Mercurial > urweb
view src/iflow.sml @ 2072:d77b0665ba7c
Default to parsing time strings with the application-configured format
author | Adam Chlipala <adam@chlipala.net> |
---|---|
date | Sat, 20 Sep 2014 13:55:25 -0400 |
parents | 4d64af730e35 |
children | 70ec9bb337be |
line wrap: on
line source
(* Copyright (c) 2010, 2013, Adam Chlipala * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - The names of contributors may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. *) structure Iflow :> IFLOW = struct open Mono open Sql structure IS = IntBinarySet structure IM = IntBinaryMap structure SK = struct type ord_key = string val compare = String.compare end structure SS = BinarySetFn(SK) structure SM = BinaryMapFn(SK) val writers = ["htmlifyInt_w", "htmlifyFloat_w", "htmlifyString_w", "htmlifyBool_w", "htmlifyTime_w", "attrifyInt_w", "attrifyFloat_w", "attrifyString_w", "attrifyChar_w", "urlifyInt_w", "urlifyFloat_w", "urlifyString_w", "urlifyBool_w", "set_cookie"] val writers = SS.addList (SS.empty, writers) local open Print val string = PD.string in fun p_func f = string (case f of DtCon0 s => s | DtCon1 s => s | UnCon s => "un" ^ s | Other s => s) fun p_exp e = case e of Const p => Prim.p_t p | Var n => string ("x" ^ Int.toString n) | Lvar n => string ("X" ^ Int.toString n) | Func (f, es) => box [p_func f, string "(", p_list p_exp es, string ")"] | Recd xes => box [string "{", p_list (fn (x, e) => box [string x, space, string "=", space, p_exp e]) xes, string "}"] | Proj (e, x) => box [p_exp e, string ("." ^ x)] fun p_bop s es = case es of [e1, e2] => box [p_exp e1, space, string s, space, p_exp e2] | _ => raise Fail "Iflow.p_bop" fun p_reln r es = case r of Known => (case es of [e] => box [string "known(", p_exp e, string ")"] | _ => raise Fail "Iflow.p_reln: Known") | Sql s => box [string (s ^ "("), p_list p_exp es, string ")"] | PCon0 s => box [string (s ^ "("), p_list p_exp es, string ")"] | PCon1 s => box [string (s ^ "("), p_list p_exp es, string ")"] | Eq => p_bop "=" es | Ne => p_bop "<>" es | Lt => p_bop "<" es | Le => p_bop "<=" es | Gt => p_bop ">" es | Ge => p_bop ">=" es fun p_prop p = case p of True => string "True" | False => string "False" | Unknown => string "??" | And (p1, p2) => box [string "(", p_prop p1, string ")", space, string "&&", space, string "(", p_prop p2, string ")"] | Or (p1, p2) => box [string "(", p_prop p1, string ")", space, string "||", space, string "(", p_prop p2, string ")"] | Reln (r, es) => p_reln r es | Cond (e, p) => box [string "(", p_exp e, space, string "==", space, p_prop p, string ")"] end fun isKnown e = case e of Const _ => true | Func (_, es) => List.all isKnown es | Recd xes => List.all (isKnown o #2) xes | Proj (e, _) => isKnown e | _ => false fun simplify unif = let fun simplify e = case e of Const _ => e | Var _ => e | Lvar n => (case IM.find (unif, n) of NONE => e | SOME e => simplify e) | Func (f, es) => Func (f, map simplify es) | Recd xes => Recd (map (fn (x, e) => (x, simplify e)) xes) | Proj (e, s) => Proj (simplify e, s) in simplify end datatype atom = AReln of reln * exp list | ACond of exp * prop fun p_atom a = p_prop (case a of AReln x => Reln x | ACond x => Cond x) (* Congruence closure *) structure Cc :> sig type database exception Contradiction val database : unit -> database val clear : database -> unit val assert : database * atom -> unit val check : database * atom -> bool val p_database : database Print.printer val builtFrom : database * {Base : exp list, Derived : exp} -> bool val p_repOf : database -> exp Print.printer end = struct local val count = ref 0 in fun nodeId () = let val n = !count in count := n + 1; n end end exception Contradiction exception Undetermined structure CM = BinaryMapFn(struct type ord_key = Prim.t val compare = Prim.compare end) datatype node = Node of {Id : int, Rep : node ref option ref, Cons : node ref SM.map ref, Variety : variety, Known : bool ref, Ge : Int64.int option ref} and variety = Dt0 of string | Dt1 of string * node ref | Prim of Prim.t | Recrd of node ref SM.map ref * bool | Nothing type representative = node ref type database = {Vars : representative IM.map ref, Consts : representative CM.map ref, Con0s : representative SM.map ref, Records : (representative SM.map * representative) list ref, Funcs : ((string * representative list) * representative) list ref} fun database () = {Vars = ref IM.empty, Consts = ref CM.empty, Con0s = ref SM.empty, Records = ref [], Funcs = ref []} fun clear (t : database) = (#Vars t := IM.empty; #Consts t := CM.empty; #Con0s t := SM.empty; #Records t := []; #Funcs t := []) fun unNode n = case !n of Node r => r open Print val string = PD.string val newline = PD.newline fun p_rep n = case !(#Rep (unNode n)) of SOME n => p_rep n | NONE => box [string (Int.toString (#Id (unNode n)) ^ ":"), space, case #Variety (unNode n) of Nothing => string "?" | Dt0 s => string ("Dt0(" ^ s ^ ")") | Dt1 (s, n) => box[string ("Dt1(" ^ s ^ ","), space, p_rep n, string ")"] | Prim p => Prim.p_t p | Recrd (ref m, b) => box [string "{", p_list (fn (x, n) => box [string x, space, string "=", space, p_rep n]) (SM.listItemsi m), string "}", if b then box [space, string "(complete)"] else box []], if !(#Known (unNode n)) then string " (known)" else box [], case !(#Ge (unNode n)) of NONE => box [] | SOME n => string (" (>= " ^ Int64.toString n ^ ")")] fun p_database (db : database) = box [string "Vars:", newline, p_list_sep newline (fn (i, n) => box [string ("x" ^ Int.toString i), space, string "=", space, p_rep n]) (IM.listItemsi (!(#Vars db)))] fun repOf (n : representative) : representative = case !