Mercurial > urweb
view src/elaborate.sml @ 6:38bf996e1c2e
Check for leftover kind unifs
author | Adam Chlipala <adamc@hcoop.net> |
---|---|
date | Sat, 26 Jan 2008 16:44:39 -0500 |
parents | 258261a53842 |
children | a455a9f85cc3 |
line wrap: on
line source
(* Copyright (c) 2008, Adam Chlipala * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - The names of contributors may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. *) structure Elaborate :> ELABORATE = struct structure L = Source structure L' = Elab structure E = ElabEnv structure U = ElabUtil open Print open ElabPrint fun elabKind (k, loc) = case k of L.KType => (L'.KType, loc) | L.KArrow (k1, k2) => (L'.KArrow (elabKind k1, elabKind k2), loc) | L.KName => (L'.KName, loc) | L.KRecord k => (L'.KRecord (elabKind k), loc) fun elabExplicitness e = case e of L.Explicit => L'.Explicit | L.Implicit => L'.Implicit fun occursKind r = U.Kind.exists (fn L'.KUnif (_, r') => r = r' | _ => false) datatype kunify_error = KOccursCheckFailed of L'.kind * L'.kind | KIncompatible of L'.kind * L'.kind exception KUnify' of kunify_error fun kunifyError err = case err of KOccursCheckFailed (k1, k2) => eprefaces "Kind occurs check failed" [("Kind 1", p_kind k1), ("Kind 2", p_kind k2)] | KIncompatible (k1, k2) => eprefaces "Incompatible kinds" [("Kind 1", p_kind k1), ("Kind 2", p_kind k2)] fun unifyKinds' (k1All as (k1, _)) (k2All as (k2, _)) = let fun err f = raise KUnify' (f (k1All, k2All)) in case (k1, k2) of (L'.KType, L'.KType) => () | (L'.KArrow (d1, r1), L'.KArrow (d2, r2)) => (unifyKinds' d1 d2; unifyKinds' r1 r2) | (L'.KName, L'.KName) => () | (L'.KRecord k1, L'.KRecord k2) => unifyKinds' k1 k2 | (L'.KError, _) => () | (_, L'.KError) => () | (L'.KUnif (_, ref (SOME k1All)), _) => unifyKinds' k1All k2All | (_, L'.KUnif (_, ref (SOME k2All))) => unifyKinds' k1All k2All | (L'.KUnif (_, r1), L'.KUnif (_, r2)) => if r1 = r2 then () else r1 := SOME k2All | (L'.KUnif (_, r), _) => if occursKind r k2All then err KOccursCheckFailed else r := SOME k2All | (_, L'.KUnif (_, r)) => if occursKind r k1All then err KOccursCheckFailed else r := SOME k1All | _ => err KIncompatible end exception KUnify of L'.kind * L'.kind * kunify_error fun unifyKinds k1 k2 = unifyKinds' k1 k2 handle KUnify' err => raise KUnify (k1, k2, err) datatype con_error = UnboundCon of ErrorMsg.span * string | WrongKind of L'.con * L'.kind * L'.kind * kunify_error fun conError env err = case err of UnboundCon (loc, s) => ErrorMsg.errorAt loc ("Unbound constructor variable " ^ s) | WrongKind (c, k1, k2, kerr) => (ErrorMsg.errorAt (#2 c) "Wrong kind"; eprefaces' [("Constructor", p_con env c), ("Have kind", p_kind k1), ("Need kind", p_kind k2)]; kunifyError kerr) fun checkKind env c k1 k2 = unifyKinds k1 k2 handle KUnify (k1, k2, err) => conError env (WrongKind (c, k1, k2, err)) val dummy = ErrorMsg.dummySpan val ktype = (L'.KType, dummy) val kname = (L'.KName, dummy) val cerror = (L'.CError, dummy) val kerror = (L'.KError, dummy) local val count = ref 0 in fun resetKunif () = count := 0 fun kunif () = let val n = !count val s = if n <= 26 then str (chr (ord #"A" + n)) else "U" ^ Int.toString (n - 26) in count := n + 1; (L'.KUnif (s, ref NONE), dummy) end end fun elabCon env (c, loc) = case c of L.CAnnot (c, k) => let val k' = elabKind k val (c', ck) = elabCon env c in checkKind env c' ck k'; (c', k') end | L.TFun (t1, t2) => let val (t1', k1) = elabCon env t1 val (t2', k2) = elabCon env t2 in checkKind env t1' k1 ktype; checkKind env t2' k2 ktype; ((L'.TFun (t1', t2'), loc), ktype) end | L.TCFun (e, x, k, t) => let val e' = elabExplicitness e val k' = elabKind k val env' = E.pushCRel env x k' val (t', tk) = elabCon env' t in checkKind env t' tk ktype; ((L'.TCFun (e', x, k', t'), loc), ktype) end | L.TRecord c => let val (c', ck) = elabCon env c val k = (L'.KRecord ktype, loc) in checkKind env c' ck k; ((L'.TRecord c', loc), ktype) end | L.CVar s => (case E.lookupC env s of E.CNotBound => (conError env (UnboundCon (loc, s)); (cerror, kerror)) | E.CRel (n, k) => ((L'.CRel n, loc), k) | E.CNamed (n, k) => ((L'.CNamed n, loc), k)) | L.CApp (c1, c2) => let val (c1', k1) = elabCon env c1 val (c2', k2) = elabCon env c2 val dom = kunif () val ran = kunif () in checkKind env c1' k1 (L'.KArrow (dom, ran), loc); checkKind env c2' k2 dom; ((L'.CApp (c1', c2'), loc), ran) end | L.CAbs (e, x, k, t) => let val e' = elabExplicitness e val k' = elabKind k val env' = E.pushCRel env x k' val (t', tk) = elabCon env' t in ((L'.CAbs (e', x, k', t'), loc), (L'.KArrow (k', tk), loc)) end | L.CName s => ((L'.CName s, loc), kname) | L.CRecord xcs => let val k = kunif () val xcs' = map (fn (x, c) => let val (x', xk) = elabCon env x val (c', ck) = elabCon env c in checkKind env x' xk kname; checkKind env c' ck k; (x', c') end) xcs in ((L'.CRecord (k, xcs'), loc), (L'.KRecord k, loc)) end | L.CConcat (c1, c2) => let val (c1', k1) = elabCon env c1 val (c2', k2) = elabCon env c2 val ku = kunif () val k = (L'.KRecord ku, loc) in checkKind env c1' k1 k; checkKind env c2' k2 k; ((L'.CConcat (c1', c2'), loc), k) end fun kunifsRemain k = case k of L'.KUnif (_, ref NONE) => true | _ => false val kunifsInKind = U.Kind.exists kunifsRemain val kunifsInCon = U.Con.exists {kind = kunifsRemain, con = fn _ => false} datatype decl_error = KunifsRemainKind of ErrorMsg.span * L'.kind | KunifsRemainCon of ErrorMsg.span * L'.con fun declError env err = case err of KunifsRemainKind (loc, k) => (ErrorMsg.errorAt loc "Some kind unification variables are undetermined in kind"; eprefaces' [("Kind", p_kind k)]) | KunifsRemainCon (loc, c) => (ErrorMsg.errorAt loc "Some kind unification variables are undetermined in constructor"; eprefaces' [("Constructor", p_con env c)]) fun elabDecl env (d, loc) = (resetKunif (); case d of L.DCon (x, ko, c) => let val k' = case ko of NONE => kunif () | SOME k => elabKind k val (c', ck) = elabCon env c val (env', n) = E.pushCNamed env x k' in checkKind env c' ck k'; if kunifsInKind k' then declError env (KunifsRemainKind (loc, k')) else (); if kunifsInCon c' then declError env (KunifsRemainCon (loc, c')) else (); (env', (L'.DCon (x, n, k', c'), loc)) end) fun elabFile env ds = ListUtil.mapfoldl (fn (d, env) => elabDecl env d) env ds end