Mercurial > urweb
view src/sqlcache.sml @ 2285:ad3ce1528f71
Fix committing multiple stores/flushes. Locking is WIP.
author | Ziv Scully <ziv@mit.edu> |
---|---|
date | Thu, 12 Nov 2015 16:36:35 -0500 |
parents | b7615e0ac4b0 |
children | 0bdfec16a01d |
line wrap: on
line source
structure Sqlcache :> SQLCACHE = struct open Mono structure IK = struct type ord_key = int val compare = Int.compare end structure IS = IntBinarySet structure IM = IntBinaryMap structure SK = struct type ord_key = string val compare = String.compare end structure SS = BinarySetFn(SK) structure SM = BinaryMapFn(SK) structure SIMM = MultimapFn(structure KeyMap = SM structure ValSet = IS) (* ASK: how do we deal with heap reallocation? *) fun id x = x fun iterate f n x = if n < 0 then raise Fail "Can't iterate function negative number of times." else if n = 0 then x else iterate f (n-1) (f x) (* Filled in by [addFlushing]. *) val ffiInfoRef : {index : int, params : int} list ref = ref [] fun resetFfiInfo () = ffiInfoRef := [] fun getFfiInfo () = !ffiInfoRef (* Some FFIs have writing as their only effect, which the caching records. *) val ffiEffectful = (* ASK: how can this be less hard-coded? *) let val okayWrites = SS.fromList ["htmlifyInt_w", "htmlifyFloat_w", "htmlifyString_w", "htmlifyBool_w", "htmlifyTime_w", "attrifyInt_w", "attrifyFloat_w", "attrifyString_w", "attrifyChar_w", "urlifyInt_w", "urlifyFloat_w", "urlifyString_w", "urlifyBool_w", "urlifyChannel_w"] in (* ASK: is it okay to hardcode Sqlcache functions as effectful? *) fn (m, f) => Settings.isEffectful (m, f) andalso not (m = "Basis" andalso SS.member (okayWrites, f)) end val cacheRef = ref LruCache.cache fun setCache c = cacheRef := c fun getCache () = !cacheRef val alwaysConsolidateRef = ref true fun setAlwaysConsolidate b = alwaysConsolidateRef := b fun getAlwaysConsolidate () = !alwaysConsolidateRef (* Used to have type context for local variables in MonoUtil functions. *) val doBind = fn (env, MonoUtil.Exp.RelE (x, t)) => MonoEnv.pushERel env x t NONE | (env, MonoUtil.Exp.NamedE (x, n, t, eo, s)) => MonoEnv.pushENamed env x n t eo s | (env, MonoUtil.Exp.Datatype (x, n, cs)) => MonoEnv.pushDatatype env x n cs val dummyLoc = ErrorMsg.dummySpan (* DEBUG *) fun printExp msg exp = Print.preface ("SQLCACHE: " ^ msg ^ ":", MonoPrint.p_exp MonoEnv.empty exp) fun printExp' msg exp' = printExp msg (exp', dummyLoc) fun printTyp msg typ = Print.preface ("SQLCACHE: " ^ msg ^ ":", MonoPrint.p_typ MonoEnv.empty typ) fun printTyp' msg typ' = printTyp msg (typ', dummyLoc) fun obindDebug printer (x, f) = case x of NONE => NONE | SOME x' => case f x' of NONE => (printer (); NONE) | y => y (*********************) (* General Utilities *) (*********************) (* From the MLton wiki. *) infix 3 <\ fun x <\ f = fn y => f (x, y) (* Left section *) infix 3 \> fun f \> y = f y (* Left application *) fun mapFst f (x, y) = (f x, y) (* Option monad. *) fun obind (x, f) = Option.mapPartial f x fun oguard (b, x) = if b then x else NONE fun omap f = fn SOME x => SOME (f x) | _ => NONE fun omap2 f = fn (SOME x, SOME y) => SOME (f (x,y)) | _ => NONE fun osequence ys = List.foldr (omap2 op::) (SOME []) ys fun indexOf test = let fun f n = fn [] => NONE | (x::xs) => if test x then SOME n else f (n+1) xs in f 0 end (*******************) (* Effect Analysis *) (*******************) (* Makes an exception for [EWrite] (which is recorded when caching). *) fun effectful (effs : IS.set) = let val isFunction = fn (TFun _, _) => true | _ => false fun doExp (env, e) = case e of EPrim _ => false (* For now: variables of function type might be effectful, but others are fully evaluated and are therefore not effectful. *) | ERel n => isFunction (#2 (MonoEnv.lookupERel env n)) | ENamed n => IS.member (effs, n) | EFfi (m, f) => ffiEffectful (m, f) | EFfiApp (m, f, _) => ffiEffectful (m, f) (* These aren't effectful unless a subexpression is. *) | ECon _ => false | ENone _ => false | ESome _ => false | EApp _ => false | EAbs _ => false | EUnop _ => false | EBinop _ => false | ERecord _ => false | EField _ => false | ECase _ => false | EStrcat _ => false (* EWrite is a special exception because we record writes when caching. *) | EWrite _ => false | ESeq _ => false | ELet _ => false | EUnurlify _ => false (* ASK: what should we do about closures? *) (* Everything else is some sort of effect. We could flip this and explicitly list bits of Mono that are effectful, but this is conservatively robust to future changes (however unlikely). *) | _ => true in MonoUtil.Exp.existsB {typ = fn _ => false, exp = doExp, bind = doBind} end (* TODO: test this. *) fun effectfulDecls (decls, _) = let fun doVal ((_, name, _, e, _), effs) = if effectful effs MonoEnv.empty e then IS.add (effs, name) else effs val doDecl = fn ((DVal v, _), effs) => doVal (v, effs) (* Repeat the list of declarations a number of times equal to its size, making sure effectfulness propagates everywhere it should. This is analagous to the Bellman-Ford algorithm. *) | ((DValRec vs, _), effs) => List.foldl doVal effs (List.concat (List.map (fn _ => vs) vs)) (* ASK: any other cases? *) | (_, effs) => effs in List.foldl doDecl IS.empty decls end (*********************************) (* Boolean Formula Normalization *) (*********************************) datatype junctionType = Conj | Disj datatype 'atom formula = Atom of 'atom | Negate of 'atom formula | Combo of junctionType * 'atom formula list (* Guaranteed to have all negation pushed to the atoms. *) datatype 'atom formula' = Atom' of 'atom | Combo' of junctionType * 'atom formula' list val flipJt = fn Conj => Disj | Disj => Conj fun concatMap f xs = List.concat (map f xs) val rec cartesianProduct : 'a list list -> 'a list list = fn [] => [[]] | (xs :: xss) => concatMap (fn ys => concatMap (fn x => [x :: ys]) xs) (cartesianProduct xss) (* Pushes all negation to the atoms.*) fun pushNegate (normalizeAtom : bool * 'atom -> 'atom) (negating : bool) = fn Atom x => Atom' (normalizeAtom (negating, x)) | Negate f => pushNegate normalizeAtom (not negating) f | Combo (j, fs) => Combo' (if negating then flipJt j else j, map (pushNegate normalizeAtom negating) fs) val rec flatten = fn Combo' (_, [f]) => flatten f | Combo' (j, fs) => Combo' (j, List.foldr (fn (f, acc) => case f of Combo' (j', fs') => if j = j' orelse length fs' = 1 then fs' @ acc else f :: acc | _ => f :: acc) [] (map flatten fs)) | f => f (* [simplify] operates on the desired normal form. E.g., if [junc] is [Disj], consider the list of lists to be a disjunction of conjunctions. *) fun normalize' (simplify : 'a list list -> 'a list list) (junc : junctionType) = let fun norm junc = simplify o (fn Atom' x => [[x]] | Combo' (j, fs) => let val fss = map (norm junc) fs in if j = junc then List.concat fss else map List.concat (cartesianProduct fss) end) in norm junc end fun normalize simplify normalizeAtom junc = normalize' simplify junc o flatten o pushNegate normalizeAtom false fun mapFormula mf = fn Atom x => Atom (mf x) | Negate f => Negate (mapFormula mf f) | Combo (j, fs) => Combo (j, map (mapFormula mf) fs) fun mapFormulaExps mf = mapFormula (fn (cmp, e1, e2) => (cmp, mf e1, mf e2)) (****************) (* SQL Analysis *) (****************) structure CmpKey = struct type ord_key = Sql.cmp val compare = fn (Sql.Eq, Sql.Eq) => EQUAL | (Sql.Eq, _) => LESS | (_, Sql.Eq) => GREATER | (Sql.Ne, Sql.Ne) => EQUAL | (Sql.Ne, _) => LESS | (_, Sql.Ne) => GREATER | (Sql.Lt, Sql.Lt) => EQUAL | (Sql.Lt, _) => LESS | (_, Sql.Lt) => GREATER | (Sql.Le, Sql.Le) => EQUAL | (Sql.Le, _) => LESS | (_, Sql.Le) => GREATER | (Sql.Gt, Sql.Gt) => EQUAL | (Sql.Gt, _) => LESS | (_, Sql.Gt) => GREATER | (Sql.Ge, Sql.Ge) => EQUAL end val rec chooseTwos : 'a list -> ('a * 'a) list = fn [] => [] | x :: ys => map (fn y => (x, y)) ys @ chooseTwos ys fun removeRedundant madeRedundantBy zs = let fun removeRedundant' (xs, ys) = case xs of [] => ys | x :: xs' => removeRedundant' (xs', if List.exists (fn y => madeRedundantBy (x, y)) (xs' @ ys) then ys else x :: ys) in removeRedundant' (zs, []) end datatype atomExp = QueryArg of int | DmlRel of int | Prim of Prim.t | Field of string * string structure AtomExpKey : ORD_KEY = struct type ord_key = atomExp val compare = fn (QueryArg n1, QueryArg n2) => Int.compare (n1, n2) | (QueryArg _, _) => LESS | (_, QueryArg _) => GREATER | (DmlRel n1, DmlRel n2) => Int.compare (n1, n2) | (DmlRel _, _) => LESS | (_, DmlRel _) => GREATER | (Prim p1, Prim p2) => Prim.compare (p1, p2) | (Prim _, _) => LESS | (_, Prim _) => GREATER | (Field (t1, f1), Field (t2, f2)) => case String.compare (t1, t2) of EQUAL => String.compare (f1, f2) | ord => ord end structure AtomOptionKey = OptionKeyFn(AtomExpKey) val rec tablesOfQuery = fn Sql.Query1 {From = tablePairs, ...} => SS.fromList (map #1 tablePairs) | Sql.Union (q1, q2) => SS.union (tablesOfQuery q1, tablesOfQuery q2) val tableOfDml = fn Sql.Insert (tab, _) => tab | Sql.Delete (tab, _) => tab | Sql.Update (tab, _, _) => tab val freeVars = MonoUtil.Exp.foldB {typ = #2, exp = fn (bound, ERel n, vars) => if n < bound then vars else IS.add (vars, n - bound) | (_, _, vars) => vars, bind = fn (bound, MonoUtil.Exp.RelE _) => bound + 1 | (bound, _) => bound} 0 IS.empty (* A path is a number of field projections of a variable. *) type path = int * string list structure PK = PairKeyFn(structure I = IK structure J = ListKeyFn(SK)) structure PS = BinarySetFn(PK) val pathOfExp = let fun readFields acc exp = acc <\obind\> (fn fs => case #1 exp of ERel n => SOME (n, fs) | EField (exp, f) => readFields (SOME (f::fs)) exp | _ => NONE) in readFields (SOME []) end fun expOfPath (n, fs) = List.foldl (fn (f, exp) => (EField (exp, f), dummyLoc)) (ERel n, dummyLoc) fs fun freePaths'' bound exp paths = case pathOfExp (exp, dummyLoc) of NONE => paths | SOME (n, fs) => if n < bound then paths else PS.add (paths, (n - bound, fs)) (* ASK: nicer way? :( *) fun freePaths' bound exp = case #1 exp of EPrim _ => id | e as ERel _ => freePaths'' bound e | ENamed _ => id | ECon (_, _, data) => (case data of NONE => id | SOME e => freePaths' bound e) | ENone _ => id | ESome (_, e) => freePaths' bound e | EFfi _ => id | EFfiApp (_, _, args) => List.foldl (fn ((e, _), acc) => freePaths' bound e o acc) id args | EApp (e1, e2) => freePaths' bound e1 o freePaths' bound e2 | EAbs (_, _, _, e) => freePaths' (bound + 1) e | EUnop (_, e) => freePaths' bound e | EBinop (_, _, e1, e2) => freePaths' bound e1 o freePaths' bound e2 | ERecord fields => List.foldl (fn ((_, e, _), acc) => freePaths' bound e o acc) id fields | e as EField _ => freePaths'' bound e | ECase (e, cases, _) => List.foldl (fn ((p, e), acc) => freePaths' (MonoEnv.patBindsN p + bound) e o acc) (freePaths' bound e) cases | EStrcat (e1, e2) => freePaths' bound e1 o freePaths' bound e2 | EError (e, _) => freePaths' bound e | EReturnBlob {blob, mimeType = e, ...