function inlining.
adamc@555 94
adamc@555 95 \begin{verbatim}
adam@1523 96 CCARGS=-fno-inline ./configure
adamc@555 97 \end{verbatim}
adamc@555 98
adam@1523 99 Since the author is still getting a handle on the GNU Autotools that provide the build system, you may need to do some further work to get started, especially in environments with significant differences from Linux (where most testing is done). The variables \texttt{PGHEADER}, \texttt{MSHEADER}, and \texttt{SQHEADER} may be used to set the proper C header files to include for the development libraries of PostgreSQL, MySQL, and SQLite, respectively. To get libpq to link, one OS X user reported setting \texttt{CCARGS="-I/opt/local/include -L/opt/local/lib/postgresql84"}, after creating a symbolic link with \texttt{ln -s /opt/local/include/postgresql84 /opt/local/include/postgresql}.
adamc@555 100
adamc@555 101 The Emacs mode can be set to autoload by adding the following to your \texttt{.emacs} file.
adamc@555 102
adamc@555 103 \begin{verbatim}
adamc@555 104 (add-to-list 'load-path "/usr/local/share/emacs/site-lisp/urweb-mode")
adamc@555 105 (load "urweb-mode-startup")
adamc@555 106 \end{verbatim}
adamc@555 107
adamc@555 108 Change the path in the first line if you chose a different Emacs installation path during configuration.
adamc@555 109
adamc@555 110
adamc@556 111 \section{Command-Line Compiler}
adamc@556 112
adam@1604 113 \subsection{\label{cl}Project Files}
adamc@556 114
adamc@556 115 The basic inputs to the \texttt{urweb} compiler are project files, which have the extension \texttt{.urp}. Here is a sample \texttt{.urp} file.
adamc@556 116
adamc@556 117 \begin{verbatim}
adamc@556 118 database dbname=test
adamc@556 119 sql crud1.sql
adamc@556 120
adamc@556 121 crud
adamc@556 122 crud1
adamc@556 123 \end{verbatim}
adamc@556 124
adamc@556 125 The \texttt{database} line gives the database information string to pass to libpq. In this case, the string only says to connect to a local database named \texttt{test}.
adamc@556 126
adamc@556 127 The \texttt{sql} line asks for an SQL source file to be generated, giving the commands to run to create the tables and sequences that this application expects to find. After building this \texttt{.urp} file, the following commands could be used to initialize the database, assuming that the current UNIX user exists as a Postgres user with database creation privileges:
adamc@556 128
adamc@556 129 \begin{verbatim}
adamc@556 130 createdb test
adamc@556 131 psql -f crud1.sql test
adamc@556 132 \end{verbatim}
adamc@556 133
adam@1331 134 A blank line separates the named directives from a list of modules to include in the project. Any line may contain a shell-script-style comment, where any suffix of a line starting at a hash character \texttt{\#} is ignored.
adamc@556 135
adamc@556 136 For each entry \texttt{M} in the module list, the file \texttt{M.urs} is included in the project if it exists, and the file \texttt{M.ur} must exist and is always included.
adamc@556 137
adamc@783 138 Here is the complete list of directive forms. ``FFI'' stands for ``foreign function interface,'' Ur's facility for interaction between Ur programs and C and JavaScript libraries.
adamc@783 139 \begin{itemize}
adam@1799 140 \item \texttt{[allow|deny] [url|mime|requestHeader|responseHeader|env] PATTERN} registers a rule governing which URLs, MIME types, HTTP request headers, HTTP response headers, or environment variable names are allowed to appear explicitly in this application. The first such rule to match a name determines the verdict. If \texttt{PATTERN} ends in \texttt{*}, it is interpreted as a prefix rule. Otherwise, a string must match it exactly.
adam@1400 141 \item \texttt{alwaysInline PATH} requests that every call to the referenced function be inlined. Section \ref{structure} explains how functions are assigned path strings.
adam@1462 142 \item \texttt{benignEffectful Module.ident} registers an FFI function or transaction as having side effects. The optimizer avoids removing, moving, or duplicating calls to such functions. Every effectful FFI function must be registered, or the optimizer may make invalid transformations. This version of the \texttt{effectful} directive registers that this function only has side effects that remain local to a single page generation.
adamc@783 143 \item \texttt{clientOnly Module.ident} registers an FFI function or transaction that may only be run in client browsers.
adam@1881 144 \item \texttt{clientToServer Module.ident} adds FFI type \texttt{Module.ident} to the list of types that are OK to marshal from clients to servers. Values like XML trees and SQL queries are hard to marshal without introducing expensive validity checks, so it's easier to ensure that the server never trusts clients to send such values. The file \texttt{include/urweb/urweb\_cpp.h} shows examples of the C support functions that are required of any type that may be marshalled. These include \texttt{attrify}, \texttt{urlify}, and \texttt{unurlify} functions.
adam@1816 145 \item \texttt{coreInline TREESIZE} sets how many nodes the AST of a function definition may have before the optimizer stops trying hard to inline calls to that function. (This is one of two options for one of two intermediate languages within the compiler.)
adamc@783 146 \item \texttt{database DBSTRING} sets the string to pass to libpq to open a database connection.
adamc@783 147 \item \texttt{debug} saves some intermediate C files, which is mostly useful to help in debugging the compiler itself.
adam@1878 148 \item \texttt{effectful Module.ident} registers an FFI function or transaction as having side effects. The optimizer avoids removing, moving, or duplicating calls to such functions. This is the default behavior for \texttt{transaction}-based types.
adam@2046 149 \item \texttt{exe FILENAME} sets the filename to which to write the output executable. The default for file \texttt{P.urp} is \texttt{P.exe}.
adam@2046 150 \item \texttt{file URI FILENAME} asks for the application executable to respond to requests for \texttt{URI} by serving a snapshot of the contents of \texttt{FILENAME} as of compile time. That is, the file contents are baked into the executable. System file \texttt{/etc/mime.types} is consulted (again, at compile time) to figure out the right MIME type to suggest in the HTTP response.
adam@1881 151 \item \texttt{ffi FILENAME} reads the file \texttt{FILENAME.urs} to determine the interface to a new FFI module. The name of the module is calculated from \texttt{FILENAME} in the same way as for normal source files. See the files \texttt{include/urweb/urweb\_cpp.h} and \texttt{src/c/urweb.c} for examples of C headers and implementations for FFI modules. In general, every type or value \texttt{Module.ident} becomes \texttt{uw\_Module\_ident} in C.
adam@1956 152 \item \texttt{html5} activates work-in-progress support for generating HTML5 instead of XHTML. For now, this option only affects the first few tokens on any page, which are always the same.
adamc@1099 153 \item \texttt{include FILENAME} adds \texttt{FILENAME} to the list of files to be \texttt{\#include}d in C sources. This is most useful for interfacing with new FFI modules.
adamc@783 154 \item \texttt{jsFunc Module.ident=name} gives the JavaScript name of an FFI value.
adamc@1089 155 \item \texttt{library FILENAME} parses \texttt{FILENAME.urp} and merges its contents with the rest of the current file's contents. If \texttt{FILENAME.urp} doesn't exist, the compiler also tries \texttt{FILENAME/lib.urp}.
adam@1309 156 \item \texttt{limit class num} sets a resource usage limit for generated applications. The limit \texttt{class} will be set to the non-negative integer \texttt{num}. The classes are:
adam@1309 157 \begin{itemize}
adam@1309 158 \item \texttt{cleanup}: maximum number of cleanup operations (e.g., entries recording the need to deallocate certain temporary objects) that may be active at once per request
adam@1850 159 \item \texttt{clients}: maximum number of simultaneous connections to one application by web clients waiting for new asynchronous messages sent with \texttt{Basis.send}
adam@1850 160 \item \texttt{database}: maximum size of a database file (currently only used by SQLite, which interprets the parameter as a number of pages, where page size is itself a quantity configurable in SQLite)
adam@1309 161 \item \texttt{deltas}: maximum number of messages sendable in a single request handler with \texttt{Basis.send}
adam@1309 162 \item \texttt{globals}: maximum number of global variables that FFI libraries may set in a single request context
adam@1309 163 \item \texttt{headers}: maximum size (in bytes) of per-request buffer used to hold HTTP headers for generated pages
adam@1797 164 \item \texttt{heap}: maximum size (in bytes) of per-request heap for dynamically allocated data
adam@1309 165 \item \texttt{inputs}: maximum number of top-level form fields per request
adam@1309 166 \item \texttt{messages}: maximum size (in bytes) of per-request buffer used to hold a single outgoing message sent with \texttt{Basis.send}
adam@1309 167 \item \texttt{page}: maximum size (in bytes) of per-request buffer used to hold HTML content of generated pages
adam@1309 168 \item \texttt{script}: maximum size (in bytes) of per-request buffer used to hold JavaScript content of generated pages
adam@1309 169 \item \texttt{subinputs}: maximum number of form fields per request, excluding top-level fields
adam@1309 170 \item \texttt{time}: maximum running time of a single page request, in units of approximately 0.1 seconds
adam@1309 171 \item \texttt{transactionals}: maximum number of custom transactional actions (e.g., sending an e-mail) that may be run in a single page generation
adam@1309 172 \end{itemize}
adam@1523 173 \item \texttt{link FILENAME} adds \texttt{FILENAME} to the list of files to be passed to the linker at the end of compilation. This is most useful for importing extra libraries needed by new FFI modules.
adam@1725 174 \item \texttt{linker CMD} sets \texttt{CMD} as the command line prefix to use for linking C object files. The command line will be completed with a space-separated list of \texttt{.o} and \texttt{.a} files, \texttt{-L} and \texttt{-l} flags, and finally with a \texttt{-o} flag to set the location where the executable should be written.
adam@1332 175 \item \texttt{minHeap NUMBYTES} sets the initial size for thread-local heaps used in handling requests. These heaps grow automatically as needed (up to any maximum set with \texttt{limit}), but each regrow requires restarting the request handling process.
adam@1816 176 \item \texttt{monoInline TREESIZE} sets how many nodes the AST of a function definition may have before the optimizer stops trying hard to inline calls to that function. (This is one of two options for one of two intermediate languages within the compiler.)
adam@1966 177 \item \texttt{neverInline PATH} requests that no call to the referenced function be inlined. Section \ref{structure} explains how functions are assigned path strings.
adam@1953 178 \item \texttt{noMangleSql} avoids adding a \texttt{uw\_} prefix in front of each identifier in SQL. With this experimental feature, the burden is on the programmer to avoid naming tables or columns after SQL keywords!
adam@1478 179 \item \texttt{noXsrfProtection URIPREFIX} turns off automatic cross-site request forgery protection for the page handler identified by the given URI prefix. This will avoid checking cryptographic signatures on cookies, which is generally a reasonable idea for some pages, such as login pages that are going to discard all old cookie values, anyway.
adam@1297 180 \item \texttt{onError Module.var} changes the handling of fatal application errors. Instead of displaying a default, ugly error 500 page, the error page will be generated by calling function \texttt{Module.var} on a piece of XML representing the error message. The error handler should have type $\mt{xbody} \to \mt{transaction} \; \mt{page}$. Note that the error handler \emph{cannot} be in the application's main module, since that would register it as explicitly callable via URLs.
adamc@852 181 \item \texttt{path NAME=VALUE} creates a mapping from \texttt{NAME} to \texttt{VALUE}. This mapping may be used at the beginnings of filesystem paths given to various other configuration directives. A path like \texttt{\$NAME/rest} is expanded to \texttt{VALUE/rest}. There is an initial mapping from the empty name (for paths like \texttt{\$/list}) to the directory where the Ur/Web standard library is installed. If you accept the default \texttt{configure} options, this directory is \texttt{/usr/local/lib/urweb/ur}.
adamc@783 182 \item \texttt{prefix PREFIX} sets the prefix included before every URI within the generated application. The default is \texttt{/}.
adamc@783 183 \item \texttt{profile} generates an executable that may be used with gprof.
adam@1752 184 \item \texttt{rewrite KIND FROM TO} gives a rule for rewriting canonical module paths. For instance, the canonical path of a page may be \texttt{Mod1.Mod2.mypage}, while you would rather the page were accessed via a URL containing only \texttt{page}. The directive \texttt{rewrite url Mod1/Mod2/mypage page} would accomplish that. The possible values of \texttt{KIND} determine which kinds of objects are affected. The kind \texttt{all} matches any object, and \texttt{url} matches page URLs. The kinds \texttt{table}, \texttt{sequence}, and \texttt{view} match those sorts of SQL entities, and \texttt{relation} matches any of those three. \texttt{cookie} matches HTTP cookies, and \texttt{style} matches CSS class names. If \texttt{FROM} ends in \texttt{/*}, it is interpreted as a prefix matching rule, and rewriting occurs by replacing only the appropriate prefix of a path with \texttt{TO}. The \texttt{TO} field may be left empty to express the idea of deleting a prefix. For instance, \texttt{rewrite url Main/*} will strip all \texttt{Main/} prefixes from URLs. While the actual external names of relations and styles have parts separated by underscores instead of slashes, all rewrite rules must be written in terms of slashes. An optional suffix of \cd{[-]} for a \cd{rewrite} directive asks to additionally replace all \cd{\_} characters with \cd{-} characters, which can be handy for, e.g., interfacing with an off-the-shelf CSS library that prefers hyphens over underscores.
adamc@1183 185 \item \texttt{safeGet URI} asks to allow the page handler assigned this canonical URI prefix to cause persistent side effects, even if accessed via an HTTP \cd{GET} request.
adamc@783 186 \item \texttt{script URL} adds \texttt{URL} to the list of extra JavaScript files to be included at the beginning of any page that uses JavaScript. This is most useful for importing JavaScript versions of functions found in new FFI modules.
adamc@783 187 \item \texttt{serverOnly Module.ident} registers an FFI function or transaction that may only be run on the server.
adamc@1164 188 \item \texttt{sigfile PATH} sets a path where your application should look for a key to use in cryptographic signing. This is used to prevent cross-site request forgery attacks for any form handler that both reads a cookie and creates side effects. If the referenced file doesn't exist, an application will create it and read its saved data on future invocations. You can also initialize the file manually with any contents at least 16 bytes long; the first 16 bytes will be treated as the key.
adamc@783 189 \item \texttt{sql FILENAME} sets where to write an SQL file with the commands to create the expected database schema. The default is not to create such a file.
adam@1629 190 \item \texttt{timeFormat FMT} accepts a time format string, as processed by the POSIX C function \texttt{strftime()}. This controls the default rendering of $\mt{time}$ values, via the $\mt{show}$ instance for $\mt{time}$.
adamc@783 191 \item \texttt{timeout N} sets to \texttt{N} seconds the amount of time that the generated server will wait after the last contact from a client before determining that that client has exited the application. Clients that remain active will take the timeout setting into account in determining how often to ping the server, so it only makes sense to set a high timeout to cope with browser and network delays and failures. Higher timeouts can lead to more unnecessary client information taking up memory on the server. The timeout goes unused by any page that doesn't involve the \texttt{recv} function, since the server only needs to store per-client information for clients that receive asynchronous messages.
adamc@783 192 \end{itemize}
adamc@701 193
adamc@701 194
adamc@557 195 \subsection{Building an Application}
adamc@557 196
adamc@557 197 To compile project \texttt{P.urp}, simply run
adamc@557 198 \begin{verbatim}
adamc@557 199 urweb P
adamc@557 200 \end{verbatim}
adamc@1198 201 The output executable is a standalone web server. Run it with the command-line argument \texttt{-h} to see which options it takes. If the project file lists a database, the web server will attempt to connect to that database on startup. See Section \ref{structure} for an explanation of the URI mapping convention, which determines how each page of your application may be accessed via URLs.
adamc@557 202
adamc@557 203 To time how long the different compiler phases run, without generating an executable, run
adamc@557 204 \begin{verbatim}
adamc@557 205 urweb -timing P
adamc@557 206 \end{verbatim}
adamc@557 207
adamc@1086 208 To stop the compilation process after type-checking, run
adamc@1086 209 \begin{verbatim}
adamc@1086 210 urweb -tc P
adamc@1086 211 \end{verbatim}
adam@1530 212 It is often worthwhile to run \cd{urweb} in this mode, because later phases of compilation can take significantly longer than type-checking alone, and the type checker catches many errors that would traditionally be found through debugging a running application.
adamc@1086 213
adam@1745 214 A related option is \cd{-dumpTypes}, which, as long as parsing succeeds, outputs to stdout a summary of the kinds of all identifiers declared with \cd{con} and the types of all identifiers declared with \cd{val} or \cd{val rec}. This information is dumped even if there are errors during type inference. Compiler error messages go to stderr, not stdout, so it is easy to distinguish the two kinds of output programmatically. A refined version of this option is \cd{-dumpTypesOnError}, which only has an effect when there are compilation errors.
adam@1531 215
adam@1723 216 It may be useful to combine another option \cd{-unifyMore} with \cd{-dumpTypes}. Ur/Web type inference proceeds in a series of stages, where the first is standard Hindley-Milner type inference as in ML, and the later phases add more complex aspects. By default, an error detected in one phase cuts off the execution of later phases. However, the later phases might still determine more values of unification variables. These value choices might be ``misguided,'' since earlier phases have not come up with reasonable types at a coarser detail level; but the unification decisions may still be useful for debugging and program understanding. So, if a run with \cd{-dumpTypes} leaves unification variables undetermined in positions where you would like to see best-effort guesses instead, consider \cd{-unifyMore}. Note that \cd{-unifyMore} has no effect when type inference succeeds fully, but it may lead to many more error messages when inference fails.
adam@1723 217
adamc@1170 218 To output information relevant to CSS stylesheets (and not finish regular compilation), run
adamc@1170 219 \begin{verbatim}
adamc@1170 220 urweb -css P
adamc@1170 221 \end{verbatim}
adamc@1170 222 The first output line is a list of categories of CSS properties that would be worth setting on the document body. The remaining lines are space-separated pairs of CSS class names and categories of properties that would be worth setting for that class. The category codes are divided into two varieties. Codes that reveal properties of a tag or its (recursive) children are \cd{B} for block-level elements, \cd{C} for table captions, \cd{D} for table cells, \cd{L} for lists, and \cd{T} for tables. Codes that reveal properties of the precise tag that uses a class are \cd{b} for block-level elements, \cd{t} for tables, \cd{d} for table cells, \cd{-} for table rows, \cd{H} for the possibility to set a height, \cd{N} for non-replaced inline-level elements, \cd{R} for replaced inline elements, and \cd{W} for the possibility to set a width.
adamc@1170 223
adam@1733 224 Ur/Web type inference can take a significant amount of time, so it can be helpful to cache type-inferred versions of source files. This mode can be activated by running
adam@1733 225 \begin{verbatim}
adam@1733 226 urweb daemon start
adam@1733 227 \end{verbatim}
adam@1733 228 Further \cd{urweb} invocations in the same working directory will send requests to a background daemon process that reuses type inference results whenever possible, tracking source file dependencies and modification times. To stop the background daemon, run
adam@1733 229 \begin{verbatim}
adam@1733 230 urweb daemon stop
adam@1733 231 \end{verbatim}
adam@1733 232 Communication happens via a UNIX domain socket in file \cd{.urweb\_daemon} in the working directory.
adam@1733 233
adam@1733 234 \medskip
adam@1733 235
adamc@896 236 Some other command-line parameters are accepted:
adamc@896 237 \begin{itemize}
ezyang@1739 238 \item \texttt{-boot}: Run Ur/Web from a build tree (and not from a system install). This is useful if you're testing the compiler and don't want to install it. It forces generation of statically linked executables.
ezyang@1739 239
adam@1875 240 \item \texttt{-ccompiler <PROGRAM>}: Select an alternative C compiler to call with command lines in compiling Ur/Web applications. (It's possible to set the default compiler as part of the \texttt{configure} process, but it may sometimes be useful to override the default.)
adam@1875 241
adamc@896 242 \item \texttt{-db <DBSTRING>}: Set database connection information, using the format expected by Postgres's \texttt{PQconnectdb()}, which is \texttt{name1=value1 ... nameN=valueN}. The same format is also parsed and used to discover connection parameters for MySQL and SQLite. The only significant settings for MySQL are \texttt{host}, \texttt{hostaddr}, \texttt{port}, \texttt{dbname}, \texttt{user}, and \texttt{password}. The only significant setting for SQLite is \texttt{dbname}, which is interpreted as the filesystem path to the database. Additionally, when using SQLite, a database string may be just a file path.
adamc@896 243
adamc@896 244 \item \texttt{-dbms [postgres|mysql|sqlite]}: Sets the database backend to use.
adamc@896 245 \begin{itemize}
adamc@896 246 \item \texttt{postgres}: This is PostgreSQL, the default. Among the supported engines, Postgres best matches the design philosophy behind Ur, with a focus on consistent views of data, even in the face of much concurrency. Different database engines have different quirks of SQL syntax. Ur/Web tends to use Postgres idioms where there are choices to be made, though the compiler translates SQL as needed to support other backends.
adamc@896 247
adamc@896 248 A command sequence like this can initialize a Postgres database, using a file \texttt{app.sql} generated by the compiler:
adamc@896 249 \begin{verbatim}
adamc@896 250 createdb app
adamc@896 251 psql -f app.sql app
adamc@896 252 \end{verbatim}
adamc@896 253
adamc@896 254 \item \texttt{mysql}: This is MySQL, another popular relational database engine that uses persistent server processes. Ur/Web needs transactions to function properly. Many installations of MySQL use non-transactional storage engines by default. Ur/Web generates table definitions that try to use MySQL's InnoDB engine, which supports transactions. You can edit the first line of a generated \texttt{.sql} file to change this behavior, but it really is true that Ur/Web applications will exhibit bizarre behavior if you choose an engine that ignores transaction commands.
adamc@896 255
adamc@896 256 A command sequence like this can initialize a MySQL database:
adamc@896 257 \begin{verbatim}
adamc@896 258 echo "CREATE DATABASE app" | mysql
adamc@896 259 mysql -D app <app.sql
adamc@896 260 \end{verbatim}
adamc@896 261
adamc@896 262 \item \texttt{sqlite}: This is SQLite, a simple filesystem-based transactional database engine. With this backend, Ur/Web applications can run without any additional server processes. The other engines are generally preferred for large-workload performance and full admin feature sets, while SQLite is popular for its low resource footprint and ease of set-up.
adamc@896 263
adamc@896 264 A command like this can initialize an SQLite database:
adamc@896 265 \begin{verbatim}
adamc@896 266 sqlite3 path/to/database/file <app.sql
adamc@896 267 \end{verbatim}
adamc@896 268 \end{itemize}
adamc@896 269
adam@1693 270 \item \texttt{-dumpSource}: When compilation fails, output to stderr the complete source code of the last intermediate program before the compilation phase that signaled the error. (Warning: these outputs can be very long and aren't especially optimized for readability!)
adam@1693 271
adam@1995 272 \item \texttt{-explainEmbed}: Trigger more verbose error messages about inability to embed server-side values in client-side code.
adam@1995 273
adam@1309 274 \item \texttt{-limit class num}: Equivalent to the \texttt{limit} directive from \texttt{.urp} files
adam@1309 275
adam@1850 276 \item \texttt{-moduleOf FILENAME}: Prints the Ur/Web module name corresponding to source file \texttt{FILENAME}, exiting immediately afterward.
adam@1850 277
adamc@896 278 \item \texttt{-output FILENAME}: Set where the application executable is written.
adamc@896 279
adamc@1127 280 \item \texttt{-path NAME VALUE}: Set the value of path variable \texttt{\$NAME} to \texttt{VALUE}, for use in \texttt{.urp} files.
adamc@1127 281
adam@1335 282 \item \texttt{-prefix PREFIX}: Equivalent to the \texttt{prefix} directive from \texttt{.urp} files
adam@1335 283
adam@1875 284 \item \texttt{-print-ccompiler}: Print the C compiler being used.
adam@1875 285
adam@1923 286 \item \texttt{-print-cinclude}: Print the name of the directory where C/C++ header files are installed.
adam@1923 287
adam@1753 288 \item \texttt{-protocol [http|cgi|fastcgi|static]}: Set the protocol that the generated application speaks.
adamc@896 289 \begin{itemize}
adamc@896 290 \item \texttt{http}: This is the default. It is for building standalone web servers that can be accessed by web browsers directly.
adamc@896 291
adamc@896 292 \item \texttt{cgi}: This is the classic protocol that web servers use to generate dynamic content by spawning new processes. While Ur/Web programs may in general use message-passing with the \texttt{send} and \texttt{recv} functions, that functionality is not yet supported in CGI, since CGI needs a fresh process for each request, and message-passing needs to use persistent sockets to deliver messages.
adamc@896 293
adamc@896 294 Since Ur/Web treats paths in an unusual way, a configuration line like this one can be used to configure an application that was built with URL prefix \texttt{/Hello}:
adamc@896 295 \begin{verbatim}
adamc@896 296 ScriptAlias /Hello /path/to/hello.exe
adamc@896 297 \end{verbatim}
adamc@896 298
adamc@1163 299 A different method can be used for, e.g., a shared host, where you can only configure Apache via \texttt{.htaccess} files. Drop the generated executable into your web space and mark it as CGI somehow. For instance, if the script ends in \texttt{.exe}, you might put this in \texttt{.htaccess} in the directory containing the script:
adamc@1163 300 \begin{verbatim}
adamc@1163 301 Options +ExecCGI
adamc@1163 302 AddHandler cgi-script .exe
adamc@1163 303 \end{verbatim}
adamc@1163 304
adamc@1163 305 Additionally, make sure that Ur/Web knows the proper URI prefix for your script. For instance, if the script is accessed via \texttt{http://somewhere/dir/script.exe}, then include this line in your \texttt{.urp} file:
adamc@1163 306 \begin{verbatim}
adamc@1163 307 prefix /dir/script.exe/
adamc@1163 308 \end{verbatim}
adamc@1163 309
adamc@1163 310 To access the \texttt{foo} function in the \texttt{Bar} module, you would then hit \texttt{http://somewhere/dir/script.exe/Bar/foo}.
adamc@1163 311
adamc@1164 312 If your application contains form handlers that read cookies before causing side effects, then you will need to use the \texttt{sigfile} \texttt{.urp} directive, too.
adamc@1164 313
adamc@896 314 \item \texttt{fastcgi}: This is a newer protocol inspired by CGI, wherein web servers can start and reuse persistent external processes to generate dynamic content. Ur/Web doesn't implement the whole protocol, but Ur/Web's support has been tested to work with the \texttt{mod\_fastcgi}s of Apache and lighttpd.
adamc@896 315
adamc@896 316 To configure a FastCGI program with Apache, one could combine the above \texttt{ScriptAlias} line with a line like this:
adamc@896 317 \begin{verbatim}
adamc@896 318 FastCgiServer /path/to/hello.exe -idle-timeout 99999
adamc@896 319 \end{verbatim}
adamc@896 320 The idle timeout is only important for applications that use message-passing. Client connections may go long periods without receiving messages, and Apache tries to be helpful and garbage collect them in such cases. To prevent that behavior, we specify how long a connection must be idle to be collected.
adamc@896 321
adam@1753 322 Also see the discussion of the \cd{prefix} directive for CGI above; similar configuration is likely to be necessary for FastCGI. An Ur/Web application won't generally run correctly if it doesn't have a unique URI prefix assigned to it and configured with \cd{prefix}.
adam@1753 323
adamc@896 324 Here is some lighttpd configuration for the same application.
adamc@896 325 \begin{verbatim}
adamc@896 326 fastcgi.server = (
adamc@896 327 "/Hello/" =>
adamc@896 328 (( "bin-path" => "/path/to/hello.exe",
adamc@896 329 "socket" => "/tmp/hello",
adamc@896 330 "check-local" => "disable",
adamc@896 331 "docroot" => "/",
adamc@896 332 "max-procs" => "1"
adamc@896 333 ))
adamc@896 334 )
adamc@896 335 \end{verbatim}
adamc@896 336 The least obvious requirement is setting \texttt{max-procs} to 1, so that lighttpd doesn't try to multiplex requests across multiple external processes. This is required for message-passing applications, where a single database of client connections is maintained within a multi-threaded server process. Multiple processes may, however, be used safely with applications that don't use message-passing.
adamc@896 337
adamc@896 338 A FastCGI process reads the environment variable \texttt{URWEB\_NUM\_THREADS} to determine how many threads to spawn for handling client requests. The default is 1.
adam@1509 339
adam@1509 340 \item \texttt{static}: This protocol may be used to generate static web pages from Ur/Web code. The output executable expects a single command-line argument, giving the URI of a page to generate. For instance, this argument might be \cd{/main}, in which case a static HTTP response for that page will be written to stdout.
adamc@896 341 \end{itemize}
adamc@896 342
adamc@1127 343 \item \texttt{-root Name PATH}: Trigger an alternate module convention for all source files found in directory \texttt{PATH} or any of its subdirectories. Any file \texttt{PATH/foo.ur} defines a module \texttt{Name.Foo} instead of the usual \texttt{Foo}. Any file \texttt{PATH/subdir/foo.ur} defines a module \texttt{Name.Subdir.Foo}, and so on for arbitrary nesting of subdirectories.
adamc@1127 344
adamc@1164 345 \item \texttt{-sigfile PATH}: Same as the \texttt{sigfile} directive in \texttt{.urp} files
adamc@1164 346
adamc@896 347 \item \texttt{-sql FILENAME}: Set where a database set-up SQL script is written.
adamc@1095 348
adamc@1095 349 \item \texttt{-static}: Link the runtime system statically. The default is to link against dynamic libraries.
adam@1961 350
adam@1961 351 \item \texttt{-stop PHASE}: Stop compilation after the named phase, printing the intermediate program to stderr. This flag is mainly useful for debugging the Ur/Web compiler itself.
adamc@896 352 \end{itemize}
adamc@896 353
adam@1297 354 There is an additional convenience method for invoking \texttt{urweb}. If the main argument is \texttt{FOO}, and \texttt{FOO.ur} exists but \texttt{FOO.urp} doesn't, then the invocation is interpreted as if called on a \texttt{.urp} file containing \texttt{FOO} as its only main entry, with an additional \texttt{rewrite all FOO/*} directive.
adamc@556 355
adam@1509 356 \subsection{Tutorial Formatting}
adam@1509 357
adam@1509 358 The Ur/Web compiler also supports rendering of nice HTML tutorials from Ur source files, when invoked like \cd{urweb -tutorial DIR}. The directory \cd{DIR} is examined for files whose names end in \cd{.ur}. Every such file is translated into a \cd{.html} version.
adam@1509 359
adam@1509 360 These input files follow normal Ur syntax, with a few exceptions:
adam@1509 361 \begin{itemize}
adam@1509 362 \item The first line must be a comment like \cd{(* TITLE *)}, where \cd{TITLE} is a string of your choice that will be used as the title of the output page.
adam@1509 363 \item While most code in the output HTML will be formatted as a monospaced code listing, text in regular Ur comments is formatted as normal English text.
adam@1509 364 \item A comment like \cd{(* * HEADING *)} introduces a section heading, with text \cd{HEADING} of your choice.
adam@1509 365 \item To include both a rendering of an Ur expression and a pretty-printed version of its value, bracket the expression with \cd{(* begin eval *)} and \cd{(* end *)}. The result of expression evaluation is pretty-printed with \cd{show}, so the expression type must belong to that type class.
adam@1509 366 \item To include code that should not be shown in the tutorial (e.g., to add a \cd{show} instance to use with \cd{eval}), bracket the code with \cd{(* begin hide *)} and \cd{(* end *)}.
adam@1509 367 \end{itemize}
adam@1509 368
adam@1509 369 A word of warning: as for demo generation, tutorial generation calls Emacs to syntax-highlight Ur code.
adam@1509 370
adam@1522 371 \subsection{Run-Time Options}
adam@1522 372
adam@1522 373 Compiled applications consult a few environment variables to modify their behavior:
adam@1522 374
adam@1522 375 \begin{itemize}
adam@1522 376 \item \cd{URWEB\_NUM\_THREADS}: alternative to the \cd{-t} command-line argument (currently used only by FastCGI)
adam@1522 377 \item \cd{URWEB\_STACK\_SIZE}: size of per-thread stacks, in bytes
as@1564 378 \item \cd{URWEB\_PQ\_CON}: when using PostgreSQL, overrides the compiled-in connection string
adam@1522 379 \end{itemize}
adam@1522 380
adam@2042 381 \subsection{A Word of Warning on Heuristic Compilation}
adam@2042 382
adam@2042 383 For server-side code, Ur/Web follows an unusual compilation model, where not all type-correct programs can be compiled successfully, especially when using functions as data not known until runtime. See Section \ref{phases} for more detail.
adam@2042 384
adam@1509 385
adamc@529 386 \section{Ur Syntax}
adamc@529 387
adamc@784 388 In this section, we describe the syntax of Ur, deferring to a later section discussion of most of the syntax specific to SQL and XML. The sole exceptions are the declaration forms for relations, cookies, and styles.
adamc@524 389
adamc@524 390 \subsection{Lexical Conventions}
adamc@524 391
adamc@524 392 We give the Ur language definition in \LaTeX $\;$ math mode, since that is prettier than monospaced ASCII. The corresponding ASCII syntax can be read off directly. Here is the key for mapping math symbols to ASCII character sequences.
adamc@524 393
adamc@524 394 \begin{center}
adamc@524 395 \begin{tabular}{rl}
adamc@524 396 \textbf{\LaTeX} & \textbf{ASCII} \\
adamc@524 397 $\to$ & \cd{->} \\
adam@1687 398 $\longrightarrow$ & \cd{-{}->} \\
adamc@524 399 $\times$ & \cd{*} \\
adamc@524 400 $\lambda$ & \cd{fn} \\
adamc@524 401 $\Rightarrow$ & \cd{=>} \\
adamc@652 402 $\Longrightarrow$ & \cd{==>} \\
adamc@529 403 $\neq$ & \cd{<>} \\
adamc@529 404 $\leq$ & \cd{<=} \\
adamc@529 405 $\geq$ & \cd{>=} \\
adamc@524 406 \\
adamc@524 407 $x$ & Normal textual identifier, not beginning with an uppercase letter \\
adamc@525 408 $X$ & Normal textual identifier, beginning with an uppercase letter \\
adamc@524 409 \end{tabular}
adamc@524 410 \end{center}
adamc@524 411
adamc@525 412 We often write syntax like $e^*$ to indicate zero or more copies of $e$, $e^+$ to indicate one or more copies, and $e,^*$ and $e,^+$ to indicate multiple copies separated by commas. Another separator may be used in place of a comma. The $e$ term may be surrounded by parentheses to indicate grouping; those parentheses should not be included in the actual ASCII.
