Mercurial > urweb
view src/elaborate.sml @ 1579:e1f4ac9ca34b
Note a parsing restriction in the manual
author | Adam Chlipala <adam@chlipala.net> |
---|---|
date | Fri, 21 Oct 2011 08:36:10 -0400 |
parents | f6c74b4bc4e6 |
children | ec466c1e082a |
line wrap: on
line source
(* Copyright (c) 2008-2011, Adam Chlipala * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - The names of contributors may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. *) structure Elaborate :> ELABORATE = struct structure P = Prim structure L = Source structure L' = Elab structure E = ElabEnv structure U = ElabUtil structure D = Disjoint open Print open ElabPrint open ElabErr val dumpTypes = ref false structure IS = IntBinarySet structure IM = IntBinaryMap structure SK = struct type ord_key = string val compare = String.compare end structure SS = BinarySetFn(SK) structure SM = BinaryMapFn(SK) val basis_r = ref 0 val top_r = ref 0 fun elabExplicitness e = case e of L.Explicit => L'.Explicit | L.Implicit => L'.Implicit fun occursKind r = U.Kind.exists (fn L'.KUnif (_, _, r') => r = r' | _ => false) exception KUnify' of kunify_error fun unifyKinds' env (k1All as (k1, _)) (k2All as (k2, _)) = let fun err f = raise KUnify' (f (k1All, k2All)) in case (k1, k2) of (L'.KType, L'.KType) => () | (L'.KUnit, L'.KUnit) => () | (L'.KArrow (d1, r1), L'.KArrow (d2, r2)) => (unifyKinds' env d1 d2; unifyKinds' env r1 r2) | (L'.KName, L'.KName) => () | (L'.KRecord k1, L'.KRecord k2) => unifyKinds' env k1 k2 | (L'.KTuple ks1, L'.KTuple ks2) => ((ListPair.appEq (fn (k1, k2) => unifyKinds' env k1 k2) (ks1, ks2)) handle ListPair.UnequalLengths => err KIncompatible) | (L'.KRel n1, L'.KRel n2) => if n1 = n2 then () else err KIncompatible | (L'.KFun (x, k1), L'.KFun (_, k2)) => unifyKinds' (E.pushKRel env x) k1 k2 | (L'.KError, _) => () | (_, L'.KError) => () | (L'.KUnif (_, _, ref (SOME k1All)), _) => unifyKinds' env k1All k2All | (_, L'.KUnif (_, _, ref (SOME k2All))) => unifyKinds' env k1All k2All | (L'.KTupleUnif (_, _, ref (SOME k)), _) => unifyKinds' env k k2All | (_, L'.KTupleUnif (_, _, ref (SOME k))) => unifyKinds' env k1All k | (L'.KUnif (_, _, r1), L'.KUnif (_, _, r2)) => if r1 = r2 then () else r1 := SOME k2All | (L'.KUnif (_, _, r), _) => if occursKind r k2All then err KOccursCheckFailed else r := SOME k2All | (_, L'.KUnif (_, _, r)) => if occursKind r k1All then err KOccursCheckFailed else r := SOME k1All | (L'.KTupleUnif (_, nks, r), L'.KTuple ks) => ((app (fn (n, k) => unifyKinds' env k (List.nth (ks, n-1))) nks; r := SOME k2All) handle Subscript => err KIncompatible) | (L'.KTuple ks, L'.KTupleUnif (_, nks, r)) => ((app (fn (n, k) => unifyKinds' env (List.nth (ks, n-1)) k) nks; r := SOME k1All) handle Subscript => err KIncompatible) | (L'.KTupleUnif (loc, nks1, r1), L'.KTupleUnif (_, nks2, r2)) => let val nks = foldl (fn (p as (n, k1), nks) => case ListUtil.search (fn (n', k2) => if n' = n then SOME k2 else NONE) nks2 of NONE => p :: nks | SOME k2 => (unifyKinds' env k1 k2; nks)) nks2 nks1 val k = (L'.KTupleUnif (loc, nks, ref NONE), loc) in r1 := SOME k; r2 := SOME k end | _ => err KIncompatible end exception KUnify of L'.kind * L'.kind * kunify_error fun unifyKinds env k1 k2 = unifyKinds' env k1 k2 handle KUnify' err => raise KUnify (k1, k2, err) fun checkKind env c k1 k2 = unifyKinds env k1 k2 handle KUnify (k1, k2, err) => conError env (WrongKind (c, k1, k2, err)) val dummy = ErrorMsg.dummySpan val ktype = (L'.KType, dummy) val kname = (L'.KName, dummy) val ktype_record = (L'.KRecord ktype, dummy) val cerror = (L'.CError, dummy) val kerror = (L'.KError, dummy) val eerror = (L'.EError, dummy) val sgnerror = (L'.SgnError, dummy) val strerror = (L'.StrError, dummy) val int = ref cerror val float = ref cerror val string = ref cerror val char = ref cerror val table = ref cerror local val count = ref 0 in fun resetKunif () = count := 0 fun kunif loc = let val n = !count val s = if n <= 26 then str (chr (ord #"A" + n)) else "U" ^ Int.toString (n - 26) in count := n + 1; (L'.KUnif (loc, s, ref NONE), loc) end end local val count = ref 0 in fun resetCunif () = count := 0 fun cunif (loc, k) = let val n = !count val s = if n < 26 then str (chr (ord #"A" + n)) else "U" ^ Int.toString (n - 26) in count := n + 1; (L'.CUnif (0, loc, k, s, ref NONE), loc) end end fun elabKind env (k, loc) = case k of L.KType => (L'.KType, loc) | L.KArrow (k1, k2) => (L'.KArrow (elabKind env k1, elabKind env k2), loc) | L.KName => (L'.KName, loc) | L.KRecord k => (L'.KRecord (elabKind env k), loc) | L.KUnit => (L'.KUnit, loc) | L.KTuple ks => (L'.KTuple (map (elabKind env) ks), loc) | L.KWild => kunif loc | L.KVar s => (case E.lookupK env s of NONE => (kindError env (UnboundKind (loc, s)); kerror) | SOME n => (L'.KRel n, loc)) | L.KFun (x, k) => (L'.KFun (x, elabKind (E.pushKRel env x) k), loc) fun mapKind (dom, ran, loc)= (L'.KArrow ((L'.KArrow (dom, ran), loc), (L'.KArrow ((L'.KRecord dom, loc), (L'.KRecord ran, loc)), loc)), loc) fun hnormKind (kAll as (k, _)) = case k of L'.KUnif (_, _, ref (SOME k)) => hnormKind k | _ => kAll open ElabOps fun elabConHead (c as (_, loc)) k = let fun unravel (k, c) = case hnormKind k of (L'.KFun (x, k'), _) => let val u = kunif loc val k'' = subKindInKind (0, u) k' in unravel (k'', (L'.CKApp (c, u), loc)) end | _ => (c, k) in unravel (k, c) end fun elabCon (env, denv) (c, loc) = case c of L.CAnnot (c, k) => let val k' = elabKind env k val (c', ck, gs) = elabCon (env, denv) c in checkKind env c' ck k'; (c', k', gs) end | L.TFun (t1, t2) => let val (t1', k1, gs1) = elabCon (env, denv) t1 val (t2', k2, gs2) = elabCon (env, denv) t2 in checkKind env t1' k1 ktype; checkKind env t2' k2 ktype; ((L'.TFun (t1', t2'), loc), ktype, gs1 @ gs2) end | L.TCFun (e, x, k, t) => let val e' = elabExplicitness e val k' = elabKind env k val env' = E.pushCRel env x k' val (t', tk, gs) = elabCon (env', D.enter denv) t in checkKind env t' tk ktype; ((L'.TCFun (e', x, k', t'), loc), ktype, gs) end | L.TKFun (x, t) => let val env' = E.pushKRel env x val (t', tk, gs) = elabCon (env', denv) t in checkKind env t' tk ktype; ((L'.TKFun (x, t'), loc), ktype, gs) end | L.TDisjoint (c1, c2, c) => let val (c1', k1, gs1) = elabCon (env, denv) c1 val (c2', k2, gs2) = elabCon (env, denv) c2 val ku1 = kunif loc val ku2 = kunif loc val denv' = D.assert env denv (c1', c2') val (c', k, gs4) = elabCon (env, denv') c in checkKind env c1' k1 (L'.KRecord ku1, loc); checkKind env c2' k2 (L'.KRecord ku2, loc); checkKind env c' k (L'.KType, loc); ((L'.TDisjoint (c1', c2', c'), loc), k, gs1 @ gs2 @ gs4) end | L.TRecord c => let val (c', ck, gs) = elabCon (env, denv) c val k = (L'.KRecord ktype, loc) in checkKind env c' ck k; ((L'.TRecord c', loc), ktype, gs) end | L.CVar ([], s) => (case E.lookupC env s of E.NotBound => (conError env (UnboundCon (loc, s)); (cerror, kerror, [])) | E.Rel (n, k) => let val (c, k) = elabConHead (L'.CRel n, loc) k in (c, k, []) end | E.Named (n, k) => let val (c, k) = elabConHead (L'.CNamed n, loc) k in (c, k, []) end) | L.CVar (m1 :: ms, s) => (case E.lookupStr env m1 of NONE => (conError env (UnboundStrInCon (loc, m1)); (cerror, kerror, [])) | SOME (n, sgn) => let val (str, sgn) = foldl (fn (m, (str, sgn)) => case E.projectStr env {sgn = sgn, str = str, field = m} of NONE => (conError env (UnboundStrInCon (loc, m)); (strerror, sgnerror)) | SOME sgn => ((L'.StrProj (str, m), loc), sgn)) ((L'.StrVar n, loc), sgn) ms val k = case E.projectCon env {sgn = sgn, str = str, field = s} of NONE => (conError env (UnboundCon (loc, s)); kerror) | SOME (k, _) => k val (c, k) = elabConHead (L'.CModProj (n, ms, s), loc) k in (c, k, []) end) | L.CApp (c1, c2) => let val (c1', k1, gs1) = elabCon (env, denv) c1 val (c2', k2, gs2) = elabCon (env, denv) c2 val dom = kunif loc val ran = kunif loc in checkKind env c1' k1 (L'.KArrow (dom, ran), loc); checkKind env c2' k2 dom; ((L'.CApp (c1', c2'), loc), ran, gs1 @ gs2) end | L.CAbs (x, ko, t) => let val k' = case ko of NONE => kunif loc | SOME k => elabKind env k val env' = E.pushCRel env x k' val (t', tk, gs) = elabCon (env', D.enter denv) t in ((L'.CAbs (x, k', t'), loc), (L'.KArrow (k', tk), loc), gs) end | L.CKAbs (x, t) => let val env' = E.pushKRel env x val (t', tk, gs) = elabCon (env', denv) t in ((L'.CKAbs (x, t'), loc), (L'.KFun (x, tk), loc), gs) end | L.CName s => ((L'.CName s, loc), kname, []) | L.CRecord xcs => let val k = kunif loc val (xcs', gs) = ListUtil.foldlMap (fn ((x, c), gs) => let val (x', xk, gs1) = elabCon (env, denv) x val (c', ck, gs2) = elabCon (env, denv) c in checkKind env x' xk kname; checkKind env c' ck k; ((x', c'), gs1 @ gs2 @ gs) end) [] xcs val rc = (L'.CRecord (k, xcs'), loc) (* Add duplicate field checking later. *) fun prove (xcs, ds) = case xcs of [] => ds | xc :: rest => let val r1 = (L'.CRecord (k, [xc]), loc) val ds = foldl (fn (xc', ds) => let val r2 = (L'.CRecord (k, [xc']), loc) in D.prove env denv (r1, r2, loc) @ ds end) ds rest in prove (rest, ds) end in (rc, (L'.KRecord k, loc), prove (xcs', gs)) end | L.CConcat (c1, c2) => let val (c1', k1, gs1) = elabCon (env, denv) c1 val (c2', k2, gs2) = elabCon (env, denv) c2 val ku = kunif loc val k = (L'.KRecord ku, loc) in checkKind env c1' k1 k; checkKind env c2' k2 k; ((L'.CConcat (c1', c2'), loc), k, D.prove env denv (c1', c2', loc) @ gs1 @ gs2) end | L.CMap => let val dom = kunif loc val ran = kunif loc in ((L'.CMap (dom, ran), loc), mapKind (dom, ran, loc), []) end | L.CUnit => ((L'.CUnit, loc), (L'.KUnit, loc), []) | L.CTuple cs => let val (cs', ks, gs) = foldl (fn (c, (cs', ks, gs)) => let val (c', k, gs') = elabCon (env, denv) c in (c' :: cs', k :: ks, gs' @ gs) end) ([], [], []) cs in ((L'.CTuple (rev cs'), loc), (L'.KTuple (rev ks), loc), gs) end | L.CProj (c, n) => let val (c', k, gs) = elabCon (env, denv) c val k' = kunif loc in if n <= 0 then (conError env (ProjBounds (c', n)); (cerror, kerror, [])) else (checkKind env c' k (L'.KTupleUnif (loc, [(n, k')], ref NONE), loc); ((L'.CProj (c', n), loc), k', gs)) end | L.CWild k => let val k' = elabKind env k in (cunif (loc, k'), k', []) end fun kunifsRemain k = case k of L'.KUnif (_, _, ref NONE) => true | L'.KTupleUnif (_, _, ref NONE) => true | _ => false fun cunifsRemain c = case c of L'.CUnif (_, loc, k, _, r as ref NONE) => (case #1 (hnormKind k) of L'.KUnit => (r := SOME (L'.CUnit, loc); NONE) | _ => SOME loc) | _ => NONE val kunifsInDecl = U.Decl.exists {kind = kunifsRemain, con = fn _ => false, exp = fn _ => false, sgn_item = fn _ => false, sgn = fn _ => false, str = fn _ => false, decl = fn _ => false} val cunifsInDecl = U.Decl.search {kind = fn _ => NONE, con = cunifsRemain, exp = fn _ => NONE, sgn_item = fn _ => NONE, sgn = fn _ => NONE, str = fn _ => NONE, decl = fn _ => NONE} fun occursCon r = U.Con.exists {kind = fn _ => false, con = fn L'.CUnif (_, _, _, _, r') => r = r' | _ => false} exception CUnify' of cunify_error type record_summary = { fields : (L'.con * L'.con) list, unifs : (L'.con * L'.con option ref) list, others : L'.con list } fun summaryToCon {fields, unifs, others} = let val c = (L'.CRecord (ktype, []), dummy) val c = List.foldr (fn (c', c) => (L'.CConcat (c', c), dummy)) c others val c = List.foldr (fn ((c', _), c) => (L'.CConcat (c', c), dummy)) c unifs in (L'.CConcat ((L'.CRecord (ktype, fields), dummy), c), dummy) end fun p_summary env s = p_con env (summaryToCon s) exception CUnify of L'.con * L'.con * cunify_error fun kindof env (c, loc) = case c of L'.TFun _ => ktype | L'.TCFun _ => ktype | L'.TRecord _ => ktype | L'.TDisjoint _ => ktype | L'.CRel xn => #2 (E.lookupCRel env xn) | L'.CNamed xn => #2 (E.lookupCNamed env xn) | L'.CModProj (n, ms, x) => let val (_, sgn) = E.lookupStrNamed env n val (str, sgn) = foldl (fn (m, (str, sgn)) => case E.projectStr env {sgn = sgn, str = str, field = m} of NONE => raise Fail "kindof: Unknown substructure" | SOME sgn => ((L'.StrProj (str, m), loc), sgn)) ((L'.StrVar n, loc), sgn) ms in case E.projectCon env {sgn = sgn, str = str, field = x} of NONE => raise Fail "kindof: Unknown con in structure" | SOME (k, _) => k end | L'.CApp (c, _) => (case hnormKind (kindof env c) of (L'.KArrow (_, k), _) => k | (L'.KError, _) => kerror | k => raise CUnify' (CKindof (k, c, "arrow"))) | L'.CAbs (x, k, c) => (L'.KArrow (k, kindof (E.pushCRel env x k) c), loc) | L'.CName _ => kname | L'.CRecord (k, _) => (L'.KRecord k, loc) | L'.CConcat (c, _) => kindof env c | L'.CMap (dom, ran) => mapKind (dom, ran, loc) | L'.CUnit => (L'.KUnit, loc) | L'.CTuple cs => (L'.KTuple (map (kindof env) cs), loc) | L'.CProj (c, n) => (case hnormKind (kindof env c) of (L'.KTuple ks, _) => List.nth (ks, n - 1) | (L'.KUnif (_, _, r), _) => let val ku = kunif loc val k = (L'.KTupleUnif (loc, [(n, ku)], ref NONE), loc) in r := SOME k; k end | (L'.KTupleUnif (_, nks, r), _) => (case ListUtil.search (fn (n', k) => if n' = n then SOME k else NONE) nks of SOME k => k | NONE => let val ku = kunif loc val k = (L'.KTupleUnif (loc, ((n, ku) :: nks), ref NONE), loc) in r := SOME k; k end) | k => raise CUnify' (CKindof (k, c, "tuple"))) | L'.CError => kerror | L'.CUnif (_, _, k, _, _) => k | L'.CKAbs (x, c) => (L'.KFun (x, kindof (E.pushKRel env x) c), loc) | L'.CKApp (c, k) => (case hnormKind (kindof env c) of (L'.KFun (_, k'), _) => subKindInKind (0, k) k' | k => raise CUnify' (CKindof (k, c, "kapp"))) | L'.TKFun _ => ktype exception GuessFailure fun isUnitCon env (c, loc) = case c of L'.TFun _ => false | L'.TCFun _ => false | L'.TRecord _ => false | L'.TDisjoint _ => false | L'.CRel xn => #1 (hnormKind (#2 (E.lookupCRel env xn))) = L'.KUnit | L'.CNamed xn => #1 (hnormKind (#2 (E.lookupCNamed env xn))) = L'.KUnit | L'.CModProj (n, ms, x) => false (*let val (_, sgn) = E.lookupStrNamed env n val (str, sgn) = foldl (fn (m, (str, sgn)) => case E.projectStr env {sgn = sgn, str = str, field = m} of NONE => raise Fail "kindof: Unknown substructure" | SOME sgn => ((L'.StrProj (str, m), loc), sgn)) ((L'.StrVar n, loc), sgn) ms in case E.projectCon env {sgn = sgn, str = str, field = x} of NONE => raise Fail "kindof: Unknown con in structure" | SOME ((k, _), _) => k = L'.KUnit end*) | L'.CApp (c, _) => false (*(case hnormKind (kindof env c) of (L'.KArrow (_, k), _) => #1 k = L'.KUnit | (L'.KError, _) => false | k => raise CUnify' (CKindof (k, c, "arrow")))*) | L'.CAbs _ => false | L'.CName _ => false | L'.CRecord _ => false | L'.CConcat _ => false | L'.CMap _ => false | L'.CUnit => true | L'.CTuple _ => false | L'.CProj (c, n) => false (*(case hnormKind (kindof env c) of (L'.KTuple ks, _) => #1 (List.nth (ks, n - 1)) = L'.KUnit | k => raise CUnify' (CKindof (k, c, "tuple")))*) | L'.CError => false | L'.CUnif (_, _, k, _, _) => #1 (hnormKind k) = L'.KUnit | L'.CKAbs _ => false | L'.CKApp _ => false | L'.TKFun _ => false val recdCounter = ref 0 val mayDelay = ref false val delayedUnifs = ref ([] : (ErrorMsg.span * E.env * L'.kind * record_summary * record_summary) list) val delayedExhaustives = ref ([] : (E.env * L'.con * L'.pat list * ErrorMsg.span) list) exception CantSquish fun squish by = U.Con.mapB {kind = fn _ => fn k => k, con = fn bound => fn c => case c of L'.CRel xn => if xn < bound then c else if bound <= xn andalso xn < bound + by then raise CantSquish else L'.CRel (xn - by) | L'.CUnif _ => raise CantSquish | _ => c, bind = fn (bound, U.Con.RelC _) => bound + 1 | (bound, _) => bound} 0 fun unifyRecordCons env (loc, c1, c2) = let fun rkindof c = case hnormKind (kindof env c) of (L'.KRecord k, _) => k | (L'.KError, _) => kerror | (L'.KUnif (_, _, r), _) => let val k = kunif (#2 c) in r := SOME (L'.KRecord k, #2 c); k end | k => raise CUnify' (CKindof (k, c, "record")) val k1 = rkindof c1 val k2 = rkindof c2 val r1 = recordSummary env c1 val r2 = recordSummary env c2 in unifyKinds env k1 k2; unifySummaries env (loc, k1, r1, r2) end and normalizeRecordSummary env (r : record_summary) = recordSummary env (summaryToCon r) and recordSummary env c = let val c = hnormCon env c val sum = case c of (L'.CRecord (_, xcs), _) => {fields = xcs, unifs = [], others = []} | (L'.CConcat (c1, c2), _) => let val s1 = recordSummary env c1 val s2 = recordSummary env c2 in {fields = #fields s1 @ #fields s2, unifs = #unifs s1 @ #unifs s2, others = #others s1 @ #others s2} end | (L'.CUnif (nl, _, _, _, ref (SOME c)), _) => recordSummary env (E.mliftConInCon nl c) | c' as (L'.CUnif (0, _, _, _, r), _) => {fields = [], unifs = [(c', r)], others = []} | c' => {fields = [], unifs = [], others = [c']} in sum end and consEq env loc (c1, c2) = let val mayDelay' = !mayDelay in (mayDelay := false; unifyCons env loc c1 c2; mayDelay := mayDelay'; true) handle CUnify _ => (mayDelay := mayDelay'; false) end and consNeq env (c1, c2) = case (#1 (hnormCon env c1), #1 (hnormCon env c2)) of (L'.CName x1, L'.CName x2) => x1 <> x2 | (L'.CName _, L'.CRel _) => true | (L'.CRel _, L'.CName _) => true | (L'.CRel n1, L'.CRel n2) => n1 <> n2 | (L'.CRel _, L'.CNamed _) => true | (L'.CNamed _, L'.CRel _) => true | (L'.CRel _, L'.CModProj _) => true | (L'.CModProj _, L'.CRel _) => true | (L'.CModProj (_, _, n1), L'.CModProj (_, _, n2)) => n1 <> n2 | _ => false and unifySummaries env (loc, k, s1 : record_summary, s2 : record_summary) = let (*val () = eprefaces "Summaries" [("loc", PD.string (ErrorMsg.spanToString loc)), ("#1", p_summary env s1), ("#2", p_summary env s2)]*) fun eatMatching p (ls1, ls2) = let fun em (ls1, ls2, passed1) = case ls1 of [] => (rev passed1, ls2) | h1 :: t1 => let fun search (ls2', passed2) = case ls2' of [] => em (t1, ls2, h1 :: passed1) | h2 :: t2 => if p (h1, h2) then em (t1, List.revAppend (passed2, t2), passed1) else search (t2, h2 :: passed2) in search (ls2, []) end in em (ls1, ls2, []) end val (fs1, fs2) = eatMatching (fn ((x1, c1), (x2, c2)) => not (consNeq env (x1, x2)) andalso consEq env loc (c1, c2) andalso consEq env loc (x1, x2)) (#fields s1, #fields s2) (*val () = eprefaces "Summaries2" [("#1", p_summary env {fields = fs1, unifs = #unifs s1, others = #others s1}), ("#2", p_summary env {fields = fs2, unifs = #unifs s2, others = #others s2})]*) val (unifs1, unifs2) = eatMatching (fn ((_, r1), (_, r2)) => r1 = r2) (#unifs s1, #unifs s2) val (others1, others2) = eatMatching (consEq env loc) (#others s1, #others s2) (*val () = eprefaces "Summaries3" [("#1", p_summary env {fields = fs1, unifs = unifs1, others = others1}), ("#2", p_summary env {fields = fs2, unifs = unifs2, others = others2})]*) fun unsummarize {fields, unifs, others} = let val c = (L'.CRecord (k, fields), loc) val c = foldl (fn ((c1, _), c2) => (L'.CConcat (c1, c2), loc)) c unifs in foldl (fn (c1, c2) => (L'.CConcat (c1, c2), loc)) c others end val empties = ([], [], [], [], [], []) val (unifs1, fs1, others1, unifs2, fs2, others2) = case (unifs1, fs1, others1, unifs2, fs2, others2) of orig as ([(_, r)], [], [], _, _, _) => let val c = unsummarize {fields = fs2, others = others2, unifs = unifs2} in if occursCon r c then orig else (r := SOME c; empties) end | orig as (_, _, _, [(_, r)], [], []) => let val c = unsummarize {fields = fs1, others = others1, unifs = unifs1} in if occursCon r c then orig else (r := SOME c; empties) end | orig as ([(_, r1 as ref NONE)], _, [], [(_, r2 as ref NONE)], _, []) => if List.all (fn (x1, _) => List.all (fn (x2, _) => consNeq env (x1, x2)) fs2) fs1 then let val kr = (L'.KRecord k, loc) val u = cunif (loc, kr) in r1 := SOME (L'.CConcat ((L'.CRecord (k, fs2), loc), u), loc); r2 := SOME (L'.CConcat ((L'.CRecord (k, fs1), loc), u), loc); empties end else orig | orig => orig (*val () = eprefaces "Summaries4" [("#1", p_summary env {fields = fs1, unifs = unifs1, others = others1}), ("#2", p_summary env {fields = fs2, unifs = unifs2, others = others2})]*) fun isGuessable (other, fs, unifs) = let val c = (L'.CRecord (k, fs), loc) val c = foldl (fn ((c', _), c) => (L'.CConcat (c', c), loc)) c unifs in (guessMap env loc (other, c, GuessFailure); true) handle GuessFailure => false end val (fs1, fs2, others1, others2, unifs1, unifs2) = case (fs1, fs2, others1, others2, unifs1, unifs2) of ([], _, [other1], [], [], _) => if isGuessable (other1, fs2, unifs2) then ([], [], [], [], [], []) else (fs1, fs2, others1, others2, unifs1, unifs2) | (_, [], [], [other2], _, []) => if isGuessable (other2, fs1, unifs1) then ([], [], [], [], [], []) else (fs1, fs2, others1, others2, unifs1, unifs2) | _ => (fs1, fs2, others1, others2, unifs1, unifs2) (*val () = eprefaces "Summaries5" [("#1", p_summary env {fields = fs1, unifs = unifs1, others = others1}), ("#2", p_summary env {fields = fs2, unifs = unifs2, others = others2})]*) val empty = (L'.CRecord (k, []), loc) fun failure () = let val fs2 = #fields s2 fun findPointwise fs1 = case fs1 of [] => NONE | (nm1, c1) :: fs1 => case List.find (fn (nm2, _) => consEq env loc (nm1, nm2)) fs2 of NONE => findPointwise fs1 | SOME (_, c2) => if consEq env loc (c1, c2) then findPointwise fs1 else SOME (nm1, c1, c2, (unifyCons env loc c1 c2; NONE) handle CUnify (_, _, err) => SOME err) in raise CUnify' (CRecordFailure (unsummarize s1, unsummarize s2, findPointwise (#fields s1))) end fun default () = if !mayDelay then delayedUnifs := (loc, env, k, s1, s2) :: !delayedUnifs else failure () in (case (unifs1, fs1, others1, unifs2, fs2, others2) of (_, [], [], [], [], []) => app (fn (_, r) => r := SOME empty) unifs1 | ([], [], [], _, [], []) => app (fn (_, r) => r := SOME empty) unifs2 | (_, _, _, [], [], [cr as (L'.CUnif (nl, _, _, _, r), _)]) => let val c = summaryToCon {fields = fs1, unifs = unifs1, others = others1} in if occursCon r c then raise CUnify' (COccursCheckFailed (cr, c)) else (r := SOME (squish nl c)) handle CantSquish => default () end | ([], [], [cr as (L'.CUnif (nl, _, _, _, r), _)], _, _, _) => let val c = summaryToCon {fields = fs2, unifs = unifs2, others = others2} in if occursCon r c then raise CUnify' (COccursCheckFailed (cr, c)) else (r := SOME (squish nl c)) handle CantSquish => default () end | _ => default ()) (*before eprefaces "Summaries'" [("#1", p_summary env (normalizeRecordSummary env s1)), ("#2", p_summary env (normalizeRecordSummary env s2))]*) end and guessMap env loc (c1, c2, ex) = let fun unfold (dom, ran, f, r, c) = let fun unfold (r, c) = case #1 (hnormCon env c) of L'.CRecord (_, []) => unifyCons env loc r (L'.CRecord (dom, []), loc) | L'.CRecord (_, [(x, v)]) => let val v' = case dom of (L'.KUnit, _) => (L'.CUnit, loc) | _ => cunif (loc, dom) in unifyCons env loc v (L'.CApp (f, v'), loc); unifyCons env loc r (L'.CRecord (dom, [(x, v')]), loc) end | L'.CRecord (_, (x, v) :: rest) => let val r1 = cunif (loc, (L'.KRecord dom, loc)) val r2 = cunif (loc, (L'.KRecord dom, loc)) in unfold (r1, (L'.CRecord (ran, [(x, v)]), loc)); unfold (r2, (L'.CRecord (ran, rest), loc)); unifyCons env loc r (L'.CConcat (r1, r2), loc) end | L'.CConcat (c1', c2') => let val r1 = cunif (loc, (L'.KRecord dom, loc)) val r2 = cunif (loc, (L'.KRecord dom, loc)) in unfold (r1, c1'); unfold (r2, c2'); unifyCons env loc r (L'.CConcat (r1, r2), loc) end | L'.CUnif (0, _, _, _, ur) => ur := SOME (L'.CApp ((L'.CApp ((L'.CMap (dom, ran), loc), f), loc), r), loc) | _ => raise ex in unfold (r, c) end handle _ => raise ex in case (#1 c1, #1 c2) of (L'.CApp ((L'.CApp ((L'.CMap (dom, ran), _), f), _), r), _) => unfold (dom, ran, f, r, c2) | (_, L'.CApp ((L'.CApp ((L'.CMap (dom, ran), _), f), _), r)) => unfold (dom, ran, f, r, c1) | _ => raise ex end and unifyCons' env loc c1 c2 = if isUnitCon env c1 andalso isUnitCon env c2 then () else let (*val befor = Time.now () val old1 = c1 val old2 = c2*) val c1 = hnormCon env c1 val c2 = hnormCon env c2 in unifyCons'' env loc c1 c2 handle ex => guessMap env loc (c1, c2, ex) end and unifyCons'' env loc (c1All as (c1, _)) (c2All as (c2, _)) = let fun err f = raise CUnify' (f (c1All, c2All)) fun projSpecial1 (c1, n1, onFail) = let fun trySnd () = case #1 (hnormCon env c2All) of L'.CProj (c2, n2) => let fun tryNormal () = if n1 = n2 then unifyCons' env loc c1 c2 else onFail () in case #1 (hnormCon env c2) of L'.CUnif (0, _, k, _, r) => (case #1 (hnormKind k) of L'.KTuple ks => let val loc = #2 c2 val us = map (fn k => cunif (loc, k)) ks in r := SOME (L'.CTuple us, loc); unifyCons' env loc c1All (List.nth (us, n2 - 1)) end | _ => tryNormal ()) | _ => tryNormal () end | _ => onFail () in case #1 (hnormCon env c1) of L'.CUnif (0, _, k, _, r) => (case #1 (hnormKind k) of L'.KTuple ks => let val loc = #2 c1 val us = map (fn k => cunif (loc, k)) ks in r := SOME (L'.CTuple us, loc); unifyCons' env loc (List.nth (us, n1 - 1)) c2All end | _ => trySnd ()) | _ => trySnd () end fun projSpecial2 (c2, n2, onFail) = case #1 (hnormCon env c2) of L'.CUnif (0, _, k, _, r) => (case #1 (hnormKind k) of L'.KTuple ks => let val loc = #2 c2 val us = map (fn k => cunif (loc, k)) ks in r := SOME (L'.CTuple us, loc); unifyCons' env loc c1All (List.nth (us, n2 - 1)) end | _ => onFail ()) | _ => onFail () fun isRecord' () = unifyRecordCons env (loc, c1All, c2All) fun isRecord () = case (c1, c2) of (L'.CProj (c1, n1), _) => projSpecial1 (c1, n1, isRecord') | (_, L'.CProj (c2, n2)) => projSpecial2 (c2, n2, isRecord') | _ => isRecord' () in (*eprefaces "unifyCons''" [("c1All", p_con env c1All), ("c2All", p_con env c2All)];*) case (c1, c2) of (L'.CError, _) => () | (_, L'.CError) => () | (L'.CUnif (nl1, loc1, k1, _, r1), L'.CUnif (nl2, loc2, k2, _, r2)) => if r1 = r2 andalso nl1 = nl2 then () else if nl1 = 0 then (unifyKinds env k1 k2; r1 := SOME c2All) else if nl2 = 0 then (unifyKinds env k1 k2; r2 := SOME c1All) else err (fn _ => TooLifty (loc1, loc2)) | (L'.CUnif (0, _, _, _, r), _) => if occursCon r c2All then err COccursCheckFailed else r := SOME c2All | (_, L'.CUnif (0, _, _, _, r)) => if occursCon r c1All then err COccursCheckFailed else r := SOME c1All | (L'.CUnif (nl, _, _, _, r), _) => if occursCon r c2All then err COccursCheckFailed else (r := SOME (squish nl c2All) handle CantSquish => err (fn _ => TooDeep)) | (_, L'.CUnif (nl, _, _, _, r)) => if occursCon r c1All then err COccursCheckFailed else (r := SOME (squish nl c1All) handle CantSquish => err (fn _ => TooDeep)) | (L'.CRecord _, _) => isRecord () | (_, L'.CRecord _) => isRecord () | (L'.CConcat _, _) => isRecord () | (_, L'.CConcat _) => isRecord () | (L'.CUnit, L'.CUnit) => () | (L'.TFun (d1, r1), L'.TFun (d2, r2)) => (unifyCons' env loc d1 d2; unifyCons' env loc r1 r2) | (L'.TCFun (expl1, x1, d1, r1), L'.TCFun (expl2, _, d2, r2)) => if expl1 <> expl2 then err CExplicitness else (unifyKinds env d1 d2; let (*val befor = Time.now ()*) val env' = E.pushCRel env x1 d1 in (*TextIO.print ("E.pushCRel: " ^ LargeReal.toString (Time.toReal (Time.