view src/sql.sml @ 1739:c414850f206f

Add support for -boot flag, which allows in-tree execution of Ur/Web The boot flag rewrites most hardcoded paths to point to the build directory, and also forces static compilation. This is convenient for developing Ur/Web, or if you cannot 'sudo make install' Ur/Web. The following changes were made: * Header files were moved to include/urweb instead of include; this lets FFI users point their C_INCLUDE_PATH at this directory at write <urweb/urweb.h>. For internal Ur/Web executables, we simply pass -I$PATH/include/urweb as normal. * Differentiate between LIB and SRCLIB; SRCLIB is Ur and JavaScript source files, while LIB is compiled products from libtool. For in-tree compilation these live in different places. * No longer reference Config for paths; instead use Settings; these settings can be changed dynamically by Compiler.enableBoot () (TODO: add a disableBoot function.) * config.h is now generated directly in include/urweb/config.h, for consistency's sake (especially since it gets installed along with the rest of the headers!) * All of the autotools build products got updated. * The linkStatic field in protocols now only contains the name of the build product, and not the absolute path. Future users have to be careful not to reference the Settings files to early, lest they get an old version (this was the source of two bugs during development of this patch.)
author Edward Z. Yang <ezyang@mit.edu>
date Wed, 02 May 2012 17:17:57 -0400
parents cb0f05bdc183
children 4d64af730e35 606af2c9b828
line wrap: on
line source
structure Sql = struct

open Mono

val debug = ref false

type lvar = int

datatype func =
         DtCon0 of string
       | DtCon1 of string
       | UnCon of string
       | Other of string

datatype exp =
         Const of Prim.t
       | Var of int
       | Lvar of lvar
       | Func of func * exp list
       | Recd of (string * exp) list
       | Proj of exp * string

datatype reln =
         Known
       | Sql of string
       | PCon0 of string
       | PCon1 of string
       | Eq
       | Ne
       | Lt
       | Le
       | Gt
       | Ge

datatype prop =
         True
       | False
       | Unknown
       | And of prop * prop
       | Or of prop * prop
       | Reln of reln * exp list
       | Cond of exp * prop

datatype chunk =
         String of string
       | Exp of Mono.exp

fun chunkify e =
    case #1 e of
        EPrim (Prim.String s) => [String s]
      | EStrcat (e1, e2) =>
        let
            val chs1 = chunkify e1
            val chs2 = chunkify e2
        in
            case chs2 of
                String s2 :: chs2' =>
                (case List.last chs1 of
                     String s1 => List.take (chs1, length chs1 - 1) @ String (s1 ^ s2) :: chs2'
                   | _ => chs1 @ chs2)
              | _ => chs1 @ chs2
        end
      | _ => [Exp e]

type 'a parser = chunk list -> ('a * chunk list) option

fun always v chs = SOME (v, chs)

fun parse p s =
    case p (chunkify s) of
        SOME (v, []) => SOME v
      | _ => NONE

fun const s chs =
    case chs of
        String s' :: chs => if String.isPrefix s s' then
                                SOME ((), if size s = size s' then
                                              chs
                                          else
                                              String (String.extract (s', size s, NONE)) :: chs)
                            else
                                NONE
      | _ => NONE

fun follow p1 p2 chs =
    case p1 chs of
        NONE => NONE
      | SOME (v1, chs) =>
        case p2 chs of
            NONE => NONE
          | SOME (v2, chs) => SOME ((v1, v2), chs)

fun wrap p f chs =
    case p chs of
        NONE => NONE
      | SOME (v, chs) => SOME (f v, chs)

fun wrapP p f chs =
    case p chs of
        NONE => NONE
      | SOME (v, chs) =>
        case f v of
            NONE => NONE
          | SOME r => SOME (r, chs)

fun alt p1 p2 chs =
    case p1 chs of
        NONE => p2 chs
      | v => v

fun altL ps =
    case rev ps of
        [] => (fn _ => NONE)
      | p :: ps =>
        foldl (fn (p1, p2) => alt p1 p2) p ps

fun opt p chs =
    case p chs of
        NONE => SOME (NONE, chs)
      | SOME (v, chs) => SOME (SOME v, chs)

fun skip cp chs =
    case chs of
        String "" :: chs => skip cp chs
      | String s :: chs' => if cp (String.sub (s, 0)) then
                                skip cp (String (String.extract (s, 1, NONE)) :: chs')
                            else
                                SOME ((), chs)
      | _ => SOME ((), chs)

fun keep cp chs =
    case chs of
        String "" :: chs => keep cp chs
      | String s :: chs' =>
        let
            val (befor, after) = Substring.splitl cp (Substring.full s)
        in
            if Substring.isEmpty befor then
                NONE
            else
                SOME (Substring.string befor,
                      if Substring.isEmpty after then
                          chs'
                      else
                          String (Substring.string after) :: chs')
        end
      | _ => NONE