adamc@524 413
adamc@873 414 We write $\ell$ for literals of the primitive types, for the most part following C conventions. There are $\mt{int}$, $\mt{float}$, $\mt{char}$, and $\mt{string}$ literals. Character literals follow the SML convention instead of the C convention, written like \texttt{\#"a"} instead of \texttt{'a'}.
adamc@526 415
adamc@527 416 This version of the manual doesn't include operator precedences; see \texttt{src/urweb.grm} for that.
adamc@527 417
adam@1297 418 As in the ML language family, the syntax \texttt{(* ... *)} is used for (nestable) comments. Within XML literals, Ur/Web also supports the usual \texttt{<!-- ... -->} XML comments.
adam@1297 419
adamc@552 420 \subsection{\label{core}Core Syntax}
adamc@524 421
adamc@524 422 \emph{Kinds} classify types and other compile-time-only entities. Each kind in the grammar is listed with a description of the sort of data it classifies.
adamc@524 423 $$\begin{array}{rrcll}
adamc@524 424 \textrm{Kinds} & \kappa &::=& \mt{Type} & \textrm{proper types} \\
adamc@525 425 &&& \mt{Unit} & \textrm{the trivial constructor} \\
adamc@525 426 &&& \mt{Name} & \textrm{field names} \\
adamc@525 427 &&& \kappa \to \kappa & \textrm{type-level functions} \\
adamc@525 428 &&& \{\kappa\} & \textrm{type-level records} \\
adamc@525 429 &&& (\kappa\times^+) & \textrm{type-level tuples} \\
adamc@652 430 &&& X & \textrm{variable} \\
adam@1574 431 &&& X \longrightarrow \kappa & \textrm{kind-polymorphic type-level function} \\
adamc@529 432 &&& \_\_ & \textrm{wildcard} \\
adamc@525 433 &&& (\kappa) & \textrm{explicit precedence} \\
adamc@524 434 \end{array}$$
adamc@524 435
adamc@524 436 Ur supports several different notions of functions that take types as arguments. These arguments can be either implicit, causing them to be inferred at use sites; or explicit, forcing them to be specified manually at use sites. There is a common explicitness annotation convention applied at the definitions of and in the types of such functions.
adamc@524 437 $$\begin{array}{rrcll}
adamc@524 438 \textrm{Explicitness} & ? &::=& :: & \textrm{explicit} \\
adamc@558 439 &&& ::: & \textrm{implicit}
adamc@524 440 \end{array}$$
adamc@524 441
adamc@524 442 \emph{Constructors} are the main class of compile-time-only data. They include proper types and are classified by kinds.
adamc@524 443 $$\begin{array}{rrcll}
adamc@524 444 \textrm{Constructors} & c, \tau &::=& (c) :: \kappa & \textrm{kind annotation} \\
adamc@530 445 &&& \hat{x} & \textrm{constructor variable} \\
adamc@524 446 \\
adamc@525 447 &&& \tau \to \tau & \textrm{function type} \\
adamc@525 448 &&& x \; ? \; \kappa \to \tau & \textrm{polymorphic function type} \\
adamc@652 449 &&& X \longrightarrow \tau & \textrm{kind-polymorphic function type} \\
adamc@525 450 &&& \$ c & \textrm{record type} \\
adamc@524 451 \\
adamc@525 452 &&& c \; c & \textrm{type-level function application} \\
adamc@530 453 &&& \lambda x \; :: \; \kappa \Rightarrow c & \textrm{type-level function abstraction} \\
adamc@524 454 \\
adamc@652 455 &&& X \Longrightarrow c & \textrm{type-level kind-polymorphic function abstraction} \\
adamc@655 456 &&& c [\kappa] & \textrm{type-level kind-polymorphic function application} \\
adamc@652 457 \\
adamc@525 458 &&& () & \textrm{type-level unit} \\
adamc@525 459 &&& \#X & \textrm{field name} \\
adamc@524 460 \\
adamc@525 461 &&& [(c = c)^*] & \textrm{known-length type-level record} \\
adamc@525 462 &&& c \rc c & \textrm{type-level record concatenation} \\
adamc@652 463 &&& \mt{map} & \textrm{type-level record map} \\
adamc@524 464 \\
adamc@558 465 &&& (c,^+) & \textrm{type-level tuple} \\
adamc@525 466 &&& c.n & \textrm{type-level tuple projection ($n \in \mathbb N^+$)} \\
adamc@524 467 \\
adamc@652 468 &&& [c \sim c] \Rightarrow \tau & \textrm{guarded type} \\
adamc@524 469 \\
adamc@529 470 &&& \_ :: \kappa & \textrm{wildcard} \\
adamc@525 471 &&& (c) & \textrm{explicit precedence} \\
adamc@530 472 \\
adamc@530 473 \textrm{Qualified uncapitalized variables} & \hat{x} &::=& x & \textrm{not from a module} \\
adamc@530 474 &&& M.x & \textrm{projection from a module} \\
adamc@525 475 \end{array}$$
adamc@525 476
adam@1579 477 We include both abstraction and application for kind polymorphism, but applications are only inferred internally; they may not be written explicitly in source programs. Also, in the ``known-length type-level record'' form, in $c_1 = c_2$ terms, the parser currently only allows $c_1$ to be of the forms $X$ (as a shorthand for $\#X$) or $x$, or a natural number to stand for the corresponding field name (e.g., for tuples).
adamc@655 478
adamc@525 479 Modules of the module system are described by \emph{signatures}.
adamc@525 480 $$\begin{array}{rrcll}
adamc@525 481 \textrm{Signatures} & S &::=& \mt{sig} \; s^* \; \mt{end} & \textrm{constant} \\
adamc@525 482 &&& X & \textrm{variable} \\
adamc@525 483 &&& \mt{functor}(X : S) : S & \textrm{functor} \\
adamc@529 484 &&& S \; \mt{where} \; \mt{con} \; x = c & \textrm{concretizing an abstract constructor} \\
adamc@525 485 &&& M.X & \textrm{projection from a module} \\
adamc@525 486 \\
adamc@525 487 \textrm{Signature items} & s &::=& \mt{con} \; x :: \kappa & \textrm{abstract constructor} \\
adamc@525 488 &&& \mt{con} \; x :: \kappa = c & \textrm{concrete constructor} \\
adamc@528 489 &&& \mt{datatype} \; x \; x^* = dc\mid^+ & \textrm{algebraic datatype definition} \\
adamc@529 490 &&& \mt{datatype} \; x = \mt{datatype} \; M.x & \textrm{algebraic datatype import} \\
adamc@525 491 &&& \mt{val} \; x : \tau & \textrm{value} \\
adamc@525 492 &&& \mt{structure} \; X : S & \textrm{sub-module} \\
adamc@525 493 &&& \mt{signature} \; X = S & \textrm{sub-signature} \\
adamc@525 494 &&& \mt{include} \; S & \textrm{signature inclusion} \\
adamc@525 495 &&& \mt{constraint} \; c \sim c & \textrm{record disjointness constraint} \\
adamc@654 496 &&& \mt{class} \; x :: \kappa & \textrm{abstract constructor class} \\
adamc@654 497 &&& \mt{class} \; x :: \kappa = c & \textrm{concrete constructor class} \\
adamc@525 498 \\
adamc@525 499 \textrm{Datatype constructors} & dc &::=& X & \textrm{nullary constructor} \\
adamc@525 500 &&& X \; \mt{of} \; \tau & \textrm{unary constructor} \\
adamc@524 501 \end{array}$$
adamc@524 502
adamc@526 503 \emph{Patterns} are used to describe structural conditions on expressions, such that expressions may be tested against patterns, generating assignments to pattern variables if successful.
adamc@526 504 $$\begin{array}{rrcll}
adamc@526 505 \textrm{Patterns} & p &::=& \_ & \textrm{wildcard} \\
adamc@526 506 &&& x & \textrm{variable} \\
adamc@526 507 &&& \ell & \textrm{constant} \\
adamc@526 508 &&& \hat{X} & \textrm{nullary constructor} \\
adamc@526 509 &&& \hat{X} \; p & \textrm{unary constructor} \\
adamc@526 510 &&& \{(x = p,)^*\} & \textrm{rigid record pattern} \\
adamc@526 511 &&& \{(x = p,)^+, \ldots\} & \textrm{flexible record pattern} \\
adamc@852 512 &&& p : \tau & \textrm{type annotation} \\
adamc@527 513 &&& (p) & \textrm{explicit precedence} \\
adamc@526 514 \\
adamc@529 515 \textrm{Qualified capitalized variables} & \hat{X} &::=& X & \textrm{not from a module} \\
adamc@526 516 &&& M.X & \textrm{projection from a module} \\
adamc@526 517 \end{array}$$
adamc@526 518
adamc@527 519 \emph{Expressions} are the main run-time entities, corresponding to both ``expressions'' and ``statements'' in mainstream imperative languages.
adamc@527 520 $$\begin{array}{rrcll}
adamc@527 521 \textrm{Expressions} & e &::=& e : \tau & \textrm{type annotation} \\
adamc@529 522 &&& \hat{x} & \textrm{variable} \\
adamc@529 523 &&& \hat{X} & \textrm{datatype constructor} \\
adamc@527 524 &&& \ell & \textrm{constant} \\
adamc@527 525 \\
adamc@527 526 &&& e \; e & \textrm{function application} \\
adamc@527 527 &&& \lambda x : \tau \Rightarrow e & \textrm{function abstraction} \\
adamc@527 528 &&& e [c] & \textrm{polymorphic function application} \\
adamc@852 529 &&& \lambda [x \; ? \; \kappa] \Rightarrow e & \textrm{polymorphic function abstraction} \\
adamc@655 530 &&& e [\kappa] & \textrm{kind-polymorphic function application} \\
adamc@652 531 &&& X \Longrightarrow e & \textrm{kind-polymorphic function abstraction} \\
adamc@527 532 \\
adamc@527 533 &&& \{(c = e,)^*\} & \textrm{known-length record} \\
adamc@527 534 &&& e.c & \textrm{record field projection} \\
adamc@527 535 &&& e \rc e & \textrm{record concatenation} \\
adamc@527 536 &&& e \rcut c & \textrm{removal of a single record field} \\
adamc@527 537 &&& e \rcutM c & \textrm{removal of multiple record fields} \\
adamc@527 538 \\
adamc@527 539 &&& \mt{let} \; ed^* \; \mt{in} \; e \; \mt{end} & \textrm{local definitions} \\
adamc@527 540 \\
adamc@527 541 &&& \mt{case} \; e \; \mt{of} \; (p \Rightarrow e|)^+ & \textrm{pattern matching} \\
adamc@527 542 \\
adamc@654 543 &&& \lambda [c \sim c] \Rightarrow e & \textrm{guarded expression abstraction} \\
adamc@654 544 &&& e \; ! & \textrm{guarded expression application} \\
adamc@527 545 \\
adamc@527 546 &&& \_ & \textrm{wildcard} \\
adamc@527 547 &&& (e) & \textrm{explicit precedence} \\
adamc@527 548 \\
adamc@527 549 \textrm{Local declarations} & ed &::=& \cd{val} \; x : \tau = e & \textrm{non-recursive value} \\
adam@1797 550 &&& \cd{val} \; \cd{rec} \; (x : \tau = e \; \cd{and})^+ & \textrm{mutually recursive values} \\
adamc@527 551 \end{array}$$
adamc@527 552
adamc@655 553 As with constructors, we include both abstraction and application for kind polymorphism, but applications are only inferred internally.
adamc@655 554
adamc@528 555 \emph{Declarations} primarily bring new symbols into context.
adamc@528 556 $$\begin{array}{rrcll}
adamc@528 557 \textrm{Declarations} & d &::=& \mt{con} \; x :: \kappa = c & \textrm{constructor synonym} \\
adamc@528 558 &&& \mt{datatype} \; x \; x^* = dc\mid^+ & \textrm{algebraic datatype definition} \\
adamc@529 559 &&& \mt{datatype} \; x = \mt{datatype} \; M.x & \textrm{algebraic datatype import} \\
adamc@528 560 &&& \mt{val} \; x : \tau = e & \textrm{value} \\
adam@1797 561 &&& \mt{val} \; \cd{rec} \; (x : \tau = e \; \mt{and})^+ & \textrm{mutually recursive values} \\
adamc@528 562 &&& \mt{structure} \; X : S = M & \textrm{module definition} \\
adamc@528 563 &&& \mt{signature} \; X = S & \textrm{signature definition} \\
adamc@528 564 &&& \mt{open} \; M & \textrm{module inclusion} \\
adamc@528 565 &&& \mt{constraint} \; c \sim c & \textrm{record disjointness constraint} \\
adamc@528 566 &&& \mt{open} \; \mt{constraints} \; M & \textrm{inclusion of just the constraints from a module} \\
adamc@528 567 &&& \mt{table} \; x : c & \textrm{SQL table} \\
adam@1594 568 &&& \mt{view} \; x = e & \textrm{SQL view} \\
adamc@528 569 &&& \mt{sequence} \; x & \textrm{SQL sequence} \\
adamc@535 570 &&& \mt{cookie} \; x : \tau & \textrm{HTTP cookie} \\
adamc@784 571 &&& \mt{style} \; x : \tau & \textrm{CSS class} \\
adamc@1085 572 &&& \mt{task} \; e = e & \textrm{recurring task} \\
adamc@528 573 \\
adamc@529 574 \textrm{Modules} & M &::=& \mt{struct} \; d^* \; \mt{end} & \textrm{constant} \\
adamc@529 575 &&& X & \textrm{variable} \\
adamc@529 576 &&& M.X & \textrm{projection} \\
adamc@529 577 &&& M(M) & \textrm{functor application} \\
adamc@529 578 &&& \mt{functor}(X : S) : S = M & \textrm{functor abstraction} \\
adamc@528 579 \end{array}$$
adamc@528 580
adamc@528 581 There are two kinds of Ur files. A file named $M\texttt{.ur}$ is an \emph{implementation file}, and it should contain a sequence of declarations $d^*$. A file named $M\texttt{.urs}$ is an \emph{interface file}; it must always have a matching $M\texttt{.ur}$ and should contain a sequence of signature items $s^*$. When both files are present, the overall effect is the same as a monolithic declaration $\mt{structure} \; M : \mt{sig} \; s^* \; \mt{end} = \mt{struct} \; d^* \; \mt{end}$. When no interface file is included, the overall effect is similar, with a signature for module $M$ being inferred rather than just checked against an interface.
adamc@527 582
adam@1594 583 We omit some extra possibilities in $\mt{table}$ syntax, deferring them to Section \ref{tables}. The concrete syntax of $\mt{view}$ declarations is also more complex than shown in the table above, with details deferred to Section \ref{tables}.
adamc@784 584
adamc@529 585 \subsection{Shorthands}
adamc@529 586
adamc@529 587 There are a variety of derived syntactic forms that elaborate into the core syntax from the last subsection. We will present the additional forms roughly following the order in which we presented the constructs that they elaborate into.
adamc@529 588
adamc@529 589 In many contexts where record fields are expected, like in a projection $e.c$, a constant field may be written as simply $X$, rather than $\#X$.
adamc@529 590
adamc@529 591 A record type may be written $\{(c = c,)^*\}$, which elaborates to $\$[(c = c,)^*]$.
adamc@529 592
adamc@533 593 The notation $[c_1, \ldots, c_n]$ is shorthand for $[c_1 = (), \ldots, c_n = ()]$.
adamc@533 594
adam@1350 595 A tuple type $\tau_1 \times \ldots \times \tau_n$ expands to a record type $\{1 : \tau_1, \ldots, n : \tau_n\}$, with natural numbers as field names. A tuple expression $(e_1, \ldots, e_n)$ expands to a record expression $\{1 = e_1, \ldots, n = e_n\}$. A tuple pattern $(p_1, \ldots, p_n)$ expands to a rigid record pattern $\{1 = p_1, \ldots, n = p_n\}$. Positive natural numbers may be used in most places where field names would be allowed.
adamc@529 596
adam@1687 597 The syntax $()$ expands to $\{\}$ as a pattern or expression.
adam@1687 598
adamc@852 599 In general, several adjacent $\lambda$ forms may be combined into one, and kind and type annotations may be omitted, in which case they are implicitly included as wildcards. More formally, for constructor-level abstractions, we can define a new non-terminal $b ::= x \mid (x :: \kappa) \mid X$ and allow composite abstractions of the form $\lambda b^+ \Rightarrow c$, elaborating into the obvious sequence of one core $\lambda$ per element of $b^+$.
adamc@529 600
adam@1574 601 Further, the signature item or declaration syntax $\mt{con} \; x \; b^+ = c$ is shorthand for wrapping of the appropriate $\lambda$s around the righthand side $c$. The $b$ elements may not include $X$, and there may also be an optional $:: \kappa$ before the $=$.
adam@1574 602
adam@1306 603 In some contexts, the parser isn't happy with token sequences like $x :: \_$, to indicate a constructor variable of wildcard kind. In such cases, write the second two tokens as $::\hspace{-.05in}\_$, with no intervening spaces. Analogous syntax $:::\hspace{-.05in}\_$ is available for implicit constructor arguments.
adam@1302 604
adamc@529 605 For any signature item or declaration that defines some entity to be equal to $A$ with classification annotation $B$ (e.g., $\mt{val} \; x : B = A$), $B$ and the preceding colon (or similar punctuation) may be omitted, in which case it is filled in as a wildcard.
adamc@529 606
adamc@529 607 A signature item or declaration $\mt{type} \; x$ or $\mt{type} \; x = \tau$ is elaborated into $\mt{con} \; x :: \mt{Type}$ or $\mt{con} \; x :: \mt{Type} = \tau$, respectively.
adamc@529 608
adamc@654 609 A signature item or declaration $\mt{class} \; x = \lambda y \Rightarrow c$ may be abbreviated $\mt{class} \; x \; y = c$.
adamc@529 610
adam@1738 611 Handling of implicit and explicit constructor arguments may be tweaked with some prefixes to variable references. An expression $@x$ is a version of $x$ where all type class instance and disjointness arguments have been made explicit. (For the purposes of this paragraph, the type family $\mt{Top.folder}$ is a type class, though it isn't marked as one by the usual means; and any record type is considered to be a type class instance type when every field's type is a type class instance type.) An expression $@@x$ achieves the same effect, additionally making explicit all implicit constructor arguments. The default is that implicit arguments are inserted automatically after any reference to a variable, or after any application of a variable to one or more arguments. For such an expression, implicit wildcard arguments are added for the longest prefix of the expression's type consisting only of implicit polymorphism, type class instances, and disjointness obligations. The same syntax works for variables projected out of modules and for capitalized variables (datatype constructors).
adamc@529 612
adamc@852 613 At the expression level, an analogue is available of the composite $\lambda$ form for constructors. We define the language of binders as $b ::= p \mid [x] \mid [x \; ? \; \kappa] \mid X \mid [c \sim c]$. A lone variable $[x]$ stands for an implicit constructor variable of unspecified kind. The standard value-level function binder is recovered as the type-annotated pattern form $x : \tau$. It is a compile-time error to include a pattern $p$ that does not match every value of the appropriate type.
adamc@529 614
adamc@852 615 A local $\mt{val}$ declaration may bind a pattern instead of just a plain variable. As for function arguments, only irrefutable patterns are legal.
adamc@852 616
adam@1797 617 The keyword $\mt{fun}$ is a shorthand for $\mt{val} \; \mt{rec}$ that allows arguments to be specified before the equal sign in the definition of each mutually recursive function, as in SML. Each curried argument must follow the grammar of the $b$ non-terminal introduced two paragraphs ago. A $\mt{fun}$ declaration is elaborated into a version that adds additional $\lambda$s to the fronts of the righthand sides, as appropriate.
adamc@529 618
adamc@529 619 A signature item $\mt{functor} \; X_1 \; (X_2 : S_1) : S_2$ is elaborated into $\mt{structure} \; X_1 : \mt{functor}(X_2 : S_1) : S_2$. A declaration $\mt{functor} \; X_1 \; (X_2 : S_1) : S_2 = M$ is elaborated into $\mt{structure} \; X_1 : \mt{functor}(X_2 : S_1) : S_2 = \mt{functor}(X_2 : S_1) : S_2 = M$.
adamc@529 620
adamc@852 621 An $\mt{open} \; \mt{constraints}$ declaration is implicitly inserted for the argument of every functor at the beginning of the functor body. For every declaration of the form $\mt{structure} \; X : S = \mt{struct} \ldots \mt{end}$, an $\mt{open} \; \mt{constraints} \; X$ declaration is implicitly inserted immediately afterward.
adamc@852 622
adamc@853 623 A declaration $\mt{table} \; x : \{(c = c,)^*\}$ is elaborated into $\mt{table} \; x : [(c = c,)^*]$.
adamc@529 624
adamc@529 625 The syntax $\mt{where} \; \mt{type}$ is an alternate form of $\mt{where} \; \mt{con}$.
adamc@529 626
adamc@529 627 The syntax $\mt{if} \; e \; \mt{then} \; e_1 \; \mt{else} \; e_2$ expands to $\mt{case} \; e \; \mt{of} \; \mt{Basis}.\mt{True} \Rightarrow e_1 \mid \mt{Basis}.\mt{False} \Rightarrow e_2$.
adamc@529 628
adamc@529 629 There are infix operator syntaxes for a number of functions defined in the $\mt{Basis}$ module. There is $=$ for $\mt{eq}$, $\neq$ for $\mt{neq}$, $-$ for $\mt{neg}$ (as a prefix operator) and $\mt{minus}$, $+$ for $\mt{plus}$, $\times$ for $\mt{times}$, $/$ for $\mt{div}$, $\%$ for $\mt{mod}$, $<$ for $\mt{lt}$, $\leq$ for $\mt{le}$, $>$ for $\mt{gt}$, and $\geq$ for $\mt{ge}$.
adamc@529 630
adamc@784 631 A signature item $\mt{table} \; x : c$ is shorthand for $\mt{val} \; x : \mt{Basis}.\mt{sql\_table} \; c \; []$. $\mt{view} \; x : c$ is shorthand for $\mt{val} \; x : \mt{Basis}.\mt{sql\_view} \; c$, $\mt{sequence} \; x$ is short for $\mt{val} \; x : \mt{Basis}.\mt{sql\_sequence}$. $\mt{cookie} \; x : \tau$ is shorthand for $\mt{val} \; x : \mt{Basis}.\mt{http\_cookie} \; \tau$, and $\mt{style} \; x$ is shorthand for $\mt{val} \; x : \mt{Basis}.\mt{css\_class}$.
adamc@529 632
adam@2025 633 It is possible to write a $\mt{let}$ expression with its constituents in reverse order, along the lines of Haskell's \cd{where}. An expression $\mt{let} \; e \; \mt{where} \; ed^* \; \mt{end}$ desugars to $\mt{let} \; ed^* \; \mt{in} \; e \; \mt{end}$.
adam@2025 634
adam@2123 635 Ur/Web also includes a few more infix operators: $f \; \texttt{<|} \; x$ desugars to $f \; x$, $x \; \texttt{|>} \; f$ to $f \; x$, $f \; \texttt{<{}<{}<} \; g$ to $\mt{Top}.\mt{compose} \; f \; g$, and $g \; \texttt{>{}>{}>} \; f$ to $\mt{Top}.\mt{compose} \; f \; g$. (The latter two are doing function composition in the usual way.) Furthermore, any identifier may be changed into an infix operator by placing it between backticks, e.g. a silly way to do addition is $x \; \texttt{`}\mt{plus}\texttt{`} \; y$ instead of $x + y$.
adam@2123 636
adamc@530 637
adamc@530 638 \section{Static Semantics}
adamc@530 639
adamc@530 640 In this section, we give a declarative presentation of Ur's typing rules and related judgments. Inference is the subject of the next section; here, we assume that an oracle has filled in all wildcards with concrete values.
adamc@530 641
adam@1891 642 The notations used here are the standard ones of programming language semantics. They are probably the most effective way to convey this information. At the same time, most Ur/Web users can probably get by \emph{without} knowing the contents of this section! If you're interested in diving into the details of Ur typing but are unfamiliar with ``inference rule notation,'' I recommend the following book:
adam@1891 643 \begin{quote}
adam@1891 644 Benjamin C. Pierce, \emph{Types and Programming Languages}, MIT Press, 2002.
adam@1891 645 \end{quote}
adam@1891 646
adamc@530 647 Since there is significant mutual recursion among the judgments, we introduce them all before beginning to give rules. We use the same variety of contexts throughout this section, implicitly introducing new sorts of context entries as needed.
adamc@530 648 \begin{itemize}
adamc@655 649 \item $\Gamma \vdash \kappa$ expresses kind well-formedness.
adamc@530 650 \item $\Gamma \vdash c :: \kappa$ assigns a kind to a constructor in a context.
adamc@530 651 \item $\Gamma \vdash c \sim c$ proves the disjointness of two record constructors; that is, that they share no field names. We overload the judgment to apply to pairs of field names as well.
adamc@531 652 \item $\Gamma \vdash c \hookrightarrow C$ proves that record constructor $c$ decomposes into set $C$ of field names and record constructors.
adamc@530 653 \item $\Gamma \vdash c \equiv c$ proves the computational equivalence of two constructors. This is often called a \emph{definitional equality} in the world of type theory.
adamc@530 654 \item $\Gamma \vdash e : \tau$ is a standard typing judgment.
adamc@534 655 \item $\Gamma \vdash p \leadsto \Gamma; \tau$ combines typing of patterns with calculation of which new variables they bind.
adamc@537 656 \item $\Gamma \vdash d \leadsto \Gamma$ expresses how a declaration modifies a context. We overload this judgment to apply to sequences of declarations, as well as to signature items and sequences of signature items.
adamc@537 657 \item $\Gamma \vdash S \equiv S$ is the signature equivalence judgment.
adamc@536 658 \item $\Gamma \vdash S \leq S$ is the signature compatibility judgment. We write $\Gamma \vdash S$ as shorthand for $\Gamma \vdash S \leq S$.
adamc@530 659 \item $\Gamma \vdash M : S$ is the module signature checking judgment.
adamc@537 660 \item $\mt{proj}(M, \overline{s}, V)$ is a partial function for projecting a signature item from $\overline{s}$, given the module $M$ that we project from. $V$ may be $\mt{con} \; x$, $\mt{datatype} \; x$, $\mt{val} \; x$, $\mt{signature} \; X$, or $\mt{structure} \; X$. The parameter $M$ is needed because the projected signature item may refer to other items from $\overline{s}$.
adamc@539 661 \item $\mt{selfify}(M, \overline{s})$ adds information to signature items $\overline{s}$ to reflect the fact that we are concerned with the particular module $M$. This function is overloaded to work over individual signature items as well.
adamc@530 662 \end{itemize}
adamc@530 663
adamc@655 664
adamc@655 665 \subsection{Kind Well-Formedness}
adamc@655 666
adamc@655 667 $$\infer{\Gamma \vdash \mt{Type}}{}
adamc@655 668 \quad \infer{\Gamma \vdash \mt{Unit}}{}
adamc@655 669 \quad \infer{\Gamma \vdash \mt{Name}}{}
adamc@655 670 \quad \infer{\Gamma \vdash \kappa_1 \to \kappa_2}{
adamc@655 671 \Gamma \vdash \kappa_1
adamc@655 672 & \Gamma \vdash \kappa_2
adamc@655 673 }
adamc@655 674 \quad \infer{\Gamma \vdash \{\kappa\}}{
adamc@655 675 \Gamma \vdash \kappa
adamc@655 676 }
adamc@655 677 \quad \infer{\Gamma \vdash (\kappa_1 \times \ldots \times \kappa_n)}{
adamc@655 678 \forall i: \Gamma \vdash \kappa_i
adamc@655 679 }$$
adamc@655 680
adamc@655 681 $$\infer{\Gamma \vdash X}{
adamc@655 682 X \in \Gamma
adamc@655 683 }
adamc@655 684 \quad \infer{\Gamma \vdash X \longrightarrow \kappa}{
adamc@655 685 \Gamma, X \vdash \kappa
adamc@655 686 }$$
adamc@655 687
adamc@530 688 \subsection{Kinding}
adamc@530 689
adamc@655 690 We write $[X \mapsto \kappa_1]\kappa_2$ for capture-avoiding substitution of $\kappa_1$ for $X$ in $\kappa_2$.
adamc@655 691
adamc@530 692 $$\infer{\Gamma \vdash (c) :: \kappa :: \kappa}{
adamc@530 693 \Gamma \vdash c :: \kappa
adamc@530 694 }
adamc@530 695 \quad \infer{\Gamma \vdash x :: \kappa}{
adamc@530 696 x :: \kappa \in \Gamma
adamc@530 697 }
adamc@530 698 \quad \infer{\Gamma \vdash x :: \kappa}{
adamc@530 699 x :: \kappa = c \in \Gamma
adamc@530 700 }$$
adamc@530 701
adamc@530 702 $$\infer{\Gamma \vdash M.x :: \kappa}{
adamc@537 703 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 704 & \mt{proj}(M, \overline{s}, \mt{con} \; x) = \kappa
adamc@530 705 }
adamc@530 706 \quad \infer{\Gamma \vdash M.x :: \kappa}{
adamc@537 707 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 708 & \mt{proj}(M, \overline{s}, \mt{con} \; x) = (\kappa, c)
adamc@530 709 }$$
adamc@530 710
adamc@530 711 $$\infer{\Gamma \vdash \tau_1 \to \tau_2 :: \mt{Type}}{
adamc@530 712 \Gamma \vdash \tau_1 :: \mt{Type}
adamc@530 713 & \Gamma \vdash \tau_2 :: \mt{Type}
adamc@530 714 }
adamc@530 715 \quad \infer{\Gamma \vdash x \; ? \: \kappa \to \tau :: \mt{Type}}{
adamc@530 716 \Gamma, x :: \kappa \vdash \tau :: \mt{Type}
adamc@530 717 }
adamc@655 718 \quad \infer{\Gamma \vdash X \longrightarrow \tau :: \mt{Type}}{
adamc@655 719 \Gamma, X \vdash \tau :: \mt{Type}
adamc@655 720 }
adamc@530 721 \quad \infer{\Gamma \vdash \$c :: \mt{Type}}{
adamc@530 722 \Gamma \vdash c :: \{\mt{Type}\}
adamc@530 723 }$$
adamc@530 724
adamc@530 725 $$\infer{\Gamma \vdash c_1 \; c_2 :: \kappa_2}{
adamc@530 726 \Gamma \vdash c_1 :: \kappa_1 \to \kappa_2
adamc@530 727 & \Gamma \vdash c_2 :: \kappa_1
adamc@530 728 }
adamc@530 729 \quad \infer{\Gamma \vdash \lambda x \; :: \; \kappa_1 \Rightarrow c :: \kappa_1 \to \kappa_2}{
adamc@530 730 \Gamma, x :: \kappa_1 \vdash c :: \kappa_2
adamc@530 731 }$$
adamc@530 732
adamc@655 733 $$\infer{\Gamma \vdash c[\kappa'] :: [X \mapsto \kappa']\kappa}{
adamc@655 734 \Gamma \vdash c :: X \to \kappa
adamc@655 735 & \Gamma \vdash \kappa'
adamc@655 736 }
adamc@655 737 \quad \infer{\Gamma \vdash X \Longrightarrow c :: X \to \kappa}{
adamc@655 738 \Gamma, X \vdash c :: \kappa
adamc@655 739 }$$
adamc@655 740
adamc@530 741 $$\infer{\Gamma \vdash () :: \mt{Unit}}{}
adamc@530 742 \quad \infer{\Gamma \vdash \#X :: \mt{Name}}{}$$
adamc@530 743
adamc@530 744 $$\infer{\Gamma \vdash [\overline{c_i = c'_i}] :: \{\kappa\}}{
adamc@530 745 \forall i: \Gamma \vdash c_i : \mt{Name}
adamc@530 746 & \Gamma \vdash c'_i :: \kappa
adamc@530 747 & \forall i \neq j: \Gamma \vdash c_i \sim c_j
adamc@530 748 }
adamc@530 749 \quad \infer{\Gamma \vdash c_1 \rc c_2 :: \{\kappa\}}{
adamc@530 750 \Gamma \vdash c_1 :: \{\kappa\}
adamc@530 751 & \Gamma \vdash c_2 :: \{\kappa\}
adamc@530 752 & \Gamma \vdash c_1 \sim c_2
adamc@530 753 }$$
adamc@530 754
adamc@655 755 $$\infer{\Gamma \vdash \mt{map} :: (\kappa_1 \to \kappa_2) \to \{\kappa_1\} \to \{\kappa_2\}}{}$$
adamc@530 756
adamc@573 757 $$\infer{\Gamma \vdash (\overline c) :: (\kappa_1 \times \ldots \times \kappa_n)}{
adamc@573 758 \forall i: \Gamma \vdash c_i :: \kappa_i
adamc@530 759 }
adamc@573 760 \quad \infer{\Gamma \vdash c.i :: \kappa_i}{
adamc@573 761 \Gamma \vdash c :: (\kappa_1 \times \ldots \times \kappa_n)
adamc@530 762 }$$
adamc@530 763
adamc@655 764 $$\infer{\Gamma \vdash \lambda [c_1 \sim c_2] \Rightarrow \tau :: \mt{Type}}{
adamc@655 765 \Gamma \vdash c_1 :: \{\kappa\}
adamc@530 766 & \Gamma \vdash c_2 :: \{\kappa'\}
adamc@655 767 & \Gamma, c_1 \sim c_2 \vdash \tau :: \mt{Type}
adamc@530 768 }$$
adamc@530 769
adamc@531 770 \subsection{Record Disjointness}
adamc@531 771
adamc@531 772 $$\infer{\Gamma \vdash c_1 \sim c_2}{
adamc@558 773 \Gamma \vdash c_1 \hookrightarrow C_1
adamc@558 774 & \Gamma \vdash c_2 \hookrightarrow C_2
adamc@558 775 & \forall c'_1 \in C_1, c'_2 \in C_2: \Gamma \vdash c'_1 \sim c'_2
adamc@531 776 }
adamc@531 777 \quad \infer{\Gamma \vdash X \sim X'}{
adamc@531 778 X \neq X'
adamc@531 779 }$$
adamc@531 780
adamc@531 781 $$\infer{\Gamma \vdash c_1 \sim c_2}{
adamc@531 782 c'_1 \sim c'_2 \in \Gamma
adamc@558 783 & \Gamma \vdash c'_1 \hookrightarrow C_1
adamc@558 784 & \Gamma \vdash c'_2 \hookrightarrow C_2
adamc@558 785 & c_1 \in C_1
adamc@558 786 & c_2 \in C_2
adamc@531 787 }$$
adamc@531 788
adamc@531 789 $$\infer{\Gamma \vdash c \hookrightarrow \{c\}}{}
adamc@531 790 \quad \infer{\Gamma \vdash [\overline{c = c'}] \hookrightarrow \{\overline{c}\}}{}
adamc@531 791 \quad \infer{\Gamma \vdash c_1 \rc c_2 \hookrightarrow C_1 \cup C_2}{
adamc@531 792 \Gamma \vdash c_1 \hookrightarrow C_1
adamc@531 793 & \Gamma \vdash c_2 \hookrightarrow C_2
adamc@531 794 }
adamc@531 795 \quad \infer{\Gamma \vdash c \hookrightarrow C}{
adamc@531 796 \Gamma \vdash c \equiv c'
adamc@531 797 & \Gamma \vdash c' \hookrightarrow C
adamc@531 798 }
adamc@531 799 \quad \infer{\Gamma \vdash \mt{map} \; f \; c \hookrightarrow C}{
adamc@531 800 \Gamma \vdash c \hookrightarrow C
adamc@531 801 }$$
adamc@531 802
adamc@541 803 \subsection{\label{definitional}Definitional Equality}
adamc@532 804
adamc@655 805 We use $\mathcal C$ to stand for a one-hole context that, when filled, yields a constructor. The notation $\mathcal C[c]$ plugs $c$ into $\mathcal C$. We omit the standard definition of one-hole contexts. We write $[x \mapsto c_1]c_2$ for capture-avoiding substitution of $c_1$ for $x$ in $c_2$, with analogous notation for substituting a kind in a constructor.