(#Rep (unNode n)) of NONE => n | SOME r => let val r = repOf r in #Rep (unNode n) := SOME r; r end fun markKnown r = let val r = repOf r in (*Print.preface ("markKnown", p_rep r);*) if !(#Known (unNode r)) then ()(*TextIO.print "Already known\n"*) else (#Known (unNode r) := true; SM.app markKnown (!(#Cons (unNode r))); case #Variety (unNode r) of Dt1 (_, r) => markKnown r | Recrd (xes, _) => SM.app markKnown (!xes) | _ => ()) end fun representative (db : database, e) = let fun rep e = case e of Const p => (case CM.find (!(#Consts db), p) of SOME r => repOf r | NONE => let val r = ref (Node {Id = nodeId (), Rep = ref NONE, Cons = ref SM.empty, Variety = Prim p, Known = ref true, Ge = ref (case p of Prim.Int n => SOME n | _ => NONE)}) in #Consts db := CM.insert (!(#Consts db), p, r); r end) | Var n => (case IM.find (!(#Vars db), n) of SOME r => repOf r | NONE => let val r = ref (Node {Id = nodeId (), Rep = ref NONE, Cons = ref SM.empty, Variety = Nothing, Known = ref false, Ge = ref NONE}) in #Vars db := IM.insert (!(#Vars db), n, r); r end) | Lvar _ => raise Undetermined | Func (DtCon0 f, []) => (case SM.find (!(#Con0s db), f) of SOME r => repOf r | NONE => let val r = ref (Node {Id = nodeId (), Rep = ref NONE, Cons = ref SM.empty, Variety = Dt0 f, Known = ref true, Ge = ref NONE}) in #Con0s db := SM.insert (!(#Con0s db), f, r); r end) | Func (DtCon0 _, _) => raise Fail "Iflow.rep: DtCon0" | Func (DtCon1 f, [e]) => let val r = rep e in case SM.find (!(#Cons (unNode r)), f) of SOME r => repOf r | NONE => let val r' = ref (Node {Id = nodeId (), Rep = ref NONE, Cons = ref SM.empty, Variety = Dt1 (f, r), Known = ref (!(#Known (unNode r))), Ge = ref NONE}) in #Cons (unNode r) := SM.insert (!(#Cons (unNode r)), f, r'); r' end end | Func (DtCon1 _, _) => raise Fail "Iflow.rep: DtCon1" | Func (UnCon f, [e]) => let val r = rep e in case #Variety (unNode r) of Dt1 (f', n) => if f' = f then repOf n else raise Contradiction | Nothing => let val cons = ref SM.empty val r' = ref (Node {Id = nodeId (), Rep = ref NONE, Cons = cons, Variety = Nothing, Known = ref (!(#Known (unNode r))), Ge = ref NONE}) val r'' = ref (Node {Id = nodeId (), Rep = ref NONE, Cons = #Cons (unNode r), Variety = Dt1 (f, r'), Known = #Known (unNode r), Ge = ref NONE}) in cons := SM.insert (!cons, f, r''); #Rep (unNode r) := SOME r''; r' end | _ => raise Contradiction end | Func (UnCon _, _) => raise Fail "Iflow.rep: UnCon" | Func (Other f, es) => let val rs = map rep es in case List.find (fn (x : string * representative list, _) => x = (f, rs)) (!(#Funcs db)) of NONE => let val r = ref (Node {Id = nodeId (), Rep = ref NONE, Cons = ref SM.empty, Variety = Nothing, Known = ref (f = "allow"), Ge = ref NONE}) in #Funcs db := ((f, rs), r) :: (!(#Funcs db)); r end | SOME (_, r) => repOf r end | Recd xes => let val xes = map (fn (x, e) => (x, rep e)) xes val len = length xes in case List.find (fn (xes', _) => SM.numItems xes' = len andalso List.all (fn (x, n) => case SM.find (xes', x) of NONE => false | SOME n' => n = repOf n') xes) (!(#Records db)) of SOME (_, r) => repOf r | NONE => let val xes = foldl SM.insert' SM.empty xes val r' = ref (Node {Id = nodeId (), Rep = ref NONE, Cons = ref SM.empty, Variety = Recrd (ref xes, true), Known = ref false, Ge = ref NONE}) in #Records db := (xes, r') :: (!(#Records db)); r' end end | Proj (e, f) => let val r = rep e in case #Variety (unNode r) of Recrd (xes, _) => (case SM.find (!xes, f) of SOME r => repOf r | NONE => let val r = ref (Node {Id = nodeId (), Rep = ref NONE, Cons = ref SM.empty, Variety = Nothing, Known = ref (!(#Known (unNode r))), Ge = ref NONE}) in xes := SM.insert (!xes, f, r); r end) | Nothing => let val r' = ref (Node {Id = nodeId (), Rep = ref NONE, Cons = ref SM.empty, Variety = Nothing, Known = ref (!(#Known (unNode r))), Ge = ref NONE}) val r'' = ref (Node {Id = nodeId (), Rep = ref NONE, Cons = #Cons (unNode r), Variety = Recrd (ref (SM.insert (SM.empty, f, r')), false), Known = #Known (unNode r), Ge = ref NONE}) in #Rep (unNode r) := SOME r''; r' end | _ => raise Contradiction end in rep e end fun p_repOf db e = p_rep (representative (db, e)) fun assert (db, a) = let fun markEq (r1, r2) = let val r1 = repOf r1 val r2 = repOf r2 in if r1 = r2 then () else case (#Variety (unNode r1), #Variety (unNode r2)) of (Prim p1, Prim p2) => if Prim.equal (p1, p2) then () else raise Contradiction | (Dt0 f1, Dt0 f2) => if f1 = f2 then () else raise Contradiction | (Dt1 (f1, r1), Dt1 (f2, r2)) => if f1 = f2 then markEq (r1, r2) else raise Contradiction | (Recrd (xes1, _), Recrd (xes2, _)) => let fun unif (xes1, xes2) = SM.appi (fn (x, r1) => case SM.find (!xes2, x) of NONE => xes2 := SM.insert (!xes2, x, r1) | SOME r2 => markEq (r1, r2)) (!xes1) in unif (xes1, xes2); unif (xes2, xes1) end | (Nothing, _) => mergeNodes (r1, r2) | (_, Nothing) => mergeNodes (r2, r1) | _ => raise Contradiction end and mergeNodes (r1, r2) = (#Rep (unNode r1) := SOME r2; if !(#Known (unNode r1)) then markKnown r2 else (); if !(#Known (unNode r2)) then markKnown r1 else (); #Cons (unNode r2) := SM.unionWith #1 (!(#Cons (unNode r2)), !(#Cons (unNode r1))); case !(#Ge (unNode r1)) of NONE => () | SOME n1 => case !(#Ge (unNode r2)) of NONE => #Ge (unNode r2) := SOME n1 | SOME n2 => #Ge (unNode r2) := SOME (Int64.max (n1, n2)); compactFuncs ()) and compactFuncs () = let fun loop funcs = case funcs of [] => [] | (fr as ((f, rs), r)) :: rest => let val rest = List.filter (fn ((f' : string, rs'), r') => if f' = f andalso ListPair.allEq (fn (r1, r2) => repOf r1 = repOf r2) (rs, rs') then (markEq (r, r'); false) else true) rest in fr :: loop rest end in #Funcs db := loop (!