Mercurial > urweb
view src/elaborate.sml @ 134:18299126a343
MonoShake
author | Adam Chlipala <adamc@hcoop.net> |
---|---|
date | Thu, 17 Jul 2008 13:12:16 -0400 |
parents | e3041657d653 |
children | adfa2c7a75da |
line wrap: on
line source
(* Copyright (c) 2008, Adam Chlipala * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - The names of contributors may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. *) structure Elaborate :> ELABORATE = struct structure P = Prim structure L = Source structure L' = Elab structure E = ElabEnv structure U = ElabUtil structure D = Disjoint open Print open ElabPrint structure SS = BinarySetFn(struct type ord_key = string val compare = String.compare end) fun elabExplicitness e = case e of L.Explicit => L'.Explicit | L.Implicit => L'.Implicit fun occursKind r = U.Kind.exists (fn L'.KUnif (_, _, r') => r = r' | _ => false) datatype kunify_error = KOccursCheckFailed of L'.kind * L'.kind | KIncompatible of L'.kind * L'.kind exception KUnify' of kunify_error fun kunifyError err = case err of KOccursCheckFailed (k1, k2) => eprefaces "Kind occurs check failed" [("Kind 1", p_kind k1), ("Kind 2", p_kind k2)] | KIncompatible (k1, k2) => eprefaces "Incompatible kinds" [("Kind 1", p_kind k1), ("Kind 2", p_kind k2)] fun unifyKinds' (k1All as (k1, _)) (k2All as (k2, _)) = let fun err f = raise KUnify' (f (k1All, k2All)) in case (k1, k2) of (L'.KType, L'.KType) => () | (L'.KUnit, L'.KUnit) => () | (L'.KArrow (d1, r1), L'.KArrow (d2, r2)) => (unifyKinds' d1 d2; unifyKinds' r1 r2) | (L'.KName, L'.KName) => () | (L'.KRecord k1, L'.KRecord k2) => unifyKinds' k1 k2 | (L'.KError, _) => () | (_, L'.KError) => () | (L'.KUnif (_, _, ref (SOME k1All)), _) => unifyKinds' k1All k2All | (_, L'.KUnif (_, _, ref (SOME k2All))) => unifyKinds' k1All k2All | (L'.KUnif (_, _, r1), L'.KUnif (_, _, r2)) => if r1 = r2 then () else r1 := SOME k2All | (L'.KUnif (_, _, r), _) => if occursKind r k2All then err KOccursCheckFailed else r := SOME k2All | (_, L'.KUnif (_, _, r)) => if occursKind r k1All then err KOccursCheckFailed else r := SOME k1All | _ => err KIncompatible end exception KUnify of L'.kind * L'.kind * kunify_error fun unifyKinds k1 k2 = unifyKinds' k1 k2 handle KUnify' err => raise KUnify (k1, k2, err) datatype con_error = UnboundCon of ErrorMsg.span * string | UnboundStrInCon of ErrorMsg.span * string | WrongKind of L'.con * L'.kind * L'.kind * kunify_error | DuplicateField of ErrorMsg.span * string fun conError env err = case err of UnboundCon (loc, s) => ErrorMsg.errorAt loc ("Unbound constructor variable " ^ s) | UnboundStrInCon (loc, s) => ErrorMsg.errorAt loc ("Unbound structure " ^ s) | WrongKind (c, k1, k2, kerr) => (ErrorMsg.errorAt (#2 c) "Wrong kind"; eprefaces' [("Constructor", p_con env c), ("Have kind", p_kind k1), ("Need kind", p_kind k2)]; kunifyError kerr) | DuplicateField (loc, s) => ErrorMsg.errorAt loc ("Duplicate record field " ^ s) fun checkKind env c k1 k2 = unifyKinds k1 k2 handle KUnify (k1, k2, err) => conError env (WrongKind (c, k1, k2, err)) val dummy = ErrorMsg.dummySpan val ktype = (L'.KType, dummy) val kname = (L'.KName, dummy) val ktype_record = (L'.KRecord ktype, dummy) val cerror = (L'.CError, dummy) val kerror = (L'.KError, dummy) val eerror = (L'.EError, dummy) val sgnerror = (L'.SgnError, dummy) val strerror = (L'.StrError, dummy) val int = ref cerror val