fun ws p = wrap (follow (skip (fn ch => ch = #" "))
                        (follow p (skip (fn ch => ch = #" ")))) (#1 o #2)

fun log name p chs =
    (if !debug then
         (print (name ^ ": ");
          app (fn String s => print s
                | _ => print "???") chs;
          print "\n")
     else
         ();
     p chs)

fun list p chs =
    altL [wrap (follow p (follow (ws (const ",")) (list p)))
               (fn (v, ((), ls)) => v :: ls),
          wrap (ws p) (fn v => [v]),
          always []] chs

val ident = keep (fn ch => Char.isAlphaNum ch orelse ch = #"_")

val t_ident = wrapP ident (fn s => if String.isPrefix "T_" s then
                                       SOME (String.extract (s, 2, NONE))
                                   else
                                       NONE)
val uw_ident = wrapP ident (fn s => if String.isPrefix "uw_" s andalso size s >= 4 then
                                        SOME (str (Char.toUpper (String.sub (s, 3)))
                                              ^ String.extract (s, 4, NONE))
                                    else
                                        NONE)

val field = wrap (follow t_ident
                         (follow (const ".")
                                 uw_ident))
                 (fn (t, ((), f)) => (t, f))

datatype Rel =
         Exps of exp * exp -> prop
       | Props of prop * prop -> prop

datatype sqexp =
         SqConst of Prim.t
       | SqTrue
       | SqFalse
       | SqNot of sqexp
       | Field of string * string
       | Computed of string
       | Binop of Rel * sqexp * sqexp
       | SqKnown of sqexp
       | Inj of Mono.exp
       | SqFunc of string * sqexp
       | Unmodeled
       | Null

fun cmp s r = wrap (const s) (fn () => Exps (fn (e1, e2) => Reln (r, [e1, e2])))

val sqbrel = altL [cmp "=" Eq,
                   cmp "<>" Ne,
                   cmp "<=" Le,
                   cmp "<" Lt,
                   cmp ">=" Ge,
                   cmp ">" Gt,
                   wrap (const "AND") (fn () => Props And),
                   wrap (const "OR") (fn () => Props Or)]

datatype ('a, 'b) sum = inl of 'a | inr of 'b

fun string chs =
    case chs of
        String s :: chs =>
        if size s >= 2 andalso String.sub (s, 0) = #"'" then
            let
                fun loop (cs, acc) =
                    case cs of
                        [] => NONE
                      | c :: cs =>
                        if c = #"'" then
                            SOME (String.implode (rev acc), cs)
                        else if c = #"\\" then
                            case cs of
                                c :: cs => loop (cs, c :: acc)
                              | _ => raise Fail "Iflow.string: Unmatched backslash escape"
                        else
                            loop (cs, c :: acc)
            in
                case loop (String.explode (String.extract (s, 1, NONE)), []) of
                    NONE => NONE
                  | SOME (s, []) => SOME (s, chs)
                  | SOME (s, cs) => SOME (s, String (String.implode cs) :: chs)
            end
        else
            NONE
      | _ => NONE                            

val prim =
    altL [wrap (follow (wrapP (follow (keep Char.isDigit) (follow (const ".") (keep Char.isDigit)))
                              (fn (x, ((), y)) => Option.map Prim.Float (Real64.fromString (x ^ "." ^ y))))
                       (opt (const "::float8"))) #1,
          wrap (follow (wrapP (keep Char.isDigit)
                              (Option.map Prim.Int o Int64.fromString))
                       (opt (const "::int8"))) #1,
          wrap (follow (opt (const "E")) (follow string (opt (const "::text"))))
               (Prim.String o #1 o #2)]

fun known' chs =
    case chs of
        Exp (EFfi ("Basis", "sql_known"), _) :: chs => SOME ((), chs)
      | _ => NONE

fun sqlify chs =
    case chs of
        Exp (EFfiApp ("Basis", f, [(e, _)]), _) :: chs =>
        if String.isPrefix "sqlify" f then
            SOME (e, chs)
        else
            NONE
      | Exp (ECase (e, [((PCon (_, PConFfi {mod = "Basis", con = "True", ...}, NONE), _),
                         (EPrim (Prim.String "TRUE"), _)),
                        ((PCon (_, PConFfi {mod = "Basis", con = "False", ...}, NONE), _),
                         (EPrim (Prim.String "FALSE"), _))], _), _) :: chs =>
        SOME (e, chs)
                          
      | _ => NONE

fun constK s = wrap (const s) (fn () => s)

val funcName = altL [constK "COUNT",
                     constK "MIN",
                     constK "MAX",
                     constK "SUM",
                     constK "AVG"]

val unmodeled = altL [const "COUNT(*)",
                      const "CURRENT_TIMESTAMP"]