(#Funcs db)) end in case a of ACond _ => () | AReln x => case x of (Known, [e]) => ((*Print.prefaces "Before" [("e", p_exp e), ("db", p_database db)];*) markKnown (representative (db, e))(*; Print.prefaces "After" [("e", p_exp e), ("db", p_database db)]*)) | (PCon0 f, [e]) => let val r = representative (db, e) in case #Variety (unNode r) of Dt0 f' => if f = f' then () else raise Contradiction | Nothing => (case SM.find (!(#Con0s db), f) of SOME r' => markEq (r, r') | NONE => let val r' = ref (Node {Id = nodeId (), Rep = ref NONE, Cons = ref SM.empty, Variety = Dt0 f, Known = ref false, Ge = ref NONE}) in #Rep (unNode r) := SOME r'; #Con0s db := SM.insert (!(#Con0s db), f, r') end) | _ => raise Contradiction end | (PCon1 f, [e]) => let val r = representative (db, e) in case #Variety (unNode r) of Dt1 (f', e') => if f = f' then () else raise Contradiction | Nothing => let val cons = ref SM.empty val r'' = ref (Node {Id = nodeId (), Rep = ref NONE, Cons = cons, Variety = Nothing, Known = ref (!(#Known (unNode r))), Ge = ref NONE}) val r' = ref (Node {Id = nodeId (), Rep = ref NONE, Cons = ref SM.empty, Variety = Dt1 (f, r''), Known = #Known (unNode r), Ge = ref NONE}) in cons := SM.insert (!cons, f, r'); #Rep (unNode r) := SOME r' end | _ => raise Contradiction end | (Eq, [e1, e2]) => markEq (representative (db, e1), representative (db, e2)) | (Ge, [e1, e2]) => let val r1 = representative (db, e1) val r2 = representative (db, e2) in case !(#Ge (unNode (repOf r2))) of NONE => () | SOME n2 => case !(#Ge (unNode (repOf r1))) of NONE => #Ge (unNode (repOf r1)) := SOME n2 | SOME n1 => #Ge (unNode (repOf r1)) := SOME (Int64.max (n1, n2)) end | _ => () end handle Undetermined => () fun check (db, a) = (case a of ACond _ => false | AReln x => case x of (Known, [e]) => let fun isKnown r = let val r = repOf r in !(#Known (unNode r)) orelse case #Variety (unNode r) of Dt1 (_, r) => isKnown r | Recrd (xes, true) => List.all isKnown (SM.listItems (!xes)) | _ => false end val r = representative (db, e) in isKnown r end | (PCon0 f, [e]) => (case #Variety (unNode (representative (db, e))) of Dt0 f' => f' = f | _ => false) | (PCon1 f, [e]) => (case #Variety (unNode (representative (db, e))) of Dt1 (f', _) => f' = f | _ => false) | (Eq, [e1, e2]) => let val r1 = representative (db, e1) val r2 = representative (db, e2) in repOf r1 = repOf r2 end | (Ge, [e1, e2]) => let val r1 = representative (db, e1) val r2 = representative (db, e2) in case (!(#Ge (unNode (repOf r1))), #Variety (unNode (repOf r2))) of (SOME n1, Prim (Prim.Int n2)) => Int64.>= (n1, n2) | _ => false end | _ => false) handle Undetermined => false fun builtFrom (db, {Base = bs, Derived = d}) = let val bs = map (fn b => representative (db, b)) bs fun loop d = let val d = repOf d in !(#Known (unNode d)) orelse List.exists (fn b => repOf b = d) bs orelse (case #Variety (unNode d) of Dt0 _ => true | Dt1 (_, d) => loop d | Prim _ => true | Recrd (xes, _) => List.all loop (SM.listItems (!xes)) | Nothing => false) orelse List.exists (fn r => List.exists (fn b => repOf b = repOf r) bs) (SM.listItems (!(#Cons (unNode d)))) end fun decomp e = case e of Func (Other _, es) => List.all decomp es | _ => loop (representative (db, e)) in decomp d end handle Undetermined => false end val tabs = ref (SM.empty : (string list * string list list) SM.map) fun patCon pc = case pc of PConVar n => "C" ^ Int.toString n | PConFfi {mod = m, datatyp = d, con = c, ...} => m ^ "." ^ d ^ "." ^ c type check = exp * ErrorMsg.span structure St :> sig val reset : unit -> unit type stashed val stash : unit -> stashed val reinstate : stashed -> unit type stashedPath val stashPath : unit -> stashedPath val reinstatePath : stashedPath -> unit val nextVar : unit -> int val assert : atom list -> unit val addPath : check -> unit val allowSend : atom list * exp list -> unit val send : check -> unit val allowInsert : atom list -> unit val insert : ErrorMsg.span -> unit val allowDelete : atom list -> unit val delete : ErrorMsg.span -> unit val allowUpdate : atom list -> unit val update : ErrorMsg.span -> unit val havocReln : reln -> unit val havocCookie : string -> unit val check : atom -> bool val debug : unit -> unit end = struct val hnames = ref 1 type hyps = int * atom list * bool ref val db = Cc.database () val path = ref ([] : ((int * atom list) * check) option ref list) val hyps = ref (0, [] : atom list, ref false) val nvar = ref 0 fun setHyps (n', hs) = let val (n, _, _) = !hyps in if n' = n then () else (hyps := (n', hs, ref false); Cc.clear db; app (fn a => Cc.assert (db, a)) hs) end fun useKeys () = let val changed = ref false fun findKeys (hyps, acc) = case hyps of [] => rev acc | (a as AReln (Sql tab, [r1])) :: hyps => (case SM.find (!tabs, tab) of NONE => findKeys (hyps, a :: acc) | SOME (_, []) => findKeys (hyps, a :: acc) | SOME (_, ks) => let fun finder (hyps, acc) = case hyps of [] => rev acc | (a as AReln (Sql tab', [r2])) :: hyps => if tab' = tab andalso List.exists (List.all (fn f => let val r = Cc.check (db, AReln (Eq, [Proj (r1, f), Proj (r2, f)])) in (*Print.prefaces "Fs" [("tab", Print.PD.string tab), ("r1", p_exp (Proj (r1, f))), ("r2", p_exp (Proj (r2, f))), ("r", Print.PD.string (Bool.toString r))];*) r end)) ks then (changed := true; Cc.assert (db, AReln (Eq, [r1, r2])); finder (hyps, acc)) else finder (hyps, a :: acc) | a :: hyps => finder (hyps, a :: acc) val hyps = finder (hyps, []) in findKeys (hyps, a :: acc) end) | a :: hyps => findKeys (hyps, a :: acc) fun loop hs = let val hs = findKeys (hs, []) in if !changed then (changed := false; loop hs) else () end val (_, hs, _) = !hyps in (*print "useKeys\n";*) loop hs end fun complete () = let val (_, _, bf) = !hyps in if !bf then () else (bf := true; useKeys ()) end type stashed = int * ((int * atom list) * check) option ref list * (int * atom list) fun stash () = (!nvar, !path, (#1 (!hyps), #2 (!hyps))) fun reinstate (nv, p, h) = (nvar := nv; path := p; setHyps h) type stashedPath = ((int * atom list) * check) option ref list fun stashPath () = !path fun reinstatePath p = path := p fun nextVar () = let val n = !nvar in nvar := n + 1; n end fun assert ats = let val n = !hnames val (_, hs, _) = !hyps in hnames := n + 1; hyps := (n, ats @ hs, ref false); app (fn a => Cc.assert (db, a)) ats end fun addPath c = path := ref (SOME ((#1 (!hyps), #2 (!hyps)), c)) :: !path val sendable = ref ([] : (atom list * exp list) list) fun checkGoals goals k = let fun checkGoals goals unifs = case goals of [] => k unifs | AReln (Sql tab, [Lvar lv]) :: goals => let val saved = stash () val (_, hyps, _) = !hyps fun tryAll unifs hyps = case hyps of [] => false | AReln (Sql tab', [e]) :: hyps => (tab' = tab andalso checkGoals goals (IM.insert (unifs, lv, e))) orelse tryAll unifs hyps | _ :: hyps => tryAll unifs hyps in tryAll unifs hyps end | (g as AReln (r, es)) :: goals => (complete (); (if Cc.check (db, AReln (r, map (simplify unifs) es)) then true else ((*Print.preface ("Fail", p_atom (AReln (r, map (simplify unifs) es)));*) false)) andalso checkGoals goals unifs) | ACond _ :: _ => false in checkGoals goals IM.empty end fun buildable (e, loc) = let fun doPols pols acc = case pols of [] => let val b = Cc.builtFrom (db, {Base = acc, Derived = e}) in (*Print.prefaces "buildable" [("Base", Print.p_list p_exp acc), ("Derived", p_exp e), ("Hyps", Print.p_list p_atom (#2 (!hyps))), ("Good", Print.PD.string (Bool.toString b))];*) b end | (goals, es) :: pols => checkGoals goals (fn unifs => doPols pols (map (simplify unifs) es @ acc)) orelse doPols pols acc in if doPols (!sendable) [] then () else let val (_, hs, _) = !hyps in ErrorMsg.errorAt loc "The information flow policy may be violated here."; Print.prefaces "Situation" [("User learns", p_exp e), ("Hypotheses", Print.p_list p_atom hs), ("E-graph", Cc.p_database db)] end end fun checkPaths () = let val (n, hs, _) = !hyps val hs = (n, hs) in app (fn r => case !r of NONE => () | SOME (hs, e) => (r := NONE; setHyps hs; buildable e)) (!path); setHyps hs end fun allowSend v = ((*Print.prefaces "Allow" [("goals", Print.p_list p_atom (#1 v)), ("exps", Print.p_list p_exp (#2 v))];*) sendable := v :: !sendable) fun send (e, loc) = ((*Print.preface ("Send[" ^ Bool.toString uk ^ "]", p_exp e);*) complete (); checkPaths (); if isKnown e then () else buildable (e, loc)) fun doable pols (loc : ErrorMsg.span) = let val pols = !pols in complete (); if List.exists (fn goals => if checkGoals goals (fn _ => true) then ((*Print.prefaces "Match" [("goals", Print.p_list p_atom goals), ("hyps", Print.p_list p_atom (#2 (!hyps)))];*) true) else ((*Print.prefaces "No match" [("goals", Print.p_list p_atom goals)(*, ("hyps", Print.p_list p_atom (#2 (!hyps)))*)];*) false)) pols then () else let val (_, hs, _) = !hyps in ErrorMsg.errorAt loc "The database update policy may be violated here."; Print.prefaces "Situation" [("Hypotheses", Print.p_list p_atom hs)(*, ("E-graph", Cc.p_database db)*)] end end val insertable = ref ([] : atom list list) fun allowInsert v = insertable := v :: !insertable val insert = doable insertable val updatable = ref ([] : atom list list) fun allowUpdate v = updatable := v :: !updatable val update = doable updatable val deletable = ref ([] : atom list list) fun allowDelete v = deletable := v :: !deletable val delete = doable deletable fun reset () = (Cc.clear db; path := []; hyps := (0, [], ref false); nvar := 0; sendable := []; insertable := []; updatable := []; deletable := []) fun havocReln r = let val n = !hnames val (_, hs, _) = !hyps in hnames := n + 1; hyps := (n, List.filter (fn AReln (r', _) => r' <> r | _ => true) hs, ref false) end fun havocCookie cname = let val cname = "cookie/" ^ cname val n = !hnames val (_, hs, _) = !hyps in hnames := n + 1; hyps := (n, List.filter (fn AReln (Eq, [_, Func (Other f, [])]) => f <> cname | _ => true) hs, ref false) end fun check a = Cc.check (db, a) fun debug () = let val (_, hs, _) = !hyps in Print.preface ("Hyps", Print.p_list p_atom hs) end end fun removeDups (ls : (string * string) list) = case ls of [] => [] | x :: ls => let val ls = removeDups ls in if List.exists (fn x' => x' = x) ls then ls else x :: ls end fun deinj env e = case #1 e of ERel n => SOME (List.nth (env, n)) | EField (e, f) => (case deinj env e of NONE => NONE | SOME e => SOME (Proj (e, f))) | EApp ((EFfi mf, _), e) => if Settings.isEffectful mf orelse Settings.isBenignEffectful mf then NONE else (case deinj env e of NONE => NONE | SOME e => SOME (Func (Other (#1 mf ^ "." ^ #2 mf), [e]))) | _ => NONE fun expIn rv env rvOf = let fun expIn e = let fun default () = inl (rv ()) in case e of SqConst p => inl (Const p) | SqTrue => inl (Func (DtCon0 "Basis.bool.True", [])) | SqFalse => inl (Func (DtCon0 "Basis.bool.False", [])) | Null => inl (Func (DtCon0 "None", [])) | SqNot e => inr (case expIn e of inl e => Reln (Eq, [e, Func (DtCon0 "Basis.bool.False", [])]) | inr _ => Unknown) | Field (v, f) => inl (Proj (rvOf v, f)) | Computed _ => default () | Binop (bo, e1, e2) => let val e1 = expIn e1 val e2 = expIn e2 in inr (case (bo, e1, e2) of (Exps f, inl e1, inl e2) => f (e1, e2) | (Props f, v1, v2) => let fun pin v = case v of inl e => Reln (Eq, [e, Func (DtCon0 "Basis.bool.True", [])]) | inr p => p in f (pin v1, pin v2) end | _ => Unknown) end | SqKnown e => (case expIn e of inl e => inr (Reln (Known, [e])) | _ => inr Unknown) | Inj e => inl (case deinj env e of NONE => rv () | SOME e => e) | SqFunc (f, e) => (case expIn e of inl e => inl (Func (Other f, [e])) | _ => default ()) | Unmodeled => inl (Func (Other "allow", [rv ()])) end in expIn end fun decomp {Save = save, Restore = restore, Add = add} = let fun go p k = case p of True => (k () handle Cc.Contradiction => ()) | False => () | Unknown => () | And (p1, p2) => go p1 (fn () => go p2 k) | Or (p1, p2) => let val saved = save () in go p1 k; restore saved; go p2 k end | Reln x => (add (AReln x); k ()) | Cond x => (add (ACond x); k ()) in go end datatype queryMode = SomeCol of {New : (string * exp) option, Old : (string * exp) option, Outs : exp list} -> unit | AllCols of exp -> unit type 'a doQuery = { Env : exp list, NextVar : unit -> exp, Add : atom -> unit, Save : unit -> 'a, Restore : 'a -> unit, Cont : queryMode } fun doQuery (arg : 'a doQuery) (e as (_, loc)) = let fun default () = (ErrorMsg.errorAt loc "Information flow checker can't parse SQL query"; Print.preface ("Query", MonoPrint.p_exp MonoEnv.empty e)) in case parse query e of NONE => default () | SOME q => let fun doQuery q = case q of Query1 r => let val new = ref NONE val old = ref NONE val rvs = map (fn (tab, v) => let val nv = #NextVar arg () in case v of "New" => new := SOME (tab, nv) | "Old" => old := SOME (tab, nv) | _ => (); (v, nv) end) (#From r) fun rvOf v = case List.find (fn (v', _) => v' = v) rvs of NONE => raise Fail "Iflow.queryProp: Bad table variable" | SOME (_, e) => e val expIn = expIn (#NextVar arg) (#Env arg) rvOf val saved = #Save arg () fun addFrom () = app (fn (t, v) => #Add arg (AReln (Sql t, [rvOf v]))) (#From r) fun usedFields e = case e of SqConst _ => [] | SqTrue => [] | SqFalse => [] | Null => [] | SqNot e => usedFields e | Field (v, f) => [(false, Proj (rvOf v, f))] | Computed _ => [] | Binop (_, e1, e2) => usedFields e1 @ usedFields e2 | SqKnown _ => [] | Inj e => (case deinj (#Env arg) e of NONE => (ErrorMsg.errorAt loc "Expression injected into SQL is too complicated"; []) | SOME e => [(true, e)]) | SqFunc (_, e) => usedFields e | Unmodeled => [] fun normal' () = case #Cont arg of SomeCol k => let val sis = map (fn si => case si of SqField (v, f) => Proj (rvOf v, f) | SqExp (e, f) => case expIn e of inr _ => #NextVar arg () | inl e => e) (#Select r) in k {New = !new, Old = !old, Outs = sis} end | AllCols k => let val (ts, es) = foldl (fn (si, (ts, es)) => case si of SqField (v, f) => let val fs = getOpt (SM.find (ts, v), SM.empty) in (SM.insert (ts, v, SM.insert (fs, f, Proj (rvOf v, f))), es) end | SqExp (e, f) => let val e = case expIn e of inr _ => #NextVar arg () | inl e => e in (ts, SM.insert (es, f, e)) end) (SM.empty, SM.empty) (#Select r) in k (Recd (map (fn (t, fs) => (t, Recd (SM.listItemsi fs))) (SM.listItemsi ts) @ SM.listItemsi es)) end fun doWhere final = (addFrom (); case #Where r of NONE => final () | SOME e => let val p = case expIn e of inl e => Reln (Eq, [e, Func (DtCon0 "Basis.bool.True", [])]) | inr p => p val saved = #Save arg () in decomp {Save = #Save arg, Restore = #Restore arg, Add = #Add arg} p (fn () => final () handle Cc.Contradiction => ()); #Restore arg saved end) handle Cc.Contradiction => () fun normal () = doWhere normal' in (case #Select r of [SqExp (Binop (Exps bo, Count, SqConst (Prim.Int 0)), f)] => (case bo (Const (Prim.Int 1), Const (Prim.Int 2)) of Reln (Gt, [Const (Prim.Int 1), Const (Prim.Int 2)]) => (case #Cont arg of SomeCol _ => () | AllCols k => let fun answer e = k (Recd [(f, e)]) val saved = #Save arg () val () = (answer (Func (DtCon0 "Basis.bool.False", []))) handle Cc.Contradiction => () in #Restore arg saved; (*print "True time!\n";*) doWhere (fn () => answer (Func (DtCon0 "Basis.bool.True", []))); #Restore arg saved end) | _ => normal ()) | _ => normal ()) before #Restore arg saved end | Union (q1, q2) => let val saved = #Save arg () in doQuery q1; #Restore arg saved; doQuery q2; #Restore arg saved end in doQuery q end end fun evalPat env e (pt, _) = case pt of PWild => env | PVar _ => e :: env | PPrim _ => env | PCon (_, pc, NONE) => (St.assert [AReln (PCon0 (patCon pc), [e])]; env) | PCon (_, pc, SOME pt) => let val env = evalPat env (Func (UnCon (patCon pc), [e])) pt in St.assert [AReln (PCon1 (patCon pc), [e])]; env end | PRecord xpts => foldl (fn ((x, pt, _), env) => evalPat env (Proj (e, x)) pt) env xpts | PNone _ => (St.assert [AReln (PCon0 "None", [e])]; env) | PSome (_, pt) => let val env = evalPat env (Func (UnCon "Some", [e])) pt in St.assert [AReln (PCon1 "Some", [e])]; env end datatype arg_mode = Fixed | Decreasing | Arbitrary type rfun = {args : arg_mode list, tables : SS.set, cookies : SS.set, body : Mono.exp} val rfuns = ref (IM.empty : rfun IM.map) fun evalExp env (e as (_, loc)) k = let (*val () = St.debug ()*) (*val () = Print.preface ("evalExp", MonoPrint.p_exp MonoEnv.empty e)*) fun default () = k (Var (St.nextVar ())) fun doFfi (m, s, es) = if m = "Basis" andalso SS.member (writers, s) then let fun doArgs es = case es of [] => (if s = "set_cookie" then case es of [_, (cname, _), _, _, _] => (case #1 cname of EPrim (Prim.String (_, cname)) => St.havocCookie cname | _ => ()) | _ => () else (); k (Recd [])) | (e, _) :: es => evalExp env e (fn e => (St.send (e, loc); doArgs es)) in doArgs es end else if Settings.isEffectful (m, s) andalso not (Settings.isBenignEffectful (m, s)) then default () else let fun doArgs (es, acc) = case es of [] => k (Func (Other (m ^ "." ^ s), rev acc)) | (e, _) :: es => evalExp env e (fn e => doArgs (es, e :: acc)) in