float = ref cerror val string = ref cerror local val count = ref 0 in fun resetKunif () = count := 0 fun kunif loc = let val n = !count val s = if n <= 26 then str (chr (ord #"A" + n)) else "U" ^ Int.toString (n - 26) in count := n + 1; (L'.KUnif (loc, s, ref NONE), dummy) end end local val count = ref 0 in fun resetCunif () = count := 0 fun cunif (loc, k) = let val n = !count val s = if n <= 26 then str (chr (ord #"A" + n)) else "U" ^ Int.toString (n - 26) in count := n + 1; (L'.CUnif (loc, k, s, ref NONE), dummy) end end fun elabKind (k, loc) = case k of L.KType => (L'.KType, loc) | L.KArrow (k1, k2) => (L'.KArrow (elabKind k1, elabKind k2), loc) | L.KName => (L'.KName, loc) | L.KRecord k => (L'.KRecord (elabKind k), loc) | L.KUnit => (L'.KUnit, loc) | L.KWild => kunif loc fun foldKind (dom, ran, loc)= (L'.KArrow ((L'.KArrow ((L'.KName, loc), (L'.KArrow (dom, (L'.KArrow (ran, ran), loc)), loc)), loc), (L'.KArrow (ran, (L'.KArrow ((L'.KRecord dom, loc), ran), loc)), loc)), loc) fun elabCon (env, denv) (c, loc) = case c of L.CAnnot (c, k) => let val k' = elabKind k val (c', ck, gs) = elabCon (env, denv) c in checkKind env c' ck k'; (c', k', gs) end | L.TFun (t1, t2) => let val (t1', k1, gs1) = elabCon (env, denv) t1 val (t2', k2, gs2) = elabCon (env, denv) t2 in checkKind env t1' k1 ktype; checkKind env t2' k2 ktype; ((L'.TFun (t1', t2'), loc), ktype, gs1 @ gs2) end | L.TCFun (e, x, k, t) => let val e' = elabExplicitness e val k' = elabKind k val env' = E.pushCRel env x k' val (t', tk, gs) = elabCon (env', D.enter denv) t in checkKind env t' tk ktype; ((L'.TCFun (e', x, k', t'), loc), ktype, gs) end | L.TDisjoint (c1, c2, c) => let val (c1', k1, gs1) = elabCon (env, denv) c1 val (c2', k2, gs2) = elabCon (env, denv) c2 val ku1 = kunif loc val ku2 = kunif loc val (denv', gs3) = D.assert env denv (c1', c2') val (c', k, gs4) = elabCon (env, denv') c in checkKind env c1' k1 (L'.KRecord ku1, loc); checkKind env c2' k2 (L'.KRecord ku2, loc); ((L'.TDisjoint (c1', c2', c'), loc), k, gs1 @ gs2 @ gs3 @ gs4) end | L.TRecord c => let val (c', ck, gs) = elabCon (env, denv) c val k = (L'.KRecord ktype, loc) in checkKind env c' ck k; ((L'.TRecord c', loc), ktype, gs) end | L.CVar ([], s) => (case E.lookupC env s of E.NotBound => (conError env (UnboundCon (loc, s)); (cerror, kerror, [])) | E.Rel (n, k) => ((L'.CRel n, loc), k, []) | E.Named (n, k) => ((L'.CNamed n, loc), k, [])) | L.CVar (m1 :: ms, s) => (case E.lookupStr env m1 of NONE => (conError env (UnboundStrInCon (loc, m1)); (cerror, kerror, [])) | SOME (n, sgn) => let val (str, sgn) = foldl (fn (m, (str, sgn)) => case E.projectStr env {sgn = sgn, str = str, field = m} of NONE => (conError env (UnboundStrInCon (loc, m)); (strerror, sgnerror)) | SOME sgn => ((L'.StrProj (str, m), loc), sgn)) ((L'.StrVar n, loc), sgn) ms val k = case E.projectCon env {sgn = sgn, str = str, field = s} of NONE => (conError env (UnboundCon (loc, s)); kerror) | SOME (k, _) => k in ((L'.CModProj (n, ms, s), loc), k, []) end) | L.CApp (c1, c2) => let val (c1', k1, gs1) = elabCon (env, denv) c1 val (c2', k2, gs2) = elabCon (env, denv) c2 val dom = kunif loc val ran = kunif loc in checkKind env c1' k1 (L'.KArrow (dom, ran), loc); checkKind env c2' k2 dom; ((L'.CApp (c1', c2'), loc), ran, gs1 @ gs2) end | L.CAbs (x, ko, t) => let val k' = case ko of NONE => kunif loc | SOME k => elabKind k val