adamc@2: (* Copyright (c) 2008, Adam Chlipala adamc@2: * All rights reserved. adamc@2: * adamc@2: * Redistribution and use in source and binary forms, with or without adamc@2: * modification, are permitted provided that the following conditions are met: adamc@2: * adamc@2: * - Redistributions of source code must retain the above copyright notice, adamc@2: * this list of conditions and the following disclaimer. adamc@2: * - Redistributions in binary form must reproduce the above copyright notice, adamc@2: * this list of conditions and the following disclaimer in the documentation adamc@2: * and/or other materials provided with the distribution. adamc@2: * - The names of contributors may not be used to endorse or promote products adamc@2: * derived from this software without specific prior written permission. adamc@2: * adamc@2: * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" adamc@2: * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE adamc@2: * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE adamc@2: * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE adamc@2: * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR adamc@2: * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF adamc@2: * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS adamc@2: * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN adamc@2: * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) adamc@2: * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE adamc@2: * POSSIBILITY OF SUCH DAMAGE. adamc@2: *) adamc@2: adamc@2: structure Elaborate :> ELABORATE = struct adamc@2: adamc@4: structure L = Source adamc@2: structure L' = Elab adamc@2: structure E = ElabEnv adamc@2: structure U = ElabUtil adamc@2: adamc@3: open Print adamc@3: open ElabPrint adamc@3: adamc@2: fun elabKind (k, loc) = adamc@2: case k of adamc@2: L.KType => (L'.KType, loc) adamc@2: | L.KArrow (k1, k2) => (L'.KArrow (elabKind k1, elabKind k2), loc) adamc@2: | L.KName => (L'.KName, loc) adamc@2: | L.KRecord k => (L'.KRecord (elabKind k), loc) adamc@2: adamc@2: fun elabExplicitness e = adamc@2: case e of adamc@2: L.Explicit => L'.Explicit adamc@2: | L.Implicit => L'.Implicit adamc@2: adamc@2: fun occursKind r = adamc@2: U.Kind.exists (fn L'.KUnif (_, r') => r = r' adamc@2: | _ => false) adamc@2: adamc@3: datatype kunify_error = adamc@2: KOccursCheckFailed of L'.kind * L'.kind adamc@2: | KIncompatible of L'.kind * L'.kind adamc@2: adamc@3: exception KUnify' of kunify_error adamc@3: adamc@3: fun kunifyError err = adamc@2: case err of adamc@2: KOccursCheckFailed (k1, k2) => adamc@3: eprefaces "Kind occurs check failed" adamc@3: [("Kind 1", p_kind k1), adamc@3: ("Kind 2", p_kind k2)] adamc@2: | KIncompatible (k1, k2) => adamc@3: eprefaces "Incompatible kinds" adamc@3: [("Kind 1", p_kind k1), adamc@3: ("Kind 2", p_kind k2)] adamc@2: adamc@3: fun unifyKinds' (k1All as (k1, _)) (k2All as (k2, _)) = adamc@2: let adamc@3: fun err f = raise KUnify' (f (k1All, k2All)) adamc@2: in adamc@2: case (k1, k2) of adamc@2: (L'.KType, L'.KType) => () adamc@2: | (L'.KArrow (d1, r1), L'.KArrow (d2, r2)) => adamc@3: (unifyKinds' d1 d2; adamc@3: unifyKinds' r1 r2) adamc@2: | (L'.KName, L'.KName) => () adamc@3: | (L'.KRecord k1, L'.KRecord k2) => unifyKinds' k1 k2 adamc@2: adamc@2: | (L'.KError, _) => () adamc@2: | (_, L'.KError) => () adamc@2: adamc@3: | (L'.KUnif (_, ref (SOME k1All)), _) => unifyKinds' k1All k2All adamc@3: | (_, L'.KUnif (_, ref (SOME k2All))) => unifyKinds' k1All k2All adamc@2: adamc@2: | (L'.KUnif (_, r1), L'.KUnif (_, r2)) => adamc@2: if r1 = r2 then adamc@2: () adamc@2: else adamc@2: r1 := SOME k2All adamc@2: adamc@2: | (L'.KUnif (_, r), _) => adamc@2: if occursKind r k2All then adamc@2: err KOccursCheckFailed adamc@2: else adamc@2: r := SOME k2All adamc@2: | (_, L'.KUnif (_, r)) => adamc@2: if occursKind r k1All then adamc@2: err KOccursCheckFailed adamc@2: else adamc@2: r := SOME k1All adamc@2: adamc@2: | _ => err KIncompatible adamc@2: end adamc@2: adamc@3: exception KUnify of L'.kind * L'.kind * kunify_error adamc@3: adamc@3: fun unifyKinds k1 k2 = adamc@3: unifyKinds' k1 k2 adamc@3: handle KUnify' err => raise KUnify (k1, k2, err) adamc@3: adamc@3: datatype con_error = adamc@3: UnboundCon of ErrorMsg.span * string adamc@3: | WrongKind of L'.con * L'.kind * L'.kind * kunify_error adamc@3: adamc@5: fun conError env err = adamc@3: case err of adamc@3: UnboundCon (loc, s) => adamc@3: ErrorMsg.errorAt loc ("Unbound constructor variable " ^ s) adamc@3: | WrongKind (c, k1, k2, kerr) => adamc@3: (ErrorMsg.errorAt (#2 c) "Wrong kind"; adamc@5: eprefaces' [("Constructor", p_con env c), adamc@5: ("Have kind", p_kind k1), adamc@5: ("Need kind", p_kind k2)]; adamc@3: kunifyError kerr) adamc@3: adamc@5: fun checkKind env c k1 k2 = adamc@3: unifyKinds k1 k2 adamc@3: handle KUnify (k1, k2, err) => adamc@5: conError env (WrongKind (c, k1, k2, err)) adamc@3: adamc@3: val dummy = ErrorMsg.dummySpan adamc@3: adamc@3: val ktype = (L'.KType, dummy) adamc@3: val kname = (L'.KName, dummy) adamc@3: adamc@3: val cerror = (L'.CError, dummy) adamc@3: val kerror = (L'.KError, dummy) adamc@3: adamc@3: local adamc@3: val count = ref 0 adamc@3: in adamc@3: adamc@3: fun resetKunif () = count := 0 adamc@3: adamc@3: fun kunif () = adamc@3: let adamc@3: val n = !count adamc@3: val s = if n <= 26 then adamc@3: str (chr (ord #"A" + n)) adamc@3: else adamc@3: "U" ^ Int.toString (n - 26) adamc@3: in adamc@3: count := n + 1; adamc@3: (L'.KUnif (s, ref NONE), dummy) adamc@3: end adamc@3: adamc@3: end adamc@3: adamc@3: fun elabCon env (c, loc) = adamc@3: case c of adamc@3: L.CAnnot (c, k) => adamc@3: let adamc@3: val k' = elabKind k adamc@3: val (c', ck) = elabCon env c adamc@3: in adamc@5: checkKind env c' ck k'; adamc@3: (c', k') adamc@3: end adamc@3: adamc@3: | L.TFun (t1, t2) => adamc@3: let adamc@3: val (t1', k1) = elabCon env t1 adamc@3: val (t2', k2) = elabCon env t2 adamc@3: in adamc@5: checkKind env t1' k1 ktype; adamc@5: checkKind env t2' k2 ktype; adamc@3: ((L'.TFun (t1', t2'), loc), ktype) adamc@3: end adamc@3: | L.TCFun (e, x, k, t) => adamc@3: let adamc@3: val e' = elabExplicitness e adamc@3: val k' = elabKind k adamc@3: val env' = E.pushCRel env x k' adamc@3: val (t', tk) = elabCon env' t adamc@3: in adamc@5: checkKind env t' tk ktype; adamc@3: ((L'.TCFun (e', x, k', t'), loc), ktype) adamc@3: end adamc@3: | L.TRecord c => adamc@3: let adamc@3: val (c', ck) = elabCon env c adamc@3: val k = (L'.KRecord ktype, loc) adamc@3: in adamc@5: checkKind env c' ck k; adamc@3: ((L'.TRecord c', loc), ktype) adamc@3: end adamc@3: adamc@3: | L.CVar s => adamc@3: (case E.lookupC env s of adamc@3: E.CNotBound => adamc@5: (conError env (UnboundCon (loc, s)); adamc@3: (cerror, kerror)) adamc@3: | E.CRel (n, k) => adamc@3: ((L'.CRel n, loc), k) adamc@3: | E.CNamed (n, k) => adamc@3: ((L'.CNamed n, loc), k)) adamc@3: | L.CApp (c1, c2) => adamc@3: let adamc@3: val (c1', k1) = elabCon env c1 adamc@3: val (c2', k2) = elabCon env c2 adamc@3: val dom = kunif () adamc@3: val ran = kunif () adamc@3: in adamc@5: checkKind env c1' k1 (L'.KArrow (dom, ran), loc); adamc@5: checkKind env c2' k2 dom; adamc@3: ((L'.CApp (c1', c2'), loc), ran) adamc@3: end adamc@8: | L.CAbs (x, k, t) => adamc@3: let adamc@3: val k' = elabKind k adamc@3: val env' = E.pushCRel env x k' adamc@3: val (t', tk) = elabCon env' t adamc@3: in adamc@8: ((L'.CAbs (x, k', t'), loc), adamc@3: (L'.KArrow (k', tk), loc)) adamc@3: end adamc@3: adamc@3: | L.CName s => adamc@3: ((L'.CName s, loc), kname) adamc@3: adamc@3: | L.CRecord xcs => adamc@3: let adamc@3: val k = kunif () adamc@3: adamc@3: val xcs' = map (fn (x, c) => adamc@3: let adamc@3: val (x', xk) = elabCon env x adamc@3: val (c', ck) = elabCon env c adamc@3: in adamc@5: checkKind env x' xk kname; adamc@5: checkKind env c' ck k; adamc@3: (x', c') adamc@3: end) xcs adamc@3: in adamc@5: ((L'.CRecord (k, xcs'), loc), (L'.KRecord k, loc)) adamc@3: end adamc@3: | L.CConcat (c1, c2) => adamc@3: let adamc@3: val (c1', k1) = elabCon env c1 adamc@3: val (c2', k2) = elabCon env c2 adamc@3: val ku = kunif () adamc@3: val k = (L'.KRecord ku, loc) adamc@3: in adamc@5: checkKind env c1' k1 k; adamc@5: checkKind env c2' k2 k; adamc@3: ((L'.CConcat (c1', c2'), loc), k) adamc@3: end adamc@3: adamc@6: fun kunifsRemain k = adamc@6: case k of adamc@6: L'.KUnif (_, ref NONE) => true adamc@6: | _ => false adamc@6: adamc@6: val kunifsInKind = U.Kind.exists kunifsRemain adamc@6: val kunifsInCon = U.Con.exists {kind = kunifsRemain, adamc@6: con = fn _ => false} adamc@6: adamc@6: datatype decl_error = adamc@6: KunifsRemainKind of ErrorMsg.span * L'.kind adamc@6: | KunifsRemainCon of ErrorMsg.span * L'.con adamc@6: adamc@6: fun declError env err = adamc@6: case err of adamc@6: KunifsRemainKind (loc, k) => adamc@6: (ErrorMsg.errorAt loc "Some kind unification variables are undetermined in kind"; adamc@6: eprefaces' [("Kind", p_kind k)]) adamc@6: | KunifsRemainCon (loc, c) => adamc@6: (ErrorMsg.errorAt loc "Some kind unification variables are undetermined in constructor"; adamc@6: eprefaces' [("Constructor", p_con env c)]) adamc@6: adamc@3: fun elabDecl env (d, loc) = adamc@5: (resetKunif (); adamc@5: case d of adamc@5: L.DCon (x, ko, c) => adamc@5: let adamc@5: val k' = case ko of adamc@5: NONE => kunif () adamc@5: | SOME k => elabKind k adamc@3: adamc@5: val (c', ck) = elabCon env c adamc@5: val (env', n) = E.pushCNamed env x k' adamc@5: in adamc@5: checkKind env c' ck k'; adamc@6: adamc@6: if kunifsInKind k' then adamc@6: declError env (KunifsRemainKind (loc, k')) adamc@6: else adamc@6: (); adamc@6: adamc@6: if kunifsInCon c' then adamc@6: declError env (KunifsRemainCon (loc, c')) adamc@6: else adamc@6: (); adamc@6: adamc@5: (env', adamc@5: (L'.DCon (x, n, k', c'), loc)) adamc@5: end) adamc@3: adamc@5: fun elabFile env ds = adamc@5: ListUtil.mapfoldl (fn (d, env) => elabDecl env d) env ds adamc@2: adamc@2: end