adamc@532 806
adamc@532 807 $$\infer{\Gamma \vdash c \equiv c}{}
adamc@532 808 \quad \infer{\Gamma \vdash c_1 \equiv c_2}{
adamc@532 809 \Gamma \vdash c_2 \equiv c_1
adamc@532 810 }
adamc@532 811 \quad \infer{\Gamma \vdash c_1 \equiv c_3}{
adamc@532 812 \Gamma \vdash c_1 \equiv c_2
adamc@532 813 & \Gamma \vdash c_2 \equiv c_3
adamc@532 814 }
adamc@532 815 \quad \infer{\Gamma \vdash \mathcal C[c_1] \equiv \mathcal C[c_2]}{
adamc@532 816 \Gamma \vdash c_1 \equiv c_2
adamc@532 817 }$$
adamc@532 818
adamc@532 819 $$\infer{\Gamma \vdash x \equiv c}{
adamc@532 820 x :: \kappa = c \in \Gamma
adamc@532 821 }
adamc@532 822 \quad \infer{\Gamma \vdash M.x \equiv c}{
adamc@537 823 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 824 & \mt{proj}(M, \overline{s}, \mt{con} \; x) = (\kappa, c)
adamc@532 825 }
adamc@532 826 \quad \infer{\Gamma \vdash (\overline c).i \equiv c_i}{}$$
adamc@532 827
adamc@532 828 $$\infer{\Gamma \vdash (\lambda x :: \kappa \Rightarrow c) \; c' \equiv [x \mapsto c'] c}{}
adamc@655 829 \quad \infer{\Gamma \vdash (X \Longrightarrow c) [\kappa] \equiv [X \mapsto \kappa] c}{}$$
adamc@655 830
adamc@655 831 $$\infer{\Gamma \vdash c_1 \rc c_2 \equiv c_2 \rc c_1}{}
adamc@532 832 \quad \infer{\Gamma \vdash c_1 \rc (c_2 \rc c_3) \equiv (c_1 \rc c_2) \rc c_3}{}$$
adamc@532 833
adamc@532 834 $$\infer{\Gamma \vdash [] \rc c \equiv c}{}
adamc@532 835 \quad \infer{\Gamma \vdash [\overline{c_1 = c'_1}] \rc [\overline{c_2 = c'_2}] \equiv [\overline{c_1 = c'_1}, \overline{c_2 = c'_2}]}{}$$
adamc@532 836
adamc@655 837 $$\infer{\Gamma \vdash \mt{map} \; f \; [] \equiv []}{}
adamc@655 838 \quad \infer{\Gamma \vdash \mt{map} \; f \; ([c_1 = c_2] \rc c) \equiv [c_1 = f \; c_2] \rc \mt{map} \; f \; c}{}$$
adamc@532 839
adamc@532 840 $$\infer{\Gamma \vdash \mt{map} \; (\lambda x \Rightarrow x) \; c \equiv c}{}
adamc@655 841 \quad \infer{\Gamma \vdash \mt{map} \; f \; (\mt{map} \; f' \; c)
adamc@655 842 \equiv \mt{map} \; (\lambda x \Rightarrow f \; (f' \; x)) \; c}{}$$
adamc@532 843
adamc@532 844 $$\infer{\Gamma \vdash \mt{map} \; f \; (c_1 \rc c_2) \equiv \mt{map} \; f \; c_1 \rc \mt{map} \; f \; c_2}{}$$
adamc@531 845
adamc@534 846 \subsection{Expression Typing}
adamc@533 847
adamc@873 848 We assume the existence of a function $T$ assigning types to literal constants. It maps integer constants to $\mt{Basis}.\mt{int}$, float constants to $\mt{Basis}.\mt{float}$, character constants to $\mt{Basis}.\mt{char}$, and string constants to $\mt{Basis}.\mt{string}$.
adamc@533 849
adamc@533 850 We also refer to a function $\mathcal I$, such that $\mathcal I(\tau)$ ``uses an oracle'' to instantiate all constructor function arguments at the beginning of $\tau$ that are marked implicit; i.e., replace $x_1 ::: \kappa_1 \to \ldots \to x_n ::: \kappa_n \to \tau$ with $[x_1 \mapsto c_1]\ldots[x_n \mapsto c_n]\tau$, where the $c_i$s are inferred and $\tau$ does not start like $x ::: \kappa \to \tau'$.
adamc@533 851
adamc@533 852 $$\infer{\Gamma \vdash e : \tau : \tau}{
adamc@533 853 \Gamma \vdash e : \tau
adamc@533 854 }
adamc@533 855 \quad \infer{\Gamma \vdash e : \tau}{
adamc@533 856 \Gamma \vdash e : \tau'
adamc@533 857 & \Gamma \vdash \tau' \equiv \tau
adamc@533 858 }
adamc@533 859 \quad \infer{\Gamma \vdash \ell : T(\ell)}{}$$
adamc@533 860
adamc@533 861 $$\infer{\Gamma \vdash x : \mathcal I(\tau)}{
adamc@533 862 x : \tau \in \Gamma
adamc@533 863 }
adamc@533 864 \quad \infer{\Gamma \vdash M.x : \mathcal I(\tau)}{
adamc@537 865 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 866 & \mt{proj}(M, \overline{s}, \mt{val} \; x) = \tau
adamc@533 867 }
adamc@533 868 \quad \infer{\Gamma \vdash X : \mathcal I(\tau)}{
adamc@533 869 X : \tau \in \Gamma
adamc@533 870 }
adamc@533 871 \quad \infer{\Gamma \vdash M.X : \mathcal I(\tau)}{
adamc@537 872 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 873 & \mt{proj}(M, \overline{s}, \mt{val} \; X) = \tau
adamc@533 874 }$$
adamc@533 875
adamc@533 876 $$\infer{\Gamma \vdash e_1 \; e_2 : \tau_2}{
adamc@533 877 \Gamma \vdash e_1 : \tau_1 \to \tau_2
adamc@533 878 & \Gamma \vdash e_2 : \tau_1
adamc@533 879 }
adamc@533 880 \quad \infer{\Gamma \vdash \lambda x : \tau_1 \Rightarrow e : \tau_1 \to \tau_2}{
adamc@533 881 \Gamma, x : \tau_1 \vdash e : \tau_2
adamc@533 882 }$$
adamc@533 883
adamc@533 884 $$\infer{\Gamma \vdash e [c] : [x \mapsto c]\tau}{
adamc@533 885 \Gamma \vdash e : x :: \kappa \to \tau
adamc@533 886 & \Gamma \vdash c :: \kappa
adamc@533 887 }
adamc@852 888 \quad \infer{\Gamma \vdash \lambda [x \; ? \; \kappa] \Rightarrow e : x \; ? \; \kappa \to \tau}{
adamc@533 889 \Gamma, x :: \kappa \vdash e : \tau
adamc@533 890 }$$
adamc@533 891
adamc@655 892 $$\infer{\Gamma \vdash e [\kappa] : [X \mapsto \kappa]\tau}{
adamc@655 893 \Gamma \vdash e : X \longrightarrow \tau
adamc@655 894 & \Gamma \vdash \kappa
adamc@655 895 }
adamc@655 896 \quad \infer{\Gamma \vdash X \Longrightarrow e : X \longrightarrow \tau}{
adamc@655 897 \Gamma, X \vdash e : \tau
adamc@655 898 }$$
adamc@655 899
adamc@533 900 $$\infer{\Gamma \vdash \{\overline{c = e}\} : \{\overline{c : \tau}\}}{
adamc@533 901 \forall i: \Gamma \vdash c_i :: \mt{Name}
adamc@533 902 & \Gamma \vdash e_i : \tau_i
adamc@533 903 & \forall i \neq j: \Gamma \vdash c_i \sim c_j
adamc@533 904 }
adamc@533 905 \quad \infer{\Gamma \vdash e.c : \tau}{
adamc@533 906 \Gamma \vdash e : \$([c = \tau] \rc c')
adamc@533 907 }
adamc@533 908 \quad \infer{\Gamma \vdash e_1 \rc e_2 : \$(c_1 \rc c_2)}{
adamc@533 909 \Gamma \vdash e_1 : \$c_1
adamc@533 910 & \Gamma \vdash e_2 : \$c_2
adamc@573 911 & \Gamma \vdash c_1 \sim c_2
adamc@533 912 }$$
adamc@533 913
adamc@533 914 $$\infer{\Gamma \vdash e \rcut c : \$c'}{
adamc@533 915 \Gamma \vdash e : \$([c = \tau] \rc c')
adamc@533 916 }
adamc@533 917 \quad \infer{\Gamma \vdash e \rcutM c : \$c'}{
adamc@533 918 \Gamma \vdash e : \$(c \rc c')
adamc@533 919 }$$
adamc@533 920
adamc@533 921 $$\infer{\Gamma \vdash \mt{let} \; \overline{ed} \; \mt{in} \; e \; \mt{end} : \tau}{
adamc@533 922 \Gamma \vdash \overline{ed} \leadsto \Gamma'
adamc@533 923 & \Gamma' \vdash e : \tau
adamc@533 924 }
adamc@533 925 \quad \infer{\Gamma \vdash \mt{case} \; e \; \mt{of} \; \overline{p \Rightarrow e} : \tau}{
adamc@533 926 \forall i: \Gamma \vdash p_i \leadsto \Gamma_i, \tau'
adamc@533 927 & \Gamma_i \vdash e_i : \tau
adamc@533 928 }$$
adamc@533 929
adamc@573 930 $$\infer{\Gamma \vdash \lambda [c_1 \sim c_2] \Rightarrow e : \lambda [c_1 \sim c_2] \Rightarrow \tau}{
adamc@533 931 \Gamma \vdash c_1 :: \{\kappa\}
adamc@655 932 & \Gamma \vdash c_2 :: \{\kappa'\}
adamc@533 933 & \Gamma, c_1 \sim c_2 \vdash e : \tau
adamc@662 934 }
adamc@662 935 \quad \infer{\Gamma \vdash e \; ! : \tau}{
adamc@662 936 \Gamma \vdash e : [c_1 \sim c_2] \Rightarrow \tau
adamc@662 937 & \Gamma \vdash c_1 \sim c_2
adamc@533 938 }$$
adamc@533 939
adamc@534 940 \subsection{Pattern Typing}
adamc@534 941
adamc@534 942 $$\infer{\Gamma \vdash \_ \leadsto \Gamma; \tau}{}
adamc@534 943 \quad \infer{\Gamma \vdash x \leadsto \Gamma, x : \tau; \tau}{}
adamc@534 944 \quad \infer{\Gamma \vdash \ell \leadsto \Gamma; T(\ell)}{}$$
adamc@534 945
adamc@534 946 $$\infer{\Gamma \vdash X \leadsto \Gamma; \overline{[x_i \mapsto \tau'_i]}\tau}{
adamc@534 947 X : \overline{x ::: \mt{Type}} \to \tau \in \Gamma
adamc@534 948 & \textrm{$\tau$ not a function type}
adamc@534 949 }
adamc@534 950 \quad \infer{\Gamma \vdash X \; p \leadsto \Gamma'; \overline{[x_i \mapsto \tau'_i]}\tau}{
adamc@534 951 X : \overline{x ::: \mt{Type}} \to \tau'' \to \tau \in \Gamma
adamc@534 952 & \Gamma \vdash p \leadsto \Gamma'; \overline{[x_i \mapsto \tau'_i]}\tau''
adamc@534 953 }$$
adamc@534 954
adamc@534 955 $$\infer{\Gamma \vdash M.X \leadsto \Gamma; \overline{[x_i \mapsto \tau'_i]}\tau}{
adamc@537 956 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 957 & \mt{proj}(M, \overline{s}, \mt{val} \; X) = \overline{x ::: \mt{Type}} \to \tau
adamc@534 958 & \textrm{$\tau$ not a function type}
adamc@534 959 }$$
adamc@534 960
adamc@534 961 $$\infer{\Gamma \vdash M.X \; p \leadsto \Gamma'; \overline{[x_i \mapsto \tau'_i]}\tau}{
adamc@537 962 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 963 & \mt{proj}(M, \overline{s}, \mt{val} \; X) = \overline{x ::: \mt{Type}} \to \tau'' \to \tau
adamc@534 964 & \Gamma \vdash p \leadsto \Gamma'; \overline{[x_i \mapsto \tau'_i]}\tau''
adamc@534 965 }$$
adamc@534 966
adamc@534 967 $$\infer{\Gamma \vdash \{\overline{x = p}\} \leadsto \Gamma_n; \{\overline{x = \tau}\}}{
adamc@534 968 \Gamma_0 = \Gamma
adamc@534 969 & \forall i: \Gamma_i \vdash p_i \leadsto \Gamma_{i+1}; \tau_i
adamc@534 970 }
adamc@534 971 \quad \infer{\Gamma \vdash \{\overline{x = p}, \ldots\} \leadsto \Gamma_n; \$([\overline{x = \tau}] \rc c)}{
adamc@534 972 \Gamma_0 = \Gamma
adamc@534 973 & \forall i: \Gamma_i \vdash p_i \leadsto \Gamma_{i+1}; \tau_i
adamc@534 974 }$$
adamc@534 975
adamc@852 976 $$\infer{\Gamma \vdash p : \tau \leadsto \Gamma'; \tau}{
adamc@852 977 \Gamma \vdash p \leadsto \Gamma'; \tau'
adamc@852 978 & \Gamma \vdash \tau' \equiv \tau
adamc@852 979 }$$
adamc@852 980
adamc@535 981 \subsection{Declaration Typing}
adamc@535 982
adamc@535 983 We use an auxiliary judgment $\overline{y}; x; \Gamma \vdash \overline{dc} \leadsto \Gamma'$, expressing the enrichment of $\Gamma$ with the types of the datatype constructors $\overline{dc}$, when they are known to belong to datatype $x$ with type parameters $\overline{y}$.
adamc@535 984
adamc@558 985 We presuppose the existence of a function $\mathcal O$, where $\mathcal O(M, \overline{s})$ implements the $\mt{open}$ declaration by producing a context with the appropriate entry for each available component of module $M$ with signature items $\overline{s}$. Where possible, $\mathcal O$ uses ``transparent'' entries (e.g., an abstract type $M.x$ is mapped to $x :: \mt{Type} = M.x$), so that the relationship with $M$ is maintained. A related function $\mathcal O_c$ builds a context containing the disjointness constraints found in $\overline s$.
adamc@537 986 We write $\kappa_1^n \to \kappa$ as a shorthand, where $\kappa_1^0 \to \kappa = \kappa$ and $\kappa_1^{n+1} \to \kappa_2 = \kappa_1 \to (\kappa_1^n \to \kappa_2)$. We write $\mt{len}(\overline{y})$ for the length of vector $\overline{y}$ of variables.
adamc@535 987
adamc@535 988 $$\infer{\Gamma \vdash \cdot \leadsto \Gamma}{}
adamc@535 989 \quad \infer{\Gamma \vdash d, \overline{d} \leadsto \Gamma''}{
adamc@535 990 \Gamma \vdash d \leadsto \Gamma'
adamc@535 991 & \Gamma' \vdash \overline{d} \leadsto \Gamma''
adamc@535 992 }$$
adamc@535 993
adamc@535 994 $$\infer{\Gamma \vdash \mt{con} \; x :: \kappa = c \leadsto \Gamma, x :: \kappa = c}{
adamc@535 995 \Gamma \vdash c :: \kappa
adamc@535 996 }
adamc@535 997 \quad \infer{\Gamma \vdash \mt{datatype} \; x \; \overline{y} = \overline{dc} \leadsto \Gamma'}{
adamc@535 998 \overline{y}; x; \Gamma, x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type} \vdash \overline{dc} \leadsto \Gamma'
adamc@535 999 }$$
adamc@535 1000
adamc@535 1001 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leadsto \Gamma'}{
adamc@537 1002 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 1003 & \mt{proj}(M, \overline{s}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})
adamc@535 1004 & \overline{y}; x; \Gamma, x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type} = M.z \vdash \overline{dc} \leadsto \Gamma'
adamc@535 1005 }$$
adamc@535 1006
adamc@535 1007 $$\infer{\Gamma \vdash \mt{val} \; x : \tau = e \leadsto \Gamma, x : \tau}{
adamc@535 1008 \Gamma \vdash e : \tau
adamc@535 1009 }$$
adamc@535 1010
adamc@535 1011 $$\infer{\Gamma \vdash \mt{val} \; \mt{rec} \; \overline{x : \tau = e} \leadsto \Gamma, \overline{x : \tau}}{
adamc@535 1012 \forall i: \Gamma, \overline{x : \tau} \vdash e_i : \tau_i
adamc@535 1013 & \textrm{$e_i$ starts with an expression $\lambda$, optionally preceded by constructor and disjointness $\lambda$s}
adamc@535 1014 }$$
adamc@535 1015
adamc@535 1016 $$\infer{\Gamma \vdash \mt{structure} \; X : S = M \leadsto \Gamma, X : S}{
adamc@535 1017 \Gamma \vdash M : S
adamc@558 1018 & \textrm{ $M$ not a constant or application}
adamc@535 1019 }
adamc@558 1020 \quad \infer{\Gamma \vdash \mt{structure} \; X : S = M \leadsto \Gamma, X : \mt{selfify}(X, \overline{s})}{
adamc@558 1021 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@539 1022 }$$
adamc@539 1023
adamc@539 1024 $$\infer{\Gamma \vdash \mt{signature} \; X = S \leadsto \Gamma, X = S}{
adamc@535 1025 \Gamma \vdash S
adamc@535 1026 }$$
adamc@535 1027
adamc@537 1028 $$\infer{\Gamma \vdash \mt{open} \; M \leadsto \Gamma, \mathcal O(M, \overline{s})}{
adamc@537 1029 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@535 1030 }$$
adamc@535 1031
adamc@535 1032 $$\infer{\Gamma \vdash \mt{constraint} \; c_1 \sim c_2 \leadsto \Gamma}{
adamc@535 1033 \Gamma \vdash c_1 :: \{\kappa\}
adamc@535 1034 & \Gamma \vdash c_2 :: \{\kappa\}
adamc@535 1035 & \Gamma \vdash c_1 \sim c_2
adamc@535 1036 }
adamc@537 1037 \quad \infer{\Gamma \vdash \mt{open} \; \mt{constraints} \; M \leadsto \Gamma, \mathcal O_c(M, \overline{s})}{
adamc@537 1038 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@535 1039 }$$
adamc@535 1040
adamc@784 1041 $$\infer{\Gamma \vdash \mt{table} \; x : c \leadsto \Gamma, x : \mt{Basis}.\mt{sql\_table} \; c \; []}{
adamc@535 1042 \Gamma \vdash c :: \{\mt{Type}\}
adamc@535 1043 }
adam@1594 1044 \quad \infer{\Gamma \vdash \mt{view} \; x = e \leadsto \Gamma, x : \mt{Basis}.\mt{sql\_view} \; c}{
adam@1594 1045 \Gamma \vdash e :: \mt{Basis}.\mt{sql\_query} \; [] \; [] \; (\mt{map} \; (\lambda \_ \Rightarrow []) \; c') \; c
adamc@784 1046 }$$
adamc@784 1047
adamc@784 1048 $$\infer{\Gamma \vdash \mt{sequence} \; x \leadsto \Gamma, x : \mt{Basis}.\mt{sql\_sequence}}{}$$
adamc@535 1049
adamc@535 1050 $$\infer{\Gamma \vdash \mt{cookie} \; x : \tau \leadsto \Gamma, x : \mt{Basis}.\mt{http\_cookie} \; \tau}{
adamc@535 1051 \Gamma \vdash \tau :: \mt{Type}
adamc@784 1052 }
adamc@784 1053 \quad \infer{\Gamma \vdash \mt{style} \; x \leadsto \Gamma, x : \mt{Basis}.\mt{css\_class}}{}$$
adamc@535 1054
adamc@1085 1055 $$\infer{\Gamma \vdash \mt{task} \; e_1 = e_2 \leadsto \Gamma}{
adam@1348 1056 \Gamma \vdash e_1 :: \mt{Basis}.\mt{task\_kind} \; \tau
adam@1348 1057 & \Gamma \vdash e_2 :: \tau \to \mt{Basis}.\mt{transaction} \; \{\}
adamc@1085 1058 }$$
adamc@1085 1059
adamc@535 1060 $$\infer{\overline{y}; x; \Gamma \vdash \cdot \leadsto \Gamma}{}
adamc@535 1061 \quad \infer{\overline{y}; x; \Gamma \vdash X \mid \overline{dc} \leadsto \Gamma', X : \overline{y ::: \mt{Type}} \to x \; \overline{y}}{
adamc@535 1062 \overline{y}; x; \Gamma \vdash \overline{dc} \leadsto \Gamma'
adamc@535 1063 }
adamc@535 1064 \quad \infer{\overline{y}; x; \Gamma \vdash X \; \mt{of} \; \tau \mid \overline{dc} \leadsto \Gamma', X : \overline{y ::: \mt{Type}} \to \tau \to x \; \overline{y}}{
adamc@535 1065 \overline{y}; x; \Gamma \vdash \overline{dc} \leadsto \Gamma'
adamc@535 1066 }$$
adamc@535 1067
adamc@537 1068 \subsection{Signature Item Typing}
adamc@537 1069
adamc@537 1070 We appeal to a signature item analogue of the $\mathcal O$ function from the last subsection.
adamc@537 1071
adam@1797 1072 This is the first judgment where we deal with constructor classes, for the $\mt{class}$ forms. We will omit their special handling in this formal specification. Section \ref{typeclasses} gives an informal description of how constructor classes influence type inference.
adam@1797 1073
adamc@537 1074 $$\infer{\Gamma \vdash \cdot \leadsto \Gamma}{}
adamc@537 1075 \quad \infer{\Gamma \vdash s, \overline{s} \leadsto \Gamma''}{
adamc@537 1076 \Gamma \vdash s \leadsto \Gamma'
adamc@537 1077 & \Gamma' \vdash \overline{s} \leadsto \Gamma''
adamc@537 1078 }$$
adamc@537 1079
adamc@537 1080 $$\infer{\Gamma \vdash \mt{con} \; x :: \kappa \leadsto \Gamma, x :: \kappa}{}
adamc@537 1081 \quad \infer{\Gamma \vdash \mt{con} \; x :: \kappa = c \leadsto \Gamma, x :: \kappa = c}{
adamc@537 1082 \Gamma \vdash c :: \kappa
adamc@537 1083 }
adamc@537 1084 \quad \infer{\Gamma \vdash \mt{datatype} \; x \; \overline{y} = \overline{dc} \leadsto \Gamma'}{
adamc@537 1085 \overline{y}; x; \Gamma, x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type} \vdash \overline{dc} \leadsto \Gamma'
adamc@537 1086 }$$
adamc@537 1087
adamc@537 1088 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leadsto \Gamma'}{
adamc@537 1089 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 1090 & \mt{proj}(M, \overline{s}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})
adamc@537 1091 & \overline{y}; x; \Gamma, x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type} = M.z \vdash \overline{dc} \leadsto \Gamma'
adamc@537 1092 }$$
adamc@537 1093
adamc@537 1094 $$\infer{\Gamma \vdash \mt{val} \; x : \tau \leadsto \Gamma, x : \tau}{
adamc@537 1095 \Gamma \vdash \tau :: \mt{Type}
adamc@537 1096 }$$
adamc@537 1097
adamc@537 1098 $$\infer{\Gamma \vdash \mt{structure} \; X : S \leadsto \Gamma, X : S}{
adamc@537 1099 \Gamma \vdash S
adamc@537 1100 }
adamc@537 1101 \quad \infer{\Gamma \vdash \mt{signature} \; X = S \leadsto \Gamma, X = S}{
adamc@537 1102 \Gamma \vdash S
adamc@537 1103 }$$
adamc@537 1104
adamc@537 1105 $$\infer{\Gamma \vdash \mt{include} \; S \leadsto \Gamma, \mathcal O(\overline{s})}{
adamc@537 1106 \Gamma \vdash S
adamc@537 1107 & \Gamma \vdash S \equiv \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 1108 }$$
adamc@537 1109
adamc@537 1110 $$\infer{\Gamma \vdash \mt{constraint} \; c_1 \sim c_2 \leadsto \Gamma, c_1 \sim c_2}{
adamc@537 1111 \Gamma \vdash c_1 :: \{\kappa\}
adamc@537 1112 & \Gamma \vdash c_2 :: \{\kappa\}
adamc@537 1113 }$$
adamc@537 1114
adamc@784 1115 $$\infer{\Gamma \vdash \mt{class} \; x :: \kappa = c \leadsto \Gamma, x :: \kappa = c}{
adamc@784 1116 \Gamma \vdash c :: \kappa
adamc@537 1117 }
adamc@784 1118 \quad \infer{\Gamma \vdash \mt{class} \; x :: \kappa \leadsto \Gamma, x :: \kappa}{}$$
adamc@537 1119
adamc@536 1120 \subsection{Signature Compatibility}
adamc@536 1121
adam@1797 1122 To simplify the judgments in this section, we assume that all signatures are alpha-varied as necessary to avoid including multiple bindings for the same identifier. This is in addition to the usual alpha-variation of locally bound variables.
adamc@537 1123
adamc@537 1124 We rely on a judgment $\Gamma \vdash \overline{s} \leq s'$, which expresses the occurrence in signature items $\overline{s}$ of an item compatible with $s'$. We also use a judgment $\Gamma \vdash \overline{dc} \leq \overline{dc}$, which expresses compatibility of datatype definitions.
adamc@537 1125
adamc@536 1126 $$\infer{\Gamma \vdash S \equiv S}{}
adamc@536 1127 \quad \infer{\Gamma \vdash S_1 \equiv S_2}{
adamc@536 1128 \Gamma \vdash S_2 \equiv S_1
adamc@536 1129 }
adamc@536 1130 \quad \infer{\Gamma \vdash X \equiv S}{
adamc@536 1131 X = S \in \Gamma
adamc@536 1132 }
adamc@536 1133 \quad \infer{\Gamma \vdash M.X \equiv S}{
adamc@537 1134 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 1135 & \mt{proj}(M, \overline{s}, \mt{signature} \; X) = S
adamc@536 1136 }$$
adamc@536 1137
adamc@536 1138 $$\infer{\Gamma \vdash S \; \mt{where} \; \mt{con} \; x = c \equiv \mt{sig} \; \overline{s^1} \; \mt{con} \; x :: \kappa = c \; \overline{s_2} \; \mt{end}}{
adamc@536 1139 \Gamma \vdash S \equiv \mt{sig} \; \overline{s^1} \; \mt{con} \; x :: \kappa \; \overline{s_2} \; \mt{end}
adamc@536 1140 & \Gamma \vdash c :: \kappa
adamc@537 1141 }
adamc@537 1142 \quad \infer{\Gamma \vdash \mt{sig} \; \overline{s^1} \; \mt{include} \; S \; \overline{s^2} \; \mt{end} \equiv \mt{sig} \; \overline{s^1} \; \overline{s} \; \overline{s^2} \; \mt{end}}{
adamc@537 1143 \Gamma \vdash S \equiv \mt{sig} \; \overline{s} \; \mt{end}
adamc@536 1144 }$$
adamc@536 1145
adamc@536 1146 $$\infer{\Gamma \vdash S_1 \leq S_2}{
adamc@536 1147 \Gamma \vdash S_1 \equiv S_2
adamc@536 1148 }
adamc@536 1149 \quad \infer{\Gamma \vdash \mt{sig} \; \overline{s} \; \mt{end} \leq \mt{sig} \; \mt{end}}{}
adamc@537 1150 \quad \infer{\Gamma \vdash \mt{sig} \; \overline{s} \; \mt{end} \leq \mt{sig} \; s' \; \overline{s'} \; \mt{end}}{
adamc@537 1151 \Gamma \vdash \overline{s} \leq s'
adamc@537 1152 & \Gamma \vdash s' \leadsto \Gamma'
adamc@537 1153 & \Gamma' \vdash \mt{sig} \; \overline{s} \; \mt{end} \leq \mt{sig} \; \overline{s'} \; \mt{end}
adamc@537 1154 }$$
adamc@537 1155
adamc@537 1156 $$\infer{\Gamma \vdash s \; \overline{s} \leq s'}{
adamc@537 1157 \Gamma \vdash s \leq s'
adamc@537 1158 }
adamc@537 1159 \quad \infer{\Gamma \vdash s \; \overline{s} \leq s'}{
adamc@537 1160 \Gamma \vdash s \leadsto \Gamma'
adamc@537 1161 & \Gamma' \vdash \overline{s} \leq s'
adamc@536 1162 }$$
adamc@536 1163
adamc@536 1164 $$\infer{\Gamma \vdash \mt{functor} (X : S_1) : S_2 \leq \mt{functor} (X : S'_1) : S'_2}{
adamc@536 1165 \Gamma \vdash S'_1 \leq S_1
adamc@536 1166 & \Gamma, X : S'_1 \vdash S_2 \leq S'_2
adamc@536 1167 }$$
adamc@536 1168
adamc@537 1169 $$\infer{\Gamma \vdash \mt{con} \; x :: \kappa \leq \mt{con} \; x :: \kappa}{}
adamc@537 1170 \quad \infer{\Gamma \vdash \mt{con} \; x :: \kappa = c \leq \mt{con} \; x :: \kappa}{}
adamc@558 1171 \quad \infer{\Gamma \vdash \mt{datatype} \; x \; \overline{y} = \overline{dc} \leq \mt{con} \; x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type}}{}$$
adamc@537 1172
adamc@537 1173 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leq \mt{con} \; x :: \mt{Type}^{\mt{len}(y)} \to \mt{Type}}{
adamc@537 1174 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 1175 & \mt{proj}(M, \overline{s}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})
adamc@537 1176 }$$
adamc@537 1177
adamc@784 1178 $$\infer{\Gamma \vdash \mt{class} \; x :: \kappa \leq \mt{con} \; x :: \kappa}{}
adamc@784 1179 \quad \infer{\Gamma \vdash \mt{class} \; x :: \kappa = c \leq \mt{con} \; x :: \kappa}{}$$
adamc@537 1180
adamc@537 1181 $$\infer{\Gamma \vdash \mt{con} \; x :: \kappa = c_1 \leq \mt{con} \; x :: \mt{\kappa} = c_2}{
adamc@537 1182 \Gamma \vdash c_1 \equiv c_2
adamc@537 1183 }
adamc@784 1184 \quad \infer{\Gamma \vdash \mt{class} \; x :: \kappa = c_1 \leq \mt{con} \; x :: \kappa = c_2}{
adamc@537 1185 \Gamma \vdash c_1 \equiv c_2
adamc@537 1186 }$$
adamc@537 1187
adamc@537 1188 $$\infer{\Gamma \vdash \mt{datatype} \; x \; \overline{y} = \overline{dc} \leq \mt{datatype} \; x \; \overline{y} = \overline{dc'}}{
adamc@537 1189 \Gamma, \overline{y :: \mt{Type}} \vdash \overline{dc} \leq \overline{dc'}
adamc@537 1190 }$$
adamc@537 1191
adamc@537 1192 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leq \mt{datatype} \; x \; \overline{y} = \overline{dc'}}{
adamc@537 1193 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 1194 & \mt{proj}(M, \overline{s}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})
adamc@537 1195 & \Gamma, \overline{y :: \mt{Type}} \vdash \overline{dc} \leq \overline{dc'}
adamc@537 1196 }$$
adamc@537 1197
adamc@537 1198 $$\infer{\Gamma \vdash \cdot \leq \cdot}{}
adamc@537 1199 \quad \infer{\Gamma \vdash X; \overline{dc} \leq X; \overline{dc'}}{
adamc@537 1200 \Gamma \vdash \overline{dc} \leq \overline{dc'}
adamc@537 1201 }
adamc@537 1202 \quad \infer{\Gamma \vdash X \; \mt{of} \; \tau_1; \overline{dc} \leq X \; \mt{of} \; \tau_2; \overline{dc'}}{
adamc@537 1203 \Gamma \vdash \tau_1 \equiv \tau_2
adamc@537 1204 & \Gamma \vdash \overline{dc} \leq \overline{dc'}
adamc@537 1205 }$$
adamc@537 1206
adamc@537 1207 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leq \mt{datatype} \; x = \mt{datatype} \; M'.z'}{
adamc@537 1208 \Gamma \vdash M.z \equiv M'.z'
adamc@537 1209 }$$
adamc@537 1210
adamc@537 1211 $$\infer{\Gamma \vdash \mt{val} \; x : \tau_1 \leq \mt{val} \; x : \tau_2}{
adamc@537 1212 \Gamma \vdash \tau_1 \equiv \tau_2
adamc@537 1213 }
adamc@537 1214 \quad \infer{\Gamma \vdash \mt{structure} \; X : S_1 \leq \mt{structure} \; X : S_2}{
adamc@537 1215 \Gamma \vdash S_1 \leq S_2
adamc@537 1216 }
adamc@537 1217 \quad \infer{\Gamma \vdash \mt{signature} \; X = S_1 \leq \mt{signature} \; X = S_2}{
adamc@537 1218 \Gamma \vdash S_1 \leq S_2
adamc@537 1219 & \Gamma \vdash S_2 \leq S_1
adamc@537 1220 }$$
adamc@537 1221
adamc@537 1222 $$\infer{\Gamma \vdash \mt{constraint} \; c_1 \sim c_2 \leq \mt{constraint} \; c'_1 \sim c'_2}{
adamc@537 1223 \Gamma \vdash c_1 \equiv c'_1
adamc@537 1224 & \Gamma \vdash c_2 \equiv c'_2
adamc@537 1225 }$$
adamc@537 1226
adamc@655 1227 $$\infer{\Gamma \vdash \mt{class} \; x :: \kappa \leq \mt{class} \; x :: \kappa}{}
adamc@655 1228 \quad \infer{\Gamma \vdash \mt{class} \; x :: \kappa = c \leq \mt{class} \; x :: \kappa}{}
adamc@655 1229 \quad \infer{\Gamma \vdash \mt{class} \; x :: \kappa = c_1 \leq \mt{class} \; x :: \kappa = c_2}{
adamc@537 1230 \Gamma \vdash c_1 \equiv c_2
adamc@537 1231 }$$
adamc@537 1232
adam@1797 1233 $$\infer{\Gamma \vdash \mt{con} \; x :: \kappa \leq \mt{class} \; x :: \kappa}{}
adam@1797 1234 \quad \infer{\Gamma \vdash \mt{con} \; x :: \kappa = c \leq \mt{class} \; x :: \kappa}{}
adam@1797 1235 \quad \infer{\Gamma \vdash \mt{con} \; x :: \kappa = c_1 \leq \mt{class} \; x :: \kappa = c_2}{
adam@1797 1236 \Gamma \vdash c_1 \equiv c_2
adam@1797 1237 }$$
adam@1797 1238
adamc@538 1239 \subsection{Module Typing}
adamc@538 1240
adamc@538 1241 We use a helper function $\mt{sigOf}$, which converts declarations and sequences of declarations into their principal signature items and sequences of signature items, respectively.