- (Time.now (), befor))) ^ "\n");*) unifyCons' env' loc r1 r2 end) | (L'.TRecord r1, L'.TRecord r2) => unifyCons' env loc r1 r2 | (L'.TDisjoint (c1, d1, e1), L'.TDisjoint (c2, d2, e2)) => (unifyCons' env loc c1 c2; unifyCons' env loc d1 d2; unifyCons' env loc e1 e2) | (L'.CRel n1, L'.CRel n2) => if n1 = n2 then () else err CIncompatible | (L'.CNamed n1, L'.CNamed n2) => if n1 = n2 then () else err CIncompatible | (L'.CApp (d1, r1), L'.CApp (d2, r2)) => (unifyCons' env loc d1 d2; unifyCons' env loc r1 r2) | (L'.CAbs (x1, k1, c1), L'.CAbs (_, k2, c2)) => (unifyKinds env k1 k2; unifyCons' (E.pushCRel env x1 k1) loc c1 c2) | (L'.CName n1, L'.CName n2) => if n1 = n2 then () else err CIncompatible | (L'.CModProj (n1, ms1, x1), L'.CModProj (n2, ms2, x2)) => if n1 = n2 andalso ms1 = ms2 andalso x1 = x2 then () else err CIncompatible | (L'.CTuple cs1, L'.CTuple cs2) => ((ListPair.appEq (fn (c1, c2) => unifyCons' env loc c1 c2) (cs1, cs2)) handle ListPair.UnequalLengths => err CIncompatible) | (L'.CProj (c1, n1), _) => projSpecial1 (c1, n1, fn () => err CIncompatible) | (_, L'.CProj (c2, n2)) => projSpecial2 (c2, n2, fn () => err CIncompatible) | (L'.CMap (dom1, ran1), L'.CMap (dom2, ran2)) => (unifyKinds env dom1 dom2; unifyKinds env ran1 ran2) | (L'.CKAbs (x, c1), L'.CKAbs (_, c2)) => unifyCons' (E.pushKRel env x) loc c1 c2 | (L'.CKApp (c1, k1), L'.CKApp (c2, k2)) => (unifyKinds env k1 k2; unifyCons' env loc c1 c2) | (L'.TKFun (x, c1), L'.TKFun (_, c2)) => unifyCons' (E.pushKRel env x) loc c1 c2 | _ => err CIncompatible end and unifyCons env loc c1 c2 = unifyCons' env loc c1 c2 handle CUnify' err => raise CUnify (c1, c2, err) | KUnify args => raise CUnify (c1, c2, CKind args) fun checkCon env e c1 c2 = unifyCons env (#2 e) c1 c2 handle CUnify (c1, c2, err) => expError env (Unify (e, c1, c2, err)) fun checkPatCon env p c1 c2 = unifyCons env (#2 p) c1 c2 handle CUnify (c1, c2, err) => expError env (PatUnify (p, c1, c2, err)) fun primType env p = case p of P.Int _ => !int | P.Float _ => !float | P.String _ => !string | P.Char _ => !char datatype constraint = Disjoint of D.goal | TypeClass of E.env * L'.con * L'.exp option ref * ErrorMsg.span val enD = map Disjoint fun isClassOrFolder env cl = E.isClass env cl orelse case hnormCon env cl of (L'.CKApp (cl, _), _) => (case hnormCon env cl of (L'.CModProj (top_n, [], "folder"), _) => top_n = !top_r | _ => false) | _ => false fun subConInCon env x y = ElabOps.subConInCon x y handle SubUnif => (cunifyError env (TooUnify (#2 x, y)); cerror) fun elabHead (env, denv) infer (e as (_, loc)) t = let fun unravelKind (t, e) = case hnormCon env t of (L'.TKFun (x, t'), _) => let val u = kunif loc val t'' = subKindInCon (0, u) t' in unravelKind (t'', (L'.EKApp (e, u), loc)) end | t => (e, t, []) fun unravel (t, e) = case hnormCon env t of (L'.TKFun (x, t'), _) => let val u = kunif loc val t'' = subKindInCon (0, u) t' in unravel (t'', (L'.EKApp (e, u), loc)) end | (L'.TCFun (L'.Implicit, x, k, t'), _) => let val u = cunif (loc, k) val t'' = subConInCon env (0, u) t' in unravel (t'', (L'.ECApp (e, u), loc)) end | (L'.TFun (dom, ran), _) => let fun default () = (e, t, []) fun isInstance () = if infer <> L.TypesOnly then let val r = ref NONE val (e, t, gs) = unravel (ran, (L'.EApp (e, (L'.EUnif r, loc)), loc)) in (e, t, TypeClass (env, dom, r, loc) :: gs) end else default () fun hasInstance c = case hnormCon env c of (L'.TRecord c, _) => U.Con.exists {kind = fn _ => false, con = fn c => E.isClass env (hnormCon env (c, loc))} c | c => let fun findHead c = case #1 c of L'.CApp (f, _) => findHead f | _ => c val cl = hnormCon env (findHead c) in isClassOrFolder env cl end in if hasInstance dom then isInstance () else default () end | (L'.TDisjoint (r1, r2, t'), loc) => if infer <> L.TypesOnly then let val gs = D.prove env denv (r1, r2, #2 e) val (e, t, gs') = unravel (t', e) in (e, t, enD gs @ gs') end else (e, t, []) | t => (e, t, []) in case infer of L.DontInfer => unravelKind (t, e) | _ => unravel (t, e) end fun elabPat (pAll as (p, loc), (env, bound)) = let val perror = (L'.PWild, loc) val terror = (L'.CError, loc) val pterror = (perror, terror) val rerror = (pterror, (env, bound)) fun pcon (pc, po, xs, to, dn, dk) = case (po, to) of (NONE, SOME _) => (expError env (PatHasNoArg loc); rerror) | (SOME _, NONE) => (expError env (PatHasArg loc); rerror) | (NONE, NONE) => let val k = (L'.KType, loc) val unifs = map (fn _ => cunif (loc, k)) xs val dn = foldl (fn (u, dn) => (L'.CApp (dn, u), loc)) dn unifs in (((L'.PCon (dk, pc, unifs, NONE), loc), dn), (env, bound)) end | (SOME p, SOME t) => let val ((p', pt), (env, bound)) = elabPat (p, (env, bound)) val k = (L'.KType, loc) val unifs = map (fn _ => cunif (loc, k)) xs val nxs = length unifs - 1 val t = ListUtil.foldli (fn (i, u, t) => subConInCon env (nxs - i, E.mliftConInCon (nxs - i) u) t) t unifs val dn = foldl (fn (u, dn) => (L'.CApp (dn, u), loc)) dn unifs in ignore (checkPatCon env p' pt t); (((L'.PCon (dk, pc, unifs, SOME p'), loc), dn), (env, bound)) end in case p of L.PWild => (((L'.PWild, loc), cunif (loc, (L'.KType, loc))), (env, bound)) | L.PVar x => let val t = if SS.member (bound, x) then (expError env (DuplicatePatternVariable (loc, x)); terror) else cunif (loc, (L'.KType, loc)) in (((L'.PVar (x, t), loc), t), (E.pushERel env x t, SS.add (bound, x))) end | L.PPrim p => (((L'.PPrim p, loc), primType env p), (env, bound)) | L.PCon ([], x, po) => (case E.lookupConstructor env x of NONE => (expError env (UnboundConstructor (loc, [], x)); rerror) | SOME (dk, n, xs, to, dn) => pcon (L'.PConVar n, po, xs, to, (L'.CNamed dn, loc), dk)) | L.PCon (m1 :: ms, x, po) => (case E.lookupStr env m1 of NONE => (expError env (UnboundStrInExp (loc, m1)); rerror) | SOME (n, sgn) => let val (str, sgn) = foldl (fn (m, (str, sgn)) => case E.projectStr env {sgn = sgn, str = str, field = m} of NONE => raise Fail "elabPat: Unknown substructure" | SOME sgn => ((L'.StrProj (str, m), loc), sgn)) ((L'.StrVar n, loc), sgn) ms in case E.projectConstructor env {str = str, sgn = sgn, field = x} of NONE => (expError env (UnboundConstructor (loc, m1 :: ms, x)); rerror) | SOME (dk, _, xs, to, dn) => pcon (L'.PConProj (n, ms, x), po, xs, to, dn, dk) end) | L.PRecord (xps, flex) => let val (xpts, (env, bound, _)) = ListUtil.foldlMap (fn ((x, p), (env, bound, fbound)) => let val ((p', t), (env, bound)) = elabPat (p, (env, bound)) in if SS.member (fbound, x) then expError env (DuplicatePatField (loc, x)) else (); ((x, p', t), (env, bound, SS.add (fbound, x))) end) (env, bound, SS.empty) xps val k = (L'.KType, loc) val c = (L'.CRecord (k, map (fn (x, _, t) => ((L'.CName x, loc), t)) xpts), loc) val c = if flex then (L'.CConcat (c, cunif (loc, (L'.KRecord k, loc))), loc) else c in (((L'.PRecord xpts, loc), (L'.TRecord c, loc)), (env, bound)) end | L.PAnnot (p, t) => let val ((p', pt), (env, bound)) = elabPat (p, (env, bound)) val (t', k, _) = elabCon (env, D.empty) t in checkPatCon env p' pt t'; ((p', t'), (env, bound)) end end (* This exhaustiveness checking follows Luc Maranget's paper "Warnings for pattern matching." *) fun exhaustive (env, t, ps, loc) = let fun fail n = raise Fail ("Elaborate.exhaustive: Impossible " ^ Int.toString n) fun patConNum pc = case pc of L'.PConVar n => n | L'.PConProj (m1, ms, x) => let val (str, sgn) = E.chaseMpath env (m1, ms) in case E.projectConstructor env {str = str, sgn = sgn, field = x} of NONE => raise Fail "exhaustive: Can't project datatype" | SOME (_, n, _, _, _) => n end fun nameOfNum (t, n) = case t of L'.CModProj (m1, ms, x) => let val (str, sgn) = E.chaseMpath env (m1, ms) in case E.projectDatatype env {str = str, sgn = sgn, field = x} of NONE => raise Fail "exhaustive: Can't project datatype" | SOME (_, cons) => case ListUtil.search (fn (name, n', _) => if n' = n then SOME name else NONE) cons of NONE => fail 9 | SOME name => L'.PConProj (m1, ms, name) end | _ => L'.PConVar n fun S (args, c, P) = List.mapPartial (fn [] => fail 1 | p1 :: ps => let val loc = #2 p1 fun wild () = SOME (map (fn _ => (L'.PWild, loc)) args @ ps) in case #1 p1 of L'.PPrim _ => NONE | L'.PCon (_, c', _, NONE) => if patConNum c' = c then SOME ps else NONE | L'.PCon (_, c', _, SOME p) => if patConNum c' = c then SOME (p :: ps) else NONE | L'.PRecord xpts => SOME (map (fn x => case ListUtil.search (fn (x', p, _) => if x = x' then SOME p else NONE) xpts of NONE => (L'.PWild, loc) | SOME p => p) args @ ps) | L'.PWild => wild () | L'.PVar _ => wild () end) P fun D P = List.mapPartial (fn [] => fail 2 | (p1, _) :: ps => case p1 of L'.PWild => SOME ps | L'.PVar _ => SOME ps | L'.PPrim _ => NONE | L'.PCon _ => NONE | L'.PRecord _ => NONE) P fun I (P, q) = (*(prefaces "I" [("P", p_list (fn P' => box [PD.string "[", p_list (p_pat env) P', PD.string "]"]) P), ("q", p_list (p_con env) q)];*) case q of [] => (case P of [] => SOME [] | _ => NONE) | q1 :: qs => let val loc = #2 q1 fun unapp (t, acc) = case #1 t of L'.CApp (t, arg) => unapp (t, arg :: acc) | _ => (t, rev acc) val (t1, args) = unapp (hnormCon env q1, []) val t1 = hnormCon env t1 fun doSub t = foldl (fn (arg, t) => subConInCon env (0, arg) t) t args fun dtype (dtO, names) = let val nameSet = IS.addList (IS.empty, names) val nameSet = foldl (fn (ps, nameSet) => case ps of [] => fail 4 | (L'.PCon (_, pc, _, _), _) :: _ => (IS.delete (nameSet, patConNum pc) handle NotFound => nameSet) | _ => nameSet) nameSet P in nameSet end fun default () = (NONE, IS.singleton 0, []) val (dtO, unused, cons) = case #1 t1 of L'.CNamed n => let val dt = E.lookupDatatype env n val cons = E.constructors dt in (SOME dt, dtype (SOME dt, map #2 cons), map (fn (_, n, co) => (n, case co of NONE => [] | SOME t => [("", doSub t)])) cons) end | L'.CModProj (m1, ms, x) => let val (str, sgn) = E.chaseMpath env (m1, ms) in case E.projectDatatype env {str = str, sgn = sgn, field = x} of NONE => default () | SOME (_, cons) => (NONE, dtype (NONE, map #2 cons), map (fn (s, _, co) => (patConNum (L'.PConProj (m1, ms, s)), case co of NONE => [] | SOME t => [("", doSub t)])) cons) end | L'.TRecord t => (case #1 (hnormCon env t) of L'.CRecord (_, xts) => let val xts = map (fn ((L'.CName x, _), co) => SOME (x, co) | _ => NONE) xts in if List.all Option.isSome xts then let val xts = List.mapPartial (fn x => x) xts val xts = ListMergeSort.sort (fn ((x1, _), (x2, _)) => String.compare (x1, x2) = GREATER) xts in (NONE, IS.empty, [(0, xts)]) end else default () end | _ => default ()) | _ => default () in if IS.isEmpty unused then let fun recurse cons = case cons of [] => NONE | (name, args) :: cons => case I (S (map #1 args, name, P), map #2 args @ qs) of NONE => recurse cons | SOME ps => let val nargs = length args val argPs = List.take (ps, nargs) val restPs = List.drop (ps, nargs) val p = case name of 0 => L'.PRecord (ListPair.map (fn ((name, t), p) => (name, p, t)) (args, argPs)) | _ => L'.PCon (L'.Default, nameOfNum (#1 t1, name), [], case argPs of [] => NONE | [p] => SOME p | _ => fail 3) in SOME ((p, loc) :: restPs) end in recurse cons end else case I (D P, qs) of NONE => NONE | SOME ps => let val p = case cons of [] => L'.PWild | (0, _) :: _ => L'.PWild | _ => case IS.find (fn _ => true) unused of NONE => fail 6 | SOME name => case ListUtil.search (fn (name', args) => if name = name' then SOME (name', args) else NONE) cons of SOME (n, []) => L'.PCon (L'.Default, nameOfNum (#1 t1, n), [], NONE) | SOME (n, [_]) => L'.PCon (L'.Default, nameOfNum (#1 t1, n), [], SOME (L'.PWild, loc)) | _ => fail 7 in SOME ((p, loc) :: ps) end end in case I (map (fn x => [x]) ps, [t]) of NONE => NONE | SOME [p] => SOME p | _ => fail 7 end fun unmodCon env (c, loc) = case c of L'.CNamed n => (case E.lookupCNamed env n of (_, _, SOME (c as (L'.CModProj _, _))) => unmodCon env c | _ => (c, loc)) | L'.CModProj (m1, ms, x) => let val (str, sgn) = E.chaseMpath env (m1, ms) in case E.projectCon env {str = str, sgn = sgn, field = x} of NONE => raise Fail "unmodCon: Can't projectCon" | SOME (_, SOME (c as (L'.CModProj _, _))) => unmodCon env c | _ => (c, loc) end | _ => (c, loc) fun normClassKey env c = let val c = hnormCon env c in case #1 c of L'.CApp (c1, c2) => let val c1 = normClassKey env c1 val c2 = normClassKey env c2 in (L'.CApp (c1, c2), #2 c) end | L'.CRecord (k, xcs) => (L'.CRecord (k, map (fn (x, c) => (normClassKey env x, normClassKey env c)) xcs), #2 c) | _ => unmodCon env c end fun normClassConstraint env (c, loc) = case c of L'.CApp (f, x) => let val f = normClassKey env f val x = normClassKey env x in (L'.CApp (f, x), loc) end | L'.TFun (c1, c2) => let val c1 = normClassConstraint env c1 val c2 = normClassConstraint env c2 in (L'.TFun (c1, c2), loc) end | L'.TCFun (expl, x, k, c1) => (L'.TCFun (expl, x, k, normClassConstraint env c1), loc) | L'.CUnif (nl, _, _, _, ref (SOME c)) => normClassConstraint env (E.mliftConInCon nl c) | _ => unmodCon env (c, loc) fun findHead e e' = let fun findHead (e, _) = case e of L.EVar (_, _, infer) => let fun findHead' (e, _) = case e of L'.ENamed _ => true | L'.EModProj _ => true | L'.ERel _ => true | L'.EApp (e, _) => findHead' e | L'.ECApp (e, _) => findHead' e | L'.EKApp (e, _) => findHead' e | _ => false in if findHead' e' then SOME infer else NONE end | L.EApp (e, _) => findHead e | L.ECApp (e, _) => findHead e | L.EDisjointApp e => findHead e | _ => NONE in findHead e end datatype needed = Needed of {Cons : L'.kind SM.map, Constraints : (E.env * (L'.con * L'.con) * ErrorMsg.span) list, Vals : SS.set, Mods : (E.env * needed) SM.map} fun ncons (Needed r) = #Cons r fun nconstraints (Needed r) = #Constraints r fun nvals (Needed r) = #Vals r fun nmods (Needed r) = #Mods r val nempty = Needed {Cons = SM.empty, Constraints = nil, Vals = SS.empty, Mods = SM.empty} fun naddCon (r : needed, k, v) = let val Needed r = r in Needed {Cons = SM.insert (#Cons r, k, v), Constraints = #Constraints r, Vals = #Vals r, Mods = #Mods r} end fun naddConstraint (r : needed, v) = let val Needed r = r in Needed {Cons = #Cons r, Constraints = v :: #Constraints r, Vals = #Vals r, Mods = #Mods r} end fun naddVal (r : needed, k) = let val Needed r = r in Needed {Cons = #Cons r, Constraints = #Constraints r, Vals = SS.add (#Vals r, k), Mods = #Mods r} end fun naddMod (r : needed, k, v) = let val Needed r = r in Needed {Cons = #Cons r, Constraints = #Constraints r, Vals = #Vals r, Mods = SM.insert (#Mods r, k, v)} end fun ndelCon (r : needed, k) = let val Needed r = r in Needed {Cons = #1 (SM.remove (#Cons r, k)) handle NotFound => #Cons r, Constraints = #Constraints r, Vals = #Vals r, Mods = #Mods r} end fun ndelVal (r : needed, k) = let val Needed r = r in Needed {Cons = #Cons r, Constraints = #Constraints r, Vals = SS.delete (#Vals r, k) handle NotFound => #Vals r, Mods = #Mods r} end fun elabExp (env, denv) (eAll as (e, loc)) = let (*val () = eprefaces "elabExp" [("eAll", SourcePrint.p_exp eAll)]*) (*val befor = Time.now ()*) val r = case e of L.EAnnot (e, t) => let val (e', et, gs1) = elabExp (env, denv) e val (t', _, gs2) = elabCon (env, denv) t in checkCon env e' et t'; (e', t', gs1 @ enD gs2) end | L.EPrim p => ((L'.EPrim p, loc), primType env p, []) | L.EVar ([], s, infer) => (case E.lookupE env s of E.NotBound => (expError env (UnboundExp (loc, s)); (eerror, cerror, [])) | E.Rel (n, t) => elabHead (env, denv) infer (L'.ERel n, loc) t | E.Named (n, t) => elabHead (env, denv) infer (L'.ENamed n, loc) t) | L.EVar (m1 :: ms, s, infer) => (case E.lookupStr env m1 of NONE => (expError env (UnboundStrInExp (loc, m1)); (eerror, cerror, [])) | SOME (n, sgn) => let val (str, sgn) = foldl (fn (m, (str, sgn)) => case E.projectStr env {sgn = sgn, str = str, field = m} of NONE => (conError env (UnboundStrInCon (loc, m)); (strerror, sgnerror)) | SOME sgn => ((L'.StrProj (str, m), loc), sgn)) ((L'.StrVar n, loc), sgn) ms val t = case E.projectVal env {sgn = sgn, str = str, field = s} of NONE => (expError env (UnboundExp (loc, s)); cerror) | SOME t => t in elabHead (env, denv) infer (L'.EModProj (n, ms, s), loc) t end) | L.EWild => let val r = ref NONE val c = cunif (loc, (L'.KType, loc)) in ((L'.EUnif r, loc), c, [TypeClass (env, c, r, loc)]) end | L.EApp (e1, e2) => let val (e1', t1, gs1) = elabExp (env, denv) e1 val (e2', t2, gs2) = elabExp (env, denv) e2 val dom = cunif (loc, ktype) val ran = cunif (loc, ktype) val t = (L'.TFun (dom, ran), loc) val () = checkCon env e1' t1 t val () = checkCon env e2' t2 dom val ef = (L'.EApp (e1', e2'), loc) val (ef, et, gs3) = case findHead e1 e1' of NONE => (ef, ran, []) | SOME infer => elabHead (env, denv) infer ef ran in (ef, et, gs1 @ gs2 @ gs3) end | L.EAbs (x, to, e) => let val (t', gs1) = case to of NONE => (cunif (loc, ktype), []) | SOME t => let val (t', tk, gs) = elabCon (env, denv) t in checkKind env t' tk ktype; (t', gs) end val dom = normClassConstraint env t' val (e', et, gs2) = elabExp (E.pushERel env x dom, denv) e in ((L'.EAbs (x, t', et, e'), loc), (L'.TFun (t', et), loc), enD gs1 @ gs2) end | L.ECApp (e, c) => let val (e', et, gs1) = elabExp (env, denv) e val oldEt = et val (c', ck, gs2) = elabCon (env, denv) c val (et', _) = hnormCon env et in case et' of L'.CError => (eerror, cerror, []) | L'.TCFun (_, x, k, eb) => let val () = checkKind env c' ck k val eb' = subConInCon env (0, c') eb val ef = (L'.ECApp (e', c'), loc) val (ef, eb', gs3) = case findHead e e' of NONE => (ef, eb', []) | SOME infer => elabHead (env, denv) infer ef eb' in (*prefaces "Elab ECApp" [("e", SourcePrint.p_exp eAll), ("et", p_con env oldEt), ("x", PD.string x), ("eb", p_con (E.pushCRel env x k) eb), ("c", p_con env c'), ("eb'", p_con env eb')];*) (ef, eb', gs1 @ enD gs2 @ gs3) end | _ => (expError env (WrongForm ("constructor function", e', et)); (eerror, cerror, [])) end | L.ECAbs (expl, x, k, e) => let val expl' = elabExplicitness expl val k' = elabKind env k val env' = E.pushCRel env x k' val (e', et, gs) = elabExp (env', D.enter denv) e in ((L'.ECAbs (expl', x, k', e'), loc), (L'.TCFun (expl', x, k', et), loc), gs) end | L.EKAbs (x, e) => let val env' = E.pushKRel env x val (e', et, gs) = elabExp (env', denv) e in ((L'.EKAbs (x, e'), loc), (L'.TKFun (x, et), loc), gs) end | L.EDisjoint (c1, c2, e) => let val (c1', k1, gs1) = elabCon (env, denv) c1 val (c2', k2, gs2) = elabCon (env, denv) c2 val ku1 = kunif loc val ku2 = kunif loc val denv' = D.assert env denv (c1', c2') val (e', t, gs3) = elabExp (env, denv') e in checkKind env c1' k1 (L'.KRecord ku1, loc); checkKind env c2' k2 (L'.KRecord ku2, loc); (e', (L'.TDisjoint (c1', c2', t), loc), enD gs1 @ enD gs2 @ gs3) end | L.EDisjointApp e => let val (e', t, gs1) = elabExp (env, denv) e val k1 = kunif loc val c1 = cunif (loc, (L'.KRecord k1, loc)) val k2 = kunif loc val c2 = cunif (loc, (L'.KRecord k2, loc)) val t' = cunif (loc, ktype) val () = checkCon env e' t (L'.TDisjoint (c1, c2, t'), loc) val gs2 = D.prove env denv (c1, c2, loc) in (e', t', enD gs2 @ gs1) end | L.ERecord xes => let val (xes', gs) = ListUtil.foldlMap (fn ((x, e), gs) => let val (x', xk, gs1) = elabCon (env, denv) x val (e', et, gs2) = elabExp (env, denv) e in checkKind env x' xk kname; ((x', e', et), enD gs1 @ gs2 @ gs) end) [] xes val k = (L'.KType, loc) fun prove (xets, gs) = case xets of [] => gs | (x, _, t) :: rest => let val xc = (x, t) val r1 = (L'.CRecord (k, [xc]), loc) val gs = foldl (fn ((x', _, t'), gs) => let val xc' = (x', t') val r2 = (L'.CRecord (k, [xc']), loc) in D.prove env denv (r1, r2, loc) @ gs end) gs rest in prove (rest, gs) end val gsD = List.mapPartial (fn Disjoint d => SOME d | _ => NONE) gs val gsO = List.filter (fn Disjoint _ => false | _ => true) gs in (*TextIO.print ("|gsO| = " ^ Int.toString (length gsO) ^ "\n");*) ((L'.ERecord xes', loc), (L'.TRecord (L'.CRecord (ktype, map (fn (x', _, et) => (x', et)) xes'), loc), loc), enD (prove (xes', gsD)) @ gsO) end | L.EField (e, c) => let val (e', et, gs1) = elabExp (env, denv) e val (c', ck, gs2) = elabCon (env, denv) c val ft = cunif (loc, ktype) val rest = cunif (loc, ktype_record) val first = (L'.CRecord (ktype, [(c', ft)]), loc) val () = checkCon env e' et (L'.TRecord (L'.CConcat (first, rest), loc), loc); val gs3 = D.prove env denv (first, rest, loc) in ((L'.EField (e', c', {field = ft, rest = rest}), loc), ft, gs1 @ enD gs2 @ enD gs3) end | L.EConcat (e1, e2) => let val (e1', e1t, gs1) = elabExp (env, denv) e1 val (e2', e2t, gs2) = elabExp (env, denv) e2 val r1 = cunif (loc, ktype_record) val r2 = cunif (loc, ktype_record) val () = checkCon env e1' e1t (L'.TRecord r1, loc) val () = checkCon env e2' e2t (L'.TRecord r2, loc) val gs3 = D.prove env denv (r1, r2, loc) in ((L'.EConcat (e1', r1, e2', r2), loc), (L'.TRecord ((L'.CConcat (r1, r2), loc)), loc), gs1 @ gs2 @ enD gs3) end | L.ECut (e, c) => let val (e', et, gs1) = elabExp (env, denv) e val (c', ck, gs2) = elabCon (env, denv) c val ft = cunif (loc, ktype) val rest = cunif (loc, ktype_record) val first = (L'.CRecord (ktype, [(c', ft)]), loc) val () = checkCon env e' et (L'.TRecord (L'.CConcat (first, rest), loc), loc) val gs3 = D.prove env denv (first, rest, loc) in checkKind env c' ck kname; ((L'.ECut (e', c', {field = ft, rest = rest}), loc), (L'.TRecord rest, loc), gs1 @ enD gs2 @ enD gs3) end | L.ECutMulti (e, c) => let val (e', et, gs1) = elabExp (env, denv) e val (c', ck, gs2) = elabCon (env, denv) c val rest = cunif (loc, ktype_record) val () = checkCon env e' et (L'.TRecord (L'.CConcat (c', rest), loc), loc) val gs3 = D.prove env denv (c', rest, loc) in checkKind env c' ck (L'.KRecord ktype, loc); ((L'.ECutMulti (e', c', {rest = rest}), loc), (L'.TRecord rest, loc), gs1 @ enD gs2 @ enD gs3) end | L.ECase (e, pes) => let val (e', et, gs1) = elabExp (env, denv) e val result = cunif (loc, (L'.KType, loc)) val (pes', gs) = ListUtil.foldlMap (fn ((p, e), gs) => let val ((p', pt), (env, _)) = elabPat (p, (env, SS.empty)) val (e', et', gs1) = elabExp (env, denv) e in checkPatCon env p' pt et; checkCon env e' et' result; ((p', e'), gs1 @ gs) end) gs1 pes in case exhaustive (env, et, map #1 pes', loc) of NONE => () | SOME p => if !mayDelay then delayedExhaustives := (env, et, map #1 pes', loc) :: !delayedExhaustives else expError env (Inexhaustive (loc, p)); ((L'.ECase (e', pes', {disc = et, result = result}), loc), result, gs) end | L.ELet (eds, e) => let val (eds, (env, gs1)) = ListUtil.foldlMap (elabEdecl denv) (env, []) eds val (e, t, gs2) = elabExp (env, denv) e in ((L'.ELet (eds, e, t), loc), t, gs1 @ gs2) end in (*prefaces "/elabExp" [("e", SourcePrint.p_exp eAll)];*) r end and elabEdecl denv (dAll as (d, loc), (env, gs)) = let val r = case d of L.EDVal (p, e) => let val ((p', pt), (env', _)) = elabPat (p, (env, SS.empty)) val (e', et, gs1) = elabExp (env, denv) e val () = checkCon env e' et pt val env' = E.patBinds env p' (* Redo to get proper detection of type class witnesses *) val pt = normClassConstraint env pt in case exhaustive (env, et, [p'], loc) of NONE => () | SOME p => if !mayDelay then delayedExhaustives := (env, et, [p'], loc) :: !delayedExhaustives else expError env (Inexhaustive (loc, p)); ((L'.EDVal (p', pt, e'), loc), (env', gs1 @ gs)) end | L.EDValRec vis => let fun allowable (e, _) = case e of L.EAbs _ => true | L.ECAbs (_, _, _, e) => allowable e | L.EKAbs (_, e) => allowable e | L.EDisjoint (_, _, e) => allowable e | _ => false val (vis, gs) = ListUtil.foldlMap (fn ((x, co, e), gs) => let val (c', _, gs1) = case co of NONE => (cunif (loc, ktype), ktype, []) | SOME c => elabCon (env, denv) c in ((x, c', e), enD gs1 @ gs) end) gs vis val env = foldl (fn ((x, c', _), env) => E.pushERel env x c') env vis val (vis, gs) = ListUtil.foldlMap (fn ((x, c', e), gs) => let val (e', et, gs1) = elabExp (env, denv) e in checkCon env e' et c'; if allowable e then () else expError env (IllegalRec (x, e')); ((x, c', e'), gs1 @ gs) end) gs vis in ((L'.EDValRec vis, loc), (env, gs)) end in r end val hnormSgn = E.hnormSgn fun tableOf () = (L'.CModProj (!basis_r, [], "sql_table"), ErrorMsg.dummySpan) fun sequenceOf () = (L'.CModProj (!basis_r, [], "sql_sequence"), ErrorMsg.dummySpan) fun viewOf () = (L'.CModProj (!basis_r, [], "sql_view"), ErrorMsg.dummySpan) fun queryOf () = (L'.CModProj (!basis_r, [], "sql_query"), ErrorMsg.dummySpan) fun cookieOf () = (L'.CModProj (!basis_r, [], "http_cookie"), ErrorMsg.dummySpan) fun styleOf () = (L'.CModProj (!basis_r, [], "css_class"), ErrorMsg.dummySpan) fun dopenConstraints (loc, env, denv) {str, strs} = case E.lookupStr env str of NONE => (strError env (UnboundStr (loc, str)); denv) | SOME (n, sgn) => let val (st, sgn) = foldl (fn (m, (str, sgn)) => case E.projectStr env {str = str, sgn = sgn, field = m} of NONE => (strError env (UnboundStr (loc, m)); (strerror, sgnerror)) | SOME sgn => ((L'.StrProj (str, m), loc), sgn)) ((L'.StrVar n, loc), sgn) strs fun collect first (st, sgn) = case E.projectConstraints env {sgn = sgn, str = st} of NONE => [] | SOME cs => case #1 (hnormSgn env sgn) of L'.SgnConst sgis => foldl (fn (sgi, cs) => case #1 sgi of L'.SgiStr (x, _, _) => (case E.projectStr env {sgn = sgn, str = st, field = x} of NONE => raise Fail "Elaborate: projectStr in collect" | SOME sgn' => List.revAppend (collect false ((L'.StrProj (st, x), loc), sgn'), cs)) | _ => cs) cs sgis | _ => cs in foldl (fn ((c1, c2), denv) => D.assert env denv (c1, c2)) denv (collect true (st, sgn)) end fun elabSgn_item ((sgi, loc), (env, denv, gs)) = ((*Print.preface ("elabSgi", SourcePrint.p_sgn_item (sgi, loc));*) case sgi of L.SgiConAbs (x, k) => let val k' = elabKind env k val (env', n) = E.pushCNamed env x k' NONE in ([(L'.SgiConAbs (x, n, k'), loc)], (env', denv, gs)) end | L.SgiCon (x, ko, c) => let val k' = case ko of NONE => kunif loc | SOME k => elabKind env k val (c', ck, gs') = elabCon (env, denv) c val (env', n) = E.pushCNamed env x k' (SOME c') in checkKind env c' ck k'; ([(L'.SgiCon (x, n, k', c'), loc)], (env', denv, gs' @ gs)) end | L.SgiDatatype dts => let val k = (L'.KType, loc) val (dts, env) = ListUtil.foldlMap (fn ((x, xs, xcs), env) => let val k' = foldl (fn (_, k') => (L'.KArrow (k, k'), loc)) k xs val (env, n) = E.pushCNamed env x k' NONE in ((x, n, xs, xcs), env) end) env dts val (dts, env) = ListUtil.foldlMap (fn ((x, n, xs, xcs), env) => let val t = (L'.CNamed n, loc) val nxs = length xs - 1 val t = ListUtil.foldli (fn (i, _, t) => (L'.CApp (t, (L'.CRel (nxs - i), loc)), loc)) t xs val (env', denv') = foldl (fn (x, (env', denv')) => (E.pushCRel env' x k, D.enter denv')) (env, denv) xs val (xcs, (used, env, gs)) = ListUtil.foldlMap (fn ((x, to), (used, env, gs)) => let val (to, t, gs') = case to of NONE => (NONE, t, gs) | SOME t' => let val (t', tk, gs') = elabCon (env', denv') t' in checkKind env' t' tk k; (SOME t', (L'.TFun (t', t), loc), gs' @ gs) end val t = foldl (fn (x, t) => (L'.TCFun (L'.Implicit, x, k, t), loc)) t xs val (env, n') = E.pushENamed env x t in if SS.member (used, x) then strError env (DuplicateConstructor (x, loc)) else (); ((x, n', to), (SS.add (used, x), env, gs')) end) (SS.empty, env, []) xcs in ((x, n, xs, xcs), E.pushDatatype env n xs xcs) end) env dts in ([(L'.SgiDatatype dts, loc)], (env, denv, gs)) end | L.SgiDatatypeImp (_, [], _) => raise Fail "Empty SgiDatatypeImp" | L.SgiDatatypeImp (x, m1 :: ms, s) => (case E.lookupStr env m1 of NONE => (strError env (UnboundStr (loc, m1)); ([], (env, denv, gs))) | SOME (n, sgn) => let val (str, sgn) = foldl (fn (m, (str, sgn)) => case E.projectStr env {sgn = sgn, str = str, field = m} of NONE => (conError env (UnboundStrInCon (loc, m)); (strerror, sgnerror)) | SOME sgn => ((L'.StrProj (str, m), loc), sgn)) ((L'.StrVar n, loc), sgn) ms in case hnormCon env (L'.CModProj (n, ms, s), loc) of (L'.CModProj (n, ms, s), _) => (case E.projectDatatype env {sgn = sgn, str = str, field = s} of NONE => (conError env (UnboundDatatype (loc, s)); ([], (env, denv, []))) | SOME (xs, xncs) => let val k = (L'.KType, loc) val k' = foldl (fn (_, k') => (L'.KArrow (k, k'), loc)) k xs val t = (L'.CModProj (n, ms, s), loc) val (env, n') = E.pushCNamed env x k' (SOME t) val env = E.pushDatatype env n' xs xncs val t = (L'.CNamed n', loc) val env = foldl (fn ((x, n, to), env) => let val t = case to of NONE => t | SOME t' => (L'.TFun (t', t), loc) val t = foldr (fn (x, t) => (L'.TCFun (L'.Implicit, x, k, t), loc)) t xs in E.pushENamedAs env x n t end) env xncs in ([(L'.SgiDatatypeImp (x, n', n, ms, s, xs, xncs), loc)], (env, denv, [])) end) | _ => (strError env (NotDatatype loc); ([], (env, denv, []))) end) | L.SgiVal (x, c) => let val (c', ck, gs') = elabCon (env, denv) c val old = c' val c' = normClassConstraint env c' val (env', n) = E.pushENamed env x c' in (unifyKinds env ck ktype handle KUnify ue => strError env (NotType (loc, ck, ue))); ([(L'.SgiVal (x, n, c'), loc)], (env', denv, gs' @ gs)) end | L.SgiTable (x, c, pe, ce) => let val cstK = (L'.KRecord (L'.KRecord (L'.KUnit, loc), loc), loc) val (c', ck, gs') = elabCon (env, denv) c val pkey = cunif (loc, cstK) val visible = cunif (loc, cstK) val (env', ds, uniques) = case (#1 pe, #1 ce) of (L.EVar (["Basis"], "no_primary_key", _), L.EVar (["Basis"], "no_constraint", _)) => let val x' = x ^ "_hidden_constraints" val (env', hidden_n) = E.pushCNamed env x' cstK NONE val hidden = (L'.CNamed hidden_n, loc) in (env', [(L'.SgiConAbs (x', hidden_n, cstK), loc)], (L'.CConcat (visible, hidden), loc)) end | _ => (env, [], visible) val ct = tableOf () val ct = (L'.CApp (ct, c'), loc) val ct = (L'.CApp (ct, (L'.CConcat (pkey, uniques), loc)), loc) val (pe', pet, gs'') = elabExp (env', denv) pe val gs'' = List.mapPartial (fn Disjoint x => SOME x | _ => NONE) gs'' val pst = (L'.CModProj (!basis_r, [], "primary_key"), loc) val pst = (L'.CApp (pst, c'), loc) val pst = (L'.CApp (pst, pkey), loc) val (env', n) = E.pushENamed env' x ct val (ce', cet, gs''') = elabExp (env', denv) ce val gs''' = List.mapPartial (fn Disjoint x => SOME x | _ => NONE) gs''' val cst = (L'.CModProj (!basis_r, [], "sql_constraints"), loc) val cst = (L'.CApp (cst, c'), loc) val cst = (L'.CApp (cst, visible), loc) in checkKind env c' ck (L'.KRecord (L'.KType, loc), loc); checkCon env' pe' pet pst; checkCon env' ce' cet cst; (ds @ [(L'.SgiVal (x, n, ct), loc)], (env', denv, gs''' @ gs'' @ gs' @ gs)) end | L.SgiStr (x, sgn) => let val (sgn', gs') = elabSgn (env, denv) sgn val (env', n) = E.pushStrNamed env x sgn' in ([(L'.SgiStr (x, n, sgn'), loc)], (env', denv, gs' @ gs)) end | L.SgiSgn (x, sgn) => let val (sgn', gs') = elabSgn (env, denv) sgn val (env', n) = E.pushSgnNamed env x sgn' in ([(L'.SgiSgn (x, n, sgn'), loc)], (env', denv, gs' @ gs)) end | L.SgiInclude sgn => let val (sgn', gs') = elabSgn (env, denv) sgn in case #1 (hnormSgn env sgn') of L'.SgnConst sgis => (sgis, (foldl (fn (sgi, env) => E.sgiBinds env sgi) env sgis, denv, gs' @ gs)) | _ => (sgnError env (NotIncludable sgn'); ([], (env, denv, []))) end | L.SgiConstraint (c1, c2) => let val (c1', k1, gs1) = elabCon (env, denv) c1 val (c2', k2, gs2) = elabCon (env, denv) c2 val denv = D.assert env denv (c1', c2') in checkKind env c1' k1 (L'.KRecord (kunif loc), loc); checkKind env c2' k2 (L'.KRecord (kunif loc), loc); ([(L'.SgiConstraint (c1', c2'), loc)], (env, denv, gs1 @ gs2)) end | L.SgiClassAbs (x, k) => let val k = elabKind env k val (env, n) = E.pushCNamed env x k NONE val env = E.pushClass env n in ([(L'.SgiClassAbs (x, n, k), loc)], (env, denv, [])) end | L.SgiClass (x, k, c) => let val k = elabKind env k val (c', ck, gs) = elabCon (env, denv) c val (env, n) = E.pushCNamed env x k (SOME c') val env = E.pushClass env n in checkKind env c' ck k; ([(L'.SgiClass (x, n, k, c'), loc)], (env, denv, [])) end) and elabSgn (env, denv) (sgn, loc) = case sgn of L.SgnConst sgis => let val (sgis', (_, _, gs)) = ListUtil.foldlMapConcat elabSgn_item (env, denv, []) sgis val _ = foldl (fn ((sgi, loc), (cons, vals, sgns, strs)) => case sgi of L'.SgiConAbs (x, _, _) => (if SS.member (cons, x) then sgnError env (DuplicateCon (loc, x)) else (); (SS.add (cons, x), vals, sgns, strs)) | L'.SgiCon (x, _, _, _) => (if SS.member (cons, x) then sgnError env (DuplicateCon (loc, x)) else (); (SS.add (cons, x), vals, sgns, strs)) | L'.SgiDatatype dts => let val (cons, vals) = let fun doOne ((x, _, _, xncs), (cons, vals)) = let val vals = foldl (fn ((x, _, _), vals) => (if SS.member (vals, x) then sgnError env (DuplicateVal (loc, x)) else (); SS.add (vals, x))) vals xncs in if SS.member (cons, x) then sgnError env (DuplicateCon (loc, x)) else (); (SS.add (cons, x), vals) end in foldl doOne (cons, vals) dts end in (cons, vals, sgns, strs) end | L'.SgiDatatypeImp (x, _, _, _, _, _, _) => (if SS.member (cons, x) then sgnError env (DuplicateCon (loc, x)) else (); (SS.add (cons, x), vals, sgns, strs)) | L'.SgiVal (x, _, _) => (if SS.member (vals, x) then sgnError env (DuplicateVal (loc, x)) else (); (cons, SS.add (vals, x), sgns, strs)) | L'.SgiSgn (x, _, _) => (if SS.member (sgns, x) then sgnError env (DuplicateSgn (loc, x)) else (); (cons, vals, SS.add (sgns, x), strs)) | L'.SgiStr (x, _, _) => (if SS.member (strs, x) then sgnError env (DuplicateStr (loc, x)) else (); (cons, vals, sgns, SS.add (strs, x))) | L'.SgiConstraint _ => (cons, vals, sgns, strs) | L'.SgiClassAbs (x, _, _) => (if SS.member (cons, x) then sgnError env (DuplicateCon (loc, x)) else (); (SS.add (cons, x), vals, sgns, strs)) | L'.SgiClass (x, _, _, _) => (if SS.member (cons, x) then sgnError env (DuplicateCon (loc, x)) else (); (SS.add (cons, x), vals, sgns, strs))) (SS.empty, SS.empty, SS.empty, SS.empty) sgis' in ((L'.SgnConst sgis', loc), gs) end | L.SgnVar x => (case E.lookupSgn env x of NONE => (sgnError env (UnboundSgn (loc, x)); ((L'.SgnError, loc), [])) | SOME (n, sgis) => ((L'.SgnVar n, loc), [])) | L.SgnFun (m, dom, ran) => let val (dom', gs1) = elabSgn (env, denv) dom val (env', n) = E.pushStrNamed env m dom' val denv' = dopenConstraints (loc, env', denv) {str = m, strs = []} val (ran', gs2) = elabSgn (env', denv') ran in ((L'.SgnFun (m, n, dom', ran'), loc), gs1 @ gs2) end | L.SgnWhere (sgn, x, c) => let val (sgn', ds1) = elabSgn (env, denv) sgn val (c', ck, ds2) = elabCon (env, denv) c in case #1 (hnormSgn env sgn') of L'.SgnError => (sgnerror, []) | L'.SgnConst sgis => if List.exists (fn (L'.SgiConAbs (x', _, k), _) => x' = x andalso (unifyKinds env k ck handle KUnify x => sgnError env (WhereWrongKind x); true) | _ => false) sgis then ((L'.SgnWhere (sgn', x, c'), loc), ds1 @ ds2) else (sgnError env (UnWhereable (sgn', x)); (sgnerror, [])) | _ => (sgnError env (UnWhereable (sgn', x)); (sgnerror, [])) end | L.SgnProj (m, ms, x) => (case E.lookupStr env m of NONE => (strError env (UnboundStr (loc, m)); (sgnerror, [])) | SOME (n, sgn) => let val (str, sgn) = foldl (fn (m, (str, sgn)) => case E.projectStr env {sgn = sgn, str = str, field = m} of NONE => (strError env (UnboundStr (loc, m)); (strerror, sgnerror)) | SOME sgn => ((L'.StrProj (str, m), loc), sgn)) ((L'.StrVar n, loc), sgn) ms in case E.projectSgn env {sgn = sgn, str = str, field = x} of NONE => (sgnError env (UnboundSgn (loc, x)); (sgnerror, [])) | SOME _ => ((L'.SgnProj (n, ms, x), loc), []) end) and selfify env {str, strs, sgn} = case #1 (hnormSgn env sgn) of L'.SgnError => sgn | L'.SgnVar _ => sgn | L'.SgnConst sgis => (L'.SgnConst (#1 (ListUtil.foldlMapConcat (fn (sgi, env) => (case sgi of (L'.SgiConAbs (x, n, k), loc) => [(L'.SgiCon (x, n, k, (L'.CModProj (str, strs, x), loc)), loc)] | (L'.SgiDatatype dts, loc) => map (fn (x, n, xs, xncs) => (L'.SgiDatatypeImp (x, n, str, strs, x, xs, xncs), loc)) dts | (L'.SgiClassAbs (x, n, k), loc) => [(L'.SgiClass (x, n, k, (L'.CModProj (str, strs, x), loc)), loc)] | (L'.SgiStr (x, n, sgn), loc) => [(L'.SgiStr (x, n, selfify env {str = str, strs = strs @ [x], sgn = sgn}), loc)] | x => [x], E.sgiBinds env sgi)) env sgis)), #2 sgn) | L'.SgnFun _ => sgn | L'.SgnWhere _ => sgn | L'.SgnProj (m, ms, x) => case E.projectSgn env {str = foldl (fn (m, str) => (L'.StrProj (str, m), #2 sgn)) (L'.StrVar m, #2 sgn) ms, sgn = #2 (E.lookupStrNamed env m), field = x} of NONE => raise Fail "Elaborate.selfify: projectSgn returns NONE" | SOME sgn => selfify env {str = str, strs = strs, sgn = sgn} and selfifyAt env {str, sgn} = let fun self (str, _) = case str of L'.StrVar x => SOME (x, []) | L'.StrProj (str, x) => (case self str of NONE => NONE | SOME (m, ms) => SOME (m, ms @ [x])) | _ => NONE in case self str of NONE => sgn | SOME (str, strs) => selfify env {sgn = sgn, str = str, strs = strs} end and dopen env {str, strs, sgn} = let fun isVisible x = x <> "" andalso String.sub (x, 0) <> #"?" val m = foldl (fn (m, str) => (L'.StrProj (str, m), #2 sgn)) (L'.StrVar str, #2 sgn) strs in case #1 (hnormSgn env sgn) of L'.SgnConst sgis => ListUtil.foldlMapConcat (fn ((sgi, loc), env') => let val d = case sgi of L'.SgiConAbs (x, n, k) => if isVisible x then let val c = (L'.CModProj (str, strs, x), loc) in [(L'.DCon (x, n, k, c), loc)] end else [] | L'.SgiCon (x, n, k, c) => if isVisible x then [(L'.DCon (x, n, k, (L'.CModProj (str, strs, x), loc)), loc)] else [] | L'.SgiDatatype dts => List.mapPartial (fn (x, n, xs, xncs) => if isVisible x then SOME (L'.DDatatypeImp (x, n, str, strs, x, xs, xncs), loc) else NONE) dts | L'.SgiDatatypeImp (x, n, m1, ms, x', xs, xncs) => if isVisible x then [(L'.DDatatypeImp (x, n, m1, ms, x', xs, xncs), loc)] else [] | L'.SgiVal (x, n, t) => if isVisible x then [(L'.DVal (x, n, t, (L'.EModProj (str, strs, x), loc)), loc)] else [] | L'.SgiStr (x, n, sgn) => if isVisible x then [(L'.DStr (x, n, sgn, (L'.StrProj (m, x), loc)), loc)] else [] | L'.SgiSgn (x, n, sgn) => if isVisible x then [(L'.DSgn (x, n, (L'.SgnProj (str, strs, x), loc)), loc)] else [] | L'.SgiConstraint (c1, c2) => [(L'.DConstraint (c1, c2), loc)] | L'.SgiClassAbs (x, n, k) => if isVisible x then let val c = (L'.CModProj (str, strs, x), loc) in [(L'.DCon (x, n, k, c), loc)] end else [] | L'.SgiClass (x, n, k, _) => if isVisible x then let val c = (L'.CModProj (str, strs, x), loc) in [(L'.DCon (x, n, k, c), loc)] end else [] in (d, foldl (fn (d, env') => E.declBinds env' d) env' d) end) env sgis | _ => (strError env (UnOpenable sgn); ([], env)) end and sgiOfDecl (d, loc) = case d of L'.DCon (x, n, k, c) => [(L'.SgiCon (x, n, k, c), loc)] | L'.DDatatype x => [(L'.SgiDatatype x, loc)] | L'.DDatatypeImp