Mercurial > urweb
view src/elaborate.sml @ 29:537db4ee89f4
Translation to Cjr
author | Adam Chlipala <adamc@hcoop.net> |
---|---|
date | Tue, 10 Jun 2008 18:28:43 -0400 |
parents | 4ab19c19665f |
children | e6ccf961d8a3 |
line wrap: on
line source
(* Copyright (c) 2008, Adam Chlipala * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - The names of contributors may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. *) structure Elaborate :> ELABORATE = struct structure P = Prim structure L = Source structure L' = Elab structure E = ElabEnv structure U = ElabUtil open Print open ElabPrint fun elabExplicitness e = case e of L.Explicit => L'.Explicit | L.Implicit => L'.Implicit fun occursKind r = U.Kind.exists (fn L'.KUnif (_, r') => r = r' | _ => false) datatype kunify_error = KOccursCheckFailed of L'.kind * L'.kind | KIncompatible of L'.kind * L'.kind exception KUnify' of kunify_error fun kunifyError err = case err of KOccursCheckFailed (k1, k2) => eprefaces "Kind occurs check failed" [("Kind 1", p_kind k1), ("Kind 2", p_kind k2)] | KIncompatible (k1, k2) => eprefaces "Incompatible kinds" [("Kind 1", p_kind k1), ("Kind 2", p_kind k2)] fun unifyKinds' (k1All as (k1, _)) (k2All as (k2, _)) = let fun err f = raise KUnify' (f (k1All, k2All)) in case (k1, k2) of (L'.KType, L'.KType) => () | (L'.KArrow (d1, r1), L'.KArrow (d2, r2)) => (unifyKinds' d1 d2; unifyKinds' r1 r2) | (L'.KName, L'.KName) => () | (L'.KRecord k1, L'.KRecord k2) => unifyKinds' k1 k2 | (L'.KError, _) => () | (_, L'.KError) => () | (L'.KUnif (_, ref (SOME k1All)), _) => unifyKinds' k1All k2All | (_, L'.KUnif (_, ref (SOME k2All))) => unifyKinds' k1All k2All | (L'.KUnif (_, r1), L'.KUnif (_, r2)) => if r1 = r2 then () else r1 := SOME k2All | (L'.KUnif (_, r), _) => if occursKind r k2All then err KOccursCheckFailed else r := SOME k2All | (_, L'.KUnif (_, r)) => if occursKind r k1All then err KOccursCheckFailed else r := SOME k1All | _ => err KIncompatible end exception KUnify of L'.kind * L'.kind * kunify_error fun unifyKinds k1 k2 = unifyKinds' k1 k2 handle KUnify' err => raise KUnify (k1, k2, err) datatype con_error = UnboundCon of ErrorMsg.span * string | WrongKind of L'.con * L'.kind * L'.kind * kunify_error fun conError env err = case err of UnboundCon (loc, s) => ErrorMsg.errorAt loc ("Unbound constructor variable " ^ s) | WrongKind (c, k1, k2, kerr) => (ErrorMsg.errorAt (#2 c) "Wrong kind"; eprefaces' [("Constructor", p_con env c), ("Have kind", p_kind k1), ("Need kind", p_kind k2)]; kunifyError kerr) fun checkKind env c k1 k2 = unifyKinds k1 k2 handle KUnify (k1, k2, err) => conError env (WrongKind (c, k1, k2, err)) val dummy = ErrorMsg.dummySpan val ktype = (L'.KType, dummy) val kname = (L'.KName, dummy) val ktype_record = (L'.KRecord ktype, dummy) val cerror = (L'.CError, dummy) val kerror = (L'.KError, dummy) val eerror = (L'.EError, dummy) local val count = ref 0 in fun resetKunif () = count := 0 fun kunif () = let val n = !count val s = if n <= 26 then str (chr (ord #"A" + n)) else "U" ^ Int.toString (n - 26) in count := n + 1; (L'.KUnif (s, ref NONE), dummy) end end local val count = ref 0 in fun resetCunif () = count := 0 fun cunif k = let val n = !count val s = if n <= 26 then str (chr (ord #"A" + n)) else "U" ^ Int.toString (n - 26) in count := n + 1; (L'.CUnif (k, s, ref NONE), dummy) end end fun elabKind (k, loc) = case k of L.KType => (L'.KType, loc) | L.KArrow (k1, k2) => (L'.KArrow (elabKind k1, elabKind