} => freePaths' bound e o (case blob of NONE => id | SOME e => freePaths' bound e) | ERedirect (e, _) => freePaths' bound e | EWrite e => freePaths' bound e | ESeq (e1, e2) => freePaths' bound e1 o freePaths' bound e2 | ELet (_, _, e1, e2) => freePaths' bound e1 o freePaths' (bound + 1) e2 | EClosure (_, es) => List.foldl (fn (e, acc) => freePaths' bound e o acc) id es | EQuery {query = e1, body = e2, initial = e3, ...} => freePaths' bound e1 o freePaths' (bound + 2) e2 o freePaths' bound e3 | EDml (e, _) => freePaths' bound e | ENextval e => freePaths' bound e | ESetval (e1, e2) => freePaths' bound e1 o freePaths' bound e2 | EUnurlify (e, _, _) => freePaths' bound e | EJavaScript (_, e) => freePaths' bound e | ESignalReturn e => freePaths' bound e | ESignalBind (e1, e2) => freePaths' bound e1 o freePaths' bound e2 | ESignalSource e => freePaths' bound e | EServerCall (e, _, _, _) => freePaths' bound e | ERecv (e, _) => freePaths' bound e | ESleep e => freePaths' bound e | ESpawn e => freePaths' bound e fun freePaths exp = freePaths' 0 exp PS.empty datatype unbind = Known of exp | Unknowns of int datatype cacheArg = AsIs of exp | Urlify of exp structure InvalInfo :> sig type t type state = {tableToIndices : SIMM.multimap, indexToInvalInfo : (t * int) IntBinaryMap.map, ffiInfo : {index : int, params : int} list, index : int} val empty : t val singleton : Sql.query -> t val query : t -> Sql.query val orderArgs : t * Mono.exp -> cacheArg list val unbind : t * unbind -> t option val union : t * t -> t val updateState : t * int * state -> state end = struct (* Variable, field projections, possible wrapped sqlification FFI call. *) type sqlArg = path * (string * string * typ) option type subst = sqlArg IM.map (* TODO: store free variables as well? *) type t = (Sql.query * subst) list type state = {tableToIndices : SIMM.multimap, indexToInvalInfo : (t * int) IntBinaryMap.map, ffiInfo : {index : int, params : int} list, index : int} structure AK = PairKeyFn( structure I = PK structure J = OptionKeyFn(TripleKeyFn( structure I = SK structure J = SK structure K = struct type ord_key = Mono.typ val compare = MonoUtil.Typ.compare end))) structure AM = BinaryMapFn(AK) (* Traversal Utilities *) (* TODO: get rid of unused ones. *) (* Need lift', etc. because we don't have rank-2 polymorphism. This should probably use a functor (an ML one, not Haskell) but works for now. *) fun traverseSqexp (pure, _, lift, _, lift'', lift2, _) f = let val rec tr = fn Sql.SqNot se => lift Sql.SqNot (tr se) | Sql.Binop (r, se1, se2) => lift2 (fn (trse1, trse2) => Sql.Binop (r, trse1, trse2)) (tr se1, tr se2) | Sql.SqKnown se => lift Sql.SqKnown (tr se) | Sql.Inj (e', loc) => lift'' (fn fe' => Sql.Inj (fe', loc)) (f e') | Sql.SqFunc (s, se) => lift (fn trse => Sql.SqFunc (s, trse)) (tr se) | se => pure se in tr end fun traverseQuery (ops as (_, pure', _, lift', _, _, lift2')) f = let val rec mp = fn Sql.Query1 q => (case #Where q of NONE => pure' (Sql.Query1 q) | SOME se => lift' (fn mpse => Sql.Query1 {Select = #Select q, From = #From q, Where = SOME mpse}) (traverseSqexp ops f se)) | Sql.Union (q1, q2) => lift2' Sql.Union (mp q1, mp q2) in mp end (* Include unused tuple elements in argument for convenience of using same argument as [traverseQuery]. *) fun traverseIM (pure, _, _, _, _, lift2, _) f = IM.foldli (fn (k, v, acc) => lift2 (fn (acc, w) => IM.insert (acc, k, w)) (acc, f (k,v))) (pure IM.empty) fun traverseSubst (ops as (_, pure', lift, _, _, _, lift2')) f = let fun mp ((n, fields), sqlify) = lift (fn ((n', fields'), sqlify') => let fun wrap sq = ((n', fields' @ fields), sq) in case (fields', sqlify', fields, sqlify) of (_, NONE, _, NONE) => wrap NONE | (_, NONE, _, sq as SOME _) => wrap sq (* Last case should suffice because we don't project from a sqlified value (which is a string). *) | (_, sq as SOME _, [], NONE) => wrap sq | _ => raise Match end) (f n) in traverseIM ops (fn (_, v) => mp v) end fun monoidOps plus zero = (fn _ => zero, fn _ => zero, fn _ => fn x => x, fn _ => fn x => x, fn _ => fn x => x, fn _ => plus, fn _ => plus) val optionOps = (SOME, SOME, omap, omap, omap, omap2, omap2) fun foldMapQuery plus zero = traverseQuery (monoidOps plus zero) val omapQuery = traverseQuery optionOps fun foldMapIM plus zero = traverseIM (monoidOps plus zero) fun omapIM f = traverseIM optionOps f fun foldMapSubst plus zero = traverseSubst (monoidOps plus zero) fun omapSubst f = traverseSubst optionOps f val varsOfQuery = foldMapQuery IS.union IS.empty (fn e' => freeVars (e', dummyLoc)) fun varsOfSubst subst = foldMapSubst IS.union IS.empty IS.singleton subst val varsOfList = fn [] => IS.empty | (q::qs) => varsOfQuery (List.foldl Sql.Union q qs) (* Signature Implementation *) val empty = [] fun singleton q = [(q, IS.foldl (fn (n, acc) => IM.insert (acc, n, ((n, []), NONE))) IM.empty (varsOfQuery q))] val union = op@ fun sqlArgsMap (qs : t) = let val args = List.foldl (fn ((q, subst), acc) => IM.foldl (fn (arg, acc) => AM.insert (acc, arg, ())) acc subst) AM.empty qs val countRef = ref (~1) fun count () = (countRef := !countRef + 1; !countRef) in (* Maps each arg to a different consecutive integer, starting from 0. *) AM.map count args end fun expOfArg (path, sqlify) = let val exp = expOfPath path in case sqlify of NONE => exp | SOME (m, x, typ) => (EFfiApp (m, x, [(exp, typ)]), dummyLoc) end fun orderArgs (qs : t, exp) = let val paths = freePaths exp fun erel n = (ERel n, dummyLoc) val argsMap = sqlArgsMap qs val args = map (expOfArg o #1) (AM.listItemsi argsMap) val invalPaths = List.foldl PS.union PS.empty (map freePaths args) in (* Put arguments we might invalidate by first. *) map AsIs args (* TODO: make sure these variables are okay to remove from the argument list. *) @ map (Urlify o expOfPath) (PS.listItems (PS.difference (paths, invalPaths))) end (* As a kludge, we rename the variables in the query to correspond to the argument of the cache they're part of. *) fun query (qs : t) = let val argsMap = sqlArgsMap qs fun substitute subst = fn ERel n => IM.find (subst, n) <\obind\> (fn arg => AM.find (argsMap, arg) <\obind\> (fn n' => SOME (ERel n'))) | _ => raise Match in case (map #1 qs) of (q :: qs) => let val q = List.foldl Sql.Union q qs val ns = IS.listItems (varsOfQuery q) val rename = fn ERel n => omap ERel (indexOf (fn n' => n' = n) ns) | _ => raise Match in case omapQuery rename q of SOME q => q (* We should never get NONE because indexOf should never fail. *) | NONE => raise Match end (* We should never reach this case because [updateState] won't put anything in the state if there are no queries. *) | [] => raise Match end val argOfExp = let fun doFields acc exp = acc <\obind\> (fn (fs, sqlify) => case #1 exp of ERel n => SOME (n, fs, sqlify) | EField (exp, f) => doFields (SOME (f::fs, sqlify)) exp | _ => NONE) in fn (EFfiApp ("Basis", x, [(exp, typ)]), _) => if String.isPrefix "sqlify" x then omap (fn path => (path, SOME ("Basis", x, typ))) (pathOfExp exp) else NONE | exp => omap (fn path => (path, NONE)) (pathOfExp exp) end val unbind1 = fn Known e => let val replacement = argOfExp e in omapSubst (fn 0 => replacement | n => SOME ((n-1, []), NONE)) end | Unknowns k => omapSubst (fn n => if n < k then NONE else SOME ((n-k, []), NONE)) fun unbind (qs, ub) = case ub of (* Shortcut if nothing's changing. *) Unknowns 0 => SOME qs | _ => osequence (map (fn (q, subst) => unbind1 ub subst <\obind\> (fn subst' => SOME (q, subst'))) qs) fun updateState (qs, numArgs, state as {index, ...} : state) = {tableToIndices = List.foldr (fn ((q, _), acc) => SS.foldl (fn (tab, acc) => SIMM.insert (acc, tab, index)) acc (tablesOfQuery q)) (#tableToIndices state) qs, indexToInvalInfo = IM.insert (#indexToInvalInfo state, index, (qs, numArgs)), ffiInfo = {index = index, params = numArgs} :: #ffiInfo state, index = index + 1} end structure UF = UnionFindFn(AtomExpKey) val rec sqexpToFormula = fn Sql.SqTrue => Combo (Conj, []) | Sql.SqFalse => Combo (Disj, []) | Sql.SqNot e => Negate (sqexpToFormula e) | Sql.Binop (Sql.RCmp c, e1, e2) => Atom (c, e1, e2) | Sql.Binop (Sql.RLop l, p1, p2) => Combo (case l of Sql.And => Conj | Sql.Or => Disj, [sqexpToFormula p1, sqexpToFormula p2]) (* ASK: any other sqexps that can be props? *) | _ => raise Match fun mapSqexpFields f = fn Sql.Field (t, v) => f (t, v) | Sql.SqNot e => Sql.SqNot (mapSqexpFields f e) | Sql.Binop (r, e1, e2) => Sql.Binop (r, mapSqexpFields f e1, mapSqexpFields f e2) | Sql.SqKnown e => Sql.SqKnown (mapSqexpFields f e) | Sql.SqFunc (s, e) => Sql.SqFunc (s, mapSqexpFields f e) | e => e fun renameTables tablePairs = let fun rename table = case List.find (fn (_, t) => table = t) tablePairs of NONE => table | SOME (realTable, _) => realTable in mapSqexpFields (fn (t, f) => Sql.Field (rename t, f)) end fun queryToFormula marker = fn Sql.Query1 {Select = sitems, From = tablePairs, Where = wher} => let val fWhere = case wher of NONE => Combo (Conj, []) | SOME e => sqexpToFormula (renameTables tablePairs e) in case marker of NONE => fWhere | SOME markFields => let val fWhereMarked = mapFormulaExps markFields fWhere val toSqexp = fn Sql.SqField tf => Sql.Field tf | Sql.SqExp (se, _) => se fun ineq se = Atom (Sql.Ne, se, markFields se) val fIneqs = Combo (Disj, map (ineq o renameTables tablePairs o toSqexp) sitems) in (Combo (Conj, [fWhere, Combo (Disj, [Negate fWhereMarked, Combo (Conj, [fWhereMarked, fIneqs])])])) end