adamc@538 1242
adamc@538 1243 $$\infer{\Gamma \vdash M : S}{
adamc@538 1244 \Gamma \vdash M : S'
adamc@538 1245 & \Gamma \vdash S' \leq S
adamc@538 1246 }
adamc@538 1247 \quad \infer{\Gamma \vdash \mt{struct} \; \overline{d} \; \mt{end} : \mt{sig} \; \mt{sigOf}(\overline{d}) \; \mt{end}}{
adamc@538 1248 \Gamma \vdash \overline{d} \leadsto \Gamma'
adamc@538 1249 }
adamc@538 1250 \quad \infer{\Gamma \vdash X : S}{
adamc@538 1251 X : S \in \Gamma
adamc@538 1252 }$$
adamc@538 1253
adamc@538 1254 $$\infer{\Gamma \vdash M.X : S}{
adamc@538 1255 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@538 1256 & \mt{proj}(M, \overline{s}, \mt{structure} \; X) = S
adamc@538 1257 }$$
adamc@538 1258
adamc@538 1259 $$\infer{\Gamma \vdash M_1(M_2) : [X \mapsto M_2]S_2}{
adamc@538 1260 \Gamma \vdash M_1 : \mt{functor}(X : S_1) : S_2
adamc@538 1261 & \Gamma \vdash M_2 : S_1
adamc@538 1262 }
adamc@538 1263 \quad \infer{\Gamma \vdash \mt{functor} (X : S_1) : S_2 = M : \mt{functor} (X : S_1) : S_2}{
adamc@538 1264 \Gamma \vdash S_1
adamc@538 1265 & \Gamma, X : S_1 \vdash S_2
adamc@538 1266 & \Gamma, X : S_1 \vdash M : S_2
adamc@538 1267 }$$
adamc@538 1268
adamc@538 1269 \begin{eqnarray*}
adamc@538 1270 \mt{sigOf}(\cdot) &=& \cdot \\
adamc@538 1271 \mt{sigOf}(s \; \overline{s'}) &=& \mt{sigOf}(s) \; \mt{sigOf}(\overline{s'}) \\
adamc@538 1272 \\
adamc@538 1273 \mt{sigOf}(\mt{con} \; x :: \kappa = c) &=& \mt{con} \; x :: \kappa = c \\
adamc@538 1274 \mt{sigOf}(\mt{datatype} \; x \; \overline{y} = \overline{dc}) &=& \mt{datatype} \; x \; \overline{y} = \overline{dc} \\
adamc@538 1275 \mt{sigOf}(\mt{datatype} \; x = \mt{datatype} \; M.z) &=& \mt{datatype} \; x = \mt{datatype} \; M.z \\
adamc@538 1276 \mt{sigOf}(\mt{val} \; x : \tau = e) &=& \mt{val} \; x : \tau \\
adamc@538 1277 \mt{sigOf}(\mt{val} \; \mt{rec} \; \overline{x : \tau = e}) &=& \overline{\mt{val} \; x : \tau} \\
adamc@538 1278 \mt{sigOf}(\mt{structure} \; X : S = M) &=& \mt{structure} \; X : S \\
adamc@538 1279 \mt{sigOf}(\mt{signature} \; X = S) &=& \mt{signature} \; X = S \\
adamc@538 1280 \mt{sigOf}(\mt{open} \; M) &=& \mt{include} \; S \textrm{ (where $\Gamma \vdash M : S$)} \\
adamc@538 1281 \mt{sigOf}(\mt{constraint} \; c_1 \sim c_2) &=& \mt{constraint} \; c_1 \sim c_2 \\
adamc@538 1282 \mt{sigOf}(\mt{open} \; \mt{constraints} \; M) &=& \cdot \\
adamc@538 1283 \mt{sigOf}(\mt{table} \; x : c) &=& \mt{table} \; x : c \\
adam@1594 1284 \mt{sigOf}(\mt{view} \; x = e) &=& \mt{view} \; x : c \textrm{ (where $\Gamma \vdash e : \mt{Basis}.\mt{sql\_query} \; [] \; [] \; (\mt{map} \; (\lambda \_ \Rightarrow []) \; c') \; c$)} \\
adamc@538 1285 \mt{sigOf}(\mt{sequence} \; x) &=& \mt{sequence} \; x \\
adamc@538 1286 \mt{sigOf}(\mt{cookie} \; x : \tau) &=& \mt{cookie} \; x : \tau \\
adam@1797 1287 \mt{sigOf}(\mt{style} \; x) &=& \mt{style} \; x
adamc@538 1288 \end{eqnarray*}
adamc@539 1289 \begin{eqnarray*}
adamc@539 1290 \mt{selfify}(M, \cdot) &=& \cdot \\
adamc@558 1291 \mt{selfify}(M, s \; \overline{s'}) &=& \mt{selfify}(M, s) \; \mt{selfify}(M, \overline{s'}) \\
adamc@539 1292 \\
adamc@539 1293 \mt{selfify}(M, \mt{con} \; x :: \kappa) &=& \mt{con} \; x :: \kappa = M.x \\
adamc@539 1294 \mt{selfify}(M, \mt{con} \; x :: \kappa = c) &=& \mt{con} \; x :: \kappa = c \\
adamc@539 1295 \mt{selfify}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc}) &=& \mt{datatype} \; x \; \overline{y} = \mt{datatype} \; M.x \\
adamc@539 1296 \mt{selfify}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z) &=& \mt{datatype} \; x = \mt{datatype} \; M'.z \\
adamc@539 1297 \mt{selfify}(M, \mt{val} \; x : \tau) &=& \mt{val} \; x : \tau \\
adamc@539 1298 \mt{selfify}(M, \mt{structure} \; X : S) &=& \mt{structure} \; X : \mt{selfify}(M.X, \overline{s}) \textrm{ (where $\Gamma \vdash S \equiv \mt{sig} \; \overline{s} \; \mt{end}$)} \\
adamc@539 1299 \mt{selfify}(M, \mt{signature} \; X = S) &=& \mt{signature} \; X = S \\
adamc@539 1300 \mt{selfify}(M, \mt{include} \; S) &=& \mt{include} \; S \\
adamc@539 1301 \mt{selfify}(M, \mt{constraint} \; c_1 \sim c_2) &=& \mt{constraint} \; c_1 \sim c_2 \\
adamc@655 1302 \mt{selfify}(M, \mt{class} \; x :: \kappa) &=& \mt{class} \; x :: \kappa = M.x \\
adamc@655 1303 \mt{selfify}(M, \mt{class} \; x :: \kappa = c) &=& \mt{class} \; x :: \kappa = c \\
adamc@539 1304 \end{eqnarray*}
adamc@539 1305
adamc@540 1306 \subsection{Module Projection}
adamc@540 1307
adamc@540 1308 \begin{eqnarray*}
adamc@540 1309 \mt{proj}(M, \mt{con} \; x :: \kappa \; \overline{s}, \mt{con} \; x) &=& \kappa \\
adamc@540 1310 \mt{proj}(M, \mt{con} \; x :: \kappa = c \; \overline{s}, \mt{con} \; x) &=& (\kappa, c) \\
adamc@540 1311 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, \mt{con} \; x) &=& \mt{Type}^{\mt{len}(\overline{y})} \to \mt{Type} \\
adamc@540 1312 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z \; \overline{s}, \mt{con} \; x) &=& (\mt{Type}^{\mt{len}(\overline{y})} \to \mt{Type}, M'.z) \textrm{ (where $\Gamma \vdash M' : \mt{sig} \; \overline{s'} \; \mt{end}$} \\
adamc@540 1313 && \textrm{and $\mt{proj}(M', \overline{s'}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})$)} \\
adamc@655 1314 \mt{proj}(M, \mt{class} \; x :: \kappa \; \overline{s}, \mt{con} \; x) &=& \kappa \to \mt{Type} \\
adamc@655 1315 \mt{proj}(M, \mt{class} \; x :: \kappa = c \; \overline{s}, \mt{con} \; x) &=& (\kappa \to \mt{Type}, c) \\
adamc@540 1316 \\
adamc@540 1317 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, \mt{datatype} \; x) &=& (\overline{y}, \overline{dc}) \\
adamc@540 1318 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z \; \overline{s}, \mt{con} \; x) &=& \mt{proj}(M', \overline{s'}, \mt{datatype} \; z) \textrm{ (where $\Gamma \vdash M' : \mt{sig} \; \overline{s'} \; \mt{end}$)} \\
adamc@540 1319 \\
adamc@540 1320 \mt{proj}(M, \mt{val} \; x : \tau \; \overline{s}, \mt{val} \; x) &=& \tau \\
adamc@540 1321 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, \mt{val} \; X) &=& \overline{y ::: \mt{Type}} \to M.x \; \overline y \textrm{ (where $X \in \overline{dc}$)} \\
adamc@540 1322 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, \mt{val} \; X) &=& \overline{y ::: \mt{Type}} \to \tau \to M.x \; \overline y \textrm{ (where $X \; \mt{of} \; \tau \in \overline{dc}$)} \\
adamc@540 1323 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z, \mt{val} \; X) &=& \overline{y ::: \mt{Type}} \to M.x \; \overline y \textrm{ (where $\Gamma \vdash M' : \mt{sig} \; \overline{s'} \; \mt{end}$} \\
adamc@540 1324 && \textrm{and $\mt{proj}(M', \overline{s'}, \mt{datatype} \; z = (\overline{y}, \overline{dc})$ and $X \in \overline{dc}$)} \\
adamc@540 1325 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z, \mt{val} \; X) &=& \overline{y ::: \mt{Type}} \to \tau \to M.x \; \overline y \textrm{ (where $\Gamma \vdash M' : \mt{sig} \; \overline{s'} \; \mt{end}$} \\
adamc@558 1326 && \textrm{and $\mt{proj}(M', \overline{s'}, \mt{datatype} \; z = (\overline{y}, \overline{dc})$ and $X \; \mt{of} \; \tau \in \overline{dc}$)} \\
adamc@540 1327 \\
adamc@540 1328 \mt{proj}(M, \mt{structure} \; X : S \; \overline{s}, \mt{structure} \; X) &=& S \\
adamc@540 1329 \\
adamc@540 1330 \mt{proj}(M, \mt{signature} \; X = S \; \overline{s}, \mt{signature} \; X) &=& S \\
adamc@540 1331 \\
adamc@540 1332 \mt{proj}(M, \mt{con} \; x :: \kappa \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1333 \mt{proj}(M, \mt{con} \; x :: \kappa = c \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1334 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1335 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1336 \mt{proj}(M, \mt{val} \; x : \tau \; \overline{s}, V) &=& \mt{proj}(M, \overline{s}, V) \\
adamc@540 1337 \mt{proj}(M, \mt{structure} \; X : S \; \overline{s}, V) &=& [X \mapsto M.X]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1338 \mt{proj}(M, \mt{signature} \; X = S \; \overline{s}, V) &=& [X \mapsto M.X]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1339 \mt{proj}(M, \mt{include} \; S \; \overline{s}, V) &=& \mt{proj}(M, \overline{s'} \; \overline{s}, V) \textrm{ (where $\Gamma \vdash S \equiv \mt{sig} \; \overline{s'} \; \mt{end}$)} \\
adamc@540 1340 \mt{proj}(M, \mt{constraint} \; c_1 \sim c_2 \; \overline{s}, V) &=& \mt{proj}(M, \overline{s}, V) \\
adamc@655 1341 \mt{proj}(M, \mt{class} \; x :: \kappa \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@655 1342 \mt{proj}(M, \mt{class} \; x :: \kappa = c \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1343 \end{eqnarray*}
adamc@540 1344
adamc@541 1345
adamc@541 1346 \section{Type Inference}
adamc@541 1347
adamc@541 1348 The Ur/Web compiler uses \emph{heuristic type inference}, with no claims of completeness with respect to the declarative specification of the last section. The rules in use seem to work well in practice. This section summarizes those rules, to help Ur programmers predict what will work and what won't.
adamc@541 1349
adamc@541 1350 \subsection{Basic Unification}
adamc@541 1351
adamc@560 1352 Type-checkers for languages based on the Hindley-Milner type discipline, like ML and Haskell, take advantage of \emph{principal typing} properties, making complete type inference relatively straightforward. Inference algorithms are traditionally implemented using type unification variables, at various points asserting equalities between types, in the process discovering the values of type variables. The Ur/Web compiler uses the same basic strategy, but the complexity of the type system rules out easy completeness.
adamc@541 1353
adamc@656 1354 Type-checking can require evaluating recursive functional programs, thanks to the type-level $\mt{map}$ operator. When a unification variable appears in such a type, the next step of computation can be undetermined. The value of that variable might be determined later, but this would be ``too late'' for the unification problems generated at the first occurrence. This is the essential source of incompleteness.
adamc@541 1355
adamc@541 1356 Nonetheless, the unification engine tends to do reasonably well. Unlike in ML, polymorphism is never inferred in definitions; it must be indicated explicitly by writing out constructor-level parameters. By writing these and other annotations, the programmer can generally get the type inference engine to do most of the type reconstruction work.
adamc@541 1357
adamc@541 1358 \subsection{Unifying Record Types}
adamc@541 1359
adamc@570 1360 The type inference engine tries to take advantage of the algebraic rules governing type-level records, as shown in Section \ref{definitional}. When two constructors of record kind are unified, they are reduced to normal forms, with like terms crossed off from each normal form until, hopefully, nothing remains. This cannot be complete, with the inclusion of unification variables. The type-checker can help you understand what goes wrong when the process fails, as it outputs the unmatched remainders of the two normal forms.
adamc@541 1361
adamc@656 1362 \subsection{\label{typeclasses}Constructor Classes}
adamc@541 1363
adamc@784 1364 Ur includes a constructor class facility inspired by Haskell's. The current version is experimental, with very general Prolog-like facilities that can lead to compile-time non-termination.
adamc@541 1365
adam@1797 1366 Constructor classes are integrated with the module system. A constructor class of kind $\kappa$ is just a constructor of kind $\kappa$. By marking such a constructor $c$ as a constructor class, the programmer instructs the type inference engine to, in each scope, record all values of types $c \; c_1 \; \ldots \; c_n$ as \emph{instances}. Any function argument whose type is of such a form is treated as implicit, to be determined by examining the current instance database. Any suitably kinded constructor within a module may be exposed as a constructor class from outside the module, simply by using a $\mt{class}$ signature item instead of a $\mt{con}$ signature item in the module's signature.
adam@1797 1367
adam@1797 1368 The ``dictionary encoding'' often used in Haskell implementations is made explicit in Ur. Constructor class instances are just properly typed values, and they can also be considered as ``proofs'' of membership in the class. In some cases, it is useful to pass these proofs around explicitly. An underscore written where a proof is expected will also be inferred, if possible, from the current instance database.
adam@1797 1369
adam@1797 1370 Just as for constructors, constructors classes may be exported from modules, and they may be exported as concrete or abstract. Concrete constructor classes have their ``real'' definitions exposed, so that client code may add new instances freely. Automatic inference of concrete class instances will not generally work, so abstract classes are almost always the right choice. They are useful as ``predicates'' that can be used to enforce invariants, as we will see in some definitions of SQL syntax in the Ur/Web standard library. Free extension of a concrete class is easily supported by exporting a constructor function from a module, since the class implementation will be concrete within the module.
adamc@541 1371
adamc@541 1372 \subsection{Reverse-Engineering Record Types}
adamc@541 1373
adamc@656 1374 It's useful to write Ur functions and functors that take record constructors as inputs, but these constructors can grow quite long, even though their values are often implied by other arguments. The compiler uses a simple heuristic to infer the values of unification variables that are mapped over, yielding known results. If the result is empty, we're done; if it's not empty, we replace a single unification variable with a new constructor formed from three new unification variables, as in $[\alpha = \beta] \rc \gamma$. This process can often be repeated to determine a unification variable fully.
adamc@541 1375
adamc@541 1376 \subsection{Implicit Arguments in Functor Applications}
adamc@541 1377
adamc@656 1378 Constructor, constraint, and constructor class witness members of structures may be omitted, when those structures are used in contexts where their assigned signatures imply how to fill in those missing members. This feature combines well with reverse-engineering to allow for uses of complicated meta-programming functors with little more code than would be necessary to invoke an untyped, ad-hoc code generator.
adamc@541 1379
adamc@541 1380
adamc@542 1381 \section{The Ur Standard Library}
adamc@542 1382
adamc@542 1383 The built-in parts of the Ur/Web standard library are described by the signature in \texttt{lib/basis.urs} in the distribution. A module $\mt{Basis}$ ascribing to that signature is available in the initial environment, and every program is implicitly prefixed by $\mt{open} \; \mt{Basis}$.
adamc@542 1384
adamc@542 1385 Additionally, other common functions that are definable within Ur are included in \texttt{lib/top.urs} and \texttt{lib/top.ur}. This $\mt{Top}$ module is also opened implicitly.
adamc@542 1386
adamc@542 1387 The idea behind Ur is to serve as the ideal host for embedded domain-specific languages. For now, however, the ``generic'' functionality is intermixed with Ur/Web-specific functionality, including in these two library modules. We hope that these generic library components have types that speak for themselves. The next section introduces the Ur/Web-specific elements. Here, we only give the type declarations from the beginning of $\mt{Basis}$.
adamc@542 1388 $$\begin{array}{l}
adamc@542 1389 \mt{type} \; \mt{int} \\
adamc@542 1390 \mt{type} \; \mt{float} \\
adamc@873 1391 \mt{type} \; \mt{char} \\
adamc@542 1392 \mt{type} \; \mt{string} \\
adamc@542 1393 \mt{type} \; \mt{time} \\
adamc@785 1394 \mt{type} \; \mt{blob} \\
adamc@542 1395 \\
adamc@542 1396 \mt{type} \; \mt{unit} = \{\} \\
adamc@542 1397 \\
adamc@542 1398 \mt{datatype} \; \mt{bool} = \mt{False} \mid \mt{True} \\
adamc@542 1399 \\
adamc@785 1400 \mt{datatype} \; \mt{option} \; \mt{t} = \mt{None} \mid \mt{Some} \; \mt{of} \; \mt{t} \\
adamc@785 1401 \\
adamc@785 1402 \mt{datatype} \; \mt{list} \; \mt{t} = \mt{Nil} \mid \mt{Cons} \; \mt{of} \; \mt{t} \times \mt{list} \; \mt{t}
adamc@542 1403 \end{array}$$
adamc@542 1404
adamc@1123 1405 The only unusual element of this list is the $\mt{blob}$ type, which stands for binary sequences. Simple blobs can be created from strings via $\mt{Basis.textBlob}$. Blobs will also be generated from HTTP file uploads.
adamc@785 1406
adam@1297 1407 Ur also supports \emph{polymorphic variants}, a dual to extensible records that has been popularized by OCaml. A type $\mt{variant} \; r$ represents an $n$-ary sum type, with one constructor for each field of record $r$. Each constructor $c$ takes an argument of type $r.c$; the type $\{\}$ can be used to ``simulate'' a nullary constructor. The \cd{make} function builds a variant value, while \cd{match} implements pattern-matching, with match cases represented as records of functions.
adam@1297 1408 $$\begin{array}{l}
adam@1297 1409 \mt{con} \; \mt{variant} :: \{\mt{Type}\} \to \mt{Type} \\
adam@1297 1410 \mt{val} \; \mt{make} : \mt{nm} :: \mt{Name} \to \mt{t} ::: \mt{Type} \to \mt{ts} ::: \{\mt{Type}\} \to [[\mt{nm}] \sim \mt{ts}] \Rightarrow \mt{t} \to \mt{variant} \; ([\mt{nm} = \mt{t}] \rc \mt{ts}) \\
adam@1297 1411 \mt{val} \; \mt{match} : \mt{ts} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \to \mt{variant} \; \mt{ts} \to \$(\mt{map} \; (\lambda \mt{t'} \Rightarrow \mt{t'} \to \mt{t}) \; \mt{ts}) \to \mt{t}
adam@1297 1412 \end{array}$$
adam@1297 1413
adamc@657 1414 Another important generic Ur element comes at the beginning of \texttt{top.urs}.
adamc@657 1415
adamc@657 1416 $$\begin{array}{l}
adamc@657 1417 \mt{con} \; \mt{folder} :: \mt{K} \longrightarrow \{\mt{K}\} \to \mt{Type} \\
adamc@657 1418 \\
adamc@657 1419 \mt{val} \; \mt{fold} : \mt{K} \longrightarrow \mt{tf} :: (\{\mt{K}\} \to \mt{Type}) \\
adamc@657 1420 \hspace{.1in} \to (\mt{nm} :: \mt{Name} \to \mt{v} :: \mt{K} \to \mt{r} :: \{\mt{K}\} \to [[\mt{nm}] \sim \mt{r}] \Rightarrow \\
adamc@657 1421 \hspace{.2in} \mt{tf} \; \mt{r} \to \mt{tf} \; ([\mt{nm} = \mt{v}] \rc \mt{r})) \\
adamc@657 1422 \hspace{.1in} \to \mt{tf} \; [] \\
adamc@657 1423 \hspace{.1in} \to \mt{r} :: \{\mt{K}\} \to \mt{folder} \; \mt{r} \to \mt{tf} \; \mt{r}
adamc@657 1424 \end{array}$$
adamc@657 1425
adamc@657 1426 For a type-level record $\mt{r}$, a $\mt{folder} \; \mt{r}$ encodes a permutation of $\mt{r}$'s elements. The $\mt{fold}$ function can be called on a $\mt{folder}$ to iterate over the elements of $\mt{r}$ in that order. $\mt{fold}$ is parameterized on a type-level function to be used to calculate the type of each intermediate result of folding. After processing a subset $\mt{r'}$ of $\mt{r}$'s entries, the type of the accumulator should be $\mt{tf} \; \mt{r'}$. The next two expression arguments to $\mt{fold}$ are the usual step function and initial accumulator, familiar from fold functions over lists. The final two arguments are the record to fold over and a $\mt{folder}$ for it.
adamc@657 1427
adamc@664 1428 The Ur compiler treats $\mt{folder}$ like a constructor class, using built-in rules to infer $\mt{folder}$s for records with known structure. The order in which field names are mentioned in source code is used as a hint about the permutation that the programmer would like.
adamc@657 1429
adamc@542 1430
adamc@542 1431 \section{The Ur/Web Standard Library}
adamc@542 1432
adam@1400 1433 Some operations are only allowed in server-side code or only in client-side code. The type system does not enforce such restrictions, but the compiler enforces them in the process of whole-program compilation. In the discussion below, we note when a set of operations has a location restriction.
adam@1400 1434
adamc@658 1435 \subsection{Monads}
adamc@658 1436
adamc@658 1437 The Ur Basis defines the monad constructor class from Haskell.
adamc@658 1438
adamc@658 1439 $$\begin{array}{l}
adamc@658 1440 \mt{class} \; \mt{monad} :: \mt{Type} \to \mt{Type} \\
adamc@658 1441 \mt{val} \; \mt{return} : \mt{m} ::: (\mt{Type} \to \mt{Type}) \to \mt{t} ::: \mt{Type} \\
adamc@658 1442 \hspace{.1in} \to \mt{monad} \; \mt{m} \\
adamc@658 1443 \hspace{.1in} \to \mt{t} \to \mt{m} \; \mt{t} \\
adamc@658 1444 \mt{val} \; \mt{bind} : \mt{m} ::: (\mt{Type} \to \mt{Type}) \to \mt{t1} ::: \mt{Type} \to \mt{t2} ::: \mt{Type} \\
adamc@658 1445 \hspace{.1in} \to \mt{monad} \; \mt{m} \\
adamc@658 1446 \hspace{.1in} \to \mt{m} \; \mt{t1} \to (\mt{t1} \to \mt{m} \; \mt{t2}) \\
adam@1544 1447 \hspace{.1in} \to \mt{m} \; \mt{t2} \\
adam@1544 1448 \mt{val} \; \mt{mkMonad} : \mt{m} ::: (\mt{Type} \to \mt{Type}) \\
adam@1544 1449 \hspace{.1in} \to \{\mt{Return} : \mt{t} ::: \mt{Type} \to \mt{t} \to \mt{m} \; \mt{t}, \\
adam@1544 1450 \hspace{.3in} \mt{Bind} : \mt{t1} ::: \mt{Type} \to \mt{t2} ::: \mt{Type} \to \mt{m} \; \mt{t1} \to (\mt{t1} \to \mt{m} \; \mt{t2}) \to \mt{m} \; \mt{t2}\} \\
adam@1544 1451 \hspace{.1in} \to \mt{monad} \; \mt{m}
adamc@658 1452 \end{array}$$
adamc@658 1453
adam@1687 1454 The Ur/Web compiler provides syntactic sugar for monads, similar to Haskell's \cd{do} notation. An expression $x \leftarrow e_1; e_2$ is desugared to $\mt{bind} \; e_1 \; (\lambda x \Rightarrow e_2)$, and an expression $e_1; e_2$ is desugared to $\mt{bind} \; e_1 \; (\lambda () \Rightarrow e_2)$. Note a difference from Haskell: as the $e_1; e_2$ case desugaring involves a function with $()$ as its formal argument, the type of $e_1$ must be of the form $m \; \{\}$, rather than some arbitrary $m \; t$.
adam@1548 1455
adam@2009 1456 The syntactic sugar also allows $p \leftarrow e_1; e_2$ for $p$ a pattern. The pattern should be guaranteed to match any value of the corresponding type, or there will be a compile-time error.
adam@2009 1457
adamc@542 1458 \subsection{Transactions}
adamc@542 1459
adamc@542 1460 Ur is a pure language; we use Haskell's trick to support controlled side effects. The standard library defines a monad $\mt{transaction}$, meant to stand for actions that may be undone cleanly. By design, no other kinds of actions are supported.
adamc@542 1461 $$\begin{array}{l}
adamc@542 1462 \mt{con} \; \mt{transaction} :: \mt{Type} \to \mt{Type} \\
adamc@658 1463 \mt{val} \; \mt{transaction\_monad} : \mt{monad} \; \mt{transaction}
adamc@542 1464 \end{array}$$
adamc@542 1465
adamc@1123 1466 For debugging purposes, a transactional function is provided for outputting a string on the server process' \texttt{stderr}.
adamc@1123 1467 $$\begin{array}{l}
adamc@1123 1468 \mt{val} \; \mt{debug} : \mt{string} \to \mt{transaction} \; \mt{unit}
adamc@1123 1469 \end{array}$$
adamc@1123 1470
adamc@542 1471 \subsection{HTTP}
adamc@542 1472
adam@1797 1473 There are transactions for reading an HTTP header by name and for getting and setting strongly typed cookies. Cookies may only be created by the $\mt{cookie}$ declaration form, ensuring that they be named consistently based on module structure. For now, cookie operations are server-side only.
adamc@542 1474 $$\begin{array}{l}
adamc@786 1475 \mt{con} \; \mt{http\_cookie} :: \mt{Type} \to \mt{Type} \\
adamc@786 1476 \mt{val} \; \mt{getCookie} : \mt{t} ::: \mt{Type} \to \mt{http\_cookie} \; \mt{t} \to \mt{transaction} \; (\mt{option} \; \mt{t}) \\
adamc@1050 1477 \mt{val} \; \mt{setCookie} : \mt{t} ::: \mt{Type} \to \mt{http\_cookie} \; \mt{t} \to \{\mt{Value} : \mt{t}, \mt{Expires} : \mt{option} \; \mt{time}, \mt{Secure} : \mt{bool}\} \to \mt{transaction} \; \mt{unit} \\
adamc@1050 1478 \mt{val} \; \mt{clearCookie} : \mt{t} ::: \mt{Type} \to \mt{http\_cookie} \; \mt{t} \to \mt{transaction} \; \mt{unit}
adamc@786 1479 \end{array}$$
adamc@786 1480
adamc@786 1481 There are also an abstract $\mt{url}$ type and functions for converting to it, based on the policy defined by \texttt{[allow|deny] url} directives in the project file.
adamc@786 1482 $$\begin{array}{l}
adamc@786 1483 \mt{type} \; \mt{url} \\
adamc@786 1484 \mt{val} \; \mt{bless} : \mt{string} \to \mt{url} \\
adamc@786 1485 \mt{val} \; \mt{checkUrl} : \mt{string} \to \mt{option} \; \mt{url}
adamc@786 1486 \end{array}$$
adamc@786 1487 $\mt{bless}$ raises a runtime error if the string passed to it fails the URL policy.
adamc@786 1488
adam@1400 1489 It is possible to grab the current page's URL or to build a URL for an arbitrary transaction that would also be an acceptable value of a \texttt{link} attribute of the \texttt{a} tag. These are server-side operations.
adamc@1085 1490 $$\begin{array}{l}
adamc@1085 1491 \mt{val} \; \mt{currentUrl} : \mt{transaction} \; \mt{url} \\
adamc@1085 1492 \mt{val} \; \mt{url} : \mt{transaction} \; \mt{page} \to \mt{url}
adamc@1085 1493 \end{array}$$
adamc@1085 1494
adamc@1085 1495 Page generation may be interrupted at any time with a request to redirect to a particular URL instead.
adamc@1085 1496 $$\begin{array}{l}
adamc@1085 1497 \mt{val} \; \mt{redirect} : \mt{t} ::: \mt{Type} \to \mt{url} \to \mt{transaction} \; \mt{t}
adamc@1085 1498 \end{array}$$
adamc@1085 1499
adam@1400 1500 It's possible for pages to return files of arbitrary MIME types. A file can be input from the user using this data type, along with the $\mt{upload}$ form tag. These functions and those described in the following paragraph are server-side.
adamc@786 1501 $$\begin{array}{l}
adamc@786 1502 \mt{type} \; \mt{file} \\
adamc@786 1503 \mt{val} \; \mt{fileName} : \mt{file} \to \mt{option} \; \mt{string} \\
adamc@786 1504 \mt{val} \; \mt{fileMimeType} : \mt{file} \to \mt{string} \\
adamc@786 1505 \mt{val} \; \mt{fileData} : \mt{file} \to \mt{blob}
adamc@786 1506 \end{array}$$
adamc@786 1507
adam@1799 1508 It is also possible to get HTTP request headers and environment variables, and set HTTP response headers, using abstract types similar to the one for URLs.
adam@1465 1509
adam@1465 1510 $$\begin{array}{l}
adam@1465 1511 \mt{type} \; \mt{requestHeader} \\
adam@1465 1512 \mt{val} \; \mt{blessRequestHeader} : \mt{string} \to \mt{requestHeader} \\
adam@1465 1513 \mt{val} \; \mt{checkRequestHeader} : \mt{string} \to \mt{option} \; \mt{requestHeader} \\
adam@1465 1514 \mt{val} \; \mt{getHeader} : \mt{requestHeader} \to \mt{transaction} \; (\mt{option} \; \mt{string}) \\
adam@1465 1515 \\
adam@1799 1516 \mt{type} \; \mt{envVar} \\
adam@1799 1517 \mt{val} \; \mt{blessEnvVar} : \mt{string} \to \mt{envVar} \\
adam@1799 1518 \mt{val} \; \mt{checkEnvVar} : \mt{string} \to \mt{option} \; \mt{envVar} \\
adam@1799 1519 \mt{val} \; \mt{getenv} : \mt{envVar} \to \mt{transaction} \; (\mt{option} \; \mt{string}) \\
adam@1799 1520 \\
adam@1465 1521 \mt{type} \; \mt{responseHeader} \\
adam@1465 1522 \mt{val} \; \mt{blessResponseHeader} : \mt{string} \to \mt{responseHeader} \\
adam@1465 1523 \mt{val} \; \mt{checkResponseHeader} : \mt{string} \to \mt{option} \; \mt{responseHeader} \\
adam@1465 1524 \mt{val} \; \mt{setHeader} : \mt{responseHeader} \to \mt{string} \to \mt{transaction} \; \mt{unit}
adam@1465 1525 \end{array}$$
adam@1465 1526
adamc@786 1527 A blob can be extracted from a file and returned as the page result. There are bless and check functions for MIME types analogous to those for URLs.