x => [(L'.SgiDatatypeImp x, loc)] | L'.DVal (x, n, t, _) => [(L'.SgiVal (x, n, t), loc)] | L'.DValRec vis => map (fn (x, n, t, _) => (L'.SgiVal (x, n, t), loc)) vis | L'.DSgn (x, n, sgn) => [(L'.SgiSgn (x, n, sgn), loc)] | L'.DStr (x, n, sgn, _) => [(L'.SgiStr (x, n, sgn), loc)] | L'.DFfiStr (x, n, sgn) => [(L'.SgiStr (x, n, sgn), loc)] | L'.DConstraint cs => [(L'.SgiConstraint cs, loc)] | L'.DExport _ => [] | L'.DTable (tn, x, n, c, _, pc, _, cc) => [(L'.SgiVal (x, n, (L'.CApp ((L'.CApp (tableOf (), c), loc), (L'.CConcat (pc, cc), loc)), loc)), loc)] | L'.DSequence (tn, x, n) => [(L'.SgiVal (x, n, sequenceOf ()), loc)] | L'.DView (tn, x, n, _, c) => [(L'.SgiVal (x, n, (L'.CApp (viewOf (), c), loc)), loc)] | L'.DClass (x, n, k, c) => [(L'.SgiClass (x, n, k, c), loc)] | L'.DDatabase _ => [] | L'.DCookie (tn, x, n, c) => [(L'.SgiVal (x, n, (L'.CApp (cookieOf (), c), loc)), loc)] | L'.DStyle (tn, x, n) => [(L'.SgiVal (x, n, styleOf ()), loc)] | L'.DTask _ => [] | L'.DPolicy _ => [] | L'.DOnError _ => [] and subSgn' counterparts env strLoc sgn1 (sgn2 as (_, loc2)) = ((*prefaces "subSgn" [("sgn1", p_sgn env sgn1), ("sgn2", p_sgn env sgn2)];*) case (#1 (hnormSgn env sgn1), #1 (hnormSgn env sgn2)) of (L'.SgnError, _) => () | (_, L'.SgnError) => () | (L'.SgnConst sgis1, L'.SgnConst sgis2) => let (*val () = prefaces "subSgn" [("sgn1", p_sgn env sgn1), ("sgn2", p_sgn env sgn2), ("sgis1", p_sgn env (L'.SgnConst sgis1, loc2)), ("sgis2", p_sgn env (L'.SgnConst sgis2, loc2))]*) fun cpart n = IM.find (!counterparts, n) fun cparts (n2, n1) = counterparts := IM.insert (!counterparts, n2, n1) val sub2 = U.Con.map {kind = fn k => k, con = fn c => case c of L'.CNamed n2 => (case cpart n2 of NONE => c | SOME n1 => L'.CNamed n1) | _ => c} fun folder (sgi2All as (sgi, loc), env) = let (*val () = prefaces "folder" [("sgis1", p_sgn env (L'.SgnConst sgis1, loc2))]*) fun seek' f p = let fun seek env ls = case ls of [] => f env | h :: t => case p (env, h) of NONE => let val env = case #1 h of L'.SgiCon (x, n, k, c) => if E.checkENamed env n then env else E.pushCNamedAs env x n k (SOME c) | L'.SgiConAbs (x, n, k) => if E.checkENamed env n then env else E.pushCNamedAs env x n k NONE | _ => env in seek (E.sgiBinds env h) t end | SOME envs => envs in seek env sgis1 end val seek = seek' (fn env => (sgnError env (UnmatchedSgi (strLoc, sgi2All)); env)) in case sgi of L'.SgiConAbs (x, n2, k2) => seek (fn (env, sgi1All as (sgi1, _)) => let fun found (x', n1, k1, co1) = if x = x' then let val () = unifyKinds env k1 k2 handle KUnify (k1, k2, err) => sgnError env (SgiWrongKind (strLoc, sgi1All, k1, sgi2All, k2, err)) val env = E.pushCNamedAs env x n1 k1 co1 in SOME (if n1 = n2 then env else (cparts (n2, n1); E.pushCNamedAs env x n2 k2 (SOME (L'.CNamed n1, loc2)))) end else NONE in case sgi1 of L'.SgiConAbs (x', n1, k1) => found (x', n1, k1, NONE) | L'.SgiCon (x', n1, k1, c1) => found (x', n1, k1, SOME c1) | L'.SgiDatatype dts => let val k = (L'.KType, loc) fun search dts = case dts of [] => NONE | (x', n1, xs, _) :: dts => let val k' = foldl (fn (_, k') => (L'.KArrow (k, k'), loc)) k xs in case found (x', n1, k', NONE) of NONE => search dts | x => x end in search dts end | L'.SgiDatatypeImp (x', n1, m1, ms, s, xs, _) => let val k = (L'.KType, loc) val k' = foldl (fn (_, k') => (L'.KArrow (k, k'), loc)) k xs in found (x', n1, k', SOME (L'.CModProj (m1, ms, s), loc)) end | L'.SgiClassAbs (x', n1, k) => found (x', n1, k, NONE) | L'.SgiClass (x', n1, k, c) => found (x', n1, k, SOME c) | _ => NONE end) | L'.SgiCon (x, n2, k2, c2) => seek (fn (env, sgi1All as (sgi1, _)) => let fun found (x', n1, k1, c1) = if x = x' then let val c2 = sub2 c2 fun good () = let val env = E.pushCNamedAs env x n2 k2 (SOME c2) val env = if n1 = n2 then env else (cparts (n2, n1); E.pushCNamedAs env x n1 k1 (SOME c1)) in SOME env end in (unifyCons env loc c1 c2; good ()) handle CUnify (c1, c2, err) => (sgnError env (SgiWrongCon (strLoc, sgi1All, c1, sgi2All, c2, err)); good ()) end else NONE in case sgi1 of L'.SgiCon (x', n1, k1, c1) => found (x', n1, k1, c1) | L'.SgiClass (x', n1, k1, c1) => found (x', n1, k1, c1) | _ => NONE end) | L'.SgiDatatype dts2 => let fun found' (sgi1All, (x1, n1, xs1, xncs1), (x2, n2, xs2, xncs2), env) = if x1 <> x2 then NONE else let fun mismatched ue = (sgnError env (SgiMismatchedDatatypes (strLoc, sgi1All, sgi2All, ue)); SOME env) val k = (L'.KType, loc) val k' = foldl (fn (_, k') => (L'.KArrow (k, k'), loc)) k xs1 fun good () = let val env = E.sgiBinds env sgi1All val env = if n1 = n2 then env else (cparts (n2, n1); E.pushCNamedAs env x1 n2 k' (SOME (L'.CNamed n1, loc))) in SOME env end val env = E.pushCNamedAs env x1 n1 k' NONE val env = if n1 = n2 then env else (cparts (n2, n1); E.pushCNamedAs env x1 n2 k' (SOME (L'.CNamed n1, loc))) val env = foldl (fn (x, env) => E.pushCRel env x k) env xs1 fun xncBad ((x1, _, t1), (x2, _, t2)) = String.compare (x1, x2) <> EQUAL orelse case (t1, t2) of (NONE, NONE) => false | (SOME t1, SOME t2) => (unifyCons env loc t1 (sub2 t2); false) | _ => true in (if xs1 <> xs2 orelse length xncs1 <> length xncs2 orelse ListPair.exists xncBad (xncs1, xncs2) then mismatched NONE else good ()) handle CUnify ue => mismatched (SOME ue) end in seek' (fn _ => let fun seekOne (dt2, env) = seek (fn (env, sgi1All as (sgi1, _)) => case sgi1 of L'.SgiDatatypeImp (x', n1, _, _, _, xs, xncs1) => found' (sgi1All, (x', n1, xs, xncs1), dt2, env) | _ => NONE) fun seekAll (dts, env) = case dts of [] => env | dt :: dts => seekAll (dts, seekOne (dt, env)) in seekAll (dts2, env) end) (fn (env, sgi1All as (sgi1, _)) => let fun found dts1 = let fun iter (dts1, dts2, env) = case (dts1, dts2) of ([], []) => SOME env | (dt1 :: dts1, dt2 :: dts2) => (case found' (sgi1All, dt1, dt2, env) of NONE => NONE | SOME env => iter (dts1, dts2, env)) | _ => NONE in iter (dts1, dts2, env) end in case sgi1 of L'.SgiDatatype dts1 => found dts1 | _ => NONE end) end | L'.SgiDatatypeImp (x, n2, m12, ms2, s2, xs, _) => seek (fn (env, sgi1All as (sgi1, _)) => case sgi1 of L'.SgiDatatypeImp (x', n1, m11, ms1, s1, _, _) => if x = x' then let val k = (L'.KType, loc) val k' = foldl (fn (_, k') => (L'.KArrow (k, k'), loc)) k xs val t1 = (L'.CModProj (m11, ms1, s1), loc) val t2 = (L'.CModProj (m12, ms2, s2), loc) fun good () = let val env = E.pushCNamedAs env x n1 k' (SOME t1) val env = E.pushCNamedAs env x n2 k' (SOME t2) in cparts (n2, n1); SOME env end in (unifyCons env loc t1 t2; good ()) handle CUnify (c1, c2, err) => (sgnError env (SgiWrongCon (strLoc, sgi1All, c1, sgi2All, c2, err)); good ()) end else NONE | _ => NONE) | L'.SgiVal (x, n2, c2) => seek (fn (env, sgi1All as (sgi1, _)) => case sgi1 of L'.SgiVal (x', n1, c1) => if x = x' then ((*prefaces "val" [("x", PD.string x), ("n1", PD.string (Int.toString n1)), ("c1", p_con env c1), ("c2", p_con env c2), ("c2'", p_con env (sub2 c2))];*) unifyCons env loc c1 (sub2 c2); SOME env) handle CUnify (c1, c2, err) => (sgnError env (SgiWrongCon (strLoc, sgi1All, c1, sgi2All, c2, err)); SOME env) else NONE | _ => NONE) | L'.SgiStr (x, n2, sgn2) => seek (fn (env, sgi1All as (sgi1, _)) => case sgi1 of L'.SgiStr (x', n1, sgn1) => if x = x' then let val () = subSgn' counterparts env strLoc sgn1 sgn2 val env = E.pushStrNamedAs env x n1 sgn1 val env = if n1 = n2 then env else E.pushStrNamedAs env x n2 (selfifyAt env {str = (L'.StrVar n1, #2 sgn2), sgn = sgn2}) in SOME env end else NONE | _ => NONE) | L'.SgiSgn (x, n2, sgn2) => seek (fn (env, sgi1All as (sgi1, _)) => case sgi1 of L'.SgiSgn (x', n1, sgn1) => if x = x' then let val () = subSgn' counterparts env strLoc sgn1 sgn2 val () = subSgn' counterparts env strLoc sgn2 sgn1 val env = E.pushSgnNamedAs env x n2 sgn2 val env = if n1 = n2 then env else (cparts (n2, n1); E.pushSgnNamedAs env x n1 sgn2) in SOME env end else NONE | _ => NONE) | L'.SgiConstraint (c2, d2) => seek (fn (env, sgi1All as (sgi1, _)) => case sgi1 of L'.SgiConstraint (c1, d1) => if consEq env loc (c1, c2) andalso consEq env loc (d1, d2) then SOME env else NONE | _ => NONE) | L'.SgiClassAbs (x, n2, k2) => seek (fn (env, sgi1All as (sgi1, _)) => let fun found (x', n1, k1, co) = if x = x' then let val () = unifyKinds env k1 k2 handle KUnify (k1, k2, err) => sgnError env (SgiWrongKind (strLoc, sgi1All, k1, sgi2All, k2, err)) val env = E.pushCNamedAs env x n1 k1 co in SOME (if n1 = n2 then env else (cparts (n2, n1); E.pushCNamedAs env x n2 k1 (SOME (L'.CNamed n1, loc2)))) end else NONE in case sgi1 of L'.SgiClassAbs (x', n1, k1) => found (x', n1, k1, NONE) | L'.SgiClass (x', n1, k1, c) => found (x', n1, k1, SOME c) | _ => NONE end) | L'.SgiClass (x, n2, k2, c2) => seek (fn (env, sgi1All as (sgi1, _)) => let fun found (x', n1, k1, c1) = if x = x' then let val () = unifyKinds env k1 k2 handle KUnify (k1, k2, err) => sgnError env (SgiWrongKind (strLoc, sgi1All, k1, sgi2All, k2, err)) val c2 = sub2 c2 fun good () = let val env = E.pushCNamedAs env x n2 k2 (SOME c2) val env = if n1 = n2 then env else (cparts (n2, n1); E.pushCNamedAs env x n1 k2 (SOME c1)) in SOME env end in (unifyCons env loc c1 c2; good ()) handle CUnify (c1, c2, err) => (sgnError env (SgiWrongCon (strLoc, sgi1All, c1, sgi2All, c2, err)); good ()) end else NONE in case sgi1 of L'.SgiClass (x', n1, k1, c1) => found (x', n1, k1, c1) | _ => NONE end) end in ignore (foldl folder env sgis2) end | (L'.SgnFun (m1, n1, dom1, ran1), L'.SgnFun (m2, n2, dom2, ran2)) => let val ran2 = if n1 = n2 then ran2 else subStrInSgn (n2, n1) ran2 in subSgn' counterparts env strLoc dom2 dom1; subSgn' counterparts (E.pushStrNamedAs env m1 n1 dom2) strLoc ran1 ran2 end | _ => sgnError env (SgnWrongForm (strLoc, sgn1, sgn2))) and subSgn env = subSgn' (ref IM.empty) env and positive self = let open L fun none (c, _) = case c of CAnnot (c, _) => none c | TFun (c1, c2) => none c1 andalso none c2 | TCFun (_, _, _, c) => none c | TRecord c => none c | CVar ([], x) => x <> self | CVar _ => true | CApp (c1, c2) => none c1 andalso none c2 | CAbs _ => false | TDisjoint (c1, c2, c3) => none c1 andalso none c2 andalso none c3 | CKAbs _ => false | TKFun _ => false | CName _ => true | CRecord xcs => List.all (fn (c1, c2) => none c1 andalso none c2) xcs | CConcat (c1, c2) => none c1 andalso none c2 | CMap => true | CUnit => true | CTuple cs => List.all none cs | CProj (c, _) => none c | CWild _ => false fun pos (c, _) = case c of CAnnot (c, _) => pos c | TFun (c1, c2) => none c1 andalso pos c2 | TCFun (_, _, _, c) => pos c | TRecord c => pos c | CVar _ => true | CApp (c1, c2) => pos c1 andalso none c2 | CAbs _ => false | TDisjoint (c1, c2, c3) => none c1 andalso none c2 andalso none c3 | CKAbs _ => false | TKFun _ => false | CName _ => true | CRecord xcs => List.all (fn (c1, c2) => none c1 andalso pos c2) xcs | CConcat (c1, c2) => pos c1 andalso pos c2 | CMap => true | CUnit => true | CTuple cs => List.all pos cs | CProj (c, _) => pos c | CWild _ => false in pos end and wildifyStr env (str, sgn) = case #1 (hnormSgn env sgn) of L'.SgnConst sgis => (case #1 str of L.StrConst ds => let fun cname d = case d of L'.SgiCon (x, _, _, _) => SOME x | L'.SgiConAbs (x, _, _) => SOME x | L'.SgiClass (x, _, _, _) => SOME x | L'.SgiClassAbs (x, _, _) => SOME x | _ => NONE fun dname (d, _) = case d of L.DCon (x, _, _) => SOME x | L.DClass (x, _, _) => SOME x | _ => NONE fun decompileKind (k, loc) = case k of L'.KType => SOME (L.KType, loc) | L'.KArrow (k1, k2) => (case (decompileKind k1, decompileKind k2) of (SOME k1, SOME k2) => SOME (L.KArrow (k1, k2), loc) | _ => NONE) | L'.KName => SOME (L.KName, loc) | L'.KRecord k => (case decompileKind k of SOME k => SOME (L.KRecord k, loc) | _ => NONE) | L'.KUnit => SOME (L.KUnit, loc) | L'.KTuple ks => let val ks' = List.mapPartial decompileKind ks in if length ks' = length ks then SOME (L.KTuple ks', loc) else NONE end | L'.KError => NONE | L'.KUnif (_, _, ref (SOME k)) => decompileKind k | L'.KUnif _ => NONE | L'.KTupleUnif (_, _, ref (SOME k)) => decompileKind k | L'.KTupleUnif _ => NONE | L'.KRel _ => NONE | L'.KFun _ => NONE fun maybeHnorm env c = hnormCon env c handle E.UnboundNamed _ => c fun decompileCon env (c as (_, loc)) = case #1 (maybeHnorm env c) of L'.CRel i => let val (s, _) = E.lookupCRel env i in SOME (L.CVar ([], s), loc) end | L'.CNamed i => let val (s, _, _) = E.lookupCNamed env i in SOME (L.CVar ([], s), loc) end | L'.CModProj (m1, ms, x) => let val (s, _) = E.lookupStrNamed env m1 in SOME (L.CVar (s :: ms, x), loc) end | L'.CName s => SOME (L.CName s, loc) | L'.CRecord (_, xcs) => let fun fields xcs = case xcs of [] => SOME [] | (x, t) :: xcs => case (decompileCon env x, decompileCon env t, fields xcs) of (SOME x, SOME t, SOME xcs) => SOME ((x, t) :: xcs) | _ => NONE in Option.map (fn xcs => (L.CRecord xcs, loc)) (fields xcs) end | L'.CConcat (c1, c2) => (case (decompileCon env c1, decompileCon env c2) of (SOME c1, SOME c2) => SOME (L.CConcat (c1, c2), loc) | _ => NONE) | L'.CUnit => SOME (L.CUnit, loc) | L'.CUnif (nl, _, _, _, ref (SOME c)) => decompileCon env (E.mliftConInCon nl c) | _ => NONE fun buildNeeded env sgis = #1 (foldl (fn ((sgi, loc), (nd, env')) => (case sgi of L'.SgiCon (x, _, k, _) => naddCon (nd, x, k) | L'.SgiConAbs (x, _, k) => naddCon (nd, x, k) | L'.SgiConstraint cs => naddConstraint (nd, (env', cs, loc)) | L'.SgiVal (x, _, t) => let fun should t = let val t = normClassConstraint env' t in case #1 t of L'.CApp (f, _) => isClassOrFolder env' f | L'.TRecord t => (case hnormCon env' t of (L'.CApp (f, _), _) => (case hnormCon env' f of (L'.CApp (f, cl), loc) => (case hnormCon env' f of (L'.CMap _, _) => isClassOrFolder env' cl | _ => false) | _ => false) | _ => false) | _ => false end in if should t then naddVal (nd, x) else nd end | L'.SgiStr (x, _, s) => (case #1 (hnormSgn env' s) of L'.SgnConst sgis' => naddMod (nd, x, (env', buildNeeded env' sgis')) | _ => nd) | _ => nd, E.sgiBinds env' (sgi, loc))) (nempty, env) sgis) val nd = buildNeeded env sgis fun removeUsed (nd, ds) = foldl (fn ((d, _), nd) => case d of L.DCon (x, _, _) => ndelCon (nd, x) | L.DClass (x, _, _) => ndelCon (nd, x) | L.DVal (x, _, _) => ndelVal (nd, x) | L.DOpen _ => nempty | L.DStr (x, _, (L.StrConst ds', _)) => (case SM.find (nmods nd, x) of NONE => nd | SOME (env, nd') => naddMod (nd, x, (env, removeUsed (nd', ds')))) | _ => nd) nd ds val nd = removeUsed (nd, ds) fun extend (env, nd, ds) = let val ds' = List.mapPartial (fn (env', (c1, c2), loc) => case (decompileCon env' c1, decompileCon env' c2) of (SOME c1, SOME c2) => SOME (L.DConstraint (c1, c2), loc) | _ => NONE) (nconstraints nd) val ds' = case SS.listItems (nvals nd) of [] => ds' | xs => let val ewild = (L.EWild, #2 str) val ds'' = map (fn x => (L.DVal (x, NONE, ewild), #2 str)) xs in ds'' @ ds' end val ds' = case SM.listItemsi (ncons nd) of [] => ds' | xs => map (fn (x, k) => let val k = case decompileKind k of NONE => (L.KWild, #2 str) | SOME k => k val cwild = (L.CWild k, #2 str) in (L.DCon (x, NONE, cwild), #2 str) end) xs @ ds' val ds = ds @ ds' in map (fn d as (L.DStr (x, s, (L.StrConst ds', loc')), loc) => (case SM.find (nmods nd, x) of NONE => d | SOME (env, nd') => (L.DStr (x, s, (L.StrConst (extend (env, nd', ds')), loc')), loc)) | d => d) ds end in (L.StrConst (extend (env, nd, ds)), #2 str) end | _ => str) | _ => str and elabDecl (dAll as (d, loc), (env, denv, gs)) = let (*val () = preface ("elabDecl", SourcePrint.p_decl dAll)*) (*val befor = Time.now ()*) val r = case d of L.DCon (x, ko, c) => let val k' = case ko of NONE => kunif loc | SOME k => elabKind env k val (c', ck, gs') = elabCon (env, denv) c val (env', n) = E.pushCNamed env x k' (SOME c') in checkKind env c' ck k'; ([(L'.DCon (x, n, k', c'), loc)], (env', denv, enD gs' @ gs)) end | L.DDatatype dts => let val k = (L'.KType, loc) val (dts, env) = ListUtil.foldlMap (fn ((x, xs, xcs), env) => let val k' = foldl (fn (_, k') => (L'.KArrow (k, k'), loc)) k xs val (env, n) = E.pushCNamed env x k' NONE in ((x, n, xs, xcs), env) end) env dts val (dts, (env, gs')) = ListUtil.foldlMap (fn ((x, n, xs, xcs), (env, gs')) => let val t = (L'.CNamed n, loc) val nxs = length xs - 1 val t = ListUtil.foldli (fn (i, _, t) => (L'.CApp (t, (L'.CRel (nxs - i), loc)), loc)) t xs val (env', denv') = foldl (fn (x, (env', denv')) => (E.pushCRel env' x k, D.enter denv')) (env, denv) xs val (xcs, (used, env, gs')) = ListUtil.foldlMap (fn ((x, to), (used, env, gs)) => let val (to, t, gs') = case to of NONE => (NONE, t, gs) | SOME t' => let val (t', tk, gs') = elabCon (env', denv') t' in checkKind env' t' tk k; (SOME t', (L'.TFun (t', t), loc), enD gs' @ gs) end val t = foldr (fn (x, t) => (L'.TCFun (L'.Implicit, x, k, t), loc)) t xs val (env, n') = E.pushENamed env x t in if SS.member (used, x) then strError env (DuplicateConstructor (x, loc)) else (); ((x, n', to), (SS.add (used, x), env, gs')) end) (SS.empty, env, gs') xcs in ((x, n, xs, xcs), (E.pushDatatype env n xs xcs, gs')) end) (env, []) dts in ([(L'.DDatatype dts, loc)], (env, denv, gs' @ gs)) end | L.DDatatypeImp (_, [], _) => raise Fail "Empty DDatatypeImp" | L.DDatatypeImp (x, m1 :: ms, s) => (case E.lookupStr env m1 of NONE => (expError env (UnboundStrInExp (loc, m1)); ([], (env, denv, gs))) | SOME (n, sgn) => let val (str, sgn) = foldl (fn (m, (str, sgn)) => case E.projectStr env {sgn = sgn, str = str, field = m} of NONE => (conError env (UnboundStrInCon (loc, m)); (strerror, sgnerror)) | SOME sgn => ((L'.StrProj (str, m), loc), sgn)) ((L'.StrVar n, loc), sgn) ms in case hnormCon env (L'.CModProj (n, ms, s), loc) of (L'.CModProj (n, ms, s), _) => (case E.projectDatatype env {sgn = sgn, str = str, field = s} of NONE => (conError env (UnboundDatatype (loc, s)); ([], (env, denv, gs))) | SOME (xs, xncs) => let val k = (L'.KType, loc) val k' = foldl (fn (_, k') => (L'.KArrow (k, k'), loc)) k xs val t = (L'.CModProj (n, ms, s), loc) val (env, n') = E.pushCNamed env x k' (SOME t) val env = E.pushDatatype env n' xs xncs val t = (L'.CNamed n', loc) val nxs = length xs val t = ListUtil.foldli (fn (i, _, t) => (L'.CApp (t, (L'.CRel (nxs - 1 - i), loc)), loc)) t xs val env = foldl (fn ((x, n, to), env) => let val t = case to of NONE => t | SOME t' => (L'.TFun (t', t), loc) val t = foldr (fn (x, t) => (L'.TCFun (L'.Implicit, x, k, t), loc)) t xs in E.pushENamedAs env x n t end) env xncs in ([(L'.DDatatypeImp (x, n', n, ms, s, xs, xncs), loc)], (env, denv, gs)) end) | _ => (strError env (NotDatatype loc); ([], (env, denv, []))) end) | L.DVal (x, co, e) => let val (c', _, gs1) = case co of NONE => (cunif (loc, ktype), ktype, []) | SOME c => elabCon (env, denv) c val (e', et, gs2) = elabExp (env, denv) e val () = checkCon env e' et c' val c' = normClassConstraint env c' val (env', n) = E.pushENamed env x c' in (*prefaces "DVal" [("x", Print.PD.string x), ("c'", p_con env c')];*) ([(L'.DVal (x, n, c', e'), loc)], (env', denv, enD gs1 @ gs2 @ gs)) end | L.DValRec vis => let fun allowable (e, _) = case e of L.EAbs _ => true | L.ECAbs (_, _, _, e) => allowable e | L.EKAbs (_, e) => allowable e | L.EDisjoint (_, _, e) => allowable e | _ => false val (vis, gs) = ListUtil.foldlMap (fn ((x, co, e), gs) => let val (c', _, gs1) = case co of NONE => (cunif (loc, ktype), ktype, []) | SOME c => elabCon (env, denv) c val c' = normClassConstraint env c' in ((x, c', e), enD gs1 @ gs) end) gs vis val (vis, env) = ListUtil.foldlMap (fn ((x, c', e), env) => let val (env, n) = E.pushENamed env x c' in ((x, n, c', e), env) end) env vis val (vis, gs) = ListUtil.foldlMap (fn ((x, n, c', e), gs) => let val (e', et, gs1) = elabExp (env, denv) e in checkCon env e' et c'; if allowable e then () else expError env (IllegalRec (x, e')); ((x, n, c', e'), gs1 @ gs) end) gs vis in ([(L'.DValRec vis, loc)], (env, denv, gs)) end | L.DSgn (x, sgn) => let val (sgn', gs') = elabSgn (env, denv) sgn val (env', n) = E.pushSgnNamed env x sgn' in ([(L'.DSgn (x, n, sgn'), loc)], (env', denv, enD gs' @ gs)) end | L.DStr (x, sgno, str) => let val () = if x = "Basis" then raise Fail "Not allowed to redefine structure 'Basis'" else () val formal = Option.map (elabSgn (env, denv)) sgno val (str', sgn', gs') = case formal of NONE => let val (str', actual, gs') = elabStr (env, denv) str in (str', selfifyAt env {str = str', sgn = actual}, gs') end | SOME (formal, gs1) => let val str = wildifyStr env (str, formal) val (str', actual, gs2) = elabStr (env, denv) str in subSgn env loc (selfifyAt env {str = str', sgn = actual}) formal; (str', formal, enD gs1 @ gs2) end val (env', n) = E.pushStrNamed env x sgn' val denv' = case #1 str' of L'.StrConst _ => dopenConstraints (loc, env', denv) {str = x, strs = []} | L'.StrApp _ => dopenConstraints (loc, env', denv) {str = x, strs = []} | _ => denv in case #1 (hnormSgn env sgn') of L'.SgnFun _ => (case #1 str' of L'.StrFun _ => () | _ => strError env (FunctorRebind loc)) | _ => (); ([(L'.DStr (x, n, sgn', str'), loc)], (env', denv', gs' @ gs)) end | L.DFfiStr (x, sgn) => let val (sgn', gs') = elabSgn (env, denv) sgn val (env', n) = E.pushStrNamed env x sgn' in ([(L'.DFfiStr (x, n, sgn'), loc)], (env', denv, enD gs' @ gs)) end | L.DOpen (m, ms) => (case E.lookupStr env m of NONE => (strError env (UnboundStr (loc, m)); ([], (env, denv, gs))) | SOME (n, sgn) => let val (str, sgn) = foldl (fn (m, (str, sgn)) => case E.projectStr env {str = str, sgn = sgn, field = m} of NONE => (strError env (UnboundStr (loc, m)); (strerror, sgnerror)) | SOME sgn => ((L'.StrProj (str, m), loc), sgn)) ((L'.StrVar n, loc), sgn) ms val sgn = selfifyAt env {str = str, sgn = sgn} val (ds, env') = dopen env {str = n, strs = ms, sgn = sgn} val denv' = dopenConstraints (loc, env', denv) {str = m, strs = ms} in (ds, (env', denv', gs)) end) | L.DConstraint (c1, c2) => let val (c1', k1, gs1) = elabCon (env, denv) c1 val (c2', k2, gs2) = elabCon (env, denv) c2 val gs3 = D.prove env denv (c1', c2', loc) val denv' = D.assert env denv (c1', c2') in checkKind env c1' k1 (L'.KRecord (kunif loc), loc); checkKind env c2' k2 (L'.KRecord (kunif loc), loc); ([(L'.DConstraint (c1', c2'), loc)], (env, denv', enD gs1 @ enD gs2 @ enD gs3 @ gs)) end | L.DOpenConstraints (m, ms) => let val denv = dopenConstraints (loc, env, denv) {str = m, strs = ms} in ([], (env, denv, gs)) end | L.DExport str => let val (str', sgn, gs') = elabStr (env, denv) str val sgn = case #1 (hnormSgn env sgn) of L'.SgnConst sgis => let fun doOne (all as (sgi, _), env) = (case sgi of L'.SgiVal (x, n, t) => let fun doPage (makeRes, ran) = case hnormCon env ran of (L'.CApp (tf, arg), _) => (case (hnormCon env tf, hnormCon env arg) of ((L'.CModProj (basis, [], "transaction"), _), (L'.CApp (tf, arg3), _)) => (case (basis = !basis_r, hnormCon env tf, hnormCon env arg3) of (true, (L'.CApp (tf, arg2), _), ((L'.CRecord (_, []), _))) => (case (hnormCon env tf) of (L'.CApp (tf, arg1), _) => (case (hnormCon env tf, hnormCon env arg1, hnormCon env arg2) of (tf, arg1, (L'.CRecord (_, []), _)) => let val t = (L'.CApp (tf, arg1), loc) val t = (L'.CApp (t, arg2), loc) val t = (L'.CApp (t, arg3), loc) val t = (L'.CApp ( (L'.CModProj (basis, [], "transaction"), loc), t), loc) fun normArgs t = case hnormCon env t of (L'.TFun (dom, ran), loc) => (L'.TFun (hnormCon env dom, normArgs ran), loc) | t' => t' in (L'.SgiVal (x, n, normArgs (makeRes t)), loc) end | _ => all) | _ => all) | _ => all) | _ => all) | _ => all in case hnormCon env t of (L'.TFun (dom, ran), _) => (case hnormCon env dom of (L'.TRecord domR, _) => doPage (fn t => (L'.TFun ((L'.TRecord domR, loc), t), loc), ran) | _ => all) | _ => doPage (fn t => t, t) end | _ => all, E.sgiBinds env all) in (L'.SgnConst (#1 (ListUtil.foldlMap doOne env sgis)), loc) end | _ => sgn in ([(L'.DExport (E.newNamed (), sgn, str'), loc)], (env, denv, gs' @ gs)) end | L.DTable (x, c, pe, ce) => let val cstK = (L'.KRecord (L'.KRecord (L'.KUnit, loc), loc), loc) val (c', k, gs') = elabCon (env, denv) c val pkey = cunif (loc, cstK) val uniques = cunif (loc, cstK) val ct = tableOf () val ct = (L'.CApp (ct, c'), loc) val ct = (L'.CApp (ct, (L'.CConcat (pkey, uniques), loc)), loc) val (env, n) = E.pushENamed env x ct val (pe', pet, gs'') = elabExp (env, denv) pe val (ce', cet, gs''') = elabExp (env, denv) ce val pst = (L'.CModProj (!basis_r, [], "primary_key"), loc) val pst = (L'.CApp (pst, c'), loc) val pst = (L'.CApp (pst, pkey), loc) val cst = (L'.CModProj (!basis_r, [], "sql_constraints"), loc) val cst = (L'.CApp (cst, c'), loc) val cst = (L'.CApp (cst, uniques), loc) in checkKind env c' k (L'.KRecord (L'.KType, loc), loc); checkCon env pe' pet pst; checkCon env ce' cet cst; ([(L'.DTable (!basis_r, x, n, c', pe', pkey, ce', uniques), loc)], (env, denv, gs''' @ gs'' @ enD gs' @ gs)) end | L.DSequence x => let val (env, n) = E.pushENamed env x (sequenceOf ()) in ([(L'.DSequence (!basis_r, x, n), loc)], (env, denv, gs)) end | L.DView (x, e) => let val (e', t, gs') = elabExp (env, denv) e val k = (L'.KRecord (L'.KType, loc), loc) val fs = cunif (loc, k) val ts = cunif (loc, (L'.KRecord k, loc)) val tf = (L'.CApp ((L'.CMap (k, k), loc), (L'.CAbs ("_", k, (L'.CRecord ((L'.KType, loc), []), loc)), loc)), loc) val ts = (L'.CApp (tf, ts), loc) val cv = viewOf () val cv = (L'.CApp (cv, fs), loc) val (env', n) = E.pushENamed env x cv val ct = queryOf () val ct = (L'.CApp (ct, (L'.CRecord ((L'.KRecord (L'.KType, loc), loc), []), loc)), loc) val ct = (L'.CApp (ct, (L'.CRecord ((L'.KRecord (L'.KType, loc), loc), []), loc)), loc) val ct = (L'.CApp (ct, ts), loc) val ct = (L'.CApp (ct, fs), loc) in checkCon env e' t ct; ([(L'.DView (!basis_r, x, n, e', fs), loc)], (env', denv, gs' @ gs)) end | L.DClass (x, k, c) => let val k = elabKind env k val (c', ck, gs') = elabCon (env, denv) c val (env, n) = E.pushCNamed env x k (SOME c') val env = E.pushClass env n in checkKind env c' ck k; ([(L'.DClass (x, n, k, c'), loc)], (env, denv, enD gs' @ gs)) end | L.DDatabase s => ([(L'.DDatabase s, loc)], (env, denv, gs)) | L.DCookie (x, c) => let val (c', k, gs') = elabCon (env, denv) c val (env, n) = E.pushENamed env x (L'.CApp (cookieOf (), c'), loc) in checkKind env c' k (L'.KType, loc); ([(L'.DCookie (!basis_r, x, n, c'), loc)], (env, denv, enD gs' @ gs)) end | L.DStyle x => let val (env, n) = E.pushENamed env x (styleOf ()) in ([(L'.DStyle (!basis_r, x, n), loc)], (env, denv, gs)) end | L.DTask (e1, e2) => let val (e1', t1, gs1) = elabExp (env, denv) e1 val (e2', t2, gs2) = elabExp (env, denv) e2 val targ = cunif (loc, (L'.KType, loc)) val t1' = (L'.CModProj (!basis_r, [], "task_kind"), loc) val t1' = (L'.CApp (t1', targ), loc) val t2' = (L'.CApp ((L'.CModProj (!basis_r, [], "transaction"), loc), (L'.TRecord (L'.CRecord ((L'.KType, loc), []), loc), loc)), loc) val t2' = (L'.TFun (targ, t2'), loc) in checkCon env e1' t1 t1'; checkCon env e2' t2 t2'; ([(L'.DTask (e1', e2'), loc)], (env, denv, gs2 @ gs1 @ gs)) end | L.DPolicy e1 => let val (e1', t1, gs1) = elabExp (env, denv) e1 val t1' = (L'.CModProj (!basis_r, [], "sql_policy"), loc) in checkCon env e1' t1 t1'; ([(L'.DPolicy e1', loc)], (env, denv, gs1 @ gs)) end | L.DOnError (m1, ms, s) => (case E.lookupStr env m1 of NONE => (expError env (UnboundStrInExp (loc, m1)); ([], (env, denv, []))) | SOME (n, sgn) => let val (str, sgn) = foldl (fn (m, (str, sgn)) => case E.projectStr env {sgn = sgn, str = str, field = m} of NONE => (conError env (UnboundStrInCon (loc, m)); (strerror, sgnerror)) | SOME sgn => ((L'.StrProj (str, m), loc), sgn)) ((L'.StrVar n, loc), sgn) ms val t = case E.projectVal env {sgn = sgn, str = str, field = s} of NONE => (expError env (UnboundExp (loc, s)); cerror) | SOME t => t val page = (L'.CModProj (!basis_r, [], "page"), loc) val xpage = (L'.CApp ((L'.CModProj (!basis_r, [], "transaction"), loc), page), loc) val func = (L'.TFun ((L'.CModProj (!basis_r, [], "xbody"), loc), xpage), loc) in (unifyCons env loc t func handle CUnify _ => ErrorMsg.error "onError handler has wrong type."); ([(L'.DOnError (n, ms, s), loc)], (env, denv, gs)) end) (*val tcs = List.filter (fn TypeClass _ => true | _ => false) (#3 (#2 r))*) in (*prefaces "/elabDecl" [("d", SourcePrint.p_decl dAll)];*) r end and elabStr (env, denv) (str, loc) = case str of L.StrConst ds => let val (ds', (_, _, gs)) = ListUtil.foldlMapConcat elabDecl (env, denv, []) ds val sgis = ListUtil.mapConcat sgiOfDecl ds' val (sgis, _, _, _, _) = foldr (fn ((sgi, loc), (sgis, cons, vals, sgns, strs)) => case sgi of L'.SgiConAbs (x, n, k) => let val (cons, x) = if SS.member (cons, x) then (cons, "?" ^ x) else (SS.add (cons, x), x) in ((L'.SgiConAbs (x, n, k), loc) :: sgis, cons, vals, sgns, strs) end | L'.SgiCon (x, n, k, c) => let val (cons, x) = if SS.member (cons, x) then (cons, "?" ^ x) else (SS.add (cons, x), x) in ((L'.SgiCon (x, n, k, c), loc) :: sgis, cons, vals, sgns, strs) end | L'.SgiDatatype dts => let fun doOne ((x, n, xs, xncs), (cons, vals)) = let val (cons, x) = if SS.member (cons, x) then (cons, "?" ^ x) else (SS.add (cons, x), x) val (xncs, vals) = ListUtil.foldlMap (fn ((x, n, t), vals) => if SS.member (vals, x) then (("?" ^ x, n, t), vals) else ((x, n, t), SS.add (vals, x))) vals xncs in ((x, n, xs, xncs), (cons, vals)) end val (dts, (cons, vals)) = ListUtil.foldlMap doOne (cons, vals) dts in ((L'.SgiDatatype dts, loc) :: sgis, cons, vals, sgns, strs) end | L'.SgiDatatypeImp (x, n, m1, ms, x', xs, xncs) => let val (cons, x) = if SS.member (cons, x) then (cons, "?" ^ x) else (SS.add (cons, x), x) in ((L'.SgiDatatypeImp (x, n, m1, ms, x', xs, xncs), loc) :: sgis, cons, vals, sgns, strs) end | L'.SgiVal (x, n, c) => let val (vals, x) = if SS.member (vals, x) then (vals, "?" ^ x) else (SS.add (vals, x), x) in ((L'.SgiVal (x, n, c), loc) :: sgis, cons, vals, sgns, strs) end | L'.SgiSgn (x, n, sgn) => let val (sgns, x) = if SS.member (sgns, x) then (sgns, "?" ^ x) else (SS.add (sgns, x), x) in ((L'.SgiSgn (x, n, sgn), loc) :: sgis, cons, vals, sgns, strs) end | L'.SgiStr (x, n, sgn) => let val (strs, x) = if SS.member (strs, x) then (strs, "?" ^ x) else (SS.add (strs, x), x) in ((L'.SgiStr (x, n, sgn), loc) :: sgis, cons, vals, sgns, strs) end | L'.SgiConstraint _ => ((sgi, loc) :: sgis, cons, vals, sgns, strs) | L'.SgiClassAbs (x, n, k) => let val (cons, x) = if SS.member (cons, x) then (cons, "?" ^ x) else (SS.add (cons, x), x) in ((L'.SgiClassAbs (x, n, k), loc) :: sgis, cons, vals, sgns, strs) end | L'.SgiClass (x, n, k, c) => let val (cons, x) = if SS.member (cons, x) then (cons, "?" ^ x) else (SS.add (cons, x), x) in ((L'.SgiClass (x, n, k, c), loc) :: sgis, cons, vals, sgns, strs) end) ([], SS.empty, SS.empty, SS.empty, SS.empty) sgis in ((L'.StrConst ds', loc), (L'.SgnConst sgis, loc), gs) end | L.StrVar x => (case E.lookupStr env x of NONE => (strError env (UnboundStr (loc, x)); (strerror, sgnerror, [])) | SOME (n, sgn) => ((L'.StrVar n, loc), sgn, [])) | L.StrProj (str, x) => let val (str', sgn, gs) = elabStr (env, denv) str in case E.projectStr env {str = str', sgn = sgn, field = x} of NONE => (strError env (UnboundStr (loc, x)); (strerror, sgnerror, [])) | SOME sgn => ((L'.StrProj (str', x), loc), sgn, gs) end | L.StrFun (m, dom, ranO, str) => let val (dom', gs1) = elabSgn (env, denv) dom val (env', n) = E.pushStrNamed env m dom' val denv' = dopenConstraints (loc, env', denv) {str = m, strs = []} val (str', actual, gs2) = elabStr (env', denv') str val (formal, gs3) = case ranO of NONE => (actual, []) | SOME ran => let val (ran', gs) = elabSgn (env', denv') ran in subSgn env' loc actual ran'; (ran', gs) end in ((L'.StrFun (m, n, dom', formal, str'), loc), (L'.SgnFun (m, n, dom', formal), loc), enD gs1 @ gs2 @ enD gs3) end | L.StrApp (str1, str2) => let val (str1', sgn1, gs1) = elabStr (env, denv) str1 val str2 = case sgn1 of (L'.SgnFun (_, _, dom, _), _) => let val s = wildifyStr env (str2, dom) in (*Print.preface ("Wild", SourcePrint.p_str s);*) s end | _ => str2 val (str2', sgn2, gs2) = elabStr (env, denv) str2 in case #1 (hnormSgn env sgn1) of L'.SgnError => (strerror, sgnerror, []) | L'.SgnFun (m, n, dom, ran) => (subSgn env loc sgn2 dom; case #1 (hnormSgn env ran) of L'.SgnError => (strerror, sgnerror, []) | L'.SgnConst sgis => ((L'.StrApp (str1', str2'), loc), (L'.SgnConst ((L'.SgiStr (m, n, selfifyAt env {str = str2', sgn = sgn2}), loc) :: sgis), loc), gs1 @ gs2) | _ => raise Fail "Unable to hnormSgn in functor application") | _ => (strError env (NotFunctor sgn1); (strerror, sgnerror, [])) end fun resolveClass env = E.resolveClass (hnormCon env) (consEq env dummy) env fun elabFile basis topStr topSgn env file = let val () = mayDelay := true val () = delayedUnifs := [] val () = delayedExhaustives := [] val (sgn, gs) = elabSgn (env, D.empty) (L.SgnConst basis, ErrorMsg.dummySpan) val () = case gs of [] => () | _ => (app (fn (_, env, _, c1, c2) => prefaces "Unresolved" [("c1", p_con env c1), ("c2", p_con env c2)]) gs; raise Fail "Unresolved disjointness constraints in Basis") val (env', basis_n) = E.pushStrNamed env "Basis" sgn val () = basis_r := basis_n val (ds, env') = dopen env' {str = basis_n, strs = [], sgn = sgn} fun discoverC r x = case E.lookupC env' x of E.NotBound => raise Fail ("Constructor " ^ x ^ " unbound in Basis") | E.Rel _ => raise Fail ("Constructor " ^ x ^ " bound relatively in Basis") | E.Named (n, (_, loc)) => r := (L'.CNamed n, loc) val () = discoverC int "int" val () = discoverC float "float" val () = discoverC string "string" val () = discoverC char "char" val () = discoverC table "sql_table" val (topSgn, gs) = elabSgn (env', D.empty) (L.SgnConst topSgn, ErrorMsg.dummySpan) val () = case gs of [] => () | _ => raise Fail "Unresolved disjointness constraints in top.urs" val (topStr, topSgn', gs) = elabStr (env', D.empty) (L.StrConst topStr, ErrorMsg.dummySpan) val () = case gs of [] => () | _ => app (fn Disjoint (loc, env, denv, c1, c2) => (case D.prove env denv (c1, c2, loc) of [] => () | _ => (prefaces "Unresolved constraint in top.ur" [("loc", PD.string (ErrorMsg.spanToString loc)), ("c1", p_con env c1), ("c2", p_con env c2)]; raise Fail "Unresolved constraint in top.ur")) | TypeClass (env, c, r, loc) => let val c = normClassKey env c in case resolveClass env c of SOME e => r := SOME e | NONE => expError env (Unresolvable (loc, c)) end) gs val () = subSgn env' ErrorMsg.dummySpan topSgn' topSgn val (env', top_n) = E.pushStrNamed env' "Top" topSgn val () = top_r := top_n val (ds', env') = dopen env' {str = top_n, strs = [], sgn = topSgn} fun elabDecl' (d, (env, gs)) = let val () = resetKunif () val () = resetCunif () val (ds, (env', _, gs)) = elabDecl (d, (env, D.empty, gs)) in (**) (ds, (env', gs)) end val (file, (env'', gs)) = ListUtil.foldlMapConcat elabDecl' (env', []) file fun oneSummaryRound () = if ErrorMsg.anyErrors () then () else let val delayed = !delayedUnifs in delayedUnifs := []; app (fn (loc, env, k, s1, s2) => unifySummaries env (loc, k, normalizeRecordSummary env s1, normalizeRecordSummary env s2)) delayed end val checkConstraintErrors = ref (fn () => ()) in oneSummaryRound (); if ErrorMsg.anyErrors () then () else let fun solver gs = let val (gs, solved) = ListUtil.foldlMapPartial (fn (g, solved) => case g of Disjoint (loc, env, denv, c1, c2) => (case D.prove env denv (c1, c2, loc) of [] => (NONE, true) | _ => (SOME g, solved)) | TypeClass (env, c, r, loc) => let fun default () = (SOME g, solved) val c = normClassKey env c in case resolveClass env c of SOME e => (r := SOME e; (NONE, true)) | NONE => case #1 (hnormCon env c) of L'.CApp (f, x) => (case (#1 (hnormCon env f), #1 (hnormCon env x)) of (L'.CKApp (f, _), L'.CRecord (k, xcs)) => (case #1 (hnormCon env f) of L'.CModProj (top_n', [], "folder") => if top_n' = top_n then let val e = (L'.EModProj (top_n, ["Folder"], "nil"), loc) val e = (L'.EKApp (e, k), loc) val (folder, _) = foldr (fn ((x, c), (folder, xcs)) => let val e = (L'.EModProj (top_n, ["Folder"], "cons"), loc) val e = (L'.EKApp (e, k), loc) val e = (L'.ECApp (e, (L'.CRecord (k, xcs), loc)), loc) val e = (L'.ECApp (e, x), loc) val e = (L'.ECApp (e, c), loc) val e = (L'.EApp (e, folder), loc) in (e, (x, c) :: xcs) end) (e, []) xcs in (r := SOME folder; (NONE, true)) end else default () | _ => default ()) | _ => default ()) | _ => default () end) false gs in case (gs, solved) of ([], _) => () | (_, true) => (oneSummaryRound (); solver gs) | _ => checkConstraintErrors := (fn () => app (fn Disjoint (loc, env, denv, c1, c2) => let val c1' = ElabOps.hnormCon env c1 val c2' = ElabOps.hnormCon env c2 fun isUnif (c, _) = case c of L'.CUnif _ => true | _ => false fun maybeAttr (c, _) = case c of L'.CRecord ((L'.KType, _), xts) => true | _ => false in ErrorMsg.errorAt loc "Couldn't prove field name disjointness"; eprefaces' [("Con 1", p_con env c1), ("Con 2", p_con env c2), ("Hnormed 1", p_con env c1'), ("Hnormed 2", p_con env c2')] (*app (fn (loc, env, k, s1, s2) => eprefaces' [("s1", p_summary env (normalizeRecordSummary env s1)), ("s2", p_summary env (normalizeRecordSummary env s2))]) (!delayedUnifs);*) end | TypeClass (env, c, r, loc) => expError env (Unresolvable (loc, c))) gs) end in solver gs end; mayDelay := false; if ErrorMsg.anyErrors () then () else (app (fn (loc, env, k, s1, s2) => unifySummaries env (loc, k, normalizeRecordSummary env s1, normalizeRecordSummary env s2) handle CUnify' err => (ErrorMsg.errorAt loc "Error in final record unification"; cunifyError env err)) (!delayedUnifs); delayedUnifs := []); if ErrorMsg.anyErrors () then () else ignore (List.exists (fn d => if kunifsInDecl d then (declError env'' (KunifsRemain [d]); true) else false) file); if ErrorMsg.anyErrors () then () else ignore (List.exists (fn d => case cunifsInDecl d of NONE => false | SOME _ => (declError env'' (CunifsRemain [d]); true)) file); if ErrorMsg.anyErrors () then () else app (fn all as (env, _, _, loc) => case exhaustive all of NONE => () | SOME p => expError env (Inexhaustive (loc, p))) (!delayedExhaustives); if ErrorMsg.anyErrors () then () else !checkConstraintErrors (); (*preface ("file", p_file env' file);*) if !dumpTypes then let open L' open Print.PD open Print fun dumpDecl (d, env) = case #1 d of DCon (x, _, k, _) => (print (box [string x, space, string "::", space, p_kind env k, newline, newline]); E.declBinds env d) | DVal (x, _, t, _) => (print (box [string x, space, string ":", space, p_con env t, newline, newline]); E.declBinds env d) | DValRec vis => (app (fn (x, _, t, _) => print (box [string x, space, string ":", space, p_con env t, newline, newline])) vis; E.declBinds env d) | DStr (x, _, _, str) => (print (box [string ("<" ^ x ^ ">"), newline, newline]); dumpStr (str, env); print (box [string ("</" ^ x ^ ">"), newline, newline]); E.declBinds env d) | _ => E.declBinds env d and dumpStr (str, env) = case #1 str of StrConst ds => ignore (foldl dumpDecl env ds) | _ => () in ignore (foldl dumpDecl env' file) end else (); (L'.DFfiStr ("Basis", basis_n, sgn), ErrorMsg.dummySpan) :: ds @ (L'.DStr ("Top", top_n, topSgn, topStr), ErrorMsg.dummySpan) :: ds' @ file end end