k2), loc) | L.KName => (L'.KName, loc) | L.KRecord k => (L'.KRecord (elabKind k), loc) | L.KWild => kunif () fun elabCon env (c, loc) = case c of L.CAnnot (c, k) => let val k' = elabKind k val (c', ck) = elabCon env c in checkKind env c' ck k'; (c', k') end | L.TFun (t1, t2) => let val (t1', k1) = elabCon env t1 val (t2', k2) = elabCon env t2 in checkKind env t1' k1 ktype; checkKind env t2' k2 ktype; ((L'.TFun (t1', t2'), loc), ktype) end | L.TCFun (e, x, k, t) => let val e' = elabExplicitness e val k' = elabKind k val env' = E.pushCRel env x k' val (t', tk) = elabCon env' t in checkKind env t' tk ktype; ((L'.TCFun (e', x, k', t'), loc), ktype) end | L.TRecord c => let val (c', ck) = elabCon env c val k = (L'.KRecord ktype, loc) in checkKind env c' ck k; ((L'.TRecord c', loc), ktype) end | L.CVar s => (case E.lookupC env s of E.NotBound => (conError env (UnboundCon (loc, s)); (cerror, kerror)) | E.Rel (n, k) => ((L'.CRel n, loc), k) | E.Named (n, k) => ((L'.CNamed n, loc), k)) | L.CApp (c1, c2) => let val (c1', k1) = elabCon env c1 val (c2', k2) = elabCon env c2 val dom = kunif () val ran = kunif () in checkKind env c1' k1 (L'.KArrow (dom, ran), loc); checkKind env c2' k2 dom; ((L'.CApp (c1', c2'), loc), ran) end | L.CAbs (x, k, t) => let val k' = elabKind k val env' = E.pushCRel env x k' val (t', tk) = elabCon env' t in ((L'.CAbs (x, k', t'), loc), (L'.KArrow (k', tk), loc)) end | L.CName s => ((L'.CName s, loc), kname) | L.CRecord xcs => let val k = kunif () val xcs' = map (fn (x, c) => let val (x', xk) = elabCon env x val (c', ck) = elabCon env c in checkKind env x' xk kname; checkKind env c' ck k; (x', c') end) xcs in ((L'.CRecord (k, xcs'), loc), (L'.KRecord k, loc)) end | L.CConcat (c1, c2) => let val (c1', k1) = elabCon env c1 val (c2', k2) = elabCon env c2 val ku = kunif () val k = (L'.KRecord ku, loc) in checkKind env c1' k1 k; checkKind env c2' k2 k; ((L'.CConcat (c1', c2'), loc), k) end | L.CWild k => let val k' = elabKind k in (cunif k', k') end fun kunifsRemain k = case k of L'.KUnif (_, ref NONE) => true | _ => false fun cunifsRemain c = case c of L'.CUnif (_, _, ref NONE) => true | _ => false val kunifsInKind = U.Kind.exists kunifsRemain val kunifsInCon = U.Con.exists {kind = kunifsRemain, con = fn _ => false} val kunifsInExp = U.Exp.exists {kind = kunifsRemain, con = fn _ => false, exp = fn _ => false} val cunifsInCon = U.Con.exists {kind = fn _ => false, con = cunifsRemain} val cunifsInExp = U.Exp.exists {kind = fn _ => false, con = cunifsRemain, exp = fn _ => false} fun occursCon r = U.Con.exists {kind = fn _ => false, con = fn L'.CUnif (_, _, r') => r = r' | _ => false} datatype cunify_error = CKind of L'.kind * L'.kind * kunify_error | COccursCheckFailed of L'.con * L'.con | CIncompatible of L'.con * L'.con | CExplicitness of L'.con * L'.con | CKindof of L'.con | CRecordFailure exception CUnify' of cunify_error fun cunifyError env err = case err of CKind (k1, k2, kerr) => (eprefaces "Kind unification failure" [("Kind 1", p_kind k1), ("Kind 2", p_kind k2)]; kunifyError kerr) | COccursCheckFailed (c1, c2) => eprefaces "Constructor occurs check failed" [("Con 1", p_con env c1), ("Con 2", p_con env c2)] | CIncompatible (c1, c2) => eprefaces "Incompatible constructors" [("Con 1", p_con env c1), ("Con 2", p_con env c2)] | CExplicitness (c1, c2) => eprefaces "Differing constructor function explicitness" [("Con 1", p_con env c1), ("Con 2", p_con env c2)] | CKindof c => eprefaces "Kind