end | Sql.Union (q1, q2) => Combo (Disj, [queryToFormula marker q1, queryToFormula marker q2]) fun valsToFormula (markLeft, markRight) (table, vals) = Combo (Conj, map (fn (field, v) => Atom (Sql.Eq, markLeft (Sql.Field (table, field)), markRight v)) vals) (* TODO: verify logic for insertion and deletion. *) val rec dmlToFormulaMarker = fn Sql.Insert (table, vals) => (valsToFormula (id, id) (table, vals), NONE) | Sql.Delete (table, wher) => (sqexpToFormula (renameTables [(table, "T")] wher), NONE) | Sql.Update (table, vals, wher) => let val fWhere = sqexpToFormula (renameTables [(table, "T")] wher) fun fVals marks = valsToFormula marks (table, vals) val modifiedFields = SS.addList (SS.empty, map #1 vals) (* TODO: don't use field name hack. *) val markFields = mapSqexpFields (fn (t, v) => if t = table andalso SS.member (modifiedFields, v) then Sql.Field (t, v ^ "'") else Sql.Field (t, v)) val mark = mapFormulaExps markFields in ((Combo (Disj, [Combo (Conj, [fVals (id, markFields), mark fWhere]), Combo (Conj, [fVals (markFields, id), fWhere])])), SOME markFields) end fun pairToFormulas (query, dml) = let val (fDml, marker) = dmlToFormulaMarker dml in (queryToFormula marker query, fDml) end structure ConflictMaps = struct structure TK = TripleKeyFn(structure I = CmpKey structure J = AtomOptionKey structure K = AtomOptionKey) structure TS : ORD_SET = BinarySetFn(TK) val toKnownEquality = (* [NONE] here means unkown. Anything that isn't a comparison between two knowns shouldn't be used, and simply dropping unused terms is okay in disjunctive normal form. *) fn (Sql.Eq, SOME e1, SOME e2) => SOME (e1, e2) | _ => NONE fun equivClasses atoms : atomExp list list option = let val uf = List.foldl UF.union' UF.empty (List.mapPartial toKnownEquality atoms) val ineqs = List.filter (fn (cmp, _, _) => cmp = Sql.Ne orelse cmp = Sql.Lt orelse cmp = Sql.Gt) atoms val contradiction = fn (cmp, SOME ae1, SOME ae2) => (cmp = Sql.Ne orelse cmp = Sql.Lt orelse cmp = Sql.Gt) andalso UF.together (uf, ae1, ae2) (* If we don't know one side of the comparision, not a contradiction. *) | _ => false in not (List.exists contradiction atoms) <\oguard\> SOME (UF.classes uf) end fun addToEqs (eqs, n, e) = case IM.find (eqs, n) of (* Comparing to a constant is probably better than comparing to a variable? Checking that existing constants match a new ones is handled by [accumulateEqs]. *) SOME (Prim _) => eqs | _ => IM.insert (eqs, n, e) val accumulateEqs = (* [NONE] means we have a contradiction. *) fn (_, NONE) => NONE | ((Prim p1, Prim p2), eqso) => (case Prim.compare (p1, p2) of EQUAL => eqso | _ => NONE) | ((QueryArg n, Prim p), SOME eqs) => SOME (addToEqs (eqs, n, Prim p)) | ((QueryArg n, DmlRel r), SOME eqs) => SOME (addToEqs (eqs, n, DmlRel r)) | ((Prim p, QueryArg n), SOME eqs) => SOME (addToEqs (eqs, n, Prim p)) | ((DmlRel r, QueryArg n), SOME eqs) => SOME (addToEqs (eqs, n, DmlRel r)) (* TODO: deal with equalities between [DmlRel]s and [Prim]s. This would involve guarding the invalidation with a check for the relevant comparisons. *) | (_, eqso) => eqso val eqsOfClass : atomExp list -> atomExp IM.map option = List.foldl accumulateEqs (SOME IM.empty) o chooseTwos fun toAtomExps rel (cmp, e1, e2) = let val qa = (* Here [NONE] means unkown. *) fn Sql.SqConst p => SOME (Prim p) | Sql.Field tf => SOME (Field tf) | Sql.Inj (EPrim p, _) => SOME (Prim p) | Sql.Inj (ERel n, _) => SOME (rel n) (* We can't deal with anything else, e.g., CURRENT_TIMESTAMP becomes Sql.Unmodeled, which becomes NONE here. *) | _ => NONE in (cmp, qa e1, qa e2) end val negateCmp = fn Sql.Eq => Sql.Ne | Sql.Ne => Sql.Eq | Sql.Lt => Sql.Ge | Sql.Le => Sql.Gt | Sql.Gt => Sql.Le | Sql.Ge => Sql.Lt fun normalizeAtom (negating, (cmp, e1, e2)) = (* Restricting to Le/Lt and sorting the expressions in Eq/Ne helps with simplification, where we put the triples in sets. *) case (if negating then negateCmp cmp else cmp) of Sql.Eq => (case AtomOptionKey.compare (e1, e2) of LESS => (Sql.Eq, e2, e1) | _ => (Sql.Eq, e1, e2)) | Sql.Ne => (case AtomOptionKey.compare (e1, e2) of LESS => (Sql.Ne, e2, e1) | _ => (Sql.Ne, e1, e2)) | Sql.Lt => (Sql.Lt, e1, e2) | Sql.Le => (Sql.Le, e1, e2) | Sql.Gt => (Sql.Lt, e2, e1) | Sql.Ge => (Sql.Le, e2, e1) val markQuery : (Sql.cmp * Sql.sqexp * Sql.sqexp) formula -> (Sql.cmp * atomExp option * atomExp option) formula = mapFormula (toAtomExps QueryArg) val markDml : (Sql.cmp * Sql.sqexp * Sql.sqexp) formula -> (Sql.cmp * atomExp option * atomExp option) formula = mapFormula (toAtomExps DmlRel) (* No eqs should have key conflicts because no variable is in two equivalence classes, so the [#1] could be [#2]. *) val mergeEqs : (atomExp IntBinaryMap.map option list -> atomExp IntBinaryMap.map option) = List.foldr (omap2 (IM.unionWith #1)) (SOME IM.empty) val simplify = map TS.listItems o removeRedundant (fn (x, y) => TS.isSubset (y, x)) o map (fn xs => TS.addList (TS.empty, xs)) fun dnf (fQuery, fDml) = normalize simplify normalizeAtom Disj (Combo (Conj, [markQuery fQuery, markDml fDml])) val conflictMaps = List.mapPartial (mergeEqs o map eqsOfClass) o List.mapPartial equivClasses o dnf end val conflictMaps = ConflictMaps.conflictMaps (*************************************) (* Program Instrumentation Utilities *) (*************************************) val {check, store, flush, ...