adamc@786 1528 $$\begin{array}{l}
adamc@786 1529 \mt{type} \; \mt{mimeType} \\
adamc@786 1530 \mt{val} \; \mt{blessMime} : \mt{string} \to \mt{mimeType} \\
adamc@786 1531 \mt{val} \; \mt{checkMime} : \mt{string} \to \mt{option} \; \mt{mimeType} \\
adamc@786 1532 \mt{val} \; \mt{returnBlob} : \mt{t} ::: \mt{Type} \to \mt{blob} \to \mt{mimeType} \to \mt{transaction} \; \mt{t}
adamc@542 1533 \end{array}$$
adamc@542 1534
adamc@543 1535 \subsection{SQL}
adamc@543 1536
adam@1400 1537 Everything about SQL database access is restricted to server-side code.
adam@1400 1538
adamc@543 1539 The fundamental unit of interest in the embedding of SQL is tables, described by a type family and creatable only via the $\mt{table}$ declaration form.
adamc@543 1540 $$\begin{array}{l}
adamc@785 1541 \mt{con} \; \mt{sql\_table} :: \{\mt{Type}\} \to \{\{\mt{Unit}\}\} \to \mt{Type}
adamc@785 1542 \end{array}$$
adamc@785 1543 The first argument to this constructor gives the names and types of a table's columns, and the second argument gives the set of valid keys. Keys are the only subsets of the columns that may be referenced as foreign keys. Each key has a name.
adamc@785 1544
adamc@785 1545 We also have the simpler type family of SQL views, which have no keys.
adamc@785 1546 $$\begin{array}{l}
adamc@785 1547 \mt{con} \; \mt{sql\_view} :: \{\mt{Type}\} \to \mt{Type}
adamc@543 1548 \end{array}$$
adamc@543 1549
adamc@785 1550 A multi-parameter type class is used to allow tables and views to be used interchangeably, with a way of extracting the set of columns from each.
adamc@785 1551 $$\begin{array}{l}
adamc@785 1552 \mt{class} \; \mt{fieldsOf} :: \mt{Type} \to \{\mt{Type}\} \to \mt{Type} \\
adamc@785 1553 \mt{val} \; \mt{fieldsOf\_table} : \mt{fs} ::: \{\mt{Type}\} \to \mt{keys} ::: \{\{\mt{Unit}\}\} \to \mt{fieldsOf} \; (\mt{sql\_table} \; \mt{fs} \; \mt{keys}) \; \mt{fs} \\
adamc@785 1554 \mt{val} \; \mt{fieldsOf\_view} : \mt{fs} ::: \{\mt{Type}\} \to \mt{fieldsOf} \; (\mt{sql\_view} \; \mt{fs}) \; \mt{fs}
adamc@785 1555 \end{array}$$
adamc@785 1556
adamc@785 1557 \subsubsection{Table Constraints}
adamc@785 1558
adamc@785 1559 Tables may be declared with constraints, such that database modifications that violate the constraints are blocked. A table may have at most one \texttt{PRIMARY KEY} constraint, which gives the subset of columns that will most often be used to look up individual rows in the table.
adamc@785 1560
adamc@785 1561 $$\begin{array}{l}
adamc@785 1562 \mt{con} \; \mt{primary\_key} :: \{\mt{Type}\} \to \{\{\mt{Unit}\}\} \to \mt{Type} \\
adamc@785 1563 \mt{val} \; \mt{no\_primary\_key} : \mt{fs} ::: \{\mt{Type}\} \to \mt{primary\_key} \; \mt{fs} \; [] \\
adamc@785 1564 \mt{val} \; \mt{primary\_key} : \mt{rest} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \to \mt{key1} :: \mt{Name} \to \mt{keys} :: \{\mt{Type}\} \\
adamc@785 1565 \hspace{.1in} \to [[\mt{key1}] \sim \mt{keys}] \Rightarrow [[\mt{key1} = \mt{t}] \rc \mt{keys} \sim \mt{rest}] \\
adamc@785 1566 \hspace{.1in} \Rightarrow \$([\mt{key1} = \mt{sql\_injectable\_prim} \; \mt{t}] \rc \mt{map} \; \mt{sql\_injectable\_prim} \; \mt{keys}) \\
adamc@785 1567 \hspace{.1in} \to \mt{primary\_key} \; ([\mt{key1} = \mt{t}] \rc \mt{keys} \rc \mt{rest}) \; [\mt{Pkey} = [\mt{key1}] \rc \mt{map} \; (\lambda \_ \Rightarrow ()) \; \mt{keys}]
adamc@785 1568 \end{array}$$
adamc@785 1569 The type class $\mt{sql\_injectable\_prim}$ characterizes which types are allowed in SQL and are not $\mt{option}$ types. In SQL, a \texttt{PRIMARY KEY} constraint enforces after-the-fact that a column may not contain \texttt{NULL}s, but Ur/Web forces that information to be included in table types from the beginning. Thus, the only effect of this kind of constraint in Ur/Web is to enforce uniqueness of the given key within the table.
adamc@785 1570
adamc@785 1571 A type family stands for sets of named constraints of the remaining varieties.
adamc@785 1572 $$\begin{array}{l}
adamc@785 1573 \mt{con} \; \mt{sql\_constraints} :: \{\mt{Type}\} \to \{\{\mt{Unit}\}\} \to \mt{Type}
adamc@785 1574 \end{array}$$
adamc@785 1575 The first argument gives the column types of the table being constrained, and the second argument maps constraint names to the keys that they define. Constraints that don't define keys are mapped to ``empty keys.''
adamc@785 1576
adamc@785 1577 There is a type family of individual, unnamed constraints.
adamc@785 1578 $$\begin{array}{l}
adamc@785 1579 \mt{con} \; \mt{sql\_constraint} :: \{\mt{Type}\} \to \{\mt{Unit}\} \to \mt{Type}
adamc@785 1580 \end{array}$$
adamc@785 1581 The first argument is the same as above, and the second argument gives the key columns for just this constraint.
adamc@785 1582
adamc@785 1583 We have operations for assembling constraints into constraint sets.
adamc@785 1584 $$\begin{array}{l}
adamc@785 1585 \mt{val} \; \mt{no\_constraint} : \mt{fs} ::: \{\mt{Type}\} \to \mt{sql\_constraints} \; \mt{fs} \; [] \\
adamc@785 1586 \mt{val} \; \mt{one\_constraint} : \mt{fs} ::: \{\mt{Type}\} \to \mt{unique} ::: \{\mt{Unit}\} \to \mt{name} :: \mt{Name} \\
adamc@785 1587 \hspace{.1in} \to \mt{sql\_constraint} \; \mt{fs} \; \mt{unique} \to \mt{sql\_constraints} \; \mt{fs} \; [\mt{name} = \mt{unique}] \\
adamc@785 1588 \mt{val} \; \mt{join\_constraints} : \mt{fs} ::: \{\mt{Type}\} \to \mt{uniques1} ::: \{\{\mt{Unit}\}\} \to \mt{uniques2} ::: \{\{\mt{Unit}\}\} \to [\mt{uniques1} \sim \mt{uniques2}] \\
adamc@785 1589 \hspace{.1in} \Rightarrow \mt{sql\_constraints} \; \mt{fs} \; \mt{uniques1} \to \mt{sql\_constraints} \; \mt{fs} \; \mt{uniques2} \to \mt{sql\_constraints} \; \mt{fs} \; (\mt{uniques1} \rc \mt{uniques2})
adamc@785 1590 \end{array}$$
adamc@785 1591
adamc@785 1592 A \texttt{UNIQUE} constraint forces a set of columns to be a key, which means that no combination of column values may occur more than once in the table. The $\mt{unique1}$ and $\mt{unique}$ arguments are separated out only to ensure that empty \texttt{UNIQUE} constraints are rejected.
adamc@785 1593 $$\begin{array}{l}
adamc@785 1594 \mt{val} \; \mt{unique} : \mt{rest} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \to \mt{unique1} :: \mt{Name} \to \mt{unique} :: \{\mt{Type}\} \\
adamc@785 1595 \hspace{.1in} \to [[\mt{unique1}] \sim \mt{unique}] \Rightarrow [[\mt{unique1} = \mt{t}] \rc \mt{unique} \sim \mt{rest}] \\
adamc@785 1596 \hspace{.1in} \Rightarrow \mt{sql\_constraint} \; ([\mt{unique1} = \mt{t}] \rc \mt{unique} \rc \mt{rest}) \; ([\mt{unique1}] \rc \mt{map} \; (\lambda \_ \Rightarrow ()) \; \mt{unique})
adamc@785 1597 \end{array}$$
adamc@785 1598
adamc@785 1599 A \texttt{FOREIGN KEY} constraint connects a set of local columns to a local or remote key, enforcing that the local columns always reference an existent row of the foreign key's table. A local column of type $\mt{t}$ may be linked to a foreign column of type $\mt{option} \; \mt{t}$, and vice versa. We formalize that notion with a type class.
adamc@785 1600 $$\begin{array}{l}
adamc@785 1601 \mt{class} \; \mt{linkable} :: \mt{Type} \to \mt{Type} \to \mt{Type} \\
adamc@785 1602 \mt{val} \; \mt{linkable\_same} : \mt{t} ::: \mt{Type} \to \mt{linkable} \; \mt{t} \; \mt{t} \\
adamc@785 1603 \mt{val} \; \mt{linkable\_from\_nullable} : \mt{t} ::: \mt{Type} \to \mt{linkable} \; (\mt{option} \; \mt{t}) \; \mt{t} \\
adamc@785 1604 \mt{val} \; \mt{linkable\_to\_nullable} : \mt{t} ::: \mt{Type} \to \mt{linkable} \; \mt{t} \; (\mt{option} \; \mt{t})
adamc@785 1605 \end{array}$$
adamc@785 1606
adamc@785 1607 The $\mt{matching}$ type family uses $\mt{linkable}$ to define when two keys match up type-wise.
adamc@785 1608 $$\begin{array}{l}
adamc@785 1609 \mt{con} \; \mt{matching} :: \{\mt{Type}\} \to \{\mt{Type}\} \to \mt{Type} \\
adamc@785 1610 \mt{val} \; \mt{mat\_nil} : \mt{matching} \; [] \; [] \\
adamc@785 1611 \mt{val} \; \mt{mat\_cons} : \mt{t1} ::: \mt{Type} \to \mt{rest1} ::: \{\mt{Type}\} \to \mt{t2} ::: \mt{Type} \to \mt{rest2} ::: \{\mt{Type}\} \to \mt{nm1} :: \mt{Name} \to \mt{nm2} :: \mt{Name} \\
adamc@785 1612 \hspace{.1in} \to [[\mt{nm1}] \sim \mt{rest1}] \Rightarrow [[\mt{nm2}] \sim \mt{rest2}] \Rightarrow \mt{linkable} \; \mt{t1} \; \mt{t2} \to \mt{matching} \; \mt{rest1} \; \mt{rest2} \\
adamc@785 1613 \hspace{.1in} \to \mt{matching} \; ([\mt{nm1} = \mt{t1}] \rc \mt{rest1}) \; ([\mt{nm2} = \mt{t2}] \rc \mt{rest2})
adamc@785 1614 \end{array}$$
adamc@785 1615
adamc@785 1616 SQL provides a number of different propagation modes for \texttt{FOREIGN KEY} constraints, governing what happens when a row containing a still-referenced foreign key value is deleted or modified to have a different key value. The argument of a propagation mode's type gives the local key type.
adamc@785 1617 $$\begin{array}{l}
adamc@785 1618 \mt{con} \; \mt{propagation\_mode} :: \{\mt{Type}\} \to \mt{Type} \\
adamc@785 1619 \mt{val} \; \mt{restrict} : \mt{fs} ::: \{\mt{Type}\} \to \mt{propagation\_mode} \; \mt{fs} \\
adamc@785 1620 \mt{val} \; \mt{cascade} : \mt{fs} ::: \{\mt{Type}\} \to \mt{propagation\_mode} \; \mt{fs} \\
adamc@785 1621 \mt{val} \; \mt{no\_action} : \mt{fs} ::: \{\mt{Type}\} \to \mt{propagation\_mode} \; \mt{fs} \\
adamc@785 1622 \mt{val} \; \mt{set\_null} : \mt{fs} ::: \{\mt{Type}\} \to \mt{propagation\_mode} \; (\mt{map} \; \mt{option} \; \mt{fs})
adamc@785 1623 \end{array}$$
adamc@785 1624
adamc@785 1625 Finally, we put these ingredient together to define the \texttt{FOREIGN KEY} constraint function.
adamc@785 1626 $$\begin{array}{l}
adamc@785 1627 \mt{val} \; \mt{foreign\_key} : \mt{mine1} ::: \mt{Name} \to \mt{t} ::: \mt{Type} \to \mt{mine} ::: \{\mt{Type}\} \to \mt{munused} ::: \{\mt{Type}\} \to \mt{foreign} ::: \{\mt{Type}\} \\
adamc@785 1628 \hspace{.1in} \to \mt{funused} ::: \{\mt{Type}\} \to \mt{nm} ::: \mt{Name} \to \mt{uniques} ::: \{\{\mt{Unit}\}\} \\
adamc@785 1629 \hspace{.1in} \to [[\mt{mine1}] \sim \mt{mine}] \Rightarrow [[\mt{mine1} = \mt{t}] \rc \mt{mine} \sim \mt{munused}] \Rightarrow [\mt{foreign} \sim \mt{funused}] \Rightarrow [[\mt{nm}] \sim \mt{uniques}] \\
adamc@785 1630 \hspace{.1in} \Rightarrow \mt{matching} \; ([\mt{mine1} = \mt{t}] \rc \mt{mine}) \; \mt{foreign} \\
adamc@785 1631 \hspace{.1in} \to \mt{sql\_table} \; (\mt{foreign} \rc \mt{funused}) \; ([\mt{nm} = \mt{map} \; (\lambda \_ \Rightarrow ()) \; \mt{foreign}] \rc \mt{uniques}) \\
adamc@785 1632 \hspace{.1in} \to \{\mt{OnDelete} : \mt{propagation\_mode} \; ([\mt{mine1} = \mt{t}] \rc \mt{mine}), \\
adamc@785 1633 \hspace{.2in} \mt{OnUpdate} : \mt{propagation\_mode} \; ([\mt{mine1} = \mt{t}] \rc \mt{mine})\} \\
adamc@785 1634 \hspace{.1in} \to \mt{sql\_constraint} \; ([\mt{mine1} = \mt{t}] \rc \mt{mine} \rc \mt{munused}) \; []
adamc@785 1635 \end{array}$$
adamc@785 1636
adamc@785 1637 The last kind of constraint is a \texttt{CHECK} constraint, which attaches a boolean invariant over a row's contents. It is defined using the $\mt{sql\_exp}$ type family, which we discuss in more detail below.
adamc@785 1638 $$\begin{array}{l}
adam@1778 1639 \mt{val} \; \mt{check} : \mt{fs} ::: \{\mt{Type}\} \to \mt{sql\_exp} \; [] \; [] \; \mt{fs} \; \mt{bool} \to \mt{sql\_constraint} \; \mt{fs} \; []
adamc@785 1640 \end{array}$$
adamc@785 1641
adamc@785 1642 Section \ref{tables} shows the expanded syntax of the $\mt{table}$ declaration and signature item that includes constraints. There is no other way to use constraints with SQL in Ur/Web.
adamc@785 1643
adamc@784 1644
adamc@543 1645 \subsubsection{Queries}
adamc@543 1646
adam@1400 1647 A final query is constructed via the $\mt{sql\_query}$ function. Constructor arguments respectively specify the unrestricted free table variables (which will only be available in subqueries), the free table variables that may only be mentioned within arguments to aggregate functions, table fields we select (as records mapping tables to the subsets of their fields that we choose), and the (always named) extra expressions that we select.
adamc@543 1648 $$\begin{array}{l}
adam@1400 1649 \mt{con} \; \mt{sql\_query} :: \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \\
adamc@1193 1650 \mt{val} \; \mt{sql\_query} : \mt{free} ::: \{\{\mt{Type}\}\} \\
adam@1400 1651 \hspace{.1in} \to \mt{afree} ::: \{\{\mt{Type}\}\} \\
adamc@1193 1652 \hspace{.1in} \to \mt{tables} ::: \{\{\mt{Type}\}\} \\
adamc@543 1653 \hspace{.1in} \to \mt{selectedFields} ::: \{\{\mt{Type}\}\} \\
adamc@543 1654 \hspace{.1in} \to \mt{selectedExps} ::: \{\mt{Type}\} \\
adamc@1193 1655 \hspace{.1in} \to [\mt{free} \sim \mt{tables}] \\
adam@1400 1656 \hspace{.1in} \Rightarrow \{\mt{Rows} : \mt{sql\_query1} \; \mt{free} \; \mt{afree} \; \mt{tables} \; \mt{selectedFields} \; \mt{selectedExps}, \\
adamc@1193 1657 \hspace{.2in} \mt{OrderBy} : \mt{sql\_order\_by} \; (\mt{free} \rc \mt{tables}) \; \mt{selectedExps}, \\
adamc@543 1658 \hspace{.2in} \mt{Limit} : \mt{sql\_limit}, \\
adamc@543 1659 \hspace{.2in} \mt{Offset} : \mt{sql\_offset}\} \\
adam@1400 1660 \hspace{.1in} \to \mt{sql\_query} \; \mt{free} \; \mt{afree} \; \mt{selectedFields} \; \mt{selectedExps}
adamc@543 1661 \end{array}$$
adamc@543 1662
adamc@545 1663 Queries are used by folding over their results inside transactions.
adamc@545 1664 $$\begin{array}{l}
adam@1400 1665 \mt{val} \; \mt{query} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to [\mt{tables} \sim \mt{exps}] \Rightarrow \mt{state} ::: \mt{Type} \to \mt{sql\_query} \; [] \; [] \; \mt{tables} \; \mt{exps} \\
adamc@658 1666 \hspace{.1in} \to (\$(\mt{exps} \rc \mt{map} \; (\lambda \mt{fields} :: \{\mt{Type}\} \Rightarrow \$\mt{fields}) \; \mt{tables}) \\
adamc@545 1667 \hspace{.2in} \to \mt{state} \to \mt{transaction} \; \mt{state}) \\
adamc@545 1668 \hspace{.1in} \to \mt{state} \to \mt{transaction} \; \mt{state}
adamc@545 1669 \end{array}$$
adamc@545 1670
adam@1400 1671 Most of the complexity of the query encoding is in the type $\mt{sql\_query1}$, which includes simple queries and derived queries based on relational operators. Constructor arguments respectively specify the unrestricted free table veriables, the aggregate-only free table variables, the tables we select from, the subset of fields that we keep from each table for the result rows, and the extra expressions that we select.
adamc@543 1672 $$\begin{array}{l}
adam@1400 1673 \mt{con} \; \mt{sql\_query1} :: \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \\
adamc@543 1674 \\
adamc@543 1675 \mt{type} \; \mt{sql\_relop} \\
adamc@543 1676 \mt{val} \; \mt{sql\_union} : \mt{sql\_relop} \\
adamc@543 1677 \mt{val} \; \mt{sql\_intersect} : \mt{sql\_relop} \\
adamc@543 1678 \mt{val} \; \mt{sql\_except} : \mt{sql\_relop} \\
adam@1400 1679 \mt{val} \; \mt{sql\_relop} : \mt{free} ::: \{\{\mt{Type}\}\} \\
adam@1400 1680 \hspace{.1in} \to \mt{afree} ::: \{\{\mt{Type}\}\} \\
adam@1400 1681 \hspace{.1in} \to \mt{tables1} ::: \{\{\mt{Type}\}\} \\
adamc@543 1682 \hspace{.1in} \to \mt{tables2} ::: \{\{\mt{Type}\}\} \\
adamc@543 1683 \hspace{.1in} \to \mt{selectedFields} ::: \{\{\mt{Type}\}\} \\
adamc@543 1684 \hspace{.1in} \to \mt{selectedExps} ::: \{\mt{Type}\} \\
adamc@543 1685 \hspace{.1in} \to \mt{sql\_relop} \\
adam@1458 1686 \hspace{.1in} \to \mt{bool} \; (* \; \mt{ALL} \; *) \\
adam@1400 1687 \hspace{.1in} \to \mt{sql\_query1} \; \mt{free} \; \mt{afree} \; \mt{tables1} \; \mt{selectedFields} \; \mt{selectedExps} \\
adam@1400 1688 \hspace{.1in} \to \mt{sql\_query1} \; \mt{free} \; \mt{afree} \; \mt{tables2} \; \mt{selectedFields} \; \mt{selectedExps} \\
adam@1400 1689 \hspace{.1in} \to \mt{sql\_query1} \; \mt{free} \; \mt{afree} \; \mt{selectedFields} \; \mt{selectedFields} \; \mt{selectedExps}
adamc@543 1690 \end{array}$$
adamc@543 1691
adamc@543 1692 $$\begin{array}{l}
adamc@1193 1693 \mt{val} \; \mt{sql\_query1} : \mt{free} ::: \{\{\mt{Type}\}\} \\
adam@1400 1694 \hspace{.1in} \to \mt{afree} ::: \{\{\mt{Type}\}\} \\
adamc@1193 1695 \hspace{.1in} \to \mt{tables} ::: \{\{\mt{Type}\}\} \\
adamc@543 1696 \hspace{.1in} \to \mt{grouped} ::: \{\{\mt{Type}\}\} \\
adamc@543 1697 \hspace{.1in} \to \mt{selectedFields} ::: \{\{\mt{Type}\}\} \\
adamc@543 1698 \hspace{.1in} \to \mt{selectedExps} ::: \{\mt{Type}\} \\
adamc@1085 1699 \hspace{.1in} \to \mt{empties} :: \{\mt{Unit}\} \\
adamc@1193 1700 \hspace{.1in} \to [\mt{free} \sim \mt{tables}] \\
adamc@1193 1701 \hspace{.1in} \Rightarrow [\mt{free} \sim \mt{grouped}] \\
adam@1400 1702 \hspace{.1in} \Rightarrow [\mt{afree} \sim \mt{tables}] \\
adamc@1193 1703 \hspace{.1in} \Rightarrow [\mt{empties} \sim \mt{selectedFields}] \\
adamc@1085 1704 \hspace{.1in} \Rightarrow \{\mt{Distinct} : \mt{bool}, \\
adamc@1193 1705 \hspace{.2in} \mt{From} : \mt{sql\_from\_items} \; \mt{free} \; \mt{tables}, \\
adam@1778 1706 \hspace{.2in} \mt{Where} : \mt{sql\_exp} \; (\mt{free} \rc \mt{tables}) \; \mt{afree} \; [] \; \mt{bool}, \\
adamc@543 1707 \hspace{.2in} \mt{GroupBy} : \mt{sql\_subset} \; \mt{tables} \; \mt{grouped}, \\
adam@1778 1708 \hspace{.2in} \mt{Having} : \mt{sql\_exp} \; (\mt{free} \rc \mt{grouped}) \; (\mt{afree} \rc \mt{tables}) \; [] \; \mt{bool}, \\
adamc@1085 1709 \hspace{.2in} \mt{SelectFields} : \mt{sql\_subset} \; \mt{grouped} \; (\mt{map} \; (\lambda \_ \Rightarrow []) \; \mt{empties} \rc \mt{selectedFields}), \\
adam@1778 1710 \hspace{.2in} \mt {SelectExps} : \$(\mt{map} \; (\mt{sql\_expw} \; (\mt{free} \rc \mt{grouped}) \; (\mt{afree} \rc \mt{tables}) \; []) \; \mt{selectedExps}) \} \\
adam@1400 1711 \hspace{.1in} \to \mt{sql\_query1} \; \mt{free} \; \mt{afree} \; \mt{tables} \; \mt{selectedFields} \; \mt{selectedExps}
adamc@543 1712 \end{array}$$
adamc@543 1713
adamc@543 1714 To encode projection of subsets of fields in $\mt{SELECT}$ clauses, and to encode $\mt{GROUP} \; \mt{BY}$ clauses, we rely on a type family $\mt{sql\_subset}$, capturing what it means for one record of table fields to be a subset of another. The main constructor $\mt{sql\_subset}$ ``proves subset facts'' by requiring a split of a record into kept and dropped parts. The extra constructor $\mt{sql\_subset\_all}$ is a convenience for keeping all fields of a record.
adamc@543 1715 $$\begin{array}{l}
adamc@543 1716 \mt{con} \; \mt{sql\_subset} :: \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \mt{Type} \\
adamc@543 1717 \mt{val} \; \mt{sql\_subset} : \mt{keep\_drop} :: \{(\{\mt{Type}\} \times \{\mt{Type}\})\} \\
adamc@543 1718 \hspace{.1in} \to \mt{sql\_subset} \\
adamc@658 1719 \hspace{.2in} (\mt{map} \; (\lambda \mt{fields} :: (\{\mt{Type}\} \times \{\mt{Type}\}) \Rightarrow \mt{fields}.1 \rc \mt{fields}.2)\; \mt{keep\_drop}) \\
adamc@658 1720 \hspace{.2in} (\mt{map} \; (\lambda \mt{fields} :: (\{\mt{Type}\} \times \{\mt{Type}\}) \Rightarrow \mt{fields}.1) \; \mt{keep\_drop}) \\
adamc@543 1721 \mt{val} \; \mt{sql\_subset\_all} : \mt{tables} :: \{\{\mt{Type}\}\} \to \mt{sql\_subset} \; \mt{tables} \; \mt{tables}
adamc@543 1722 \end{array}$$
adamc@543 1723
adam@1778 1724 SQL expressions are used in several places, including $\mt{SELECT}$, $\mt{WHERE}$, $\mt{HAVING}$, and $\mt{ORDER} \; \mt{BY}$ clauses. They reify a fragment of the standard SQL expression language, while making it possible to inject ``native'' Ur values in some places. The arguments to the $\mt{sql\_exp}$ type family respectively give the unrestricted-availability table fields, the table fields that may only be used in arguments to aggregate functions, the available selected expressions, and the type of the expression.
adamc@543 1725 $$\begin{array}{l}
adam@1778 1726 \mt{con} \; \mt{sql\_exp} :: \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \to \mt{Type}
adamc@543 1727 \end{array}$$
adamc@543 1728
adamc@543 1729 Any field in scope may be converted to an expression.
adamc@543 1730 $$\begin{array}{l}
adamc@543 1731 \mt{val} \; \mt{sql\_field} : \mt{otherTabs} ::: \{\{\mt{Type}\}\} \to \mt{otherFields} ::: \{\mt{Type}\} \\
adam@1778 1732 \hspace{.1in} \to \mt{fieldType} ::: \mt{Type} \to \mt{agg} ::: \{\{\mt{Type}\}\} \\
adamc@543 1733 \hspace{.1in} \to \mt{exps} ::: \{\mt{Type}\} \\
adamc@543 1734 \hspace{.1in} \to \mt{tab} :: \mt{Name} \to \mt{field} :: \mt{Name} \\
adam@1778 1735 \hspace{.1in} \to \mt{sql\_exp} \; ([\mt{tab} = [\mt{field} = \mt{fieldType}] \rc \mt{otherFields}] \rc \mt{otherTabs}) \; \mt{agg} \; \mt{exps} \; \mt{fieldType}
adamc@543 1736 \end{array}$$
adamc@543 1737
adamc@544 1738 There is an analogous function for referencing named expressions.
adamc@544 1739 $$\begin{array}{l}
adam@1778 1740 \mt{val} \; \mt{sql\_exp} : \mt{tabs} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{t} ::: \mt{Type} \to \mt{rest} ::: \{\mt{Type}\} \to \mt{nm} :: \mt{Name} \\
adam@1778 1741 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tabs} \; \mt{agg} \; ([\mt{nm} = \mt{t}] \rc \mt{rest}) \; \mt{t}
adamc@544 1742 \end{array}$$
adamc@544 1743
adamc@544 1744 Ur values of appropriate types may be injected into SQL expressions.
adamc@544 1745 $$\begin{array}{l}
adamc@786 1746 \mt{class} \; \mt{sql\_injectable\_prim} \\
adamc@786 1747 \mt{val} \; \mt{sql\_bool} : \mt{sql\_injectable\_prim} \; \mt{bool} \\
adamc@786 1748 \mt{val} \; \mt{sql\_int} : \mt{sql\_injectable\_prim} \; \mt{int} \\
adamc@786 1749 \mt{val} \; \mt{sql\_float} : \mt{sql\_injectable\_prim} \; \mt{float} \\
adamc@786 1750 \mt{val} \; \mt{sql\_string} : \mt{sql\_injectable\_prim} \; \mt{string} \\
adamc@786 1751 \mt{val} \; \mt{sql\_time} : \mt{sql\_injectable\_prim} \; \mt{time} \\
adamc@786 1752 \mt{val} \; \mt{sql\_blob} : \mt{sql\_injectable\_prim} \; \mt{blob} \\
adamc@786 1753 \mt{val} \; \mt{sql\_channel} : \mt{t} ::: \mt{Type} \to \mt{sql\_injectable\_prim} \; (\mt{channel} \; \mt{t}) \\
adamc@786 1754 \mt{val} \; \mt{sql\_client} : \mt{sql\_injectable\_prim} \; \mt{client} \\
adamc@786 1755 \\
adamc@544 1756 \mt{class} \; \mt{sql\_injectable} \\
adamc@786 1757 \mt{val} \; \mt{sql\_prim} : \mt{t} ::: \mt{Type} \to \mt{sql\_injectable\_prim} \; \mt{t} \to \mt{sql\_injectable} \; \mt{t} \\
adamc@786 1758 \mt{val} \; \mt{sql\_option\_prim} : \mt{t} ::: \mt{Type} \to \mt{sql\_injectable\_prim} \; \mt{t} \to \mt{sql\_injectable} \; (\mt{option} \; \mt{t}) \\
adamc@786 1759 \\
adam@1778 1760 \mt{val} \; \mt{sql\_inject} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \to \mt{sql\_injectable} \; \mt{t} \\
adam@1778 1761 \hspace{.1in} \to \mt{t} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t}
adamc@544 1762 \end{array}$$
adamc@544 1763
adamc@1123 1764 Additionally, most function-free types may be injected safely, via the $\mt{serialized}$ type family.
adamc@1123 1765 $$\begin{array}{l}
adamc@1123 1766 \mt{con} \; \mt{serialized} :: \mt{Type} \to \mt{Type} \\
adamc@1123 1767 \mt{val} \; \mt{serialize} : \mt{t} ::: \mt{Type} \to \mt{t} \to \mt{serialized} \; \mt{t} \\
adamc@1123 1768 \mt{val} \; \mt{deserialize} : \mt{t} ::: \mt{Type} \to \mt{serialized} \; \mt{t} \to \mt{t} \\
adamc@1123 1769 \mt{val} \; \mt{sql\_serialized} : \mt{t} ::: \mt{Type} \to \mt{sql\_injectable\_prim} \; (\mt{serialized} \; \mt{t})
adamc@1123 1770 \end{array}$$
adamc@1123 1771
adamc@544 1772 We have the SQL nullness test, which is necessary because of the strange SQL semantics of equality in the presence of null values.
adamc@544 1773 $$\begin{array}{l}
adam@1778 1774 \mt{val} \; \mt{sql\_is\_null} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \\
adam@1778 1775 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; (\mt{option} \; \mt{t}) \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{bool}
adamc@544 1776 \end{array}$$
adamc@544 1777
adam@1602 1778 As another way of dealing with null values, there is also a restricted form of the standard \cd{COALESCE} function.
adam@1602 1779 $$\begin{array}{l}
adam@1602 1780 \mt{val} \; \mt{sql\_coalesce} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \\
adam@1778 1781 \hspace{.1in} \to \mt{t} ::: \mt{Type} \\
adam@1778 1782 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; (\mt{option} \; \mt{t}) \\
adam@1778 1783 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t} \\
adam@1778 1784 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t}
adam@1602 1785 \end{array}$$
adam@1602 1786
adamc@559 1787 We have generic nullary, unary, and binary operators.