env' = E.pushCRel env x k' val (t', tk, gs) = elabCon (env', D.enter denv) t in ((L'.CAbs (x, k', t'), loc), (L'.KArrow (k', tk), loc), gs) end | L.CDisjoint (c1, c2, c) => let val (c1', k1, gs1) = elabCon (env, denv) c1 val (c2', k2, gs2) = elabCon (env, denv) c2 val ku1 = kunif loc val ku2 = kunif loc val (denv', gs3) = D.assert env denv (c1', c2') val (c', k, gs4) = elabCon (env, denv') c in checkKind env c1' k1 (L'.KRecord ku1, loc); checkKind env c2' k2 (L'.KRecord ku2, loc); ((L'.CDisjoint (c1', c2', c'), loc), k, gs1 @ gs2 @ gs3 @ gs4) end | L.CName s => ((L'.CName s, loc), kname, []) | L.CRecord xcs => let val k = kunif loc val (xcs', gs) = ListUtil.foldlMap (fn ((x, c), gs) => let val (x', xk, gs1) = elabCon (env, denv) x val (c', ck, gs2) = elabCon (env, denv) c in checkKind env x' xk kname; checkKind env c' ck k; ((x', c'), gs1 @ gs2 @ gs) end) [] xcs val rc = (L'.CRecord (k, xcs'), loc) (* Add duplicate field checking later. *) fun prove (xcs, ds) = case xcs of [] => ds | xc :: rest => let val r1 = (L'.CRecord (k, [xc]), loc) val ds = foldl (fn (xc', ds) => let val r2 = (L'.CRecord (k, [xc']), loc) in D.prove env denv (r1, r2, loc) @ ds end) ds rest in prove (rest, ds) end in (rc, (L'.KRecord k, loc), prove (xcs', gs)) end | L.CConcat (c1, c2) => let val (c1', k1, gs1) = elabCon (env, denv) c1 val (c2', k2, gs2) = elabCon (env, denv) c2 val ku = kunif loc val k = (L'.KRecord ku, loc) in checkKind env c1' k1 k; checkKind env c2' k2 k; ((L'.CConcat (c1', c2'), loc), k, D.prove env denv (c1', c2', loc) @ gs1 @ gs2) end | L.CFold => let val dom = kunif loc val ran = kunif loc in ((L'.CFold (dom, ran), loc), foldKind (dom, ran, loc), []) end | L.CUnit => ((L'.CUnit, loc), (L'.KUnit, loc), []) | L.CWild k => let val k' = elabKind k in (cunif (loc, k'), k', []) end fun kunifsRemain k = case k of L'.KUnif (_, _, ref NONE) => true | _ => false fun cunifsRemain c = case c of L'.CUnif (loc, _, _, ref NONE) => SOME loc | _ => NONE val kunifsInDecl = U.Decl.exists {kind = kunifsRemain, con = fn _ => false, exp = fn _ => false, sgn_item = fn _ => false, sgn = fn _ => false, str = fn _ => false, decl = fn _ => false} val cunifsInDecl = U.Decl.search {kind = fn _ => NONE, con = cunifsRemain, exp = fn _ => NONE, sgn_item = fn _ => NONE, sgn = fn _ => NONE, str = fn _ => NONE, decl = fn _ => NONE} fun occursCon r = U.Con.exists {kind = fn _ => false, con = fn L'.CUnif (_, _, _, r') => r = r' | _ => false} datatype cunify_error = CKind of L'.kind * L'.kind * kunify_error | COccursCheckFailed of L'.con * L'.con | CIncompatible of L'.con * L'.con | CExplicitness of L'.con * L'.con | CKindof of L'.con | CRecordFailure exception CUnify' of cunify_error fun cunifyError env err = case err of CKind (k1, k2, kerr) => (eprefaces "Kind unification failure" [("Kind 1", p_kind k1), ("Kind 2", p_kind k2)]; kunifyError kerr) | COccursCheckFailed (c1, c2) => eprefaces "Constructor occurs check failed" [("Con 1", p_con env c1), ("Con 2", p_con env c2)] | CIncompatible (c1, c2) => eprefaces "Incompatible constructors" [("Con 1", p_con env c1), ("Con 2", p_con env c2)] | CExplicitness (c1, c2) => eprefaces "Differing constructor function explicitness" [("Con 1", p_con env c1), ("Con 2", p_con env c2)] | CKindof c => eprefaces "Kind unification variable blocks kindof calculation" [("Con", p_con env c)] | CRecordFailure => eprefaces "Can't