} = getCache () val dummyTyp = (TRecord [], dummyLoc) fun stringExp s = (EPrim (Prim.String (Prim.Normal, s)), dummyLoc) val stringTyp = (TFfi ("Basis", "string"), dummyLoc) val sequence = fn (exp :: exps) => let val loc = dummyLoc in List.foldl (fn (e', seq) => ESeq ((seq, loc), (e', loc))) exp exps end | _ => raise Match (* Always increments negative indices as a hack we use later. *) fun incRels inc = MonoUtil.Exp.mapB {typ = fn t' => t', exp = fn bound => (fn ERel n => ERel (if n >= bound orelse n < 0 then n + inc else n) | e' => e'), bind = fn (bound, MonoUtil.Exp.RelE _) => bound + 1 | (bound, _) => bound} 0 fun fileTopLevelMapfoldB doTopLevelExp (decls, sideInfo) state = let fun doVal env ((x, n, t, exp, s), state) = let val (exp, state) = doTopLevelExp env exp state in ((x, n, t, exp, s), state) end fun doDecl' env (decl', state) = case decl' of DVal v => let val (v, state) = doVal env (v, state) in (DVal v, state) end | DValRec vs => let val (vs, state) = ListUtil.foldlMap (doVal env) state vs in (DValRec vs, state) end | _ => (decl', state) fun doDecl (decl as (decl', loc), (env, state)) = let val env = MonoEnv.declBinds env decl val (decl', state) = doDecl' env (decl', state) in ((decl', loc), (env, state)) end val (decls, (_, state)) = (ListUtil.foldlMap doDecl (MonoEnv.empty, state) decls) in ((decls, sideInfo), state) end fun fileAllMapfoldB doExp file start = case MonoUtil.File.mapfoldB {typ = Search.return2, exp = fn env => fn e' => fn s => Search.Continue (doExp env e' s), decl = fn _ => Search.return2, bind = doBind} MonoEnv.empty file start of Search.Continue x => x | Search.Return _ => raise Match fun fileMap doExp file = #1 (fileAllMapfoldB (fn _ => fn e => fn _ => (doExp e, ())) file ()) (* TODO: make this a bit prettier.... *) val simplifySql = let fun factorOutNontrivial text = let val loc = dummyLoc fun strcat (e1, e2) = (EStrcat (e1, e2), loc) val chunks = Sql.chunkify text val (newText, newVariables) = (* Important that this is foldr (to oppose foldl below). *) List.foldr (fn (chunk, (qText, newVars)) => (* Variable bound to the head of newVars will have the lowest index. *) case chunk of (* EPrim should always be a string in this case. *) Sql.Exp (e as (EPrim _, _)) => (strcat (e, qText), newVars) | Sql.Exp e => let val n = length newVars in (* This is the (n+1)th new variable, so there are already n new variables bound, so we increment indices by n. *) (strcat ((ERel (~(n+1)), loc), qText), incRels n e :: newVars) end | Sql.String s => (strcat (stringExp s, qText), newVars)) (stringExp "", []) chunks fun wrapLets e' = (* Important that this is foldl (to oppose foldr above). *) List.foldl (fn (v, e') => ELet ("sqlArg", stringTyp, v, (e', loc))) e' newVariables val numArgs = length newVariables in (newText, wrapLets, numArgs) end fun doExp exp' = let val text = case exp' of EQuery {query = text, ...} => text | EDml (text, _) => text | _ => raise Match val (newText, wrapLets, numArgs) = factorOutNontrivial text val newExp' = case exp' of EQuery q => EQuery {query = newText, exps = #exps q, tables = #tables q, state = #state q, body = #body q, initial = #initial q} | EDml (_, failureMode) => EDml (newText, failureMode) | _ => raise Match in (* Increment once for each new variable just made. This is where we use the negative De Bruijn indices hack. *) (* TODO: please don't use that hack. As anyone could have predicted, it was incomprehensible a year later.... *) wrapLets (#1 (incRels numArgs (newExp', dummyLoc))) end in fileMap (fn exp' => case exp' of EQuery _ => doExp exp' | EDml _ => doExp exp' | _ => exp') end (**********************) (* Mono Type Checking *) (**********************) fun typOfExp' (env : MonoEnv.env) : exp' -> typ option = fn EPrim p => SOME (TFfi ("Basis", case p of Prim.Int _ => "int" | Prim.Float _ => "double" | Prim.String _ => "string" | Prim.Char _ => "char"), dummyLoc) | ERel n => SOME (#2 (MonoEnv.lookupERel env n)) | ENamed n => SOME (#2 (MonoEnv.lookupENamed env n)) (* ASK: okay to make a new [ref] each time? *) | ECon (dk, PConVar nCon, _) => let val (_, _, nData) = MonoEnv.lookupConstructor env nCon val (_, cs) = MonoEnv.lookupDatatype env nData in SOME (TDatatype (nData, ref (dk, cs)), dummyLoc) end | ECon (_, PConFfi {mod = s, datatyp, ...}, _) => SOME (TFfi (s, datatyp), dummyLoc) | ENone t => SOME (TOption t, dummyLoc) | ESome (t, _) => SOME (TOption t, dummyLoc) | EFfi _ => NONE | EFfiApp _ => NONE | EApp (e1, e2) => (case typOfExp env e1 of SOME (TFun (_, t), _) => SOME t | _ => NONE) | EAbs (_, t1, t2, _) => SOME (TFun (t1, t2), dummyLoc) (* ASK: is this right? *) | EUnop (unop, e) => (case unop of "!" => SOME (TFfi ("Basis", "bool"), dummyLoc) | "-" => typOfExp env e | _ => NONE) (* ASK: how should this (and other "=> NONE" cases) work? *) | EBinop _ => NONE | ERecord fields => SOME (TRecord (map (fn (s, _, t) => (s, t)) fields), dummyLoc) | EField (e, s) => (case typOfExp env e of SOME (TRecord fields, _) => (case List.find (fn (s', _) => s = s') fields of SOME (_, t) => SOME t | _ => NONE) | _ => NONE) | ECase (_, _, {result, ...