adamc@544 1788 $$\begin{array}{l}
adamc@544 1789 \mt{con} \; \mt{sql\_nfunc} :: \mt{Type} \to \mt{Type} \\
adamc@544 1790 \mt{val} \; \mt{sql\_current\_timestamp} : \mt{sql\_nfunc} \; \mt{time} \\
adam@1778 1791 \mt{val} \; \mt{sql\_nfunc} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \\
adam@1778 1792 \hspace{.1in} \to \mt{sql\_nfunc} \; \mt{t} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t} \\\end{array}$$
adamc@544 1793
adamc@544 1794 $$\begin{array}{l}
adamc@544 1795 \mt{con} \; \mt{sql\_unary} :: \mt{Type} \to \mt{Type} \to \mt{Type} \\
adamc@544 1796 \mt{val} \; \mt{sql\_not} : \mt{sql\_unary} \; \mt{bool} \; \mt{bool} \\
adam@1778 1797 \mt{val} \; \mt{sql\_unary} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{arg} ::: \mt{Type} \to \mt{res} ::: \mt{Type} \\
adam@1778 1798 \hspace{.1in} \to \mt{sql\_unary} \; \mt{arg} \; \mt{res} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{arg} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{res} \\
adamc@544 1799 \end{array}$$
adamc@544 1800
adamc@544 1801 $$\begin{array}{l}
adamc@544 1802 \mt{con} \; \mt{sql\_binary} :: \mt{Type} \to \mt{Type} \to \mt{Type} \to \mt{Type} \\
adamc@544 1803 \mt{val} \; \mt{sql\_and} : \mt{sql\_binary} \; \mt{bool} \; \mt{bool} \; \mt{bool} \\
adamc@544 1804 \mt{val} \; \mt{sql\_or} : \mt{sql\_binary} \; \mt{bool} \; \mt{bool} \; \mt{bool} \\
adam@1778 1805 \mt{val} \; \mt{sql\_binary} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{arg_1} ::: \mt{Type} \to \mt{arg_2} ::: \mt{Type} \to \mt{res} ::: \mt{Type} \\
adam@1778 1806 \hspace{.1in} \to \mt{sql\_binary} \; \mt{arg_1} \; \mt{arg_2} \; \mt{res} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{arg_1} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{arg_2} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{res}
adamc@544 1807 \end{array}$$
adamc@544 1808
adamc@544 1809 $$\begin{array}{l}
adamc@559 1810 \mt{class} \; \mt{sql\_arith} \\
adamc@559 1811 \mt{val} \; \mt{sql\_int\_arith} : \mt{sql\_arith} \; \mt{int} \\
adamc@559 1812 \mt{val} \; \mt{sql\_float\_arith} : \mt{sql\_arith} \; \mt{float} \\
adamc@559 1813 \mt{val} \; \mt{sql\_neg} : \mt{t} ::: \mt{Type} \to \mt{sql\_arith} \; \mt{t} \to \mt{sql\_unary} \; \mt{t} \; \mt{t} \\
adamc@559 1814 \mt{val} \; \mt{sql\_plus} : \mt{t} ::: \mt{Type} \to \mt{sql\_arith} \; \mt{t} \to \mt{sql\_binary} \; \mt{t} \; \mt{t} \; \mt{t} \\
adamc@559 1815 \mt{val} \; \mt{sql\_minus} : \mt{t} ::: \mt{Type} \to \mt{sql\_arith} \; \mt{t} \to \mt{sql\_binary} \; \mt{t} \; \mt{t} \; \mt{t} \\
adamc@559 1816 \mt{val} \; \mt{sql\_times} : \mt{t} ::: \mt{Type} \to \mt{sql\_arith} \; \mt{t} \to \mt{sql\_binary} \; \mt{t} \; \mt{t} \; \mt{t} \\
adamc@559 1817 \mt{val} \; \mt{sql\_div} : \mt{t} ::: \mt{Type} \to \mt{sql\_arith} \; \mt{t} \to \mt{sql\_binary} \; \mt{t} \; \mt{t} \; \mt{t} \\
adamc@559 1818 \mt{val} \; \mt{sql\_mod} : \mt{sql\_binary} \; \mt{int} \; \mt{int} \; \mt{int}
adamc@559 1819 \end{array}$$
adamc@544 1820
adam@1797 1821 Finally, we have aggregate functions. The $\mt{COUNT(\ast)}$ syntax is handled specially, since it takes no real argument. The other aggregate functions are placed into a general type family, using constructor classes to restrict usage to properly typed arguments. The key aspect of the $\mt{sql\_aggregate}$ function's type is the shift of aggregate-function-only fields into unrestricted fields.
adamc@544 1822 $$\begin{array}{l}
adam@1778 1823 \mt{val} \; \mt{sql\_count} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{int}
adamc@544 1824 \end{array}$$
adamc@544 1825
adamc@544 1826 $$\begin{array}{l}
adamc@1188 1827 \mt{con} \; \mt{sql\_aggregate} :: \mt{Type} \to \mt{Type} \to \mt{Type} \\
adam@1778 1828 \mt{val} \; \mt{sql\_aggregate} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{dom} ::: \mt{Type} \to \mt{ran} ::: \mt{Type} \\
adam@1778 1829 \hspace{.1in} \to \mt{sql\_aggregate} \; \mt{dom} \; \mt{ran} \to \mt{sql\_exp} \; \mt{agg} \; \mt{agg} \; \mt{exps} \; \mt{dom} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{ran}
adamc@1188 1830 \end{array}$$
adamc@1188 1831
adamc@1188 1832 $$\begin{array}{l}
adamc@1188 1833 \mt{val} \; \mt{sql\_count\_col} : \mt{t} ::: \mt{Type} \to \mt{sql\_aggregate} \; (\mt{option} \; \mt{t}) \; \mt{int}
adamc@544 1834 \end{array}$$
adam@1400 1835
adam@1400 1836 Most aggregate functions are typed using a two-parameter constructor class $\mt{nullify}$ which maps $\mt{option}$ types to themselves and adds $\mt{option}$ to others. That is, this constructor class represents the process of making an SQL type ``nullable.''
adamc@544 1837
adamc@544 1838 $$\begin{array}{l}
adamc@544 1839 \mt{class} \; \mt{sql\_summable} \\
adamc@544 1840 \mt{val} \; \mt{sql\_summable\_int} : \mt{sql\_summable} \; \mt{int} \\
adamc@544 1841 \mt{val} \; \mt{sql\_summable\_float} : \mt{sql\_summable} \; \mt{float} \\
adam@1777 1842 \mt{val} \; \mt{sql\_avg} : \mt{t} ::: \mt{Type} \to \mt{sql\_summable} \; \mt{t} \to \mt{sql\_aggregate} \; \mt{t} \; (\mt{option} \; \mt{float}) \\
adam@1400 1843 \mt{val} \; \mt{sql\_sum} : \mt{t} ::: \mt{Type} \to \mt{nt} ::: \mt{Type} \to \mt{sql\_summable} \; \mt{t} \to \mt{nullify} \; \mt{t} \; \mt{nt} \to \mt{sql\_aggregate} \; \mt{t} \; \mt{nt}
adamc@544 1844 \end{array}$$
adamc@544 1845
adamc@544 1846 $$\begin{array}{l}
adamc@544 1847 \mt{class} \; \mt{sql\_maxable} \\
adamc@544 1848 \mt{val} \; \mt{sql\_maxable\_int} : \mt{sql\_maxable} \; \mt{int} \\
adamc@544 1849 \mt{val} \; \mt{sql\_maxable\_float} : \mt{sql\_maxable} \; \mt{float} \\
adamc@544 1850 \mt{val} \; \mt{sql\_maxable\_string} : \mt{sql\_maxable} \; \mt{string} \\
adamc@544 1851 \mt{val} \; \mt{sql\_maxable\_time} : \mt{sql\_maxable} \; \mt{time} \\
adam@1400 1852 \mt{val} \; \mt{sql\_max} : \mt{t} ::: \mt{Type} \to \mt{nt} ::: \mt{Type} \to \mt{sql\_maxable} \; \mt{t} \to \mt{nullify} \; \mt{t} \; \mt{nt} \to \mt{sql\_aggregate} \; \mt{t} \; \mt{nt} \\
adam@1400 1853 \mt{val} \; \mt{sql\_min} : \mt{t} ::: \mt{Type} \to \mt{nt} ::: \mt{Type} \to \mt{sql\_maxable} \; \mt{t} \to \mt{nullify} \; \mt{t} \; \mt{nt} \to \mt{sql\_aggregate} \; \mt{t} \; \mt{nt}
adamc@544 1854 \end{array}$$
adamc@544 1855
adam@1778 1856 Any SQL query that returns single columns may be turned into a subquery expression.
adam@1777 1857
adam@1777 1858 $$\begin{array}{l}
adam@1778 1859 \mt{val} \; \mt{sql\_subquery} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{nm} ::: \mt{Name} \to \mt{t} ::: \mt{Type} \to \mt{nt} ::: \mt{Type} \\
adam@1778 1860 \hspace{.1in} \to \mt{nullify} \; \mt{t} \; \mt{nt} \to \mt{sql\_query} \; \mt{tables} \; \mt{agg} \; [\mt{nm} = \mt{t}] \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{nt}
adamc@1193 1861 \end{array}$$
adamc@1193 1862
adam@1573 1863 There is also an \cd{IF..THEN..ELSE..} construct that is compiled into standard SQL \cd{CASE} expressions.
adam@1573 1864 $$\begin{array}{l}
adam@1778 1865 \mt{val} \; \mt{sql\_if\_then\_else} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \\
adam@1778 1866 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{bool} \\
adam@1778 1867 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t} \\
adam@1778 1868 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t} \\
adam@1778 1869 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t}
adam@1573 1870 \end{array}$$
adam@1573 1871
adamc@1193 1872 \texttt{FROM} clauses are specified using a type family, whose arguments are the free table variables and the table variables bound by this clause.
adamc@1193 1873 $$\begin{array}{l}
adamc@1193 1874 \mt{con} \; \mt{sql\_from\_items} :: \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \mt{Type} \\
adamc@1193 1875 \mt{val} \; \mt{sql\_from\_table} : \mt{free} ::: \{\{\mt{Type}\}\} \\
adamc@1193 1876 \hspace{.1in} \to \mt{t} ::: \mt{Type} \to \mt{fs} ::: \{\mt{Type}\} \to \mt{fieldsOf} \; \mt{t} \; \mt{fs} \to \mt{name} :: \mt{Name} \to \mt{t} \to \mt{sql\_from\_items} \; \mt{free} \; [\mt{name} = \mt{fs}] \\
adamc@1193 1877 \mt{val} \; \mt{sql\_from\_query} : \mt{free} ::: \{\{\mt{Type}\}\} \to \mt{fs} ::: \{\mt{Type}\} \to \mt{name} :: \mt{Name} \to \mt{sql\_query} \; \mt{free} \; [] \; \mt{fs} \to \mt{sql\_from\_items} \; \mt{free} \; [\mt{name} = \mt{fs}] \\
adamc@1193 1878 \mt{val} \; \mt{sql\_from\_comma} : \mt{free} ::: \mt{tabs1} ::: \{\{\mt{Type}\}\} \to \mt{tabs2} ::: \{\{\mt{Type}\}\} \to [\mt{tabs1} \sim \mt{tabs2}] \\
adamc@1193 1879 \hspace{.1in} \Rightarrow \mt{sql\_from\_items} \; \mt{free} \; \mt{tabs1} \to \mt{sql\_from\_items} \; \mt{free} \; \mt{tabs2} \\
adamc@1193 1880 \hspace{.1in} \to \mt{sql\_from\_items} \; \mt{free} \; (\mt{tabs1} \rc \mt{tabs2}) \\
adamc@1193 1881 \mt{val} \; \mt{sql\_inner\_join} : \mt{free} ::: \{\{\mt{Type}\}\} \to \mt{tabs1} ::: \{\{\mt{Type}\}\} \to \mt{tabs2} ::: \{\{\mt{Type}\}\} \\
adamc@1193 1882 \hspace{.1in} \to [\mt{free} \sim \mt{tabs1}] \Rightarrow [\mt{free} \sim \mt{tabs2}] \Rightarrow [\mt{tabs1} \sim \mt{tabs2}] \\
adamc@1193 1883 \hspace{.1in} \Rightarrow \mt{sql\_from\_items} \; \mt{free} \; \mt{tabs1} \to \mt{sql\_from\_items} \; \mt{free} \; \mt{tabs2} \\
adam@1778 1884 \hspace{.1in} \to \mt{sql\_exp} \; (\mt{free} \rc \mt{tabs1} \rc \mt{tabs2}) \; [] \; [] \; \mt{bool} \\
adamc@1193 1885 \hspace{.1in} \to \mt{sql\_from\_items} \; \mt{free} \; (\mt{tabs1} \rc \mt{tabs2})
adamc@786 1886 \end{array}$$
adamc@786 1887
adamc@786 1888 Besides these basic cases, outer joins are supported, which requires a type class for turning non-$\mt{option}$ columns into $\mt{option}$ columns.
adamc@786 1889 $$\begin{array}{l}
adamc@786 1890 \mt{class} \; \mt{nullify} :: \mt{Type} \to \mt{Type} \to \mt{Type} \\
adamc@786 1891 \mt{val} \; \mt{nullify\_option} : \mt{t} ::: \mt{Type} \to \mt{nullify} \; (\mt{option} \; \mt{t}) \; (\mt{option} \; \mt{t}) \\
adamc@786 1892 \mt{val} \; \mt{nullify\_prim} : \mt{t} ::: \mt{Type} \to \mt{sql\_injectable\_prim} \; \mt{t} \to \mt{nullify} \; \mt{t} \; (\mt{option} \; \mt{t})
adamc@786 1893 \end{array}$$
adamc@786 1894
adamc@786 1895 Left, right, and full outer joins can now be expressed using functions that accept records of $\mt{nullify}$ instances. Here, we give only the type for a left join as an example.
adamc@786 1896
adamc@786 1897 $$\begin{array}{l}
adamc@1193 1898 \mt{val} \; \mt{sql\_left\_join} : \mt{free} ::: \{\{\mt{Type}\}\} \to \mt{tabs1} ::: \{\{\mt{Type}\}\} \to \mt{tabs2} ::: \{\{(\mt{Type} \times \mt{Type})\}\} \\
adamc@1193 1899 \hspace{.1in} \to [\mt{free} \sim \mt{tabs1}] \Rightarrow [\mt{free} \sim \mt{tabs2}] \Rightarrow [\mt{tabs1} \sim \mt{tabs2}] \\
adamc@786 1900 \hspace{.1in} \Rightarrow \$(\mt{map} \; (\lambda \mt{r} \Rightarrow \$(\mt{map} \; (\lambda \mt{p} :: (\mt{Type} \times \mt{Type}) \Rightarrow \mt{nullify} \; \mt{p}.1 \; \mt{p}.2) \; \mt{r})) \; \mt{tabs2}) \\
adamc@1193 1901 \hspace{.1in} \to \mt{sql\_from\_items} \; \mt{free} \; \mt{tabs1} \to \mt{sql\_from\_items} \; \mt{free} \; (\mt{map} \; (\mt{map} \; (\lambda \mt{p} :: (\mt{Type} \times \mt{Type}) \Rightarrow \mt{p}.1)) \; \mt{tabs2}) \\
adam@1778 1902 \hspace{.1in} \to \mt{sql\_exp} \; (\mt{free} \rc \mt{tabs1} \rc \mt{map} \; (\mt{map} \; (\lambda \mt{p} :: (\mt{Type} \times \mt{Type}) \Rightarrow \mt{p}.1)) \; \mt{tabs2}) \; [] \; [] \; \mt{bool} \\
adamc@1193 1903 \hspace{.1in} \to \mt{sql\_from\_items} \; \mt{free} \; (\mt{tabs1} \rc \mt{map} \; (\mt{map} \; (\lambda \mt{p} :: (\mt{Type} \times \mt{Type}) \Rightarrow \mt{p}.2)) \; \mt{tabs2})
adamc@786 1904 \end{array}$$
adamc@786 1905
adamc@544 1906 We wrap up the definition of query syntax with the types used in representing $\mt{ORDER} \; \mt{BY}$, $\mt{LIMIT}$, and $\mt{OFFSET}$ clauses.
adamc@544 1907 $$\begin{array}{l}
adamc@544 1908 \mt{type} \; \mt{sql\_direction} \\
adamc@544 1909 \mt{val} \; \mt{sql\_asc} : \mt{sql\_direction} \\
adamc@544 1910 \mt{val} \; \mt{sql\_desc} : \mt{sql\_direction} \\
adamc@544 1911 \\
adamc@544 1912 \mt{con} \; \mt{sql\_order\_by} :: \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \\
adamc@544 1913 \mt{val} \; \mt{sql\_order\_by\_Nil} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{exps} :: \{\mt{Type}\} \to \mt{sql\_order\_by} \; \mt{tables} \; \mt{exps} \\
adam@1778 1914 \mt{val} \; \mt{sql\_order\_by\_Cons} : \mt{tf} ::: (\{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \to \mt{Type}) \\
adam@1778 1915 \hspace{.1in} \to \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \\
adam@1778 1916 \hspace{.1in} \to \mt{sql\_window} \; \mt{tf} \to \mt{tf} \; \mt{tables} \; [] \; \mt{exps} \; \mt{t} \to \mt{sql\_direction} \to \mt{sql\_order\_by} \; \mt{tables} \; \mt{exps} \to \mt{sql\_order\_by} \; \mt{tables} \; \mt{exps} \\
adam@1684 1917 \mt{val} \; \mt{sql\_order\_by\_random} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{sql\_order\_by} \; \mt{tables} \; \mt{exps} \\
adamc@544 1918 \\
adamc@544 1919 \mt{type} \; \mt{sql\_limit} \\
adamc@544 1920 \mt{val} \; \mt{sql\_no\_limit} : \mt{sql\_limit} \\
adamc@544 1921 \mt{val} \; \mt{sql\_limit} : \mt{int} \to \mt{sql\_limit} \\
adamc@544 1922 \\
adamc@544 1923 \mt{type} \; \mt{sql\_offset} \\
adamc@544 1924 \mt{val} \; \mt{sql\_no\_offset} : \mt{sql\_offset} \\
adamc@544 1925 \mt{val} \; \mt{sql\_offset} : \mt{int} \to \mt{sql\_offset}
adamc@544 1926 \end{array}$$
adamc@544 1927
adam@1778 1928 When using Postgres, \cd{SELECT} and \cd{ORDER BY} are allowed to contain top-level uses of \emph{window functions}. A separate type family \cd{sql\_expw} is provided for such cases, with some type class convenience for overloading between normal and window expressions.
adam@1778 1929 $$\begin{array}{l}
adam@1778 1930 \mt{con} \; \mt{sql\_expw} :: \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \to \mt{Type} \\
adam@1778 1931 \\
adam@1778 1932 \mt{class} \; \mt{sql\_window} :: (\{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \to \mt{Type}) \to \mt{Type} \\
adam@1778 1933 \mt{val} \; \mt{sql\_window\_normal} : \mt{sql\_window} \; \mt{sql\_exp} \\
adam@1778 1934 \mt{val} \; \mt{sql\_window\_fancy} : \mt{sql\_window} \; \mt{sql\_expw} \\
adam@1778 1935 \mt{val} \; \mt{sql\_window} : \mt{tf} ::: (\{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \to \mt{Type}) \\
adam@1778 1936 \hspace{.1in} \to \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \\
adam@1778 1937 \hspace{.1in} \to \mt{sql\_window} \; \mt{tf} \\
adam@1778 1938 \hspace{.1in} \to \mt{tf} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t} \\
adam@1778 1939 \hspace{.1in} \to \mt{sql\_expw} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t} \\
adam@1778 1940 \\
adam@1778 1941 \mt{con} \; \mt{sql\_partition} :: \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \\
adam@1778 1942 \mt{val} \; \mt{sql\_no\_partition} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \\
adam@1778 1943 \hspace{.1in} \to \mt{sql\_partition} \; \mt{tables} \; \mt{agg} \; \mt{exps} \\
adam@1778 1944 \mt{val} \; \mt{sql\_partition} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \\
adam@1778 1945 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t} \\
adam@1778 1946 \hspace{.1in} \to \mt{sql\_partition} \; \mt{tables} \; \mt{agg} \; \mt{exps} \\
adam@1778 1947 \\
adam@1778 1948 \mt{con} \; \mt{sql\_window\_function} :: \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \to \mt{Type} \\
adam@1778 1949 \mt{val} \; \mt{sql\_window\_function} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \\
adam@1778 1950 \hspace{.1in} \to \mt{t} ::: \mt{Type} \\
adam@1778 1951 \hspace{.1in} \to \mt{sql\_window\_function} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t} \\
adam@1778 1952 \hspace{.1in} \to \mt{sql\_partition} \; \mt{tables} \; \mt{agg} \; \mt{exps} \\
adam@1778 1953 \hspace{.1in} \to \mt{sql\_order\_by} \; \mt{tables} \; \mt{exps} \\
adam@1778 1954 \hspace{.1in} \to \mt{sql\_expw} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t} \\
adam@1778 1955 \\
adam@1778 1956 \mt{val} \; \mt{sql\_window\_aggregate} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \\
adam@1778 1957 \hspace{.1in} \to \mt{t} ::: \mt{Type} \to \mt{nt} ::: \mt{Type} \\
adam@1778 1958 \hspace{.1in} \to \mt{sql\_aggregate} \; \mt{t} \; \mt{nt} \\
adam@1778 1959 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t} \\
adam@1778 1960 \hspace{.1in} \to \mt{sql\_window\_function} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{nt} \\
adam@1778 1961 \mt{val} \; \mt{sql\_window\_count} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \\
adam@1778 1962 \hspace{.1in} \to \mt{sql\_window\_function} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{int} \\
adam@1778 1963 \mt{val} \; \mt{sql\_rank} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \\
adam@1778 1964 \hspace{.1in} \to \mt{sql\_window\_function} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{int}
adam@1778 1965 \end{array}$$
adam@1778 1966
adamc@545 1967
adamc@545 1968 \subsubsection{DML}
adamc@545 1969
adamc@545 1970 The Ur/Web library also includes an embedding of a fragment of SQL's DML, the Data Manipulation Language, for modifying database tables. Any piece of DML may be executed in a transaction.
adamc@545 1971
adamc@545 1972 $$\begin{array}{l}
adamc@545 1973 \mt{type} \; \mt{dml} \\
adamc@545 1974 \mt{val} \; \mt{dml} : \mt{dml} \to \mt{transaction} \; \mt{unit}
adamc@545 1975 \end{array}$$
adamc@545 1976
adam@1297 1977 The function $\mt{Basis.dml}$ will trigger a fatal application error if the command fails, for instance, because a data integrity constraint is violated. An alternate function returns an error message as a string instead.
adam@1297 1978
adam@1297 1979 $$\begin{array}{l}
adam@1297 1980 \mt{val} \; \mt{tryDml} : \mt{dml} \to \mt{transaction} \; (\mt{option} \; \mt{string})
adam@1297 1981 \end{array}$$
adam@1297 1982
adam@1797 1983 Properly typed records may be used to form $\mt{INSERT}$ commands.
adamc@545 1984 $$\begin{array}{l}
adamc@545 1985 \mt{val} \; \mt{insert} : \mt{fields} ::: \{\mt{Type}\} \to \mt{sql\_table} \; \mt{fields} \\
adam@1778 1986 \hspace{.1in} \to \$(\mt{map} \; (\mt{sql\_exp} \; [] \; [] \; []) \; \mt{fields}) \to \mt{dml}
adamc@545 1987 \end{array}$$
adamc@545 1988
adam@1578 1989 An $\mt{UPDATE}$ command is formed from a choice of which table fields to leave alone and which to change, along with an expression to use to compute the new value of each changed field and a $\mt{WHERE}$ clause. Note that, in the table environment applied to expressions, the table being updated is hardcoded at the name $\mt{T}$. The parsing extension for $\mt{UPDATE}$ will elaborate all table-free field references to use table variable $\mt{T}$.
adamc@545 1990 $$\begin{array}{l}
adam@1380 1991 \mt{val} \; \mt{update} : \mt{unchanged} ::: \{\mt{Type}\} \to \mt{changed} :: \{\mt{Type}\} \to [\mt{changed} \sim \mt{unchanged}] \\
adam@1778 1992 \hspace{.1in} \Rightarrow \$(\mt{map} \; (\mt{sql\_exp} \; [\mt{T} = \mt{changed} \rc \mt{unchanged}] \; [] \; []) \; \mt{changed}) \\
adam@1778 1993 \hspace{.1in} \to \mt{sql\_table} \; (\mt{changed} \rc \mt{unchanged}) \to \mt{sql\_exp} \; [\mt{T} = \mt{changed} \rc \mt{unchanged}] \; [] \; [] \; \mt{bool} \to \mt{dml}
adamc@545 1994 \end{array}$$
adamc@545 1995
adam@1578 1996 A $\mt{DELETE}$ command is formed from a table and a $\mt{WHERE}$ clause. The above use of $\mt{T}$ is repeated.
adamc@545 1997 $$\begin{array}{l}
adam@1778 1998 \mt{val} \; \mt{delete} : \mt{fields} ::: \{\mt{Type}\} \to \mt{sql\_table} \; \mt{fields} \to \mt{sql\_exp} \; [\mt{T} = \mt{fields}] \; [] \; [] \; \mt{bool} \to \mt{dml}
adamc@545 1999 \end{array}$$
adamc@545 2000
adamc@546 2001 \subsubsection{Sequences}
adamc@546 2002
adamc@546 2003 SQL sequences are counters with concurrency control, often used to assign unique IDs. Ur/Web supports them via a simple interface. The only way to create a sequence is with the $\mt{sequence}$ declaration form.
adamc@546 2004
adamc@546 2005 $$\begin{array}{l}
adamc@546 2006 \mt{type} \; \mt{sql\_sequence} \\
adamc@1085 2007 \mt{val} \; \mt{nextval} : \mt{sql\_sequence} \to \mt{transaction} \; \mt{int} \\
adamc@1085 2008 \mt{val} \; \mt{setval} : \mt{sql\_sequence} \to \mt{int} \to \mt{transaction} \; \mt{unit}
adamc@546 2009 \end{array}$$
adamc@546 2010
adamc@546 2011
adam@1648 2012 \subsection{\label{xml}XML}
adamc@547 2013
adam@1333 2014 Ur/Web's library contains an encoding of XML syntax and semantic constraints. We make no effort to follow the standards governing XML schemas. Rather, XML fragments are viewed more as values of ML datatypes, and we only track which tags are allowed inside which other tags. The Ur/Web standard library encodes a very loose version of XHTML, where it is very easy to produce documents which are invalid XHTML, but which still display properly in all major browsers. The main purposes of the invariants that are enforced are first, to provide some documentation about the places where it would make sense to insert XML fragments; and second, to rule out code injection attacks and other abstraction violations related to HTML syntax.
adamc@547 2015
adam@1642 2016 The basic XML type family has arguments respectively indicating the \emph{context} of a fragment, the fields that the fragment expects to be bound on entry (and their types), and the fields that the fragment will bind (and their types). Contexts are a record-based ``poor man's subtyping'' encoding, with each possible set of valid tags corresponding to a different context record. For instance, the context for the \texttt{<td>} tag is $[\mt{Dyn}, \mt{MakeForm}, \mt{Tr}]$, to indicate nesting inside a \texttt{<tr>} tag with the ability to nest \texttt{<form>} and \texttt{<dyn>} tags (see below). Contexts are maintained in a somewhat ad-hoc way; the only definitive reference for their meanings is the types of the tag values in \texttt{basis.urs}. The arguments dealing with field binding are only relevant to HTML forms.
adamc@547 2017 $$\begin{array}{l}
adamc@547 2018 \mt{con} \; \mt{xml} :: \{\mt{Unit}\} \to \{\mt{Type}\} \to \{\mt{Type}\} \to \mt{Type}
adamc@547 2019 \end{array}$$
adamc@547 2020
adamc@547 2021 We also have a type family of XML tags, indexed respectively by the record of optional attributes accepted by the tag, the context in which the tag may be placed, the context required of children of the tag, which form fields the tag uses, and which fields the tag defines.
adamc@547 2022 $$\begin{array}{l}
adamc@547 2023 \mt{con} \; \mt{tag} :: \{\mt{Type}\} \to \{\mt{Unit}\} \to \{\mt{Unit}\} \to \{\mt{Type}\} \to \{\mt{Type}\} \to \mt{Type}
adamc@547 2024 \end{array}$$
adamc@547 2025
adamc@547 2026 Literal text may be injected into XML as ``CDATA.''
adamc@547 2027 $$\begin{array}{l}
adamc@547 2028 \mt{val} \; \mt{cdata} : \mt{ctx} ::: \{\mt{Unit}\} \to \mt{use} ::: \{\mt{Type}\} \to \mt{string} \to \mt{xml} \; \mt{ctx} \; \mt{use} \; []
adamc@547 2029 \end{array}$$
adamc@547 2030
adam@1358 2031 There is also a function to insert the literal value of a character. Since Ur/Web uses the UTF-8 text encoding, the $\mt{cdata}$ function is only sufficient to encode characters with ASCII codes below 128. Higher codes have alternate meanings in UTF-8 than in usual ASCII, so this alternate function should be used with them.
adam@1358 2032 $$\begin{array}{l}
adam@1358 2033 \mt{val} \; \mt{cdataChar} : \mt{ctx} ::: \{\mt{Unit}\} \to \mt{use} ::: \{\mt{Type}\} \to \mt{char} \to \mt{xml} \; \mt{ctx} \; \mt{use} \; []
adam@1358 2034 \end{array}$$
adam@1358 2035
adamc@547 2036 There is a function for producing an XML tree with a particular tag at its root.
adamc@547 2037 $$\begin{array}{l}
adamc@547 2038 \mt{val} \; \mt{tag} : \mt{attrsGiven} ::: \{\mt{Type}\} \to \mt{attrsAbsent} ::: \{\mt{Type}\} \to \mt{ctxOuter} ::: \{\mt{Unit}\} \to \mt{ctxInner} ::: \{\mt{Unit}\} \\
adamc@547 2039 \hspace{.1in} \to \mt{useOuter} ::: \{\mt{Type}\} \to \mt{useInner} ::: \{\mt{Type}\} \to \mt{bindOuter} ::: \{\mt{Type}\} \to \mt{bindInner} ::: \{\mt{Type}\} \\
adam@1380 2040 \hspace{.1in} \to [\mt{attrsGiven} \sim \mt{attrsAbsent}] \Rightarrow [\mt{useOuter} \sim \mt{useInner}] \Rightarrow [\mt{bindOuter} \sim \mt{bindInner}] \\
adam@1749 2041 \hspace{.1in} \Rightarrow \mt{css\_class} \\
adam@1643 2042 \hspace{.1in} \to \mt{option} \; (\mt{signal} \; \mt{css\_class}) \\
adam@1750 2043 \hspace{.1in} \to \mt{css\_style} \\
adam@1751 2044 \hspace{.1in} \to \mt{option} \; (\mt{signal} \; \mt{css\_style}) \\
adamc@787 2045 \hspace{.1in} \to \$\mt{attrsGiven} \\
adamc@547 2046 \hspace{.1in} \to \mt{tag} \; (\mt{attrsGiven} \rc \mt{attrsAbsent}) \; \mt{ctxOuter} \; \mt{ctxInner} \; \mt{useOuter} \; \mt{bindOuter} \\
adamc@547 2047 \hspace{.1in} \to \mt{xml} \; \mt{ctxInner} \; \mt{useInner} \; \mt{bindInner} \to \mt{xml} \; \mt{ctxOuter} \; (\mt{useOuter} \rc \mt{useInner}) \; (\mt{bindOuter} \rc \mt{bindInner})
adamc@547 2048 \end{array}$$
adam@1750 2049 Note that any tag may be assigned a CSS class, or left without a class by passing $\mt{Basis.null}$ as the first value-level argument. This is the sole way of making use of the values produced by $\mt{style}$ declarations. The function $\mt{Basis.classes}$ can be used to specify a list of CSS classes for a single tag. Stylesheets to assign properties to the classes can be linked via URL's with \texttt{link} tags. Ur/Web makes it easy to calculate upper bounds on usage of CSS classes through program analysis, with the \cd{-css} command-line flag.
adamc@547 2050
adam@1643 2051 Also note that two different arguments are available for setting CSS classes: the first, associated with the \texttt{class} pseudo-attribute syntactic sugar, fixes the class of a tag for the duration of the tag's life; while the second, associated with the \texttt{dynClass} pseudo-attribute, allows the class to vary over the tag's life. See Section \ref{signals} for an introduction to the $\mt{signal}$ type family.
adam@1643 2052
adam@1751 2053 The third and fourth value-level arguments makes it possible to generate HTML \cd{style} attributes, either with fixed content (\cd{style} attribute) or dynamic content (\cd{dynStyle} pseudo-attribute).
adam@1750 2054
adamc@547 2055 Two XML fragments may be concatenated.
adamc@547 2056 $$\begin{array}{l}
adamc@547 2057 \mt{val} \; \mt{join} : \mt{ctx} ::: \{\mt{Unit}\} \to \mt{use_1} ::: \{\mt{Type}\} \to \mt{bind_1} ::: \{\mt{Type}\} \to \mt{bind_2} ::: \{\mt{Type}\} \\
adam@1380 2058 \hspace{.1in} \to [\mt{use_1} \sim \mt{bind_1}] \Rightarrow [\mt{bind_1} \sim \mt{bind_2}] \\
adamc@547 2059 \hspace{.1in} \Rightarrow \mt{xml} \; \mt{ctx} \; \mt{use_1} \; \mt{bind_1} \to \mt{xml} \; \mt{ctx} \; (\mt{use_1} \rc \mt{bind_1}) \; \mt{bind_2} \to \mt{xml} \; \mt{ctx} \; \mt{use_1} \; (\mt{bind_1} \rc \mt{bind_2})
adamc@547 2060 \end{array}$$
adamc@547 2061
adamc@547 2062 Finally, any XML fragment may be updated to ``claim'' to use more form fields than it does.
adamc@547 2063 $$\begin{array}{l}
adam@1380 2064 \mt{val} \; \mt{useMore} : \mt{ctx} ::: \{\mt{Unit}\} \to \mt{use_1} ::: \{\mt{Type}\} \to \mt{use_2} ::: \{\mt{Type}\} \to \mt{bind} ::: \{\mt{Type}\} \to [\mt{use_1} \sim \mt{use_2}] \\
adamc@547 2065 \hspace{.1in} \Rightarrow \mt{xml} \; \mt{ctx} \; \mt{use_1} \; \mt{bind} \to \mt{xml} \; \mt{ctx} \; (\mt{use_1} \rc \mt{use_2}) \; \mt{bind}
adamc@547 2066 \end{array}$$
adamc@547 2067
adam@2008 2068 We will not list here the different HTML tags and related functions from the standard library. They should be easy enough to understand from the code in \texttt{basis.urs}. The set of tags in the library is not yet claimed to be complete for HTML standards. Also note that there is currently no way for the programmer to add his own tags, without using the foreign function interface (Section \ref{ffi}).
adam@2008 2069
adam@2047 2070 Some tags support HTML5 \texttt{data-*} attributes, which in Ur/Web are encoded as a single attribute $\mt{Data}$ with type $\mt{data\_attrs}$ encoding one or more attributes of this kind. See \texttt{basis.urs} for details. The usual HTML5 syntax for these attributes is supported by the Ur/Web parser as syntactic sugar, and the same mechanism is reused to support \texttt{aria-*} attributes.
adamc@547 2071
adamc@547 2072 One last useful function is for aborting any page generation, returning some XML as an error message. This function takes the place of some uses of a general exception mechanism.