unify record constructors" [] exception SynUnif = E.SynUnif open ElabOps type record_summary = { fields : (L'.con * L'.con) list, unifs : (L'.con * L'.con option ref) list, others : L'.con list } fun summaryToCon {fields, unifs, others} = let val c = (L'.CRecord (ktype, []), dummy) val c = List.foldr (fn (c', c) => (L'.CConcat (c', c), dummy)) c others val c = List.foldr (fn ((c', _), c) => (L'.CConcat (c', c), dummy)) c unifs in (L'.CConcat ((L'.CRecord (ktype, fields), dummy), c), dummy) end fun p_summary env s = p_con env (summaryToCon s) exception CUnify of L'.con * L'.con * cunify_error fun hnormKind (kAll as (k, _)) = case k of L'.KUnif (_, _, ref (SOME k)) => hnormKind k | _ => kAll fun kindof env (c, loc) = case c of L'.TFun _ => ktype | L'.TCFun _ => ktype | L'.TDisjoint _ => ktype | L'.TRecord _ => ktype | L'.CRel xn => #2 (E.lookupCRel env xn) | L'.CNamed xn => #2 (E.lookupCNamed env xn) | L'.CModProj (n, ms, x) => let val (_, sgn) = E.lookupStrNamed env n val (str, sgn) = foldl (fn (m, (str, sgn)) => case E.projectStr env {sgn = sgn, str = str, field = m} of NONE => raise Fail "kindof: Unknown substructure" | SOME sgn => ((L'.StrProj (str, m), loc), sgn)) ((L'.StrVar n, loc), sgn) ms in case E.projectCon env {sgn = sgn, str = str, field = x} of NONE => raise Fail "kindof: Unknown con in structure" | SOME (k, _) => k end | L'.CApp (c, _) => (case #1 (hnormKind (kindof env c)) of L'.KArrow (_, k) => k | L'.KError => kerror | _ => raise CUnify' (CKindof c)) | L'.CAbs (x, k, c) => (L'.KArrow (k, kindof (E.pushCRel env x k) c), loc) | L'.CDisjoint (_, _, c) => kindof env c | L'.CName _ => kname | L'.CRecord (k, _) => (L'.KRecord k, loc) | L'.CConcat (c, _) => kindof env c | L'.CFold (dom, ran) => foldKind (dom, ran, loc) | L'.CUnit => (L'.KUnit, loc) | L'.CError => kerror | L'.CUnif (_, k, _, _) => k val hnormCon = D.hnormCon fun unifyRecordCons (env, denv) (c1, c2) = let fun rkindof c = case kindof env c of (L'.KRecord k, _) => k | _ => raise CUnify' (CKindof c) val k1 = rkindof c1 val k2 = rkindof c2 val (r1, gs1) = recordSummary (env, denv) c1 val (r2, gs2) = recordSummary (env, denv) c2 in unifyKinds k1 k2; unifySummaries (env, denv) (k1, r1, r2); gs1 @ gs2 end and recordSummary (env, denv) c = let val (c, gs) = hnormCon (env, denv) c val (sum, gs') = case c of (L'.CRecord (_, xcs), _) => ({fields = xcs, unifs = [], others = []}, []) | (L'.CConcat (c1, c2), _) => let val (s1, gs1) = recordSummary (env, denv) c1 val (s2, gs2) = recordSummary (env, denv) c2 in ({fields = #fields s1 @ #fields s2, unifs = #unifs s1 @ #unifs s2, others = #others s1 @ #others s2}, gs1 @ gs2) end | (L'.CUnif (_, _, _, ref (SOME c)), _) => recordSummary (env, denv) c | c' as (L'.CUnif (_, _, _, r), _) => ({fields = [], unifs = [(c', r)], others = []}, []) | c' => ({fields = [], unifs = [], others = [c']}, []) in (sum, gs @ gs') end and consEq (env, denv) (c1, c2) = (case unifyCons (env, denv) c1 c2 of [] => true | _ => false) handle CUnify _ => false and consNeq env (c1, c2) = case (#1 (ElabOps.hnormCon env c1), #1 (ElabOps.hnormCon env c2)) of (L'.CName x1, L'.CName x2) => x1 <> x2 | _ => false and unifySummaries (env, denv) (k, s1 : record_summary, s2 : record_summary) = let (*val () = eprefaces "Summaries" [("#1", p_summary env s1), ("#2", p_summary env s2)]*) fun eatMatching p (ls1, ls2) = let fun em (ls1, ls2, passed1) = case