}) => SOME result | EStrcat _ => SOME (TFfi ("Basis", "string"), dummyLoc) | EWrite _ => SOME (TRecord [], dummyLoc) | ESeq (_, e) => typOfExp env e | ELet (s, t, e1, e2) => typOfExp (MonoEnv.pushERel env s t (SOME e1)) e2 | EClosure _ => NONE | EUnurlify (_, t, _) => SOME t | EQuery {state, ...} => SOME state | e => NONE and typOfExp env (e', loc) = typOfExp' env e' (***********) (* Caching *) (***********) type state = InvalInfo.state datatype subexp = Cachable of InvalInfo.t * (state -> exp * state) | Impure of exp val isImpure = fn Cachable _ => false | Impure _ => true val runSubexp : subexp * state -> exp * state = fn (Cachable (_, f), state) => f state | (Impure e, state) => (e, state) val invalInfoOfSubexp = fn Cachable (invalInfo, _) => invalInfo | Impure _ => raise Match fun cacheWrap (env, exp, typ, args, index) = let val loc = dummyLoc val rel0 = (ERel 0, loc) in case MonoFooify.urlify env (rel0, typ) of NONE => NONE | SOME urlified => let (* We ensure before this step that all arguments aren't effectful. by turning them into local variables as needed. *) val argsInc = map (incRels 1) args val check = (check (index, args), loc) val store = (store (index, argsInc, urlified), loc) in SOME (ECase (check, [((PNone stringTyp, loc), (ELet ("q", typ, exp, (ESeq (store, rel0), loc)), loc)), ((PSome (stringTyp, (PVar ("hit", stringTyp), loc)), loc), (* Boolean is false because we're not unurlifying from a cookie. *) (EUnurlify (rel0, typ, false), loc))], {disc = (TOption stringTyp, loc), result = typ})) end end val expSize = MonoUtil.Exp.fold {typ = #2, exp = fn (_, n) => n+1} 0 (* TODO: pick a number. *) val sizeWorthCaching = 5 val worthCaching = fn EQuery _ => true | exp' => expSize (exp', dummyLoc) > sizeWorthCaching fun shouldConsolidate args = let val isAsIs = fn AsIs _ => true | Urlify _ => false in getAlwaysConsolidate () orelse not (List.exists isAsIs args andalso List.exists (not o isAsIs) args) end fun cacheExp (env, exp', invalInfo, state : state) = case worthCaching exp' <\oguard\> typOfExp' env exp' of NONE => NONE | SOME (TFun _, _) => NONE | SOME typ => let val args = InvalInfo.orderArgs (invalInfo, (exp', dummyLoc)) in shouldConsolidate args <\oguard\> List.foldr (fn (arg, acc) => acc <\obind\> (fn args' => (case arg of AsIs exp => SOME exp | Urlify exp => typOfExp env exp <\obind\> (fn typ => (MonoFooify.urlify env (exp, typ)))) <\obind\> (fn arg' => SOME (arg' :: args')))) (SOME []) args <\obind\> (fn args' => cacheWrap (env, (exp', dummyLoc), typ, args', #index state) <\obind\> (fn cachedExp => SOME (cachedExp, InvalInfo.updateState (invalInfo, length args', state)))) end fun cacheQuery (effs, env, q) : subexp = let (* We use dummyTyp here. I think this is okay because databases don't store (effectful) functions, but perhaps there's some pathalogical corner case missing.... *) fun safe bound = not o effectful effs (iterate (fn env => MonoEnv.pushERel env "_" dummyTyp NONE) bound env) val {query = queryText, initial, body, ...} = q val attempt = (* Ziv misses Haskell's do notation.... *) (safe 0 queryText andalso safe 0 initial andalso safe 2 body) <\oguard\> Sql.parse Sql.query queryText <\obind\> (fn queryParsed => let val invalInfo = InvalInfo.singleton queryParsed fun mkExp state = case cacheExp (env, EQuery q, invalInfo, state) of NONE => ((EQuery q, dummyLoc), state) | SOME (cachedExp, state) => ((cachedExp, dummyLoc), state) in SOME (Cachable (invalInfo, mkExp)) end) in case attempt of NONE => Impure (EQuery q, dummyLoc) | SOME subexp => subexp end fun cacheTree (effs : IS.set) ((env, exp as (exp', loc)), state) = let fun wrapBindN (f : exp list -> exp') (args : ((MonoEnv.env * exp) * unbind) list) = let val (subexps, state) = ListUtil.foldlMap (cacheTree effs) state (map #1 args) fun mkExp state = mapFst (fn exps => (f exps, loc)) (ListUtil.foldlMap runSubexp state subexps) val attempt = if List.exists isImpure subexps then NONE else (List.foldl (omap2 InvalInfo.union) (SOME InvalInfo.empty) (ListPair.map (fn (subexp, (_, unbinds)) => InvalInfo.unbind (invalInfoOfSubexp subexp, unbinds)) (subexps, args))) <\obind\> (fn invalInfo => SOME (Cachable (invalInfo, fn state => case cacheExp (env, f (map (#2 o #1) args), invalInfo, state) of NONE => mkExp state | SOME (e', state) => ((e', loc), state)), state)) in case attempt of SOME (subexp, state) => (subexp, state) | NONE => mapFst Impure (mkExp state) end fun wrapBind1 f arg = wrapBindN (fn [arg] => f arg | _ => raise Match) [arg] fun wrapBind2 f (arg1, arg2) = wrapBindN (fn [arg1, arg2] => f (arg1, arg2) | _ => raise Match) [arg1, arg2] fun wrapN f es = wrapBindN f (map (fn e => ((env, e), Unknowns 0)) es) fun wrap1 f e = wrapBind1 f ((env, e), Unknowns 0) fun wrap2 f (e1, e2) = wrapBind2 f (((env, e1), Unknowns 0), ((env, e2), Unknowns 0)) in case exp' of ECon (dk, pc, SOME e) => wrap1 (fn e => ECon (dk, pc, SOME e)) e | ESome (t, e) => wrap1 (fn e => ESome (t, e)) e | EFfiApp (s1, s2, args) => if ffiEffectful (s1, s2) then (Impure exp, state) else wrapN (fn es => EFfiApp (s1, s2, ListPair.map (fn (e, (_, t)) => (e, t)) (es, args))) (map #1 args) | EApp (e1, e2) => wrap2 EApp (e1, e2) | EAbs (s, t1, t2, e) => wrapBind1 (fn e => EAbs (s, t1, t2, e)) ((MonoEnv.pushERel env s t1 NONE, e), Unknowns 1) | EUnop (s, e) => wrap1 (fn e => EUnop (s, e)) e | EBinop (bi, s, e1, e2) => wrap2 (fn (e1, e2) => EBinop (bi, s, e1, e2)) (e1, e2) | ERecord fields => wrapN (fn es => ERecord (ListPair.map (fn (e, (s, _, t)) => (s, e, t)) (es, fields))) (map #2 fields) | EField (e, s) => wrap1 (fn e => EField (e, s)) e | ECase (e, cases, {disc, result}) => wrapBindN (fn (e::es) => ECase (e, (ListPair.map (fn (e, (p, _)) => (p, e)) (es, cases)), {disc = disc, result = result}) | _ => raise Match) (((env, e), Unknowns 0) :: map (fn (p, e) => ((MonoEnv.patBinds env p, e), Unknowns (MonoEnv.patBindsN p))) cases) | EStrcat (e1, e2) => wrap2 EStrcat (e1, e2) (* We record page writes, so they're cachable. *) | EWrite e => wrap1 EWrite e | ESeq (e1, e2) => wrap2 ESeq (e1, e2) | ELet (s, t, e1, e2) => wrapBind2 (fn (e1, e2) => ELet (s, t, e1, e2)) (((env, e1), Unknowns 0), ((MonoEnv.pushERel env s t (SOME e1), e2), Known e1)) (* ASK: | EClosure (n, es) => ? *) | EUnurlify (e, t, b) => wrap1 (fn e => EUnurlify (e, t, b)) e | EQuery q => (cacheQuery (effs, env, q), state) | _ => (if effectful effs env exp then Impure exp else Cachable (InvalInfo.empty, fn state => case cacheExp (env, exp', InvalInfo.empty, state) of NONE => ((exp', loc), state) | SOME (exp', state) => ((exp', loc), state)), state) end fun addCaching file = let val effs = effectfulDecls file fun doTopLevelExp env exp state = runSubexp (cacheTree effs ((env, exp), state)) in (fileTopLevelMapfoldB doTopLevelExp file {tableToIndices = SIMM.empty, indexToInvalInfo = IM.empty, ffiInfo = [], index = 0}, effs) end (************) (* Flushing *) (************) structure Invalidations = struct val loc = dummyLoc val optionAtomExpToExp = fn NONE => (ENone stringTyp, loc) | SOME e => (ESome (stringTyp, (case e of DmlRel n => ERel n | Prim p => EPrim p (* TODO: make new type containing only these two. *) | _ => raise Match, loc)), loc) fun eqsToInvalidation numArgs eqs = List.tabulate (numArgs, (fn n => IM.find (eqs, n))) (* Tests if [ys] makes [xs] a redundant cache invalidation. [NONE] here represents unknown, which means a wider invalidation. *) val rec madeRedundantBy : atomExp option list * atomExp option list -> bool = fn ([], []) => true | (_ :: xs, NONE :: ys) => madeRedundantBy (xs, ys) | (SOME x :: xs, SOME y :: ys) => (case AtomExpKey.compare (x, y) of EQUAL => madeRedundantBy (xs, ys) | _ => false) | _ => false fun invalidations ((invalInfo, numArgs), dml) = let val query = InvalInfo.query invalInfo in (map (map optionAtomExpToExp) o removeRedundant madeRedundantBy o map (eqsToInvalidation numArgs) o conflictMaps) (pairToFormulas (query, dml)) end end val invalidations = Invalidations.invalidations fun addFlushing ((file, {tableToIndices, indexToInvalInfo, ffiInfo, ...} : state), effs) = let val flushes = List.concat o map (fn (i, argss) => map (fn args => flush (i, args)) argss) val doExp = fn dmlExp as EDml (dmlText, failureMode) => let val inval = case Sql.parse Sql.dml dmlText of SOME dmlParsed => SOME (map (fn i => (case IM.find (indexToInvalInfo, i) of SOME invalInfo => (i, invalidations (invalInfo, dmlParsed)) (* TODO: fail more gracefully. *) (* This probably means invalidating everything.... *) | NONE => raise Match)) (SIMM.findList (tableToIndices, tableOfDml dmlParsed))) | NONE => NONE in case inval of (* TODO: fail more gracefully. *) NONE => raise Match | SOME invs => sequence (flushes invs @ [dmlExp]) end | e' => e' val file = fileMap doExp file in ffiInfoRef := ffiInfo; file end (************************) (* Compiler Entry Point *) (************************) val inlineSql = let val doExp = (* TODO: EQuery, too? *) (* ASK: should this live in [MonoOpt]? *) fn EDml ((ECase (disc, cases, {disc = dTyp, ...}), loc), failureMode) => let val newCases = map (fn (p, e) => (p, (EDml (e, failureMode), loc))) cases in ECase (disc, newCases, {disc = dTyp, result = (TRecord [], loc)}) end | e => e in fileMap doExp end fun insertAfterDatatypes ((decls, sideInfo), newDecls) = let val (datatypes, others) = List.partition (fn (DDatatype _, _) => true | _ => false) decls in (datatypes @ newDecls @ others, sideInfo) end val go' = addFlushing o addCaching o simplifySql o inlineSql fun go file = let (* TODO: do something nicer than [Sql] being in one of two modes. *) val () = (resetFfiInfo (); Sql.sqlcacheMode := true) val file = go' file (* Important that this happens after [MonoFooify.urlify] calls! *) val fmDecls = MonoFooify.getNewFmDecls () val () = Sql.sqlcacheMode := false in insertAfterDatatypes (file, rev fmDecls) end end