adamc@547 2073 $$\begin{array}{l}
adam@1641 2074 \mt{val} \; \mt{error} : \mt{t} ::: \mt{Type} \to \mt{xbody} \to \mt{t}
adamc@547 2075 \end{array}$$
adamc@547 2076
adamc@549 2077
adamc@701 2078 \subsection{Client-Side Programming}
adamc@659 2079
adamc@701 2080 Ur/Web supports running code on web browsers, via automatic compilation to JavaScript.
adamc@701 2081
adamc@701 2082 \subsubsection{The Basics}
adamc@701 2083
adam@1400 2084 All of the functions in this subsection are client-side only.
adam@1400 2085
adam@1297 2086 Clients can open alert and confirm dialog boxes, in the usual annoying JavaScript way.
adamc@701 2087 $$\begin{array}{l}
adam@1297 2088 \mt{val} \; \mt{alert} : \mt{string} \to \mt{transaction} \; \mt{unit} \\
adam@1297 2089 \mt{val} \; \mt{confirm} : \mt{string} \to \mt{transaction} \; \mt{bool}
adamc@701 2090 \end{array}$$
adamc@701 2091
adamc@701 2092 Any transaction may be run in a new thread with the $\mt{spawn}$ function.
adamc@701 2093 $$\begin{array}{l}
adamc@701 2094 \mt{val} \; \mt{spawn} : \mt{transaction} \; \mt{unit} \to \mt{transaction} \; \mt{unit}
adamc@701 2095 \end{array}$$
adamc@701 2096
adamc@701 2097 The current thread can be paused for at least a specified number of milliseconds.
adamc@701 2098 $$\begin{array}{l}
adamc@701 2099 \mt{val} \; \mt{sleep} : \mt{int} \to \mt{transaction} \; \mt{unit}
adamc@701 2100 \end{array}$$
adamc@701 2101
adam@1770 2102 A few functions are available to registers callbacks for particular error events. Respectively, they are triggered on calls to $\mt{error}$, uncaught JavaScript exceptions, failure of remote procedure calls, the severance of the connection serving asynchronous messages, or the occurrence of some other error with that connection. If no handlers are registered for a kind of error, then a JavaScript \cd{alert()} is used to announce its occurrence. When one of these functions is called multiple times within a single page, all registered handlers are run when appropriate events occur, with handlers run in the reverse of their registration order.
adamc@787 2103 $$\begin{array}{l}
adamc@787 2104 \mt{val} \; \mt{onError} : (\mt{xbody} \to \mt{transaction} \; \mt{unit}) \to \mt{transaction} \; \mt{unit} \\
adamc@787 2105 \mt{val} \; \mt{onFail} : (\mt{string} \to \mt{transaction} \; \mt{unit}) \to \mt{transaction} \; \mt{unit} \\
adamc@787 2106 \mt{val} \; \mt{onConnectFail} : \mt{transaction} \; \mt{unit} \to \mt{transaction} \; \mt{unit} \\
adamc@787 2107 \mt{val} \; \mt{onDisconnect} : \mt{transaction} \; \mt{unit} \to \mt{transaction} \; \mt{unit} \\
adamc@787 2108 \mt{val} \; \mt{onServerError} : (\mt{string} \to \mt{transaction} \; \mt{unit}) \to \mt{transaction} \; \mt{unit}
adamc@787 2109 \end{array}$$
adamc@787 2110
adam@1555 2111 There are also functions to register standard document-level event handlers.
adam@1555 2112
adam@1555 2113 $$\begin{array}{l}
adam@1783 2114 \mt{val} \; \mt{onClick} : (\mt{mouseEvent} \to \mt{transaction} \; \mt{unit}) \to \mt{transaction} \; \mt{unit} \\
adam@1783 2115 \mt{val} \; \mt{onDblclick} : (\mt{mouseEvent} \to \mt{transaction} \; \mt{unit}) \to \mt{transaction} \; \mt{unit} \\
adam@1783 2116 \mt{val} \; \mt{onKeydown} : (\mt{keyEvent} \to \mt{transaction} \; \mt{unit}) \to \mt{transaction} \; \mt{unit} \\
adam@1783 2117 \mt{val} \; \mt{onKeypress} : (\mt{keyEvent} \to \mt{transaction} \; \mt{unit}) \to \mt{transaction} \; \mt{unit} \\
adam@1783 2118 \mt{val} \; \mt{onKeyup} : (\mt{keyEvent} \to \mt{transaction} \; \mt{unit}) \to \mt{transaction} \; \mt{unit} \\
adam@1783 2119 \mt{val} \; \mt{onMousedown} : (\mt{mouseEvent} \to \mt{transaction} \; \mt{unit}) \to \mt{transaction} \; \mt{unit} \\
adam@1783 2120 \mt{val} \; \mt{onMouseup} : (\mt{mouseEvent} \to \mt{transaction} \; \mt{unit}) \to \mt{transaction} \; \mt{unit}
adam@1555 2121 \end{array}$$
adam@1555 2122
adam@1559 2123 Versions of standard JavaScript functions are provided that event handlers may call to mask default handling or prevent bubbling of events up to parent DOM nodes, respectively.
adam@1559 2124
adam@1559 2125 $$\begin{array}{l}
adam@1559 2126 \mt{val} \; \mt{preventDefault} : \mt{transaction} \; \mt{unit} \\
adam@1559 2127 \mt{val} \; \mt{stopPropagation} : \mt{transaction} \; \mt{unit}
adam@1559 2128 \end{array}$$
adam@1559 2129
adam@1926 2130 Finally, here is an HTML tag to leave a marker in the \cd{<head>} of a document asking for some side-effecting code to be run. This pattern is \emph{much} less common in Ur/Web applications than in normal HTML/JavaScript applications; see Section \ref{signals} for the more idiomatic, functional way of manipulating the visible page.
adam@1926 2131
adam@1926 2132 $$\begin{array}{l}
adam@1926 2133 \mt{val} \; \mt{script} : \mt{unit} \to \mt{tag} \; [\mt{Code} = \mt{transaction} \; \mt{unit}] \; \mt{head} \; [] \; [] \; []
adam@1926 2134 \end{array}$$
adam@1926 2135
adam@1926 2136 Note that the Ur/Web version of \cd{<script>} is used like \cd{<script code=\{...\}/>}, rather than \cd{<script>...</script>}.
adam@1926 2137
adam@1556 2138 \subsubsection{Node IDs}
adam@1556 2139
adam@1556 2140 There is an abstract type of node IDs that may be assigned to \cd{id} attributes of most HTML tags.
adam@1556 2141
adam@1556 2142 $$\begin{array}{l}
adam@1556 2143 \mt{type} \; \mt{id} \\
adam@1556 2144 \mt{val} \; \mt{fresh} : \mt{transaction} \; \mt{id}
adam@1556 2145 \end{array}$$
adam@1556 2146
adam@1785 2147 The \cd{fresh} function is allowed on both server and client, but there is no other way to create IDs, which includes lack of a way to force an ID to match a particular string. The main semantic importance of IDs within Ur/Web is in uses of the HTML \cd{<label>} tag. IDs play a much more central role in mainstream JavaScript programming, but Ur/Web uses a very different model to enable changes to particular nodes of a page tree, as the next manual subsection explains. IDs may still be useful in interfacing with JavaScript code (for instance, through Ur/Web's FFI).
adam@1785 2148
adam@1785 2149 One further use of IDs is as handles for requesting that \emph{focus} be given to specific tags.
adam@1785 2150
adam@1785 2151 $$\begin{array}{l}
adam@1785 2152 \mt{val} \; \mt{giveFocus} : \mt{id} \to \mt{transaction} \; \mt{unit}
adam@1785 2153 \end{array}$$
adam@1556 2154
adam@1643 2155 \subsubsection{\label{signals}Functional-Reactive Page Generation}
adamc@701 2156
adamc@701 2157 Most approaches to ``AJAX''-style coding involve imperative manipulation of the DOM tree representing an HTML document's structure. Ur/Web follows the \emph{functional-reactive} approach instead. Programs may allocate mutable \emph{sources} of arbitrary types, and an HTML page is effectively a pure function over the latest values of the sources. The page is not mutated directly, but rather it changes automatically as the sources are mutated.
adamc@659 2158
adam@1403 2159 More operationally, you can think of a source as a mutable cell with facilities for subscription to change notifications. That level of detail is hidden behind a monadic facility to be described below. First, there are three primitive operations for working with sources just as if they were ML \cd{ref} cells, corresponding to ML's \cd{ref}, \cd{:=}, and \cd{!} operations.
adam@1403 2160
adamc@659 2161 $$\begin{array}{l}
adamc@659 2162 \mt{con} \; \mt{source} :: \mt{Type} \to \mt{Type} \\
adamc@659 2163 \mt{val} \; \mt{source} : \mt{t} ::: \mt{Type} \to \mt{t} \to \mt{transaction} \; (\mt{source} \; \mt{t}) \\
adamc@659 2164 \mt{val} \; \mt{set} : \mt{t} ::: \mt{Type} \to \mt{source} \; \mt{t} \to \mt{t} \to \mt{transaction} \; \mt{unit} \\
adamc@659 2165 \mt{val} \; \mt{get} : \mt{t} ::: \mt{Type} \to \mt{source} \; \mt{t} \to \mt{transaction} \; \mt{t}
adamc@659 2166 \end{array}$$
adamc@659 2167
adam@1400 2168 Only source creation and setting are supported server-side, as a convenience to help in setting up a page, where you may wish to allocate many sources that will be referenced through the page. All server-side storage of values inside sources uses string serializations of values, while client-side storage uses normal JavaScript values.
adam@1400 2169
adam@1608 2170 Pure functions over arbitrary numbers of sources are represented in a monad of \emph{signals}, which may only be used in client-side code. This is presented to the programmer in the form of a monad $\mt{signal}$, each of whose values represents (conceptually) some pure function over all sources that may be allocated in the course of program execution. A monad operation $\mt{signal}$ denotes the identity function over a particular source. By using $\mt{signal}$ on a source, you implicitly subscribe to change notifications for that source. That is, your signal will automatically be recomputed as that source changes. The usual monad operators make it possible to build up complex signals that depend on multiple sources; automatic updating upon source-value changes still happens automatically. There is also an operator for computing a signal's current value within a transaction.
adamc@659 2171
adamc@659 2172 $$\begin{array}{l}
adamc@659 2173 \mt{con} \; \mt{signal} :: \mt{Type} \to \mt{Type} \\
adamc@659 2174 \mt{val} \; \mt{signal\_monad} : \mt{monad} \; \mt{signal} \\
adam@1608 2175 \mt{val} \; \mt{signal} : \mt{t} ::: \mt{Type} \to \mt{source} \; \mt{t} \to \mt{signal} \; \mt{t} \\
adam@1608 2176 \mt{val} \; \mt{current} : \mt{t} ::: \mt{Type} \to \mt{signal} \; \mt{t} \to \mt{transaction} \; \mt{t}
adamc@659 2177 \end{array}$$
adamc@659 2178
adamc@659 2179 A reactive portion of an HTML page is injected with a $\mt{dyn}$ tag, which has a signal-valued attribute $\mt{Signal}$.
adamc@659 2180
adamc@659 2181 $$\begin{array}{l}
adam@1641 2182 \mt{val} \; \mt{dyn} : \mt{ctx} ::: \{\mt{Unit}\} \to \mt{use} ::: \{\mt{Type}\} \to \mt{bind} ::: \{\mt{Type}\} \to [\mt{ctx} \sim [\mt{Dyn}]] \Rightarrow \mt{unit} \\
adam@1641 2183 \hspace{.1in} \to \mt{tag} \; [\mt{Signal} = \mt{signal} \; (\mt{xml} \; ([\mt{Dyn}] \rc \mt{ctx}) \; \mt{use} \; \mt{bind})] \; ([\mt{Dyn}] \rc \mt{ctx}) \; [] \; \mt{use} \; \mt{bind}
adamc@659 2184 \end{array}$$
adamc@659 2185
adam@1648 2186 The semantics of \cd{<dyn>} tags is somewhat subtle. When the signal associated with such a tag changes value, the associated subtree of the HTML page is recreated. Some properties of the subtree, such as attributes and client-side widget values, are specified explicitly in the signal value, so these may be counted on to remain the same after recreation. Other properties, like focus and cursor position within textboxes, are \emph{not} specified by signal values, and these properties will be \emph{reset} upon subtree regeneration. Furthermore, user interaction with widgets may not work properly during regeneration. For instance, clicking a button while it is being regenerated may not trigger its \cd{onclick} event code.
adam@1648 2187
adam@1648 2188 Currently, the only way to avoid undesired resets is to avoid regeneration of containing subtrees. There are two main strategies for achieving that goal. First, when changes to a subtree can be confined to CSS classes of tags, the \texttt{dynClass} pseudo-attribute may be used instead (see Section \ref{xml}), as it does not regenerate subtrees. Second, a single \cd{<dyn>} tag may be broken into multiple tags, in a way that makes finer-grained dependency structure explicit. This latter strategy can avoid ``spurious'' regenerations that are not actually required to achieve the intended semantics.
adam@1648 2189
adam@1786 2190 Transactions can be run on the client by including them in attributes like the $\mt{Onclick}$ attribute of $\mt{button}$, and GUI widgets like $\mt{ctextbox}$ have $\mt{Source}$ attributes that can be used to connect them to sources, so that their values can be read by code running because of, e.g., an $\mt{Onclick}$ event. It is also possible to create an ``active'' HTML fragment that runs a $\mt{transaction}$ to determine its content, possibly allocating some sources in the process:
adam@1786 2191
adam@1786 2192 $$\begin{array}{l}
adam@1786 2193 \mt{val} \; \mt{active} : \mt{unit} \to \mt{tag} \; [\mt{Code} = \mt{transaction} \; \mt{xbody}] \; \mt{body} \; [] \; [] \; []
adam@1786 2194 \end{array}$$
adamc@701 2195
adamc@914 2196 \subsubsection{Remote Procedure Calls}
adamc@914 2197
adamc@914 2198 Any function call may be made a client-to-server ``remote procedure call'' if the function being called needs no features that are only available to client code. To make a function call an RPC, pass that function call as the argument to $\mt{Basis.rpc}$:
adamc@914 2199
adamc@914 2200 $$\begin{array}{l}
adamc@914 2201 \mt{val} \; \mt{rpc} : \mt{t} ::: \mt{Type} \to \mt{transaction} \; \mt{t} \to \mt{transaction} \; \mt{t}
adamc@914 2202 \end{array}$$
adamc@914 2203
adam@1848 2204 There is an alternate form that uses $\mt{None}$ to indicate that an error occurred during RPC processing, rather than raising an exception to abort this branch of control flow.
adam@1848 2205
adam@1848 2206 $$\begin{array}{l}
adam@1848 2207 \mt{val} \; \mt{tryRpc} : \mt{t} ::: \mt{Type} \to \mt{transaction} \; \mt{t} \to \mt{transaction} \; (\mt{option} \; \mt{t})
adam@1848 2208 \end{array}$$
adam@1848 2209
adamc@701 2210 \subsubsection{Asynchronous Message-Passing}
adamc@701 2211
adamc@701 2212 To support asynchronous, ``server push'' delivery of messages to clients, any client that might need to receive an asynchronous message is assigned a unique ID. These IDs may be retrieved both on the client and on the server, during execution of code related to a client.
adamc@701 2213
adamc@701 2214 $$\begin{array}{l}
adamc@701 2215 \mt{type} \; \mt{client} \\
adamc@701 2216 \mt{val} \; \mt{self} : \mt{transaction} \; \mt{client}
adamc@701 2217 \end{array}$$
adamc@701 2218
adam@1940 2219 \emph{Channels} are the means of message-passing. Each channel is created in the context of a client and belongs to that client; no other client may receive the channel's messages. Note that here \emph{client} has a technical Ur/Web meaning so that it describes only \emph{single page views}, so a user following a traditional link within an application will remove the ability for \emph{any} code to receive messages on the channels associated with the previous client. Each channel type includes the type of values that may be sent over the channel. Sending and receiving are asynchronous, in the sense that a client need not be ready to receive a message right away. Rather, sent messages may queue up, waiting to be processed.
adamc@701 2220
adamc@701 2221 $$\begin{array}{l}
adamc@701 2222 \mt{con} \; \mt{channel} :: \mt{Type} \to \mt{Type} \\
adamc@701 2223 \mt{val} \; \mt{channel} : \mt{t} ::: \mt{Type} \to \mt{transaction} \; (\mt{channel} \; \mt{t}) \\
adamc@701 2224 \mt{val} \; \mt{send} : \mt{t} ::: \mt{Type} \to \mt{channel} \; \mt{t} \to \mt{t} \to \mt{transaction} \; \mt{unit} \\
adamc@701 2225 \mt{val} \; \mt{recv} : \mt{t} ::: \mt{Type} \to \mt{channel} \; \mt{t} \to \mt{transaction} \; \mt{t}
adamc@701 2226 \end{array}$$
adamc@701 2227
adamc@701 2228 The $\mt{channel}$ and $\mt{send}$ operations may only be executed on the server, and $\mt{recv}$ may only be executed on a client. Neither clients nor channels may be passed as arguments from clients to server-side functions, so persistent channels can only be maintained by storing them in the database and looking them up using the current client ID or some application-specific value as a key.
adamc@701 2229
adamc@701 2230 Clients and channels live only as long as the web browser page views that they are associated with. When a user surfs away, his client and its channels will be garbage-collected, after that user is not heard from for the timeout period. Garbage collection deletes any database row that contains a client or channel directly. Any reference to one of these types inside an $\mt{option}$ is set to $\mt{None}$ instead. Both kinds of handling have the flavor of weak pointers, and that is a useful way to think about clients and channels in the database.
adamc@701 2231
adam@1551 2232 \emph{Note}: Currently, there are known concurrency issues with multi-threaded applications that employ message-passing on top of database engines that don't support true serializable transactions. Postgres 9.1 is the only supported engine that does this properly.
adam@1551 2233
adamc@659 2234
adamc@549 2235 \section{Ur/Web Syntax Extensions}
adamc@549 2236
adamc@549 2237 Ur/Web features some syntactic shorthands for building values using the functions from the last section. This section sketches the grammar of those extensions. We write spans of syntax inside brackets to indicate that they are optional.
adamc@549 2238
adamc@549 2239 \subsection{SQL}
adamc@549 2240
adamc@786 2241 \subsubsection{\label{tables}Table Declarations}
adamc@786 2242
adamc@788 2243 $\mt{table}$ declarations may include constraints, via these grammar rules.
adamc@788 2244 $$\begin{array}{rrcll}
adam@1594 2245 \textrm{Declarations} & d &::=& \mt{table} \; x : c \; [pk[,]] \; cts \mid \mt{view} \; x = V \\
adamc@788 2246 \textrm{Primary key constraints} & pk &::=& \mt{PRIMARY} \; \mt{KEY} \; K \\
adam@1722 2247 \textrm{Keys} & K &::=& f \mid (f, (f,)^+) \mid \{\{e\}\} \\
adamc@788 2248 \textrm{Constraint sets} & cts &::=& \mt{CONSTRAINT} f \; ct \mid cts, cts \mid \{\{e\}\} \\
adamc@788 2249 \textrm{Constraints} & ct &::=& \mt{UNIQUE} \; K \mid \mt{CHECK} \; E \\
adamc@788 2250 &&& \mid \mt{FOREIGN} \; \mt{KEY} \; K \; \mt{REFERENCES} \; F \; (K) \; [\mt{ON} \; \mt{DELETE} \; pr] \; [\mt{ON} \; \mt{UPDATE} \; pr] \\
adamc@788 2251 \textrm{Foreign tables} & F &::=& x \mid \{\{e\}\} \\
adam@1594 2252 \textrm{Propagation modes} & pr &::=& \mt{NO} \; \mt{ACTION} \mid \mt{RESTRICT} \mid \mt{CASCADE} \mid \mt{SET} \; \mt{NULL} \\
adam@1594 2253 \textrm{View expressions} & V &::=& Q \mid \{e\}
adamc@788 2254 \end{array}$$
adamc@788 2255
adamc@788 2256 A signature item $\mt{table} \; \mt{x} : \mt{c}$ is actually elaborated into two signature items: $\mt{con} \; \mt{x\_hidden\_constraints} :: \{\{\mt{Unit}\}\}$ and $\mt{val} \; \mt{x} : \mt{sql\_table} \; \mt{c} \; \mt{x\_hidden\_constraints}$. This is appropriate for common cases where client code doesn't care which keys a table has. It's also possible to include constraints after a $\mt{table}$ signature item, with the same syntax as for $\mt{table}$ declarations. This may look like dependent typing, but it's just a convenience. The constraints are type-checked to determine a constructor $u$ to include in $\mt{val} \; \mt{x} : \mt{sql\_table} \; \mt{c} \; (u \rc \mt{x\_hidden\_constraints})$, and then the expressions are thrown away. Nonetheless, it can be useful for documentation purposes to include table constraint details in signatures. Note that the automatic generation of $\mt{x\_hidden\_constraints}$ leads to a kind of free subtyping with respect to which constraints are defined.
adamc@788 2257
adamc@788 2258
adamc@549 2259 \subsubsection{Queries}
adamc@549 2260
adamc@550 2261 Queries $Q$ are added to the rules for expressions $e$.
adamc@550 2262
adamc@549 2263 $$\begin{array}{rrcll}
adam@1684 2264 \textrm{Queries} & Q &::=& (q \; [\mt{ORDER} \; \mt{BY} \; O] \; [\mt{LIMIT} \; N] \; [\mt{OFFSET} \; N]) \\
adamc@1085 2265 \textrm{Pre-queries} & q &::=& \mt{SELECT} \; [\mt{DISTINCT}] \; P \; \mt{FROM} \; F,^+ \; [\mt{WHERE} \; E] \; [\mt{GROUP} \; \mt{BY} \; p,^+] \; [\mt{HAVING} \; E] \\
adamc@1085 2266 &&& \mid q \; R \; q \mid \{\{\{e\}\}\} \\
adam@1684 2267 \textrm{Relational operators} & R &::=& \mt{UNION} \mid \mt{INTERSECT} \mid \mt{EXCEPT} \\
adam@2093 2268 \textrm{$\mt{ORDER \; BY}$ items} & O &::=& \mt{RANDOM} [()] \mid \hat{E} \; [o] \mid \hat{E} \; [o], O \mid \{\{\{e\}\}\}
adamc@549 2269 \end{array}$$
adamc@549 2270
adamc@549 2271 $$\begin{array}{rrcll}
adamc@549 2272 \textrm{Projections} & P &::=& \ast & \textrm{all columns} \\
adamc@549 2273 &&& p,^+ & \textrm{particular columns} \\
adamc@549 2274 \textrm{Pre-projections} & p &::=& t.f & \textrm{one column from a table} \\
adamc@558 2275 &&& t.\{\{c\}\} & \textrm{a record of columns from a table (of kind $\{\mt{Type}\}$)} \\
adam@1627 2276 &&& t.* & \textrm{all columns from a table} \\
adam@1778 2277 &&& \hat{E} \; [\mt{AS} \; f] & \textrm{expression column} \\
adamc@549 2278 \textrm{Table names} & t &::=& x & \textrm{constant table name (automatically capitalized)} \\
adamc@549 2279 &&& X & \textrm{constant table name} \\
adamc@549 2280 &&& \{\{c\}\} & \textrm{computed table name (of kind $\mt{Name}$)} \\
adamc@549 2281 \textrm{Column names} & f &::=& X & \textrm{constant column name} \\
adamc@549 2282 &&& \{c\} & \textrm{computed column name (of kind $\mt{Name}$)} \\
adamc@549 2283 \textrm{Tables} & T &::=& x & \textrm{table variable, named locally by its own capitalization} \\
adam@1756 2284 &&& x \; \mt{AS} \; X & \textrm{table variable, with local name} \\
adam@1756 2285 &&& x \; \mt{AS} \; \{c\} & \textrm{table variable, with computed local name} \\
adamc@549 2286 &&& \{\{e\}\} \; \mt{AS} \; t & \textrm{computed table expression, with local name} \\
adam@1756 2287 &&& \{\{e\}\} \; \mt{AS} \; \{c\} & \textrm{computed table expression, with computed local name} \\
adamc@1085 2288 \textrm{$\mt{FROM}$ items} & F &::=& T \mid \{\{e\}\} \mid F \; J \; \mt{JOIN} \; F \; \mt{ON} \; E \\
adamc@1085 2289 &&& \mid F \; \mt{CROSS} \; \mt{JOIN} \ F \\
adam@2031 2290 &&& \mid (Q) \; \mt{AS} \; t \mid (\{\{e\}\}) \; \mt{AS} \; t \\
adamc@1085 2291 \textrm{Joins} & J &::=& [\mt{INNER}] \\
adamc@1085 2292 &&& \mid [\mt{LEFT} \mid \mt{RIGHT} \mid \mt{FULL}] \; [\mt{OUTER}] \\
adam@1587 2293 \textrm{SQL expressions} & E &::=& t.f & \textrm{column references} \\
adamc@549 2294 &&& X & \textrm{named expression references} \\
adam@1490 2295 &&& \{[e]\} & \textrm{injected native Ur expressions} \\
adam@1778 2296 &&& \{e\} & \textrm{computed expressions, probably using $\mt{sql\_exp}$ directly} \\
adamc@549 2297 &&& \mt{TRUE} \mid \mt{FALSE} & \textrm{boolean constants} \\
adamc@549 2298 &&& \ell & \textrm{primitive type literals} \\
adamc@549 2299 &&& \mt{NULL} & \textrm{null value (injection of $\mt{None}$)} \\
adamc@549 2300 &&& E \; \mt{IS} \; \mt{NULL} & \textrm{nullness test} \\
adam@1602 2301 &&& \mt{COALESCE}(E, E) & \textrm{take first non-null value} \\
adamc@549 2302 &&& n & \textrm{nullary operators} \\
adamc@549 2303 &&& u \; E & \textrm{unary operators} \\
adamc@549 2304 &&& E \; b \; E & \textrm{binary operators} \\
adam@1778 2305 &&& \mt{COUNT}(\ast) & \textrm{count number of rows} \\
adam@1778 2306 &&& a(E) & \textrm{other aggregate function} \\
adam@1573 2307 &&& \mt{IF} \; E \; \mt{THEN} \; E \; \mt{ELSE} \; E & \textrm{conditional} \\
adam@1778 2308 &&& (Q) & \textrm{subquery (must return a single expression column)} \\
adamc@549 2309 &&& (E) & \textrm{explicit precedence} \\
adamc@549 2310 \textrm{Nullary operators} & n &::=& \mt{CURRENT\_TIMESTAMP} \\
adamc@549 2311 \textrm{Unary operators} & u &::=& \mt{NOT} \\
adam@1688 2312 \textrm{Binary operators} & b &::=& \mt{AND} \mid \mt{OR} \mid = \mid \neq \mid < \mid \leq \mid > \mid \geq \\
adamc@1188 2313 \textrm{Aggregate functions} & a &::=& \mt{COUNT} \mid \mt{AVG} \mid \mt{SUM} \mid \mt{MIN} \mid \mt{MAX} \\
adam@1543 2314 \textrm{Directions} & o &::=& \mt{ASC} \mid \mt{DESC} \mid \{e\} \\
adamc@549 2315 \textrm{SQL integer} & N &::=& n \mid \{e\} \\
adam@1778 2316 \textrm{Windowable expressions} & \hat{E} &::=& E \\
adam@1778 2317 &&& w \; [\mt{OVER} \; ( & \textrm{(Postgres only)} \\
adam@1778 2318 &&& \hspace{.1in} [\mt{PARTITION} \; \mt{BY} \; E] \\
adam@1778 2319 &&& \hspace{.1in} [\mt{ORDER} \; \mt{BY} \; O])] \\
adam@1778 2320 \textrm{Window function} & w &::=& \mt{RANK}() \\
adam@1778 2321 &&& \mt{COUNT}(*) \\
adam@1778 2322 &&& a(E)
adamc@549 2323 \end{array}$$
adamc@549 2324
adamc@1085 2325 Additionally, an SQL expression may be inserted into normal Ur code with the syntax $(\mt{SQL} \; E)$ or $(\mt{WHERE} \; E)$. Similar shorthands exist for other nonterminals, with the prefix $\mt{FROM}$ for $\mt{FROM}$ items and $\mt{SELECT1}$ for pre-queries.
adamc@549 2326
adam@1683 2327 Unnamed expression columns in $\mt{SELECT}$ clauses are assigned consecutive natural numbers, starting with 1. Any expression in a $p$ position that is enclosed in parentheses is treated as an expression column, rather than a column pulled directly out of a table, even if it is only a field projection. (This distinction affects the record type used to describe query results.)
adamc@1194 2328
adamc@550 2329 \subsubsection{DML}
adamc@550 2330
adamc@550 2331 DML commands $D$ are added to the rules for expressions $e$.
adamc@550 2332
adamc@550 2333 $$\begin{array}{rrcll}
adamc@550 2334 \textrm{Commands} & D &::=& (\mt{INSERT} \; \mt{INTO} \; T^E \; (f,^+) \; \mt{VALUES} \; (E,^+)) \\
adamc@550 2335 &&& (\mt{UPDATE} \; T^E \; \mt{SET} \; (f = E,)^+ \; \mt{WHERE} \; E) \\
adamc@550 2336 &&& (\mt{DELETE} \; \mt{FROM} \; T^E \; \mt{WHERE} \; E) \\
adamc@550 2337 \textrm{Table expressions} & T^E &::=& x \mid \{\{e\}\}
adamc@550 2338 \end{array}$$
adamc@550 2339
adamc@550 2340 Inside $\mt{UPDATE}$ and $\mt{DELETE}$ commands, lone variables $X$ are interpreted as references to columns of the implicit table $\mt{T}$, rather than to named expressions.
adamc@549 2341
adamc@551 2342 \subsection{XML}
adamc@551 2343
adamc@551 2344 XML fragments $L$ are added to the rules for expressions $e$.
adamc@551 2345
adamc@551 2346 $$\begin{array}{rrcll}
adamc@551 2347 \textrm{XML fragments} & L &::=& \texttt{<xml/>} \mid \texttt{<xml>}l^*\texttt{</xml>} \\
adamc@551 2348 \textrm{XML pieces} & l &::=& \textrm{text} & \textrm{cdata} \\
adamc@551 2349 &&& \texttt{<}g\texttt{/>} & \textrm{tag with no children} \\
adamc@551 2350 &&& \texttt{<}g\texttt{>}l^*\texttt{</}x\texttt{>} & \textrm{tag with children} \\
adamc@559 2351 &&& \{e\} & \textrm{computed XML fragment} \\
adamc@559 2352 &&& \{[e]\} & \textrm{injection of an Ur expression, via the $\mt{Top}.\mt{txt}$ function} \\
adam@2075 2353 \textrm{Tag} & g &::=& h \; (x [= v])^* \\
adamc@551 2354 \textrm{Tag head} & h &::=& x & \textrm{tag name} \\
adamc@551 2355 &&& h\{c\} & \textrm{constructor parameter} \\
adamc@551 2356 \textrm{Attribute value} & v &::=& \ell & \textrm{literal value} \\
adamc@551 2357 &&& \{e\} & \textrm{computed value} \\
adamc@551 2358 \end{array}$$
adamc@551 2359
adam@2075 2360 When the optional $= v$ is omitted in an XML attribute, the attribute is assigned value $\mt{True}$ in Ur/Web, and it is rendered to HTML merely as including the attribute name without a value. If such a Boolean attribute is manually set to value $\mt{False}$, then it is omitted altogether in generating HTML.
adam@2075 2361
adam@1751 2362 Further, there is a special convenience and compatibility form for setting CSS classes of tags. If a \cd{class} attribute has a value that is a string literal, the literal is parsed in the usual HTML way and replaced with calls to appropriate Ur/Web combinators. Any dashes in the text are replaced with underscores to determine Ur identifiers. The same desugaring can be accessed in a normal expression context by calling the pseudo-function \cd{CLASS} on a string literal.
adam@1751 2363
adam@1751 2364 Similar support is provided for \cd{style} attributes. Normal CSS syntax may be used in string literals that are \cd{style} attribute values, and the desugaring may be accessed elsewhere with the pseudo-function \cd{STYLE}.
adamc@552 2365
adamc@1198 2366 \section{\label{structure}The Structure of Web Applications}
adamc@553 2367
adam@1797 2368 A web application is built from a series of modules, with one module, the last one appearing in the \texttt{.urp} file, designated as the main module. The signature of the main module determines the URL entry points to the application. Such an entry point should have type $\mt{t1} \to \ldots \to \mt{tn} \to \mt{transaction} \; \mt{page}$, for any integer $n \geq 0$, where $\mt{page}$ is a type synonym for top-level HTML pages, defined in $\mt{Basis}$. If such a function is at the top level of main module $M$, with $n = 0$, it will be accessible at URI \texttt{/M/f}, and so on for more deeply nested functions, as described in Section \ref{tag} below. See Section \ref{cl} for information on the \texttt{prefix} and \texttt{rewrite url} directives, which can be used to rewrite the default URIs of different entry point functions. The final URL of a function is its default module-based URI, with \texttt{rewrite url} rules applied, and with the \texttt{prefix} prepended. Arguments to an entry-point function are deserialized from the part of the URI following \texttt{f}.
adamc@553 2369
adam@1532 2370 Elements of modules beside the main module, including page handlers, will only be included in the final application if they are transitive dependencies of the handlers in the main module.
adam@1532 2371
adam@1787 2372 Normal links are accessible via HTTP \texttt{GET}, which the relevant standard says should never cause side effects. To export a page which may cause side effects, accessible only via HTTP \texttt{POST}, include one argument of the page handler of type $\mt{Basis.postBody}$. When the handler is called, this argument will receive a value that can be deconstructed into a MIME type (with $\mt{Basis.postType}$) and payload (with $\mt{Basis.postData}$). This kind of handler should not be used with forms that exist solely within Ur/Web apps; for these, use Ur/Web's built-in support, as described below. It may still be useful to use $\mt{Basis.postBody}$ with form requests submitted by code outside an Ur/Web app. For such cases, the function $\mt{Top.postFields} : \mt{postBody} \to \mt{list} \; (\mt{string} \times \mt{string})$ may be useful, breaking a \texttt{POST} body of type \texttt{application/x-www-form-urlencoded} into its name-value pairs.