unification variable blocks kindof calculation" [("Con", p_con env c)] | CRecordFailure => eprefaces "Can't unify record constructors" [] exception SynUnif = E.SynUnif val liftConInCon = E.liftConInCon val subConInCon = U.Con.mapB {kind = fn k => k, con = fn (xn, rep) => fn c => case c of L'.CRel xn' => if xn = xn' then #1 rep else c (*| L'.CUnif _ => raise SynUnif*) | _ => c, bind = fn ((xn, rep), U.Con.Rel _) => (xn+1, liftConInCon 0 rep) | (ctx, _) => ctx} type record_summary = { fields : (L'.con * L'.con) list, unifs : (L'.con * L'.con option ref) list, others : L'.con list } fun summaryToCon {fields, unifs, others} = let val c = (L'.CRecord (ktype, []), dummy) val c = List.foldr (fn (c', c) => (L'.CConcat (c', c), dummy)) c others val c = List.foldr (fn ((c', _), c) => (L'.CConcat (c', c), dummy)) c unifs in (L'.CConcat ((L'.CRecord (ktype, fields), dummy), c), dummy) end fun p_summary env s = p_con env (summaryToCon s) exception CUnify of L'.con * L'.con * cunify_error fun hnormKind (kAll as (k, _)) = case k of L'.KUnif (_, ref (SOME k)) => hnormKind k | _ => kAll fun kindof env (c, loc) = case c of L'.TFun _ => ktype | L'.TCFun _ => ktype | L'.TRecord _ => ktype | L'.CRel xn => #2 (E.lookupCRel env xn) | L'.CNamed xn => #2 (E.lookupCNamed env xn) | L'.CApp (c, _) => (case #1 (hnormKind (kindof env c)) of L'.KArrow (_, k) => k | L'.KError => kerror | _ => raise CUnify' (CKindof c)) | L'.CAbs (x, k, c) => (L'.KArrow (k, kindof (E.pushCRel env x k) c), loc) | L'.CName _ => kname | L'.CRecord (k, _) => (L'.KRecord k, loc) | L'.CConcat (c, _) => kindof env c | L'.CError => kerror | L'.CUnif (k, _, _) => k fun unifyRecordCons env (c1, c2) = let val k1 = kindof env c1 val k2 = kindof env c2 in unifyKinds k1 k2; unifySummaries env (k1, recordSummary env c1, recordSummary env c2) end and recordSummary env c : record_summary = case hnormCon env c of (L'.CRecord (_, xcs), _) => {fields = xcs, unifs = [], others = []} | (L'.CConcat (c1, c2), _) => let val s1 = recordSummary env c1 val s2 = recordSummary env c2 in {fields = #fields s1 @ #fields s2, unifs = #unifs s1 @ #unifs s2, others = #others s1 @ #others s2} end | (L'.CUnif (_, _, ref (SOME c)), _) => recordSummary env c | c' as (L'.CUnif (_, _, r), _) => {fields = [], unifs = [(c', r)], others = []} | c' => {fields = [], unifs = [], others = [c']} and consEq env (c1, c2) = (unifyCons env c1 c2; true) handle CUnify _ => false and unifySummaries env (k, s1 : record_summary, s2 : record_summary) = let (*val () = eprefaces "Summaries" [("#1", p_summary env s1), ("#2", p_summary env s2)]*) fun eatMatching p (ls1, ls2) = let fun em (ls1, ls2, passed1) = case ls1 of [] => (rev passed1, ls2) | h1 :: t1 => let fun search (ls2', passed2) = case ls2' of [] => em (t1, ls2, h1 :: passed1) | h2 :: t2 => if p (h1, h2) then em (t1, List.revAppend (passed2, t2), passed1) else search (t2, h2 :: passed2) in search (ls2, []) end in em (ls1, ls2, []) end val (fs1, fs2) = eatMatching (fn ((x1, c1), (x2, c2)) => if consEq env (x1, x2) then (unifyCons env c1 c2; true) else false) (#fields s1, #fields s2) (*val () = eprefaces "Summaries2" [("#1", p_summary env {fields = fs1, unifs = #unifs s1, others = #others s1}), ("#2", p_summary env {fields = fs2, unifs = #unifs s2, others = #others s2})]*) val (unifs1, unifs2) = eatMatching (fn ((_, r1), (_, r2)) => r1 = r2) (#unifs s1, #unifs s2) val (others1, others2) = eatMatching (consEq env) (#others s1, #others s2) fun unifFields (fs, others, unifs) = case (fs, others, unifs) of ([], [], _) => ([], [], unifs) | (_, _, []) => (fs, others, []) | (_, _, (_, r) :: rest) => let val r' = ref NONE val cr' = (L'.CUnif (k, "recd", r'), dummy) val prefix = case (fs, others) of ([], other :: others) => List.foldl (fn (other, c) => (L'.CConcat (c, other), dummy)) other others | (fs, []) => (L'.CRecord (k, fs), dummy) | (fs, others) => List.foldl (fn (other, c) => (L'.CConcat (c, other), dummy)) (L'.CRecord (k, fs), dummy) others in r := SOME (L'.CConcat (prefix, cr'), dummy); ([], [], (cr', r') :: rest) end val (fs1, others1, unifs2) = unifFields (fs1, others1, unifs2) val (fs2, others2, unifs1) = unifFields (fs2, others2, unifs1) val clear1 = case (fs1, others1) of ([], []) => true | _ => false val clear2 = case (fs2, others2) of ([], []) => true | _ => false val empty = (L'.CRecord (k, []), dummy) fun pairOffUnifs (unifs1, unifs2) = case (unifs1, unifs2) of ([], _) => if clear1 then List.app (fn (_, r) => r := SOME empty) unifs2 else raise CUnify' CRecordFailure | (_, []) => if clear2 then List.app (fn (_, r) => r := SOME empty) unifs1 else raise CUnify' CRecordFailure | ((c1, _) :: rest1, (_, r2) :: rest2) => (r2 := SOME c1; pairOffUnifs (rest1, rest2)) in pairOffUnifs (unifs1, unifs2) end and hnormCon env (cAll as (c, _)) = case c of L'.CUnif (_, _, ref (SOME c)) => hnormCon env c | L'.CNamed xn => (case E.lookupCNamed env xn of (_, _, SOME c') => hnormCon env c' | _ => cAll) | L'.CApp (c1, c2) => (case hnormCon env c1 of (L'.CAbs (_, _, cb), _) => ((hnormCon env (subConInCon (0, c2) cb)) handle SynUnif => cAll) | _ => cAll) | L'.CConcat (c1, c2) => (case (hnormCon env c1, hnormCon env c2) of ((L'.CRecord (k, xcs1), loc), (L'.CRecord (_, xcs2), _)) => (L'.CRecord (k, xcs1 @ xcs2), loc) | _ => cAll) | _ => cAll and unifyCons' env c1 c2 = unifyCons'' env (hnormCon env c1) (hnormCon env c2) and unifyCons'' env (c1All as (c1, _)) (c2All as (c2, _)) = let fun err f = raise CUnify' (f (c1All, c2All)) fun isRecord () = unifyRecordCons env (c1All, c2All) in case (c1, c2) of (L'.TFun (d1, r1), L'.TFun (d2, r2)) => (unifyCons' env d1 d2; unifyCons' env r1 r2) | (L'.TCFun (expl1, x1, d1, r1), L'.TCFun (expl2, _, d2, r2)) => if expl1 <> expl2 then err CExplicitness else (unifyKinds d1 d2; unifyCons' (E.pushCRel env x1 d1) r1 r2) | (L'.TRecord r1, L'.TRecord r2) => unifyCons' env r1 r2 | (L'.CRel n1, L'.CRel n2) => if n1 = n2 then () else err CIncompatible | (L'.CNamed n1, L'.CNamed n2) => if n1 = n2 then () else err CIncompatible | (L'.CApp (d1, r1), L'.CApp (d2, r2)) => (unifyCons' env d1 d2; unifyCons' env r1 r2) | (L'.CAbs (x1, k1, c1), L'.CAbs (_, k2, c2)) => (unifyKinds k1 k2; unifyCons' (E.pushCRel env x1 k1) c1 c2) | (L'.CName n1, L'.CName n2) => if n1 = n2 then () else err CIncompatible | (L'.CError, _) => () | (_, L'.CError) => () | (L'.CUnif (_, _, ref (SOME c1All)), _) => unifyCons' env c1All c2All | (_, L'.CUnif (_, _, ref (SOME c2All))) => unifyCons' env c1All c2All | (L'.CUnif (k1, _, r1), L'.CUnif (k2, _, r2)) => if r1 = r2 then () else (unifyKinds k1 k2; r1 := SOME c2All) | (L'.CUnif (_, _, r), _) => if occursCon r c2All then err COccursCheckFailed else r := SOME c2All | (_, L'.CUnif (_, _, r)) => if occursCon r c1All then err COccursCheckFailed else r := SOME c1All | (L'.CRecord _, _) => isRecord () | (_, L'.CRecord _) => isRecord () | (L'.CConcat _, _) => isRecord () | (_, L'.CConcat _) => isRecord () | _ => err CIncompatible end