ls1 of [] => (rev passed1, ls2) | h1 :: t1 => let fun search (ls2', passed2) = case ls2' of [] => em (t1, ls2, h1 :: passed1) | h2 :: t2 => if p (h1, h2) then em (t1, List.revAppend (passed2, t2), passed1) else search (t2, h2 :: passed2) in search (ls2, []) end in em (ls1, ls2, []) end val (fs1, fs2) = eatMatching (fn ((x1, c1), (x2, c2)) => not (consNeq env (x1, x2)) andalso consEq (env, denv) (c1, c2) andalso consEq (env, denv) (x1, x2)) (#fields s1, #fields s2) (*val () = eprefaces "Summaries2" [("#1", p_summary env {fields = fs1, unifs = #unifs s1, others = #others s1}), ("#2", p_summary env {fields = fs2, unifs = #unifs s2, others = #others s2})]*) val (unifs1, unifs2) = eatMatching (fn ((_, r1), (_, r2)) => r1 = r2) (#unifs s1, #unifs s2) val (others1, others2) = eatMatching (consEq (env, denv)) (#others s1, #others s2) fun unifFields (fs, others, unifs) = case (fs, others, unifs) of ([], [], _) => ([], [], unifs) | (_, _, []) => (fs, others, []) | (_, _, (_, r) :: rest) => let val r' = ref NONE val cr' = (L'.CUnif (dummy, k, "recd", r'), dummy) val prefix = case (fs, others) of ([], other :: others) => List.foldl (fn (other, c) => (L'.CConcat (c, other), dummy)) other others | (fs, []) => (L'.CRecord (k, fs), dummy) | (fs, others) => List.foldl (fn (other, c) => (L'.CConcat (c, other), dummy)) (L'.CRecord (k, fs), dummy) others in r := SOME (L'.CConcat (prefix, cr'), dummy); ([], [], (cr', r') :: rest) end val (fs1, others1, unifs2) = unifFields (fs1, others1, unifs2) val (fs2, others2, unifs1) = unifFields (fs2, others2, unifs1) val clear = case (fs1, others1, fs2, others2) of ([], [], [], []) => true | _ => false val empty = (L'.CRecord (k, []), dummy) fun pairOffUnifs (unifs1, unifs2) = case (unifs1, unifs2) of ([], _) => if clear then List.app (fn (_, r) => r := SOME empty) unifs2 else raise CUnify' CRecordFailure | (_, []) => if clear then List.app (fn (_, r) => r := SOME empty) unifs1 else raise CUnify' CRecordFailure | ((c1, _) :: rest1, (_, r2) :: rest2) => (r2 := SOME c1; pairOffUnifs (rest1, rest2)) in pairOffUnifs (unifs1, unifs2) end and unifyCons' (env, denv) c1 c2 = let val (c1, gs1) = hnormCon (env, denv) c1 val (c2, gs2) = hnormCon (env, denv) c2 val gs3 = unifyCons'' (env, denv) c1 c2 in gs1 @ gs2 @ gs3 end and unifyCons'' (env, denv) (c1All as (c1, _)) (c2All as (c2, _)) = let fun err f = raise CUnify' (f (c1All, c2All)) fun isRecord () = unifyRecordCons (env, denv) (c1All, c2All) in (*eprefaces "unifyCons''" [("c1All", p_con env c1All), ("c2All", p_con env c2All)];*) case (c1, c2) of (L'.CUnit, L'.CUnit) => [] | (L'.TFun (d1, r1), L'.TFun (d2, r2)) => unifyCons' (env, denv) d1 d2 @ unifyCons' (env, denv) r1 r2 | (L'.TCFun (expl1, x1, d1, r1), L'.TCFun (expl2, _, d2, r2)) => if expl1 <> expl2 then err CExplicitness else (unifyKinds d1 d2; unifyCons' (E.pushCRel env x1 d1, D.enter denv) r1 r2) | (L'.TRecord r1, L'.TRecord r2) => unifyCons' (env, denv) r1 r2 | (L'.CRel n1, L'.CRel n2) => if n1 = n2 then [] else err CIncompatible | (L'.CNamed n1, L'.CNamed n2) => if n1 = n2 then [] else err CIncompatible | (L'.CApp (d1, r1), L'.CApp (d2, r2)) => (unifyCons' (env, denv) d1 d2; unifyCons' (env, denv) r1 r2) | (L'.CAbs (x1, k1, c1), L'.CAbs (_, k2, c2)) => (unifyKinds k1 k2; unifyCons' (E.pushCRel env x1 k1, D.enter denv) c1 c2) | (L'.CName n1, L'.CName n2) => if n1 = n2 then [] else