doArgs (es, []) end in case #1 e of EPrim p => k (Const p) | ERel n => k (List.nth (env, n)) | ENamed _ => default () | ECon (_, pc, NONE) => k (Func (DtCon0 (patCon pc), [])) | ECon (_, pc, SOME e) => evalExp env e (fn e => k (Func (DtCon1 (patCon pc), [e]))) | ENone _ => k (Func (DtCon0 "None", [])) | ESome (_, e) => evalExp env e (fn e => k (Func (DtCon1 "Some", [e]))) | EFfi _ => default () | EFfiApp ("Basis", "rand", []) => let val e = Var (St.nextVar ()) in St.assert [AReln (Known, [e])]; k e end | EFfiApp x => doFfi x | EApp ((EFfi (m, s), _), e) => doFfi (m, s, [(e, (TRecord [], loc))]) | EApp (e1 as (EError _, _), _) => evalExp env e1 k | EApp (e1, e2) => let fun adefault () = (ErrorMsg.errorAt loc "Excessively fancy function call"; Print.preface ("Call", MonoPrint.p_exp MonoEnv.empty e); default ()) fun doArgs (e, args) = case #1 e of EApp (e1, e2) => doArgs (e1, e2 :: args) | ENamed n => (case IM.find (!rfuns, n) of NONE => adefault () | SOME rf => if length (#args rf) <> length args then adefault () else let val () = (SS.app (St.havocReln o Sql) (#tables rf); SS.app St.havocCookie (#cookies rf)) val saved = St.stash () fun doArgs (args, modes, env') = case (args, modes) of ([], []) => (evalExp env' (#body rf) (fn _ => ()); St.reinstate saved; default ()) | (arg :: args, mode :: modes) => evalExp env arg (fn arg => let val v = case mode of Arbitrary => Var (St.nextVar ()) | Fixed => arg | Decreasing => let val v = Var (St.nextVar ()) in if St.check (AReln (Known, [arg])) then St.assert [(AReln (Known, [v]))] else (); v end in doArgs (args, modes, v :: env') end) | _ => raise Fail "Iflow.doArgs: Impossible" in doArgs (args, #args rf, []) end) | _ => adefault () in doArgs (e, []) end | EAbs _ => default () | EUnop (s, e1) => evalExp env e1 (fn e1 => k (Func (Other s, [e1]))) | EBinop (_, s, e1, e2) => evalExp env e1 (fn e1 => evalExp env e2 (fn e2 => k (Func (Other s, [e1, e2])))) | ERecord xets => let fun doFields (xes, acc) = case xes of [] => k (Recd (rev acc)) | (x, e, _) :: xes => evalExp env e (fn e => doFields (xes, (x, e) :: acc)) in doFields (xets, []) end | EField (e, s) => evalExp env e (fn e => k (Proj (e, s))) | ECase (e, pes, {result = res, ...}) => evalExp env e (fn e => if List.all (fn (_, (EWrite (EPrim _, _), _)) => true | _ => false) pes then (St.send (e, loc); k (Recd [])) else (St.addPath (e, loc); app (fn (p, pe) => let val saved = St.stash () in let val env = evalPat env e p in evalExp env pe k; St.reinstate saved end handle Cc.Contradiction => St.reinstate saved end) pes)) | EStrcat (e1, e2) => evalExp env e1 (fn e1 => evalExp env e2 (fn e2 => k (Func (Other "cat", [e1, e2])))) | EError (e, _) => evalExp env e (fn e => St.send (e, loc)) | EReturnBlob {blob = NONE, ...} => raise Fail "Iflow doesn't support blob optimization" | EReturnBlob {blob = SOME b, mimeType = m, ...} => evalExp env b (fn b => (St.send (b, loc); evalExp env m (fn m => St.send (m, loc)))) | ERedirect (e, _) => evalExp env e (fn e => St.send (e, loc)) | EWrite e => evalExp env e (fn e => (St.send (e, loc); k (Recd []))) | ESeq (e1, e2) => let val path = St.stashPath () in evalExp env e1 (fn _ => (St.reinstatePath path; evalExp env e2 k)) end | ELet (_, _, e1, e2) => evalExp env e1 (fn e1 => evalExp (e1 :: env) e2 k) | EClosure (n, es) => let fun doArgs (es, acc) = case es of [] => k (Func (Other ("Cl" ^ Int.toString n), rev acc)) | e :: es => evalExp env e (fn e => doArgs (es, e :: acc)) in doArgs (es, []) end | EQuery {query = q, body = b, initial = i, state = state, ...} => evalExp env i (fn i => let val r = Var (St.nextVar ()) val acc = Var (St.nextVar ()) val (ts, cs) = MonoUtil.Exp.fold {typ = fn (_, st) => st, exp = fn (e, st as (cs, ts)) => case e of EDml (e, _) => (case parse dml e of NONE => st | SOME c => case c of Insert _ => st | Delete (tab, _) => (cs, SS.add (ts, tab)) | Update (tab, _, _) => (cs, SS.add (ts, tab))) | EFfiApp ("Basis", "set_cookie", [_, ((EPrim (Prim.String (_, cname)), _), _), _, _, _]) => (SS.add (cs, cname), ts) | _ => st} (SS.empty, SS.empty) b in case (#1 state, SS.isEmpty ts, SS.isEmpty cs) of (TRecord [], true, true) => () | _ => let val saved = St.stash () in (k i) handle Cc.Contradiction => (); St.reinstate saved end; SS.app (St.havocReln o Sql) ts; SS.app St.havocCookie cs; doQuery {Env = env, NextVar = Var o St.nextVar, Add = fn a => St.assert [a], Save = St.stash, Restore = St.reinstate, Cont = AllCols (fn x => (St.assert [AReln (Eq, [r, x])]; evalExp (acc :: r :: env) b k))} q end) | EDml (e, _) => (case parse dml e of NONE => (print ("Warning: Information flow checker can't parse DML command at " ^ ErrorMsg.spanToString loc ^ "\n"); default ()) | SOME d => case d of Insert (tab, es) => let val new = St.nextVar () val expIn = expIn (Var o St.nextVar) env (fn _ => raise Fail "Iflow.evalExp: Bad field expression in INSERT [1]") val es = map (fn (x, e) => case expIn e of inl e => (x, e) | inr _ => raise Fail "Iflow.evalExp: Bad field expression in INSERT [2]") es val saved = St.stash () in St.assert [AReln (Sql (tab ^ "$New"), [Recd es])]; St.insert loc; St.reinstate saved; St.assert [AReln (Sql tab, [Recd es])]; k (Recd []) end | Delete (tab, e) => let val old = St.nextVar () val expIn = expIn (Var o St.nextVar) env (fn "T" => Var old | _ => raise Fail "Iflow.evalExp: Bad field expression in DELETE") val p = case expIn e of inl e => raise Fail "Iflow.evalExp: DELETE with non-boolean" | inr p => p val saved = St.stash () in St.assert [AReln (Sql (tab ^ "$Old"), [Var old]), AReln (Sql (tab), [Var old])]; decomp {Save = St.stash, Restore = St.reinstate, Add = fn a => St.assert [a]} p (fn () => (St.delete loc; St.reinstate saved; St.havocReln (Sql tab); k (Recd [])) handle Cc.Contradiction => ()) end | Update (tab, fs, e) => let val new = St.nextVar () val old = St.nextVar () val expIn = expIn (Var o St.nextVar) env (fn "T" => Var old | _ => raise Fail "Iflow.evalExp: Bad field expression in UPDATE") val fs = map (fn (x, e) => (x, case expIn e of inl e => e | inr _ => raise Fail ("Iflow.evalExp: Selecting " ^ "boolean expression"))) fs val fs' = case SM.find (!tabs, tab) of NONE => raise Fail "Iflow.evalExp: Updating unknown table" | SOME (fs', _) => fs' val fs = foldl (fn (f, fs) => if List.exists (fn (f', _) => f' = f) fs then fs else (f, Proj (Var old, f)) :: fs) fs fs' val p = case expIn e of inl e => raise Fail "Iflow.evalExp: UPDATE with non-boolean" | inr p => p val saved = St.stash () in St.assert [AReln (Sql (tab ^ "$New"), [Recd fs]), AReln (Sql (tab ^ "$Old"), [Var old]), AReln (Sql tab, [Var old])]; decomp {Save = St.stash, Restore = St.reinstate, Add = fn a => St.assert [a]} p (fn () => (St.update loc; St.reinstate saved; St.havocReln (Sql tab); k (Recd [])) handle Cc.Contradiction => ()) end) | ENextval (EPrim (Prim.String (_, seq)), _) => let val nv = St.nextVar () in St.assert [AReln (Sql (String.extract (seq, 3, NONE)), [Var nv])]; k (Var nv) end | ENextval _ => default () | ESetval _ => default () | EUnurlify ((EFfiApp ("Basis", "get_cookie", [((EPrim (Prim.String (_, cname)), _), _)]), _), _, _) => let val e = Var (St.nextVar ()) val e' = Func (Other ("cookie/" ^ cname), []) in St.assert [AReln (Known, [e]), AReln (Eq, [e, e'])]; k e end | EUnurlify _ => default () | EJavaScript _ => default () | ESignalReturn _ => default () | ESignalBind _ => default () | ESignalSource _ => default () | EServerCall _ => default () | ERecv _ => default () | ESleep _ => default () | ESpawn _ => default () end datatype var_source = Input of int | SubInput of int | Unknown structure U = MonoUtil fun mliftExpInExp by = U.Exp.mapB {typ = fn t => t, exp = fn bound => fn e => case e of ERel xn => if xn < bound then e else ERel (xn + by) | _ => e, bind = fn (bound, U.Exp.RelE _) => bound + 1 | (bound, _) => bound} fun nameSubexps k (e : Mono.exp) = let fun numParams (e : Mono.exp) = case #1 e of EStrcat (e1, e2) => numParams e1 + numParams e2 | EPrim (Prim.String _) => 0 | _ => 1 val nps = numParams e fun getParams (e : Mono.exp) x = case #1 e of EStrcat (e1, e2) => let val (ps1, e1') = getParams e1 x val (ps2, e2') = getParams e2 (x - length ps1) in (ps2 @ ps1, (EStrcat (e1', e2'), #2 e)) end | EPrim (Prim.String _) => ([], e) | _ => let val (e', k) = case #1 e of EFfiApp (m, f, [(e', t)]) => if Settings.isEffectful (m, f) orelse Settings.isBenignEffectful (m, f) then (e, fn x => x) else (e', fn e' => (EFfiApp (m, f, [(e', t)]), #2 e)) | ECase (e', ps as [((PCon (_, PConFfi {mod = "Basis", con = "True", ...}, NONE), _), (EPrim (Prim.String (_, "TRUE")), _)), ((PCon (_, PConFfi {mod = "Basis", con = "False", ...}, NONE), _), (EPrim (Prim.String (_, "FALSE")), _))], q) => (e', fn e' => (ECase (e', ps, q), #2 e)) | _ => (e, fn x => x) in ([e'], k (ERel x, #2 e)) end val (ps, e') = getParams e (nps - 1) val string = (TFfi ("Basis", "string"), #2 e) val (e', _) = foldl (fn (p, (e', liftBy)) => ((ELet ("p" ^ Int.toString liftBy, string, mliftExpInExp liftBy 0 p, e'), #2 e), liftBy - 1)) (k (nps, e'), nps - 1) ps in #1 e' end val namer = MonoUtil.File.map {typ = fn t => t, exp = fn e => case e of EDml (e, fm) => nameSubexps (fn (_, e') => (EDml (e', fm), #2 e)) e | EQuery {exps, tables, state, query, body, initial} => nameSubexps (fn (liftBy, e') => (EQuery {exps = exps, tables = tables, state = state, query = e', body = mliftExpInExp liftBy 2 body, initial = mliftExpInExp liftBy 0 initial}, #2 query)) query | _ => e, decl = fn d => d} fun check (file : file) = let val () = (St.reset (); rfuns := IM.empty) (*val () = Print.preface ("FilePre", MonoPrint.p_file MonoEnv.empty file)*) val file = MonoReduce.reduce file val file = MonoOpt.optimize file val file = Fuse.fuse file val file = MonoOpt.optimize file val file = MonoShake.shake file val file = namer file (*val () = Print.preface ("File", MonoPrint.p_file MonoEnv.empty file)*) val exptd = foldl (fn ((d, _), exptd) => case d of DExport (_, _, n, _, _, _) => IS.add (exptd, n) | _ => exptd) IS.empty (#1 file) fun decl (d, loc) = case d of DTable (tab, fs, pk, _) => let val ks = case #1 pk of EPrim (Prim.String (_, s)) => (case String.tokens (fn ch => ch = #"," orelse ch = #" ") s of [] => [] | pk => [pk]) | _ => [] in if size tab >= 3 then tabs := SM.insert (!tabs, String.extract (tab, 3, NONE), (map #1 fs, map (map (fn s => str (Char.toUpper (String.sub (s, 3))) ^ String.extract (s, 4, NONE))) ks)) else raise Fail "Table name does not begin with uw_" end | DVal (x, n, _, e, _) => let (*val () = print ("\n=== " ^ x ^ " ===\n\n");*) val isExptd = IS.member (exptd, n) val saved = St.stash () fun deAbs (e, env, ps) = case #1 e of EAbs (_, _, _, e) => let val nv = Var (St.nextVar ()) in deAbs (e, nv :: env, if isExptd then AReln (Known, [nv]) :: ps else ps) end | _ => (e, env, ps) val (e, env, ps) = deAbs (e, [], []) in St.assert ps; (evalExp env e (fn _ => ()) handle Cc.Contradiction => ()); St.reinstate saved end | DValRec [(x, n, _, e, _)] => let val tables = ref SS.empty val cookies = ref SS.empty fun deAbs (e, env, modes) = case #1 e of EAbs (_, _, _, e) => deAbs (e, Input (length env) :: env, ref Fixed :: modes) | _ => (e, env, rev modes) val (e, env, modes) = deAbs (e, [], []) fun doExp env (e as (_, loc)) = case #1 e of EPrim _ => e | ERel _ => e | ENamed _ => e | ECon (_, _, NONE) => e | ECon (dk, pc, SOME e) => (ECon (dk, pc, SOME (doExp env e)), loc) | ENone _ => e | ESome (t, e) => (ESome (t, doExp env e), loc) | EFfi _ => e | EFfiApp (m, f, es) => (case (m, f, es) of ("Basis", "set_cookie", [_, ((EPrim (Prim.String (_, cname)), _), _), _, _, _]) => cookies := SS.add (!cookies, cname) | _ => (); (EFfiApp (m, f, map (fn (e, t) => (doExp env e, t)) es), loc)) | EApp (e1, e2) => let fun default () = (EApp (doExp env e1, doExp env e2), loc) fun explore (e, args) = case #1 e of EApp (e1, e2) => explore (e1, e2 :: args) | ENamed n' => if n' = n then let fun doArgs (pos, args, modes) = case (args, modes) of ((e1, _) :: args, m1 :: modes) => (case e1 of ERel n => (case List.nth (env, n) of Input pos' => if pos' = pos then () else m1 := Arbitrary | SubInput pos' => if pos' = pos then if !m1 = Arbitrary then () else m1 := Decreasing else m1 := Arbitrary | Unknown => m1 := Arbitrary) | _ => m1 := Arbitrary; doArgs (pos + 1, args, modes)) | (_ :: _, []) => () | ([], ms) => app (fn m => m := Arbitrary) ms in doArgs (0, args, modes); (EFfi ("Basis", "?"), loc) end else default () | _ => default () in explore (e, []) end | EAbs (x, t1, t2, e) => (EAbs (x, t1, t2, doExp (Unknown :: env) e), loc) | EUnop (uo, e1) => (EUnop (uo, doExp env e1), loc) | EBinop (bi, bo, e1, e2) => (EBinop (bi, bo, doExp env e1, doExp env e2), loc) | ERecord xets => (ERecord (map (fn (x, e, t) => (x, doExp env e, t)) xets), loc) | EField (e1, f) => (EField (doExp env e1, f), loc) | ECase (e, pes, ts) => let val source = case #1 e of ERel n => (case List.nth (env, n) of Input n => SOME n | SubInput n => SOME n | Unknown => NONE) | _ => NONE fun doV v = let fun doPat (p, env) = case #1 p of PWild => env | PVar _ => v :: env | PPrim _ => env | PCon (_, _, NONE) => env | PCon (_, _, SOME p) => doPat (p, env) | PRecord xpts => foldl (fn ((_, p, _), env) => doPat (p, env)) env xpts | PNone _ => env | PSome (_, p) => doPat (p, env) in (ECase (e, map (fn (p, e) => (p, doExp (doPat (p, env)) e)) pes, ts), loc) end in case source of NONE => doV Unknown | SOME inp => doV (SubInput inp) end | EStrcat (e1, e2) => (EStrcat (doExp env e1, doExp env e2), loc) | EError (e1, t) => (EError (doExp env e1, t), loc) | EReturnBlob {blob = NONE, mimeType = m, t} => (EReturnBlob {blob = NONE, mimeType = doExp env m, t = t}, loc) | EReturnBlob {blob = SOME b, mimeType = m, t} => (EReturnBlob {blob = SOME (doExp env b), mimeType = doExp env m, t = t}, loc) | ERedirect (e1, t) => (ERedirect (doExp env e1, t), loc) | EWrite e1 => (EWrite (doExp env e1), loc) | ESeq (e1, e2) => (ESeq (doExp env e1, doExp env e2), loc) | ELet (x, t, e1, e2) => (ELet (x, t, doExp env e1, doExp (Unknown :: env) e2), loc) | EClosure (n, es) => (EClosure (n, map (doExp env) es), loc) | EQuery {exps, tables, state, query, body, initial} => (EQuery {exps = exps, tables = tables, state = state, query = doExp env query, body = doExp (Unknown :: Unknown :: env) body, initial = doExp env initial}, loc) | EDml (e1, mode) => (case parse dml e1 of NONE => () | SOME c => case c of Insert _ => () | Delete (tab, _) => tables := SS.add (!tables, tab) | Update (tab, _, _) => tables := SS.add (!tables, tab); (EDml (doExp env e1, mode), loc)) | ENextval e1 => (ENextval (doExp env e1), loc) | ESetval (e1, e2) => (ESetval (doExp env e1, doExp env e2), loc) | EUnurlify (e1, t, b) => (EUnurlify (doExp env e1, t, b), loc) | EJavaScript (m, e) => (EJavaScript (m, doExp env e), loc) | ESignalReturn _ => e | ESignalBind _ => e | ESignalSource _ => e | EServerCall _ => e | ERecv _ => e | ESleep _ => e | ESpawn _ => e val e = doExp env e in rfuns := IM.insert (!rfuns, n, {tables = !tables, cookies = !cookies, args = map (fn r => !r) modes, body = e}) end | DValRec _ => ErrorMsg.errorAt loc "Iflow can't check mutually-recursive functions yet." | DPolicy pol => let val rvN = ref 0 fun rv () = let val n = !rvN in rvN := n + 1; Lvar n end val atoms = ref ([] : atom list) fun doQ k = doQuery {Env = [], NextVar = rv, Add = fn a => atoms := a :: !atoms, Save = fn () => !atoms, Restore = fn ls => atoms := ls, Cont = SomeCol (fn r => k (rev (!atoms), r))} fun untab (tab, nams) = List.filter (fn AReln (Sql tab', [Lvar lv]) => tab' <> tab orelse List.all (fn Lvar lv' => lv' <> lv | _ => false) nams | _ => true) in case pol of PolClient e => doQ (fn (ats, {Outs = es, ...}) => St.allowSend (ats, es)) e | PolInsert e => doQ (fn (ats, {New = SOME (tab, new), ...}) => St.allowInsert (AReln (Sql (tab ^ "$New"), [new]) :: untab (tab, [new]) ats) | _ => raise Fail "Iflow: No New in mayInsert policy") e | PolDelete e => doQ (fn (ats, {Old = SOME (tab, old), ...}) => St.allowDelete (AReln (Sql (tab ^ "$Old"), [old]) :: untab (tab, [old]) ats) | _ => raise Fail "Iflow: No Old in mayDelete policy") e | PolUpdate e => doQ (fn (ats, {New = SOME (tab, new), Old = SOME (_, old), ...}) => St.allowUpdate (AReln (Sql (tab ^ "$Old"), [old]) :: AReln (Sql (tab ^ "$New"), [new]) :: untab (tab, [new, old]) ats) | _ => raise Fail "Iflow: No New or Old in mayUpdate policy") e | PolSequence e => (case #1 e of EPrim (Prim.String (_, seq)) => let val p = AReln (Sql (String.extract (seq, 3, NONE)), [Lvar 0]) val outs = [Lvar 0] in St.allowSend ([p], outs) end | _ => ()) end | _ => () in app decl (#1 file) end val check = fn file => let val oldInline = Settings.getMonoInline () val oldFull = !MonoReduce.fullMode in (Settings.setMonoInline (case Int.maxInt of NONE => 1000000 | SOME n => n); MonoReduce.fullMode := true; check file; Settings.setMonoInline oldInline) handle ex => (Settings.setMonoInline oldInline; MonoReduce.fullMode := oldFull; raise ex) end end