fun sqexp chs =
    log "sqexp"
    (altL [wrap prim SqConst,
           wrap (const "TRUE") (fn () => SqTrue),
           wrap (const "FALSE") (fn () => SqFalse),
           wrap (const "NULL") (fn () => Null),
           wrap field Field,
           wrap uw_ident Computed,
           wrap known SqKnown,
           wrap func SqFunc,
           wrap unmodeled (fn () => Unmodeled),
           wrap sqlify Inj,
           wrap (follow (const "COALESCE(") (follow sqexp (follow (const ",")
                                                                  (follow (keep (fn ch => ch <> #")")) (const ")")))))
                (fn ((), (e, _)) => e),
           wrap (follow (const "(NOT ") (follow sqexp (const ")")))
                (fn ((), (e, _)) => SqNot e),
           wrap (follow (ws (const "("))
                        (follow (wrap
                                     (follow sqexp
                                             (alt
                                                  (wrap
                                                       (follow (ws sqbrel)
                                                               (ws sqexp))
                                                       inl)
                                                  (always (inr ()))))
                                     (fn (e1, sm) =>
                                         case sm of
                                             inl (bo, e2) => Binop (bo, e1, e2)
                                           | inr () => e1))
                                (const ")")))
                (fn ((), (e, ())) => e)])
    chs

and known chs = wrap (follow known' (follow (const "(") (follow sqexp (const ")"))))
                     (fn ((), ((), (e, ()))) => e) chs
                
and func chs = wrap (follow funcName (follow (const "(") (follow sqexp (const ")"))))
                    (fn (f, ((), (e, ()))) => (f, e)) chs

datatype sitem =
         SqField of string * string
       | SqExp of sqexp * string

val sitem = alt (wrap (follow sqexp (follow (const " AS ") uw_ident))
                      (fn (e, ((), s)) => SqExp (e, s)))
                (wrap field SqField)

val select = log "select"
             (wrap (follow (const "SELECT ") (list sitem))
                   (fn ((), ls) => ls))

val fitem = wrap (follow uw_ident
                         (follow (const " AS ")
                                 t_ident))
                 (fn (t, ((), f)) => (t, f))

val from = log "from"
           (wrap (follow (const "FROM ") (list fitem))
                 (fn ((), ls) => ls))

val wher = wrap (follow (ws (const "WHERE ")) sqexp)
           (fn ((), ls) => ls)

type query1 = {Select : sitem list,
              From : (string * string) list,
              Where : sqexp option}

val query1 = log "query1"
                (wrap (follow (follow select from) (opt wher))
                      (fn ((fs, ts), wher) => {Select = fs, From = ts, Where = wher}))

datatype query =
         Query1 of query1
       | Union of query * query

val orderby = log "orderby"
              (wrap (follow (ws (const "ORDER BY "))
                            (follow (list sqexp)
                                    (opt (ws (const "DESC")))))
                    ignore)

fun query chs = log "query"
                (wrap
                     (follow
                          (alt (wrap (follow (const "((")
                                             (follow query
                                                     (follow (const ") UNION (")
                                                             (follow query (const "))")))))
                                     (fn ((), (q1, ((), (q2, ())))) => Union (q1, q2)))
                               (wrap query1 Query1))
                          (opt orderby))
                     #1)
                chs

datatype dml =
         Insert of string * (string * sqexp) list
       | Delete of string * sqexp
       | Update of string * (string * sqexp) list * sqexp

val insert = log "insert"
             (wrapP (follow (const "INSERT INTO ")
                            (follow uw_ident
                                    (follow (const " (")
                                            (follow (list uw_ident)
                                                    (follow (const ") VALUES (")
                                                            (follow (list sqexp)
                                                                    (const ")")))))))
              (fn ((), (tab, ((), (fs, ((), (es, ())))))) =>
                  (SOME (tab, ListPair.zipEq (fs, es)))
                  handle ListPair.UnequalLengths => NONE))

val delete = log "delete"
                 (wrap (follow (const "DELETE FROM ")
                               (follow uw_ident
                                       (follow (const " AS T_T WHERE ")
                                               sqexp)))
                       (fn ((), (tab, ((), es))) => (tab, es)))

val setting = log "setting"
              (wrap (follow uw_ident (follow (const " = ") sqexp))
               (fn (f, ((), e)) => (f, e)))

val update = log "update"
                 (wrap (follow (const "UPDATE ")
                               (follow uw_ident
                                       (follow (const " AS T_T SET ")
                                               (follow (list setting)
                                                       (follow (ws (const "WHERE "))
                                                               sqexp)))))
                       (fn ((), (tab, ((), (fs, ((), e))))) =>
                           (tab, fs, e)))

val dml = log "dml"
              (altL [wrap insert Insert,
                     wrap delete Delete,
                     wrap update Update])

datatype querydml =
         Query of query
       | Dml of dml

val querydml = log "querydml" (altL [wrap dml Dml, wrap query Query])

end