err CIncompatible | (L'.CModProj (n1, ms1, x1), L'.CModProj (n2, ms2, x2)) => if n1 = n2 andalso ms1 = ms2 andalso x1 = x2 then [] else err CIncompatible | (L'.CError, _) => [] | (_, L'.CError) => [] | (L'.CRecord _, _) => isRecord () | (_, L'.CRecord _) => isRecord () | (L'.CConcat _, _) => isRecord () | (_, L'.CConcat _) => isRecord () (*| (L'.CUnif (_, (L'.KRecord _, _), _, _), _) => isRecord () | (_, L'.CUnif (_, (L'.KRecord _, _), _, _)) => isRecord ()*) | (L'.CUnif (_, k1, _, r1), L'.CUnif (_, k2, _, r2)) => if r1 = r2 then [] else (unifyKinds k1 k2; r1 := SOME c2All; []) | (L'.CUnif (_, _, _, r), _) => if occursCon r c2All then err COccursCheckFailed else (r := SOME c2All; []) | (_, L'.CUnif (_, _, _, r)) => if occursCon r c1All then err COccursCheckFailed else (r := SOME c1All; []) | (L'.CFold (dom1, ran1), L'.CFold (dom2, ran2)) => (unifyKinds dom1 dom2; unifyKinds ran1 ran2; []) | _ => err CIncompatible end and unifyCons (env, denv) c1 c2 = unifyCons' (env, denv) c1 c2 handle CUnify' err => raise CUnify (c1, c2, err) | KUnify args => raise CUnify (c1, c2, CKind args) datatype exp_error = UnboundExp of ErrorMsg.span * string | UnboundStrInExp of ErrorMsg.span * string | Unify of L'.exp * L'.con * L'.con * cunify_error | Unif of string * L'.con | WrongForm of string * L'.exp * L'.con | IncompatibleCons of L'.con * L'.con fun expError env err = case err of UnboundExp (loc, s) => ErrorMsg.errorAt loc ("Unbound expression variable " ^ s) | UnboundStrInExp (loc, s) => ErrorMsg.errorAt loc ("Unbound structure " ^ s) | Unify (e, c1, c2, uerr) => (ErrorMsg.errorAt (#2 e) "Unification failure"; eprefaces' [("Expression", p_exp env e), ("Have con", p_con env c1), ("Need con", p_con env c2)]; cunifyError env uerr) | Unif (action, c) => (ErrorMsg.errorAt (#2 c) ("Unification variable blocks " ^ action); eprefaces' [("Con", p_con env c)]) | WrongForm (variety, e, t) => (ErrorMsg.errorAt (#2 e) ("Expression is not a " ^ variety); eprefaces' [("Expression", p_exp env e), ("Type", p_con env t)]) | IncompatibleCons (c1, c2) => (ErrorMsg.errorAt (#2 c1) "Incompatible constructors"; eprefaces' [("Con 1", p_con env c1), ("Con 2", p_con env c2)]) fun checkCon (env, denv) e c1 c2 = unifyCons (env, denv) c1 c2 handle CUnify (c1, c2, err) => (expError env (Unify (e, c1, c2, err)); []) fun primType env p = case p of P.Int _ => !int | P.Float _ => !float | P.String _ => !string fun recCons (k, nm, v, rest, loc) = (L'.CConcat ((L'.CRecord (k, [(nm, v)]), loc), rest), loc) fun foldType (dom, loc) = (L'.TCFun (L'.Explicit, "ran", (L'.KArrow ((L'.KRecord dom, loc), (L'.KType, loc)), loc), (L'.TFun ((L'.TCFun (L'.Explicit, "nm", (L'.KName, loc), (L'.TCFun (L'.Explicit, "v", dom, (L'.TCFun (L'.Explicit, "rest", (L'.KRecord dom, loc), (L'.TFun ((L'.CApp ((L'.CRel 3, loc), (L'.CRel 0, loc)), loc), (L'.CApp ((L'.CRel 3, loc), recCons (dom, (L'.CRel 2, loc), (L'.CRel 1, loc), (L'.CRel 0, loc), loc)), loc)), loc)), loc)), loc)), loc), (L'.TFun ((L'.CApp ((L'.CRel 0, loc), (L'.CRecord (dom, []), loc)), loc), (L'.TCFun (L'.Explicit, "r", (L'.KRecord dom, loc), (L'.CApp ((L'.CRel 1, loc), (L'.CRel 0, loc)), loc)), loc)), loc)), loc)), loc) fun typeof env (e, loc) = case e of L'.EPrim p => primType env p | L'.ERel n => #2 (E.lookupERel env n) | L'.ENamed n => #2 (E.lookupENamed env n) | L'.EModProj (n, ms, x) => let val (_, sgn) = E.lookupStrNamed