Mercurial > urweb
changeset 617:5b358e8f9f09
map-only syntax and semantics
author | Adam Chlipala <adamc@hcoop.net> |
---|---|
date | Sat, 21 Feb 2009 11:23:24 -0500 |
parents | d26d1f3acfd6 |
children | be88d2d169f6 |
files | src/coq/Semantics.v src/coq/Syntax.v |
diffstat | 2 files changed, 70 insertions(+), 122 deletions(-) [+] |
line wrap: on
line diff
--- a/src/coq/Semantics.v Wed Feb 18 09:32:17 2009 -0500 +++ b/src/coq/Semantics.v Sat Feb 21 11:23:24 2009 -0500 @@ -25,21 +25,18 @@ * POSSIBILITY OF SUCH DAMAGE. *) -Require Import Arith List TheoryList. - Require Import Axioms. Require Import Syntax. Set Implicit Arguments. -Definition row (T : Type) := list (name * T). +Definition row (A : Type) : Type := name -> option A. -Fixpoint record (r : row Set) : Set := - match r with - | nil => unit - | (_, T) :: r' => T * record r' - end%type. +Definition record (r : row Set) := forall n, match r n with + | None => unit + | Some T => T + end. Fixpoint kDen (k : kind) : Type := match k with @@ -49,12 +46,6 @@ | KRecord k1 => row (kDen k1) end. -Fixpoint cfold T T' (f : name -> T -> T' -> T') (i : T') (r : row T) {struct r} : T' := - match r with - | nil => i - | (n, v) :: r' => f n v (cfold f i r') - end. - Fixpoint cDen k (c : con kDen k) {struct c} : kDen k := match c in con _ k return kDen k with | CVar _ x => x @@ -64,10 +55,16 @@ | CApp _ _ c1 c2 => (cDen c1) (cDen c2) | Name n => n | TRecord c1 => record (cDen c1) - | CEmpty _ => nil - | CSingle _ c1 c2 => (cDen c1, cDen c2) :: nil - | CConcat _ c1 c2 => cDen c1 ++ cDen c2 - | CFold k1 k2 => @cfold _ _ + | CEmpty _ => fun _ => None + | CSingle _ c1 c2 => fun n => if name_eq_dec n (cDen c1) then Some (cDen c2) else None + | CConcat _ c1 c2 => fun n => match (cDen c1) n with + | None => (cDen c2) n + | v => v + end + | CMap k1 k2 => fun f r n => match r n with + | None => None + | Some T => Some (f T) + end | CGuarded _ _ _ _ c => cDen c end. @@ -81,90 +78,51 @@ Qed. Definition disjoint T (r1 r2 : row T) := - AllS (fun p1 => AllS (fun p2 => fst p1 <> fst p2) r2) r1. + forall n, match r1 n, r2 n with + | Some _, Some _ => False + | _, _ => True + end. Definition dvar k (c1 c2 : con kDen (KRecord k)) := disjoint (cDen c1) (cDen c2). -Lemma AllS_app : forall T P (ls2 : list T), - AllS P ls2 - -> forall ls1, AllS P ls1 - -> AllS P (ls1 ++ ls2). - induction 2; simpl; intuition. -Qed. - -Lemma AllS_weaken : forall T (P P' : T -> Prop), - (forall x, P x -> P' x) - -> forall ls, - AllS P ls - -> AllS P' ls. - induction 2; simpl; intuition. -Qed. - -Theorem disjoint_symm : forall T (r1 r2 : row T), - disjoint r1 r2 - -> disjoint r2 r1. - Hint Constructors AllS. - Hint Resolve AllS_weaken. - - unfold disjoint; induction r2; simpl; intuition. - constructor. - eapply AllS_weaken; eauto. - intuition. - inversion H0; auto. - - apply IHr2. - eapply AllS_weaken; eauto. - intuition. - inversion H0; auto. -Qed. - -Lemma map_id : forall k (r : row k), - cfold (fun x x0 (x1 : row _) => (x, x0) :: x1) nil r = r. - induction r; simpl; intuition; - match goal with - | [ H : _ |- _ ] => rewrite H - end; intuition. -Qed. - -Lemma map_dist : forall T1 T2 (f : T1 -> T2) (r2 r1 : row T1), - cfold (fun x x0 (x1 : row _) => (x, f x0) :: x1) nil (r1 ++ r2) - = cfold (fun x x0 (x1 : row _) => (x, f x0) :: x1) nil r1 - ++ cfold (fun x x0 (x1 : row _) => (x, f x0) :: x1) nil r2. - induction r1; simpl; intuition; - match goal with - | [ H : _ |- _ ] => rewrite H - end; intuition. -Qed. - -Lemma fold_fuse : forall T1 T2 T3 (f : name -> T1 -> T2 -> T2) (i : T2) (f' : T3 -> T1) (c : row T3), - cfold f i (cfold (fun x x0 (x1 : row _) => (x, f' x0) :: x1) nil c) - = cfold (fun x x0 => f x (f' x0)) i c. - induction c; simpl; intuition; - match goal with - | [ H : _ |- _ ] => rewrite <- H - end; intuition. -Qed. - Scheme deq_mut := Minimality for deq Sort Prop with disj_mut := Minimality for disj Sort Prop. Theorem deq_correct : forall k (c1 c2 : con kDen k), deq dvar c1 c2 -> cDen c1 = cDen c2. - Hint Resolve map_id map_dist fold_fuse AllS_app disjoint_symm. - Hint Extern 1 (_ = _) => unfold row; symmetry; apply app_ass. + Ltac t := repeat progress (simpl; intuition; subst). + + Ltac use_disjoint' notDone E := + match goal with + | [ H : disjoint _ _ |- _ ] => + notDone H; generalize (H E); use_disjoint' + ltac:(fun H' => + match H' with + | H => fail 1 + | _ => notDone H' + end) E + | _ => idtac + end. + Ltac use_disjoint := use_disjoint' ltac:(fun _ => idtac). apply (deq_mut (dvar := dvar) (fun k (c1 c2 : con kDen k) => cDen c1 = cDen c2) (fun k (c1 c2 : con kDen (KRecord k)) => - disjoint (cDen c1) (cDen c2))); - simpl; intuition; + disjoint (cDen c1) (cDen c2))); t; + repeat ((unfold row; apply ext_eq) + || (match goal with + | [ H : _ |- _ ] => rewrite H + | [ H : subs _ _ _ |- _ ] => rewrite <- (subs_correct H) + end); t); + unfold disjoint; t; repeat (match goal with - | [ H : _ |- _ ] => rewrite H - | [ H : subs _ _ _ |- _ ] => rewrite <- (subs_correct H) - end; simpl; intuition); try congruence; unfold disjoint in *; intuition; - fold kDen in *; repeat match goal with - | [ H : AllS _ (_ :: _) |- _ ] => inversion H; clear H; subst; simpl in * - end; auto. + | [ |- context[match cDen ?C ?E with Some _ => _ | None => _ end] ] => + use_disjoint E; destruct (cDen C E) + | [ |- context[if name_eq_dec ?N1 ?N2 then _ else _] ] => + use_disjoint N1; use_disjoint N2; destruct (name_eq_dec N1 N2) + | [ _ : context[match cDen ?C ?E with Some _ => _ | None => _ end] |- _ ] => + use_disjoint E; destruct (cDen C E) + end; t). Qed.
--- a/src/coq/Syntax.v Wed Feb 18 09:32:17 2009 -0500 +++ b/src/coq/Syntax.v Sat Feb 21 11:23:24 2009 -0500 @@ -25,10 +25,13 @@ * POSSIBILITY OF SUCH DAMAGE. *) +Require Import String. + Set Implicit Arguments. -Definition name := nat. +Definition name : Type := string. +Definition name_eq_dec : forall (x y : name), {x = y} + {x <> y} := string_dec. (** Syntax of Featherweight Ur *) @@ -53,8 +56,7 @@ | CEmpty : forall k, con (KRecord k) | CSingle : forall k, con KName -> con k -> con (KRecord k) | CConcat : forall k, con (KRecord k) -> con (KRecord k) -> con (KRecord k) - | CFold : forall k1 k2, con (KArrow (KArrow KName (KArrow k1 (KArrow