and unifyCons env c1 c2 = unifyCons' env c1 c2 handle CUnify' err => raise CUnify (c1, c2, err) | KUnify args => raise CUnify (c1, c2, CKind args) datatype exp_error = UnboundExp of ErrorMsg.span * string | Unify of L'.exp * L'.con * L'.con * cunify_error | Unif of string * L'.con | WrongForm of string * L'.exp * L'.con fun expError env err = case err of UnboundExp (loc, s) => ErrorMsg.errorAt loc ("Unbound expression variable " ^ s) | Unify (e, c1, c2, uerr) => (ErrorMsg.errorAt (#2 e) "Unification failure"; eprefaces' [("Expression", p_exp env e), ("Have con", p_con env c1), ("Need con", p_con env c2)]; cunifyError env uerr) | Unif (action, c) => (ErrorMsg.errorAt (#2 c) ("Unification variable blocks " ^ action); eprefaces' [("Con", p_con env c)]) | WrongForm (variety, e, t) => (ErrorMsg.errorAt (#2 e) ("Expression is not a " ^ variety); eprefaces' [("Expression", p_exp env e), ("Type", p_con env t)]) fun checkCon env e c1 c2 = unifyCons env c1 c2 handle CUnify (c1, c2, err) => expError env (Unify (e, c1, c2, err)) fun primType env p = let val s = case p of P.Int _ => "int" | P.Float _ => "float" | P.String _ => "string" in case E.lookupC env s of E.NotBound => raise Fail ("Primitive type " ^ s ^ " unbound") | E.Rel _ => raise Fail ("Primitive type " ^ s ^ " bound as relative") | E.Named (n, (L'.KType, _)) => L'.CNamed n | E.Named _ => raise Fail ("Primitive type " ^ s ^ " bound at non-Type kind") end fun typeof env (e, loc) = case e of L'.EPrim p => (primType env p, loc) | L'.ERel n => #2 (E.lookupERel env n) | L'.ENamed n => #2 (E.lookupENamed env n) | L'.EApp (e1, _) => (case #1 (typeof env e1) of L'.TFun (_, c) => c | _ => raise Fail "typeof: Bad EApp") | L'.EAbs (_, _, ran, _) => ran | L'.ECApp (e1, c) => (case #1 (typeof env e1) of L'.TCFun (_, _, _, c1) => subConInCon (0, c) c1 | _ => raise Fail "typeof: Bad ECApp") | L'.ECAbs (expl, x, k, e1) => (L'.TCFun (expl, x, k, typeof (E.pushCRel env x k) e1), loc) | L'.ERecord xes => (L'.TRecord (L'.CRecord (ktype, map (fn (x, _, t) => (x, t)) xes), loc), loc) | L'.EField (_, _, {field, ...}) => field | L'.EError => cerror fun elabHead env (e as (_, loc)) t = let fun unravel (t, e) = case hnormCon env t of (L'.TCFun (L'.Implicit, x, k, t'), _) => let val u = cunif k in unravel (subConInCon (0, u) t', (L'.ECApp (e, u), loc)) end | _ => (e, t) in unravel (t, e) end fun elabExp env (e, loc) = case e of L.EAnnot (e, t) => let val (e', et) = elabExp env e val (t', _) = elabCon env t in checkCon env e' et t'; (e', t') end | L.EPrim p => ((L'.EPrim p, loc), (primType env p, loc)) | L.EVar s => (case E.lookupE env s of E.NotBound => (expError env (UnboundExp (loc, s)); (eerror, cerror)) | E.Rel (n, t) => ((L'.ERel n, loc), t) | E.Named (n, t) => ((L'.ENamed n, loc), t)) | L.EApp (e1, e2) => let val (e1', t1) = elabExp env e1 val (e1', t1) = elabHead env e1' t1 val (e2', t2) = elabExp env e2 val dom = cunif ktype val ran = cunif ktype val t = (L'.TFun (dom, ran), dummy) in checkCon env e1' t1 t; checkCon env e2' t2 dom; ((L'.EApp (e1', e2'), loc), ran) end | L.EAbs (x, to, e) => let val t' = case to of NONE => cunif ktype | SOME t => let val (t', tk) = elabCon env t in checkKind env t' tk ktype; t' end val (e', et) = elabExp (E.pushERel env x t') e in ((L'.EAbs (x, t', et, e'), loc), (L'.TFun (t', et), loc)) end | L.ECApp (e, c) => let val (e', et) = elabExp env e val (e', et) = elabHead env e' et val (c', ck) = elabCon env c in case #1 (hnormCon env et) of