adam@1347 2373
adam@1370 2374 Any normal page handler may also include arguments of type $\mt{option \; Basis.queryString}$, which will be handled specially. Rather than being deserialized from the current URI, such an argument is passed the whole query string that the handler received. The string may be analyzed by calling $\mt{Basis.show}$ on it. A handler of this kind may be passed as an argument to $\mt{Basis.effectfulUrl}$ to generate a URL to a page that may be used as a ``callback'' by an external service, such that the handler is allowed to cause side effects.
adam@1370 2375
adamc@553 2376 When the standalone web server receives a request for a known page, it calls the function for that page, ``running'' the resulting transaction to produce the page to return to the client. Pages link to other pages with the \texttt{link} attribute of the \texttt{a} HTML tag. A link has type $\mt{transaction} \; \mt{page}$, and the semantics of a link are that this transaction should be run to compute the result page, when the link is followed. Link targets are assigned URL names in the same way as top-level entry points.
adamc@553 2377
adamc@553 2378 HTML forms are handled in a similar way. The $\mt{action}$ attribute of a $\mt{submit}$ form tag takes a value of type $\$\mt{use} \to \mt{transaction} \; \mt{page}$, where $\mt{use}$ is a kind-$\{\mt{Type}\}$ record of the form fields used by this action handler. Action handlers are assigned URL patterns in the same way as above.
adamc@553 2379
adam@1653 2380 For both links and actions, direct arguments and local variables mentioned implicitly via closures are automatically included in serialized form in URLs, in the order in which they appear in the source code. Such serialized values may only be drawn from a limited set of types, and programs will fail to compile when the (implicit or explicit) arguments of page handler functions involve disallowed types. (Keep in mind that every free variable of a function is an implicit argument if it was not defined at the top level of a module.) For instance:
adam@1653 2381 \begin{itemize}
adam@1653 2382 \item Functions are disallowed, since there is no obvious way to serialize them safely.
adam@1653 2383 \item XML fragments are disallowed, since it is unclear how to check client-provided XML to be sure it doesn't break the HTML invariants of the application (for instance, by mutating the DOM in the conventional way, interfering with Ur/Web's functional-reactive regime).
adam@1653 2384 \item Blobs (``files'') are disallowed, since they can easily have very large serializations that could not fit within most web servers' URL size limits. (And you probably don't want to be serializing, e.g., image files in URLs, anyway.)
adam@1653 2385 \end{itemize}
adamc@553 2386
adamc@660 2387 Ur/Web programs generally mix server- and client-side code in a fairly transparent way. The one important restriction is that mixed client-server code must encapsulate all server-side pieces within named functions. This is because execution of such pieces will be implemented by explicit calls to the remote web server, and it is useful to get the programmer's help in designing the interface to be used. For example, this makes it easier to allow a client running an old version of an application to continue interacting with a server that has been upgraded to a new version, if the programmer took care to keep the interfaces of all of the old remote calls the same. The functions implementing these services are assigned names in the same way as normal web entry points, by using module structure.
adamc@660 2388
adamc@789 2389 \medskip
adamc@789 2390
adam@1347 2391 The HTTP standard suggests that GET requests only be used in ways that generate no side effects. Side effecting operations should use POST requests instead. The Ur/Web compiler enforces this rule strictly, via a simple conservative program analysis. Any page that may have a side effect must be accessed through a form, all of which use POST requests, or via a direct call to a page handler with some argument of type $\mt{Basis.postBody}$. A page is judged to have a side effect if its code depends syntactically on any of the side-effecting, server-side FFI functions. Links, forms, and most client-side event handlers are not followed during this syntactic traversal, but \texttt{<body onload=\{...\}>} handlers \emph{are} examined, since they run right away and could just as well be considered parts of main page handlers.
adamc@789 2392
adamc@789 2393 Ur/Web includes a kind of automatic protection against cross site request forgery attacks. Whenever any page execution can have side effects and can also read at least one cookie value, all cookie values must be signed cryptographically, to ensure that the user has come to the current page by submitting a form on a real page generated by the proper server. Signing and signature checking are inserted automatically by the compiler. This prevents attacks like phishing schemes where users are directed to counterfeit pages with forms that submit to your application, where a user's cookies might be submitted without his knowledge, causing some undesired side effect.
adamc@789 2394
adam@1348 2395 \subsection{Tasks}
adam@1348 2396
adam@1348 2397 In many web applications, it's useful to run code at points other than requests from browsers. Ur/Web's \emph{task} mechanism facilitates this. A type family of \emph{task kinds} is in the standard library:
adam@1348 2398
adam@1348 2399 $$\begin{array}{l}
adam@1348 2400 \mt{con} \; \mt{task\_kind} :: \mt{Type} \to \mt{Type} \\
adam@1348 2401 \mt{val} \; \mt{initialize} : \mt{task\_kind} \; \mt{unit} \\
adam@1349 2402 \mt{val} \; \mt{clientLeaves} : \mt{task\_kind} \; \mt{client} \\
adam@1349 2403 \mt{val} \; \mt{periodic} : \mt{int} \to \mt{task\_kind} \; \mt{unit}
adam@1348 2404 \end{array}$$
adam@1348 2405
adam@1348 2406 A task kind names a particular extension point of generated applications, where the type parameter of a task kind describes which extra input data is available at that extension point. Add task code with the special declaration form $\mt{task} \; e_1 = e_2$, where $e_1$ is a task kind with data $\tau$, and $e_2$ is a function from $\tau$ to $\mt{transaction} \; \mt{unit}$.
adam@1348 2407
adam@1348 2408 The currently supported task kinds are:
adam@1348 2409 \begin{itemize}
adam@1349 2410 \item $\mt{initialize}$: Code that is run when the application starts up.
adam@1348 2411 \item $\mt{clientLeaves}$: Code that is run for each client that the runtime system decides has surfed away. When a request that generates a new client handle is aborted, that handle will still eventually be passed to $\mt{clientLeaves}$ task code, even though the corresponding browser was never informed of the client handle's existence. In other words, in general, $\mt{clientLeaves}$ handlers will be called more times than there are actual clients.
adam@1349 2412 \item $\mt{periodic} \; n$: Code that is run when the application starts up and then every $n$ seconds thereafter.
adam@1348 2413 \end{itemize}
adam@1348 2414
adamc@553 2415
adam@2008 2416 \section{\label{ffi}The Foreign Function Interface}
adamc@897 2417
adamc@897 2418 It is possible to call your own C and JavaScript code from Ur/Web applications, via the foreign function interface (FFI). The starting point for a new binding is a \texttt{.urs} signature file that presents your external library as a single Ur/Web module (with no nested modules). Compilation conventions map the types and values that you use into C and/or JavaScript types and values.
adamc@897 2419
adamc@897 2420 It is most convenient to encapsulate an FFI binding with a new \texttt{.urp} file, which applications can include with the \texttt{library} directive in their own \texttt{.urp} files. A number of directives are likely to show up in the library's project file.
adamc@897 2421
adamc@897 2422 \begin{itemize}
adamc@897 2423 \item \texttt{clientOnly Module.ident} registers a value as being allowed only in client-side code.
adamc@897 2424 \item \texttt{clientToServer Module.ident} declares a type as OK to marshal between clients and servers. By default, abstract FFI types are not allowed to be marshalled, since your library might be maintaining invariants that the simple serialization code doesn't check.
adam@1878 2425 \item \texttt{effectful Module.ident} registers a function that can have side effects. This is the default for \texttt{transaction}-based types, and, actually, this directive is mostly present for legacy compatibility reasons, since it used to be required explicitly for each \texttt{transaction}al function.
adamc@897 2426 \item \texttt{ffi FILE.urs} names the file giving your library's signature. You can include multiple such files in a single \texttt{.urp} file, and each file \texttt{mod.urp} defines an FFI module \texttt{Mod}.
adamc@1099 2427 \item \texttt{include FILE} requests inclusion of a C header file.
adamc@897 2428 \item \texttt{jsFunc Module.ident=name} gives a mapping from an Ur name for a value to a JavaScript name.
adamc@897 2429 \item \texttt{link FILE} requests that \texttt{FILE} be linked into applications. It should be a C object or library archive file, and you are responsible for generating it with your own build process.
adamc@897 2430 \item \texttt{script URL} requests inclusion of a JavaScript source file within application HTML.
adamc@897 2431 \item \texttt{serverOnly Module.ident} registers a value as being allowed only in server-side code.
adamc@897 2432 \end{itemize}
adamc@897 2433
adamc@897 2434 \subsection{Writing C FFI Code}
adamc@897 2435
adam@1881 2436 C source files connecting to the Ur/Web FFI should include \texttt{urweb.h}, and C++ source files should include \texttt{urweb\_cpp.h}.
adam@1881 2437
adamc@897 2438 A server-side FFI type or value \texttt{Module.ident} must have a corresponding type or value definition \texttt{uw\_Module\_ident} in C code. With the current Ur/Web version, it's not generally possible to work with Ur records or complex datatypes in C code, but most other kinds of types are fair game.
adamc@897 2439
adamc@897 2440 \begin{itemize}
adam@1881 2441 \item Primitive types defined in \texttt{Basis} are themselves using the standard FFI interface, so you may refer to them like \texttt{uw\_Basis\_t}. See \texttt{include/urweb/types.h} for their definitions.
adamc@897 2442 \item Enumeration datatypes, which have only constructors that take no arguments, should be defined using C \texttt{enum}s. The type is named as for any other type identifier, and each constructor \texttt{c} gets an enumeration constant named \texttt{uw\_Module\_c}.
adamc@897 2443 \item A datatype \texttt{dt} (such as \texttt{Basis.option}) that has one non-value-carrying constructor \texttt{NC} and one value-carrying constructor \texttt{C} gets special treatment. Where \texttt{T} is the type of \texttt{C}'s argument, and where we represent \texttt{T} as \texttt{t} in C, we represent \texttt{NC} with \texttt{NULL}. The representation of \texttt{C} depends on whether we're sure that we don't need to use \texttt{NULL} to represent \texttt{t} values; this condition holds only for strings and complex datatypes. For such types, \texttt{C v} is represented with the C encoding of \texttt{v}, such that the translation of \texttt{dt} is \texttt{t}. For other types, \texttt{C v} is represented with a pointer to the C encoding of v, such that the translation of \texttt{dt} is \texttt{t*}.
adam@1686 2444 \item Ur/Web involves many types of program syntax, such as for HTML and SQL code. All of these types are implemented with normal C strings, and you may take advantage of that encoding to manipulate code as strings in C FFI code. Be mindful that, in writing such code, it is your responsibility to maintain the appropriate code invariants, or you may reintroduce the code injection vulnerabilities that Ur/Web rules out. The most convenient way to extend Ur/Web with functions that, e.g., use natively unsupported HTML tags is to generate the HTML code with the FFI.
adamc@897 2445 \end{itemize}
adamc@897 2446
adam@1881 2447 The C FFI version of a Ur function with type \texttt{T1 -> ... -> TN -> R} or \texttt{T1 -> ... -> TN -> transaction R} has a C prototype like \texttt{R uw\_Module\_ident(uw\_context, T1, ..., TN)}. Only functions with types of the second form may have side effects. \texttt{uw\_context} is the type of state that persists across handling a client request. Many functions that operate on contexts are prototyped in \texttt{include/urweb/urweb\_cpp.h}. Most should only be used internally by the compiler. A few are useful in general FFI implementation:
adamc@897 2448 \begin{itemize}
adamc@897 2449 \item \begin{verbatim}
adamc@897 2450 void uw_error(uw_context, failure_kind, const char *fmt, ...);
adamc@897 2451 \end{verbatim}
adamc@897 2452 Abort the current request processing, giving a \texttt{printf}-style format string and arguments for generating an error message. The \texttt{failure\_kind} argument can be \texttt{FATAL}, to abort the whole execution; \texttt{BOUNDED\_RETRY}, to try processing the request again from the beginning, but failing if this happens too many times; or \texttt{UNLIMITED\_RETRY}, to repeat processing, with no cap on how many times this can recur.
adamc@897 2453
adam@1329 2454 All pointers to the context-local heap (see description below of \texttt{uw\_malloc()}) become invalid at the start and end of any execution of a main entry point function of an application. For example, if the request handler is restarted because of a \texttt{uw\_error()} call with \texttt{BOUNDED\_RETRY} or for any other reason, it is unsafe to access any local heap pointers that may have been stashed somewhere beforehand.
adam@1329 2455
adamc@897 2456 \item \begin{verbatim}
adam@1469 2457 void uw_set_error_message(uw_context, const char *fmt, ...);
adam@1469 2458 \end{verbatim}
adam@1469 2459 This simpler form of \texttt{uw\_error()} saves an error message without immediately aborting execution.
adam@1469 2460
adam@1469 2461 \item \begin{verbatim}
adamc@897 2462 void uw_push_cleanup(uw_context, void (*func)(void *), void *arg);
adamc@897 2463 void uw_pop_cleanup(uw_context);
adamc@897 2464 \end{verbatim}
adam@1329 2465 Manipulate a stack of actions that should be taken if any kind of error condition arises. Calling the ``pop'' function both removes an action from the stack and executes it. It is a bug to let a page request handler finish successfully with unpopped cleanup actions.
adam@1329 2466
adam@1329 2467 Pending cleanup actions aren't intended to have any complex relationship amongst themselves, so, upon request handler abort, pending actions are executed in first-in-first-out order.
adamc@897 2468
adamc@897 2469 \item \begin{verbatim}
adamc@897 2470 void *uw_malloc(uw_context, size_t);
adamc@897 2471 \end{verbatim}
adam@1329 2472 A version of \texttt{malloc()} that allocates memory inside a context's heap, which is managed with region allocation. Thus, there is no \texttt{uw\_free()}, but you need to be careful not to keep ad-hoc C pointers to this area of memory. In general, \texttt{uw\_malloc()}ed memory should only be used in ways compatible with the computation model of pure Ur. This means it is fine to allocate and return a value that could just as well have been built with core Ur code. In contrast, it is almost never safe to store \texttt{uw\_malloc()}ed pointers in global variables, including when the storage happens implicitly by registering a callback that would take the pointer as an argument.
adam@1329 2473
adam@1329 2474 For performance and correctness reasons, it is usually preferable to use \texttt{uw\_malloc()} instead of \texttt{malloc()}. The former manipulates a local heap that can be kept allocated across page requests, while the latter uses global data structures that may face contention during concurrent execution. However, we emphasize again that \texttt{uw\_malloc()} should never be used to implement some logic that couldn't be implemented trivially by a constant-valued expression in Ur.
adamc@897 2475
adamc@897 2476 \item \begin{verbatim}
adamc@897 2477 typedef void (*uw_callback)(void *);
adam@1328 2478 typedef void (*uw_callback_with_retry)(void *, int will_retry);
adam@2001 2479 int uw_register_transactional(uw_context, void *data, uw_callback commit,
adam@2001 2480 uw_callback rollback, uw_callback_with_retry free);
adamc@897 2481 \end{verbatim}
adam@2001 2482 All side effects in Ur/Web programs need to be compatible with transactions, such that any set of actions can be undone at any time. Thus, you should not perform actions with non-local side effects directly; instead, register handlers to be called when the current transaction is committed or rolled back. The arguments here give an arbitary piece of data to be passed to callbacks, a function to call on commit, a function to call on rollback, and a function to call afterward in either case to clean up any allocated resources. A rollback handler may be called after the associated commit handler has already been called, if some later part of the commit process fails. A free handler is told whether the runtime system expects to retry the current page request after rollback finishes. The return value of \texttt{uw\_register\_transactional()} is 0 on success and nonzero on failure (where failure currently only happens when exceeding configured limits on number of transactionals).
adamc@897 2483
adam@2000 2484 Any of the callbacks may be \texttt{NULL}. To accommodate some stubbornly non-transactional real-world actions like sending an e-mail message, Ur/Web treats \texttt{NULL} \texttt{rollback} callbacks specially. When a transaction commits, all \texttt{commit} actions that have non-\texttt{NULL} rollback actions are tried before any \texttt{commit} actions that have \texttt{NULL} rollback actions. Furthermore, an SQL \texttt{COMMIT} is also attempted in between the two phases, so the nicely transactional actions have a chance to influence whether data are committed to the database, while \texttt{NULL}-rollback actions only get run in the first place after committing data. The reason for all this is that it is \emph{expected} that concurrency interactions will cause database commits to fail in benign ways that call for transaction restart. A truly non-undoable action should only be run after we are sure the database transaction will commit.
adamc@1085 2485
adam@1329 2486 When a request handler ends with multiple pending transactional actions, their handlers are run in a first-in-last-out stack-like order, wherever the order would otherwise be ambiguous.
adam@1329 2487
adam@1329 2488 It is not safe for any of these handlers to access a context-local heap through a pointer returned previously by \texttt{uw\_malloc()}, nor should any new calls to that function be made. Think of the context-local heap as meant for use by the Ur/Web code itself, while transactional handlers execute after the Ur/Web code has finished.
adam@1329 2489
adam@1469 2490 A handler may signal an error by calling \texttt{uw\_set\_error\_message()}, but it is not safe to call \texttt{uw\_error()} from a handler. Signaling an error in a commit handler will cause the runtime system to switch to aborting the transaction, immediately after the current commit handler returns.
adam@1469 2491
adamc@1085 2492 \item \begin{verbatim}
adamc@1085 2493 void *uw_get_global(uw_context, char *name);
adamc@1085 2494 void uw_set_global(uw_context, char *name, void *data, uw_callback free);
adamc@1085 2495 \end{verbatim}
adam@1329 2496 Different FFI-based extensions may want to associate their own pieces of data with contexts. The global interface provides a way of doing that, where each extension must come up with its own unique key. The \texttt{free} argument to \texttt{uw\_set\_global()} explains how to deallocate the saved data. It is never safe to store \texttt{uw\_malloc()}ed pointers in global variable slots.
adamc@1085 2497
adamc@897 2498 \end{itemize}
adamc@897 2499
adamc@897 2500 \subsection{Writing JavaScript FFI Code}
adamc@897 2501
adamc@897 2502 JavaScript is dynamically typed, so Ur/Web type definitions imply no JavaScript code. The JavaScript identifier for each FFI function is set with the \texttt{jsFunc} directive. Each identifier can be defined in any JavaScript file that you ask to include with the \texttt{script} directive.
adamc@897 2503
adamc@897 2504 In contrast to C FFI code, JavaScript FFI functions take no extra context argument. Their argument lists are as you would expect from their Ur types. Only functions whose ranges take the form \texttt{transaction T} should have side effects; the JavaScript ``return type'' of such a function is \texttt{T}. Here are the conventions for representing Ur values in JavaScript.
adamc@897 2505
adamc@897 2506 \begin{itemize}
adamc@897 2507 \item Integers, floats, strings, characters, and booleans are represented in the usual JavaScript way.
adam@1996 2508 \item Ur functions are represented in an unspecified way. This means that you should not rely on any details of function representation. Named FFI functions are represented as JavaScript functions with as many arguments as their Ur types specify. To call a non-FFI function \texttt{f} on argument \texttt{x}, run \texttt{execF(f, x)}. A normal JavaScript function may also be used in a position where the Ur/Web runtime system expects an Ur/Web function.
adamc@897 2509 \item An Ur record is represented with a JavaScript record, where Ur field name \texttt{N} translates to JavaScript field name \texttt{\_N}. An exception to this rule is that the empty record is encoded as \texttt{null}.
adamc@897 2510 \item \texttt{option}-like types receive special handling similar to their handling in C. The ``\texttt{None}'' constructor is \texttt{null}, and a use of the ``\texttt{Some}'' constructor on a value \texttt{v} is either \texttt{v}, if the underlying type doesn't need to use \texttt{null}; or \texttt{\{v:v\}} otherwise.
adamc@985 2511 \item Any other datatypes represent a non-value-carrying constructor \texttt{C} as \texttt{"C"} and an application of a constructor \texttt{C} to value \texttt{v} as \texttt{\{n:"C", v:v\}}. This rule only applies to datatypes defined in FFI module signatures; the compiler is free to optimize the representations of other, non-\texttt{option}-like datatypes in arbitrary ways.
adam@1686 2512 \item As in the C FFI, all abstract types of program syntax are implemented with strings in JavaScript.
adam@1996 2513 \item A value of Ur type \texttt{transaction t} is represented in the same way as for \texttt{unit -> t}. (Note that FFI functions skip this extra level of function encoding, which only applies to functions defined in Ur/Web.)
adamc@897 2514 \end{itemize}
adamc@897 2515
adam@1644 2516 It is possible to write JavaScript FFI code that interacts with the functional-reactive structure of a document. Here is a quick summary of some of the simpler functions to use; descriptions of fancier stuff may be added later on request (and such stuff should be considered ``undocumented features'' until then).
adam@1644 2517
adam@1644 2518 \begin{itemize}
adam@1644 2519 \item Sources should be treated as an abstract type, manipulated via:
adam@1644 2520 \begin{itemize}
adam@1644 2521 \item \cd{sc(v)}, to create a source initialized to \cd{v}
adam@1644 2522 \item \cd{sg(s)}, to retrieve the current value of source \cd{s}
adam@1644 2523 \item \cd{sv(s, v)}, to set source \cd{s} to value \cd{v}
adam@1644 2524 \end{itemize}
adam@1644 2525
adam@1644 2526 \item Signals should be treated as an abstract type, manipulated via:
adam@1644 2527 \begin{itemize}
adam@1644 2528 \item \cd{sr(v)} and \cd{sb(s, f)}, the ``return'' and ``bind'' monad operators, respectively
adam@1644 2529 \item \cd{ss(s)}, to produce the signal corresponding to source \cd{s}
adam@1644 2530 \item \cd{scur(s)}, to get the current value of signal \cd{s}
adam@1644 2531 \end{itemize}
adam@1644 2532
adam@1644 2533 \item The behavior of the \cd{<dyn>} pseudo-tag may be mimicked by following the right convention in a piece of HTML source code with a type like $\mt{xbody}$. Such a piece of source code may be encoded with a JavaScript string. To insert a dynamic section, include a \cd{<script>} tag whose content is just a call \cd{dyn(pnode, s)}. The argument \cd{pnode} specifies what the relevant enclosing parent tag is. Use value \cd{"tr"} when the immediate parent is \cd{<tr>}, use \cd{"table"} when the immediate parent is \cd{<table>}, and use \cd{"span"} otherwise. The argument \cd{s} is a string-valued signal giving the HTML code to be inserted at this point. As with the usual \cd{<dyn>} tag, that HTML subtree is automatically updated as the value of \cd{s} changes.
adam@1644 2534
adam@1702 2535 \item There is only one supported method of taking HTML values generated in Ur/Web code and adding them to the DOM in FFI JavaScript code: call \cd{setInnerHTML(node, html)} to add HTML content \cd{html} within DOM node \cd{node}. Merely running \cd{node.innerHTML = html} is not guaranteed to get the job done, though programmers familiar with JavaScript will probably find it useful to think of \cd{setInnerHTML} as having this effect. The unusual idiom is required because Ur/Web uses a nonstandard representation of HTML, to support infinite nesting of code that may generate code that may generate code that.... The \cd{node} value must already be in the DOM tree at the point when \cd{setInnerHTML} is called, because some plumbing must be set up to interact sensibly with \cd{<dyn>} tags.
adam@1702 2536
adam@1644 2537 \item It is possible to use the more standard ``IDs and mutation'' style of JavaScript coding, though that style is unidiomatic for Ur/Web and should be avoided wherever possible. Recall the abstract type $\mt{id}$ and its constructor $\mt{fresh}$, which can be used to generate new unique IDs in Ur/Web code. Values of this type are represented as strings in JavaScript, and a function \cd{fresh()} is available to generate new unique IDs. Application-specific ID generation schemes may cause bad interactions with Ur/Web code that also generates IDs, so the recommended approach is to produce IDs only via calls to \cd{fresh()}. FFI code shouldn't depend on the ID generation scheme (on either server side or client side), but it is safe to include these IDs in tag attributes (in either server-side or client-side code) and manipulate the associated DOM nodes in the standard way (in client-side code). Be forewarned that this kind of imperative DOM manipulation may confuse the Ur/Web runtime system and interfere with proper behavior of tags like \cd{<dyn>}!
adam@1644 2538 \end{itemize}
adamc@897 2539
adam@1833 2540 \subsection{Introducing New HTML Tags}
adam@1833 2541
adam@1833 2542 FFI modules may introduce new tags as values with $\mt{Basis.tag}$ types. See \texttt{basis.urs} for examples of how tags are declared. The identifier of a tag value is used as its rendering in HTML. The Ur/Web syntax sugar for XML literals desugars each use of a tag into a reference to an identifier with the same name. There is no need to provide implementations (i.e., in C or JavaScript code) for such identifiers.
adam@1833 2543
adam@1833 2544 The onus is on the coder of a new tag's interface to think about consequences for code injection attacks, messing with the DOM in ways that may break Ur/Web reactive programming, etc.
adam@1833 2545
adam@2010 2546 \subsection{The Less Safe FFI}
adam@2010 2547
adam@2010 2548 An alternative interface is provided for declaring FFI functions inline within normal Ur/Web modules. This facility must be opted into with the \texttt{lessSafeFfi} \texttt{.urp} directive, since it breaks a crucial property, allowing code in a \texttt{.ur} file to break basic invariants of the Ur/Web type system. Without this option, one only needs to audit \texttt{.urp} files to be sure an application obeys the type-system rules. The alternative interface may be more convenient for such purposes as declaring an FFI function typed in terms of some type local to a module.
adam@2010 2549
adam@2010 2550 When the less safe mode is enabled, declarations like this one are accepted, at the top level of a \texttt{.ur} file:
adam@2010 2551 \begin{verbatim}
adam@2010 2552 ffi foo : int -> int
adam@2010 2553 \end{verbatim}
adam@2010 2554
adam@2010 2555 Now \texttt{foo} is available as a normal function. If called in server-side code, and if the above declaration appeared in \texttt{bar.ur}, the C function will be linked as \texttt{uw\_Bar\_foo()}. It is also possible to declare an FFI function to be implemented in JavaScript, using a general facility for including modifiers in an FFI declaration. The modifiers appear before the colon, separated by spaces. Here are the available ones, which have the same semantics as corresponding \texttt{.urp} directives.
adam@2010 2556 \begin{itemize}
adam@2010 2557 \item \texttt{effectful}
adam@2010 2558 \item \texttt{benignEffectful}
adam@2010 2559 \item \texttt{clientOnly}
adam@2010 2560 \item \texttt{serverOnly}
adam@2010 2561 \item \texttt{jsFunc "putJsFuncNameHere"}
adam@2010 2562 \end{itemize}
adam@2010 2563
adam@2039 2564 When no \texttt{jsFunc} directive is present, the function is assumed to map to a JavaScript function of the same name, if used in a client-side context.
adam@2039 2565
adamc@897 2566
adam@2042 2567 \section{\label{phases}Compiler Phases}
adam@2042 2568
adam@2042 2569 The Ur/Web compiler is unconventional in that it relies on a kind of \emph{heuristic compilation}. Not all valid programs will compile successfully. Informally, programs fail to compile when they are ``too higher order.'' Compiler phases do their best to eliminate different kinds of higher order-ness, but some programs just won't compile. This is a trade-off for producing very efficient executables. Compiled Ur/Web programs use native C representations and require no garbage collection. Also, this warning only applies to server-side code, as client-side code runs in a normal JavaScript environment with garbage collection.
adamc@552 2570
adamc@552 2571 In this section, we step through the main phases of compilation, noting what consequences each phase has for effective programming.
adamc@552 2572
adamc@552 2573 \subsection{Parse}
adamc@552 2574
adamc@552 2575 The compiler reads a \texttt{.urp} file, figures out which \texttt{.urs} and \texttt{.ur} files it references, and combines them all into what is conceptually a single sequence of declarations in the core language of Section \ref{core}.
adamc@552 2576
adamc@552 2577 \subsection{Elaborate}
adamc@552 2578
adamc@552 2579 This is where type inference takes place, translating programs into an explicit form with no more wildcards. This phase is the most likely source of compiler error messages.
adamc@552 2580
adam@1378 2581 Those crawling through the compiler source will also want to be aware of another compiler phase, Explify, that occurs immediately afterward. This phase just translates from an AST language that includes unification variables to a very similar language that doesn't; all variables should have been determined by the end of Elaborate, anyway. The new AST language also drops some features that are used only for static checking and that have no influence on runtime behavior, like disjointness constraints.
adam@1378 2582
adamc@552 2583 \subsection{Unnest}
adamc@552 2584
adamc@552 2585 Named local function definitions are moved to the top level, to avoid the need to generate closures.
adamc@552 2586
adamc@552 2587 \subsection{Corify}
adamc@552 2588
adamc@552 2589 Module system features are compiled away, through inlining of functor definitions at application sites. Afterward, most abstraction boundaries are broken, facilitating optimization.
adamc@552 2590
adamc@552 2591 \subsection{Especialize}
adamc@552 2592
adam@1356 2593 Functions are specialized to particular argument patterns. This is an important trick for avoiding the need to maintain any closures at runtime. Currently, specialization only happens for prefixes of a function's full list of parameters, so you may need to take care to put arguments of function types before other arguments. The optimizer will not be effective enough if you use arguments that mix functions and values that must be calculated at run-time. For instance, a tuple of a function and an integer counter would not lead to successful code generation; these should be split into separate arguments via currying.
adamc@552 2594
adamc@552 2595 \subsection{Untangle}
adamc@552 2596
adam@1797 2597 Remove unnecessary mutual recursion, splitting recursive groups into strongly connected components.
adamc@552 2598
adamc@552 2599 \subsection{Shake}
adamc@552 2600
adamc@552 2601 Remove all definitions not needed to run the page handlers that are visible in the signature of the last module listed in the \texttt{.urp} file.
adamc@552 2602
adamc@661 2603 \subsection{Rpcify}
adamc@661 2604
adamc@661 2605 Pieces of code are determined to be client-side, server-side, neither, or both, by figuring out which standard library functions might be needed to execute them. Calls to server-side functions (e.g., $\mt{query}$) within mixed client-server code are identified and replaced with explicit remote calls. Some mixed functions may be converted to continuation-passing style to facilitate this transformation.
adamc@661 2606
adamc@661 2607 \subsection{Untangle, Shake}
adamc@661 2608
adamc@661 2609 Repeat these simplifications.
adamc@661 2610
adamc@553 2611 \subsection{\label{tag}Tag}
adamc@552 2612
adamc@552 2613 Assign a URL name to each link and form action. It is important that these links and actions are written as applications of named functions, because such names are used to generate URL patterns. A URL pattern has a name built from the full module path of the named function, followed by the function name, with all pieces separated by slashes. The path of a functor application is based on the name given to the result, rather than the path of the functor itself.
adamc@552 2614
adamc@552 2615 \subsection{Reduce}
adamc@552 2616
adamc@552 2617 Apply definitional equality rules to simplify the program as much as possible. This effectively includes inlining of every non-recursive definition.
adamc@552 2618
adamc@552 2619 \subsection{Unpoly}
adamc@552 2620
adamc@552 2621 This phase specializes polymorphic functions to the specific arguments passed to them in the program. If the program contains real polymorphic recursion, Unpoly will be insufficient to avoid later error messages about too much polymorphism.
adamc@552 2622
adamc@552 2623 \subsection{Specialize}
adamc@552 2624
adamc@558 2625 Replace uses of parameterized datatypes with versions specialized to specific parameters. As for Unpoly, this phase will not be effective enough in the presence of polymorphic recursion or other fancy uses of impredicative polymorphism.
adamc@552 2626
adamc@552 2627 \subsection{Shake}
adamc@552 2628
adamc@558 2629 Here the compiler repeats the earlier Shake phase.
adamc@552 2630
adamc@552 2631 \subsection{Monoize}
adamc@552 2632
adamc@552 2633 Programs are translated to a new intermediate language without polymorphism or non-$\mt{Type}$ constructors. Error messages may pop up here if earlier phases failed to remove such features.
adamc@552 2634
adamc@552 2635 This is the stage at which concrete names are generated for cookies, tables, and sequences. They are named following the same convention as for links and actions, based on module path information saved from earlier stages. Table and sequence names separate path elements with underscores instead of slashes, and they are prefixed by \texttt{uw\_}.
adamc@664 2636
adamc@552 2637 \subsection{MonoOpt}
adamc@552 2638
adamc@552 2639 Simple algebraic laws are applied to simplify the program, focusing especially on efficient imperative generation of HTML pages.
adamc@552 2640
adamc@552 2641 \subsection{MonoUntangle}
adamc@552 2642
adamc@552 2643 Unnecessary mutual recursion is broken up again.
adamc@552 2644
adamc@552 2645 \subsection{MonoReduce}
adamc@552 2646
adamc@552 2647 Equivalents of the definitional equality rules are applied to simplify programs, with inlining again playing a major role.
adamc@552 2648
adamc@552 2649 \subsection{MonoShake, MonoOpt}
adamc@552 2650
adamc@552 2651 Unneeded declarations are removed, and basic optimizations are repeated.
adamc@552 2652
adamc@552 2653 \subsection{Fuse}
adamc@552 2654
adamc@552 2655 The compiler tries to simplify calls to recursive functions whose results are immediately written as page output. The write action is pushed inside the function definitions to avoid allocation of intermediate results.
adamc@552 2656
adamc@552 2657 \subsection{MonoUntangle, MonoShake}
adamc@552 2658
adamc@552 2659 Fuse often creates more opportunities to remove spurious mutual recursion.
adamc@552 2660
adamc@552 2661 \subsection{Pathcheck}
adamc@552 2662
adamc@552 2663 The compiler checks that no link or action name has been used more than once.
adamc@552 2664
adamc@552 2665 \subsection{Cjrize}
adamc@552 2666
adamc@552 2667 The program is translated to what is more or less a subset of C. If any use of functions as data remains at this point, the compiler will complain.
adamc@552 2668
adamc@552 2669 \subsection{C Compilation and Linking}
adamc@552 2670
adam@1523 2671 The output of the last phase is pretty-printed as C source code and passed to the C compiler.
adamc@552 2672
adamc@552 2673
as@1564 2674 \end{document}