Mercurial > urweb
changeset 532:23718a4b23d7
Definitional equality
author | Adam Chlipala <adamc@hcoop.net> |
---|---|
date | Sat, 29 Nov 2008 10:05:46 -0500 (2008-11-29) |
parents | e47eff8c9037 |
children | 419f51b1e68d |
files | doc/manual.tex |
diffstat | 1 files changed, 43 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- a/doc/manual.tex Sat Nov 29 09:48:10 2008 -0500 +++ b/doc/manual.tex Sat Nov 29 10:05:46 2008 -0500 @@ -349,5 +349,48 @@ \Gamma \vdash c \hookrightarrow C }$$ +\subsection{Definitional Equality} + +We use $\mathcal C$ to stand for a one-hole context that, when filled, yields a constructor. The notation $\mathcal C[c]$ plugs $c$ into $\mathcal C$. We omit the standard definition of one-hole contexts. We write $[x \mapsto c_1]c_2$ for capture-avoiding substitution of $c_1$ for $x$ in $c_2$. + +$$\infer{\Gamma \vdash c \equiv c}{} +\quad \infer{\Gamma \vdash c_1 \equiv c_2}{ + \Gamma \vdash c_2 \equiv c_1 +} +\quad \infer{\Gamma \vdash c_1 \equiv c_3}{ + \Gamma \vdash c_1 \equiv c_2 + & \Gamma \vdash c_2 \equiv c_3 +} +\quad \infer{\Gamma \vdash \mathcal C[c_1] \equiv \mathcal C[c_2]}{ + \Gamma \vdash c_1 \equiv c_2 +}$$ + +$$\infer{\Gamma \vdash x \equiv c}{ + x :: \kappa = c \in \Gamma +} +\quad \infer{\Gamma \vdash M.x \equiv c}{ + \Gamma \vdash M : S + & \mt{proj}(M, S, \mt{con} \; x) = (\kappa, c) +} +\quad \infer{\Gamma \vdash (\overline c).i \equiv c_i}{}$$ + +$$\infer{\Gamma \vdash (\lambda x :: \kappa \Rightarrow c) \; c' \equiv [x \mapsto c'] c}{} +\quad \infer{\Gamma \vdash c_1 \rc c_2 \equiv c_2 \rc c_1}{} +\quad \infer{\Gamma \vdash c_1 \rc (c_2 \rc c_3) \equiv (c_1 \rc c_2) \rc c_3}{}$$ + +$$\infer{\Gamma \vdash [] \rc c \equiv c}{} +\quad \infer{\Gamma \vdash [\overline{c_1 = c'_1}] \rc [\overline{c_2 = c'_2}] \equiv [\overline{c_1 = c'_1}, \overline{c_2 = c'_2}]}{}$$ + +$$\infer{\Gamma \vdash \lambda [c_1 \sim c_2] \Rightarrow c \equiv c}{ + \Gamma \vdash c_1 \sim c_2 +} +\quad \infer{\Gamma \vdash \mt{fold} \; f \; i \; [] \equiv i}{} +\quad \infer{\Gamma \vdash \mt{fold} \; f \; i \; ([c_1 = c_2] \rc c) \equiv f \; c_1 \; c_2 \; (\mt{fold} \; f \; i \; c)}{}$$ + +$$\infer{\Gamma \vdash \mt{map} \; (\lambda x \Rightarrow x) \; c \equiv c}{} +\quad \infer{\Gamma \vdash \mt{fold} \; f \; i \; (\mt{map} \; f' \; c) + \equiv \mt{fold} \; (\lambda (x_1 :: \mt{Name}) (x_2 :: \kappa) \Rightarrow f \; x_1 \; (f' \; x_2)) \; i \; c}{}$$ + +$$\infer{\Gamma \vdash \mt{map} \; f \; (c_1 \rc c_2) \equiv \mt{map} \; f \; c_1 \rc \mt{map} \; f \; c_2}{}$$ \end{document} \ No newline at end of file