L'.CError => (eerror, cerror) | L'.TCFun (_, _, k, eb) => let val () = checkKind env c' ck k val eb' = subConInCon (0, c') eb handle SynUnif => (expError env (Unif ("substitution", eb)); cerror) in ((L'.ECApp (e', c'), loc), eb') end | L'.CUnif _ => (expError env (Unif ("application", et)); (eerror, cerror)) | _ => (expError env (WrongForm ("constructor function", e', et)); (eerror, cerror)) end | L.ECAbs (expl, x, k, e) => let val expl' = elabExplicitness expl val k' = elabKind k val (e', et) = elabExp (E.pushCRel env x k') e in ((L'.ECAbs (expl', x, k', e'), loc), (L'.TCFun (expl', x, k', et), loc)) end | L.ERecord xes => let val xes' = map (fn (x, e) => let val (x', xk) = elabCon env x val (e', et) = elabExp env e in checkKind env x' xk kname; (x', e', et) end) xes in ((L'.ERecord xes', loc), (L'.TRecord (L'.CRecord (ktype, map (fn (x', _, et) => (x', et)) xes'), loc), loc)) end | L.EField (e, c) => let val (e', et) = elabExp env e val (c', ck) = elabCon env c val ft = cunif ktype val rest = cunif ktype_record in checkKind env c' ck kname; checkCon env e' et (L'.TRecord (L'.CConcat ((L'.CRecord (ktype, [(c', ft)]), loc), rest), loc), loc); ((L'.EField (e', c', {field = ft, rest = rest}), loc), ft) end datatype decl_error = KunifsRemainKind of ErrorMsg.span * L'.kind | KunifsRemainCon of ErrorMsg.span * L'.con | KunifsRemainExp of ErrorMsg.span * L'.exp | CunifsRemainCon of ErrorMsg.span * L'.con | CunifsRemainExp of ErrorMsg.span * L'.exp fun declError env err = case err of KunifsRemainKind (loc, k) => (ErrorMsg.errorAt loc "Some kind unification variables are undetermined in kind"; eprefaces' [("Kind", p_kind k)]) | KunifsRemainCon (loc, c) => (ErrorMsg.errorAt loc "Some kind unification variables are undetermined in constructor"; eprefaces' [("Constructor", p_con env c)]) | KunifsRemainExp (loc, e) => (ErrorMsg.errorAt loc "Some kind unification variables are undetermined in expression"; eprefaces' [("Expression", p_exp env e)]) | CunifsRemainCon (loc, c) => (ErrorMsg.errorAt loc "Some constructor unification variables are undetermined in constructor"; eprefaces' [("Constructor", p_con env c)]) | CunifsRemainExp (loc, e) => (ErrorMsg.errorAt loc "Some constructor unification variables are undetermined in expression"; eprefaces' [("Expression", p_exp env e)]) fun elabDecl env (d, loc) = (resetKunif (); resetCunif (); case d of L.DCon (x, ko, c) => let val k' = case ko of NONE => kunif () | SOME k => elabKind k val (c', ck) = elabCon env c val (env', n) = E.pushCNamed env x k' (SOME c') in checkKind env c' ck k'; if ErrorMsg.anyErrors () then () else ( if kunifsInKind k' then declError env (KunifsRemainKind (loc, k')) else (); if kunifsInCon c' then declError env (KunifsRemainCon (loc, c')) else () ); (env', (L'.DCon (x, n, k', c'), loc)) end | L.DVal (x, co, e) => let val (c', ck) = case co of NONE => (cunif ktype, ktype) | SOME c => elabCon env c val (e', et) = elabExp env e val (env', n) = E.pushENamed env x c' in checkCon env e' et c'; if ErrorMsg.anyErrors () then () else ( if kunifsInCon c' then declError env (KunifsRemainCon (loc, c')) else (); if cunifsInCon c' then declError env (CunifsRemainCon (loc, c')) else (); if kunifsInExp e' then declError env (KunifsRemainExp (loc, e')) else (); if cunifsInExp e' then declError env (CunifsRemainExp (loc, e')) else ()); (env', (L'.DVal (x, n, c', e'), loc)) end) fun elabFile env ds = ListUtil.mapfoldl (fn (d, env) => elabDecl env d) env ds end