k2 k2))) - (KArrow k2 (KArrow (KRecord k1) k2))) + | CMap : forall k1 k2, con (KArrow (KArrow k1 k2) (KArrow (KRecord k1) (KRecord k2))) | CGuarded : forall k1 k2, con (KRecord k1) -> con (KRecord k1) -> con k2 -> con k2. Variable dvar : forall k, con (KRecord k) -> con (KRecord k) -> Type. @@ -121,7 +123,7 @@ | DEq : forall k (c1 c2 c1' : con (KRecord k)), disj c1 c2 - -> deq c1 c1' + -> deq c1' c1 -> disj c1' c2 with deq : forall k, con k -> con k -> Prop := @@ -145,42 +147,30 @@ | Eq_Concat_Empty : forall k c, deq (CConcat (CEmpty k) c) c + | Eq_Concat_Comm : forall k (c1 c2 c3 : con (KRecord k)), + disj c1 c2 + -> deq (CConcat c1 c2) (CConcat c2 c1) | Eq_Concat_Assoc : forall k (c1 c2 c3 : con (KRecord k)), deq (CConcat c1 (CConcat c2 c3)) (CConcat (CConcat c1 c2) c3) - | Eq_Fold_Empty : forall k1 k2 f i, - deq (CApp (CApp (CApp (CFold k1 k2) f) i) (CEmpty _)) i - | Eq_Fold_Cons : forall k1 k2 f i c1 c2 c3, + | Eq_Map_Empty : forall k1 k2 f, + deq (CApp (CApp (CMap k1 k2) f) (CEmpty _)) (CEmpty _) + | Eq_Map_Cons : forall k1 k2 f c1 c2 c3, disj (CSingle c1 c2) c3 - -> deq (CApp (CApp (CApp (CFold k1 k2) f) i) (CConcat (CSingle c1 c2) c3)) - (CApp (CApp (CApp f c1) c2) (CApp (CApp (CApp (CFold k1 k2) f) i) c3)) + -> deq (CApp (CApp (CMap k1 k2) f) (CConcat (CSingle c1 c2) c3)) + (CConcat (CSingle c1 (CApp f c2)) (CApp (CApp (CMap k1 k2) f) c3)) | Eq_Guarded : forall k1 k2 (c1 c2 : con (KRecord k1)) (c : con k2), - disj c1 c2 - -> deq (CGuarded c1 c2 c) c + (*disj c1 c2 + ->*) deq (CGuarded c1 c2 c) c | Eq_Map_Ident : forall k c, - deq (CApp (CApp (CApp (CFold k (KRecord k)) - (CAbs (fun x1 => CAbs (fun x2 => CAbs (fun x3 => CConcat (CSingle (CVar x1) (CVar x2)) (CVar x3)))))) - (CEmpty _)) c) c + deq (CApp (CApp (CMap k k) (CAbs (fun x => CVar x))) c) c | Eq_Map_Dist : forall k1 k2 f c1 c2, - deq (CApp (CApp (CApp (CFold k1 (KRecord k2)) - (CAbs (fun x1 => CAbs (fun x2 => CAbs (fun x3 => CConcat (CSingle (CVar x1) (CApp f (CVar x2))) (CVar x3)))))) - (CEmpty _)) (CConcat c1 c2)) - (CConcat - (CApp (CApp (CApp (CFold k1 (KRecord k2)) - (CAbs (fun x1 => CAbs (fun x2 => CAbs (fun x3 => CConcat (CSingle (CVar x1) (CApp f (CVar x2))) (CVar x3)))))) - (CEmpty _)) c1) - (CApp (CApp (CApp (CFold k1 (KRecord k2)) - (CAbs (fun x1 => CAbs (fun x2 => CAbs (fun x3 => CConcat (CSingle (CVar x1) (CApp f (CVar x2))) (CVar x3)))))) - (CEmpty _)) c2)) - - | Eq_Fold_Fuse : forall k1 k2 k3 f i f' c, - deq (CApp (CApp (CApp (CFold k1 k2) f) i) - (CApp (CApp (CApp (CFold k3 (KRecord k1)) - (CAbs (fun x1 => CAbs (fun x2 => CAbs (fun x3 => CConcat (CSingle (CVar x1) (CApp f' (CVar x2))) (CVar x3)))))) - (CEmpty _)) c)) - (CApp (CApp (CApp (CFold k3 k2) - (CAbs (fun x1 => CAbs (fun x2 => CApp (CApp f (CVar x1)) (CApp f' (CVar x2)))))) - i) c). + deq (CApp (CApp (CMap k1 k2) f) (CConcat c1 c2)) + (CConcat (CApp (CApp (CMap k1 k2) f) c1) (CApp (CApp (CMap k1 k2) f) c2)) + | Eq_Map_Fuse : forall k1 k2 k3 f f' c, + deq (CApp (CApp (CMap k2 k3) f') + (CApp (CApp (CMap k1 k2) f) c)) + (CApp (CApp (CMap k1 k3) (CAbs (fun x => CApp f' (CApp f (CVar x))))) c). End vars.