env n val (str, sgn) = foldl (fn (m, (str, sgn)) => case E.projectStr env {sgn = sgn, str = str, field = m} of NONE => raise Fail "kindof: Unknown substructure" | SOME sgn => ((L'.StrProj (str, m), loc), sgn)) ((L'.StrVar n, loc), sgn) ms in case E.projectVal env {sgn = sgn, str = str, field = x} of NONE => raise Fail "typeof: Unknown val in structure" | SOME t => t end | L'.EApp (e1, _) => (case #1 (typeof env e1) of L'.TFun (_, c) => c | _ => raise Fail "typeof: Bad EApp") | L'.EAbs (_, _, ran, _) => ran | L'.ECApp (e1, c) => (case #1 (typeof env e1) of L'.TCFun (_, _, _, c1) => subConInCon (0, c) c1 | _ => raise Fail "typeof: Bad ECApp") | L'.ECAbs (expl, x, k, e1) => (L'.TCFun (expl, x, k, typeof (E.pushCRel env x k) e1), loc) | L'.ERecord xes => (L'.TRecord (L'.CRecord (ktype, map (fn (x, _, t) => (x, t)) xes), loc), loc) | L'.EField (_, _, {field, ...}) => field | L'.EFold dom => foldType (dom, loc) | L'.EError => cerror fun elabHead (env, denv) (e as (_, loc)) t = let fun unravel (t, e) = let val (t, gs) = hnormCon (env, denv) t in case t of (L'.TCFun (L'.Implicit, x, k, t'), _) => let val u = cunif (loc, k) val (e, t, gs') = unravel (subConInCon (0, u) t', (L'.ECApp (e, u), loc)) in (e, t, gs @ gs') end | _ => (e, t, gs) end in unravel (t, e) end fun elabExp (env, denv) (eAll as (e, loc)) = let in (*eprefaces "elabExp" [("eAll", SourcePrint.p_exp eAll)];*) case e of L.EAnnot (e, t) => let val (e', et, gs1) = elabExp (env, denv) e val (t', _, gs2) = elabCon (env, denv) t val gs3 = checkCon (env, denv) e' et t' in (e', t', gs1 @ gs2 @ gs3) end | L.EPrim p => ((L'.EPrim p, loc), primType env p, []) | L.EVar ([], s) => (case E.lookupE env s of E.NotBound => (expError env (UnboundExp (loc, s)); (eerror, cerror, [])) | E.Rel (n, t) => ((L'.ERel n, loc), t, []) | E.Named (n, t) => ((L'.ENamed n, loc), t, [])) | L.EVar (m1 :: ms, s) => (case E.lookupStr env m1 of NONE => (expError env (UnboundStrInExp (loc, m1)); (eerror, cerror, [])) | SOME (n, sgn) => let val (str, sgn) = foldl (fn (m, (str, sgn)) => case E.projectStr env {sgn = sgn, str = str, field = m} of NONE => (conError env (UnboundStrInCon (loc, m)); (strerror, sgnerror)) | SOME sgn => ((L'.StrProj (str, m), loc), sgn)) ((L'.StrVar n, loc), sgn) ms val t = case E.projectVal env {sgn = sgn, str = str, field = s} of NONE => (expError env (UnboundExp (loc, s)); cerror) | SOME t => t in ((L'.EModProj (n, ms, s), loc), t, []) end) | L.EApp (arg as ((L.EApp ((L.ECApp ((L.EVar (["Basis"], "join"), _), (L.CWild _, _)), _), xml1), _), xml2)) => let val (xml1', t1, gs1) = elabExp (env, denv) xml1 val (xml2', t2, gs2) = elabExp (env, denv) xml2 val kunit = (L'.KUnit, loc) val k = (L'.KRecord kunit, loc) val basis = case E.lookupStr env "Basis" of NONE => raise Fail "elabExp: Unbound Basis" | SOME (n, _) => n fun xml () = let val ns = cunif (loc, k) in (ns, (L'.CApp ((L'.CModProj (basis, [], "xml"), loc), ns), loc)) end val (ns1, c1) = xml () val (ns2, c2) = xml () val gs3 = checkCon (env, denv) xml1' t1 c1 val gs4 = checkCon (env, denv) xml2' t2 c2 val (ns1, gs5) = hnormCon (env, denv) ns1 val (ns2, gs6) = hnormCon (env, denv) ns2 val cemp = (L'.CRecord (kunit, []), loc) val (shared, ctx1, ctx2) = case (#1 ns1, #1 ns2) of (L'.CRecord (_, ns1), L'.CRecord (_, ns2)) => let val ns = List.filter (fn ((nm, _), _) => case nm of L'.CName s => List.exists (fn ((L'.CName s', _), _) => s' = s | _ => false) ns2 | _ => false) ns1 in ((L'.CRecord (kunit, ns), loc), cunif (loc, k), cunif (loc, k)) end | (_, L'.CRecord _) => (ns2, cemp, cemp) | _ => (ns1, cemp, cemp) val ns1' = (L'.CConcat (shared, ctx1), loc) val ns2' = (L'.CConcat (shared, ctx2), loc) val e = (L'.EModProj (basis, [], "join"), loc) val e = (L'.ECApp (e, shared), loc) val e = (L'.ECApp (e, ctx1), loc) val e = (L'.ECApp (e, ctx2), loc) val e = (L'.EApp (e, xml1'), loc) val e = (L'.EApp (e, xml2'), loc) val t = (L'.CApp ((L'.CModProj (basis, [], "xml"), loc), shared), loc) fun doUnify (ns, ns') = let fun setEmpty c = let val ((c, _), gs) = hnormCon (env, denv) c in case c of L'.CUnif (_, _, _, r) => (r := SOME cemp; gs) | L'.CConcat (_, c') => setEmpty c' @ gs | _ => gs end val gs1 = unifyCons (env, denv) ns ns' val gs2 = setEmpty ns' val gs3 = unifyCons (env, denv) ns ns' in gs1 @ gs2 @ gs3 end handle CUnify _ => (expError env (IncompatibleCons (ns, ns')); []) val gs7 = doUnify (ns1, ns1') val gs8 = doUnify (ns2, ns2') in (e, t, (loc, env, denv, shared, ctx1) :: (loc, env, denv, shared, ctx2) :: gs1 @ gs2 @ gs3 @ gs4 @ gs5 @ gs6 @ gs7 @ gs8) end | L.EApp (e1, e2) => let val (e1', t1, gs1) = elabExp (env, denv) e1 val (e1', t1, gs2) = elabHead (env, denv) e1' t1 val (e2', t2, gs3) = elabExp (env, denv) e2 val dom = cunif (loc, ktype) val ran = cunif (loc, ktype) val t = (L'.TFun (dom, ran), dummy) val gs4 = checkCon (env, denv) e1' t1 t val gs5 = checkCon (env, denv) e2' t2 dom in ((L'.EApp (e1', e2'), loc), ran, gs1 @ gs2 @ gs3 @ gs4 @ gs5) end | L.EAbs (x, to, e) => let val (t', gs1) = case to of NONE => (cunif (loc, ktype), []) | SOME t => let val (t', tk, gs) = elabCon (env, denv) t in checkKind env t' tk ktype; (t', gs) end val (e', et, gs2) = elabExp (E.pushERel env x t', denv) e in ((L'.EAbs (x, t', et, e'), loc), (L'.TFun (t', et), loc), gs1 @ gs2) end | L.ECApp (e, c) => let val (e', et, gs1) = elabExp (env, denv) e val (e', et, gs2) = elabHead (env, denv) e' et val (c', ck, gs3) = elabCon (env, denv) c val ((et', _), gs4) = hnormCon (env, denv) et in case et' of L'.CError => (eerror, cerror, []) | L'.TCFun (_, _, k, eb) => let val () = checkKind env c' ck k val eb' = subConInCon (0, c') eb handle SynUnif => (expError env (Unif ("substitution", eb)); cerror) in ((L'.ECApp (e', c'), loc), eb', gs1 @ gs2 @ gs3 @ gs4) end | L'.CUnif _ => (expError env (Unif ("application", et)); (eerror, cerror, [])) | _ => (expError env (WrongForm ("constructor function", e', et)); (eerror, cerror, [])) end | L.ECAbs (expl, x, k, e) => let val expl' = elabExplicitness expl val k' = elabKind k val (e', et, gs) = elabExp (E.pushCRel env x k', D.enter denv) e in ((L'.ECAbs (expl', x, k', e'), loc), (L'.TCFun (expl', x, k', et), loc), gs) end | L.EDisjoint (c1, c2, e) => let val (c1', k1, gs1) = elabCon (env, denv) c1 val (c2', k2, gs2) = elabCon (env, denv) c2 val ku1 = kunif loc val ku2 = kunif loc val (denv', gs3) = D.assert env denv (c1', c2') val (e', t, gs4) = elabExp (env, denv') e in checkKind env c1' k1 (L'.KRecord ku1, loc); checkKind env c2' k2 (L'.KRecord ku2, loc); (e', (L'.TDisjoint (c1', c2', t), loc), gs1 @ gs2 @ gs3 @ gs4) end | L.ERecord xes => let val (xes', gs) = ListUtil.foldlMap (fn ((x, e), gs) => let val (x', xk, gs1) = elabCon (env, denv) x val (e', et, gs2) = elabExp (env, denv) e in checkKind env x' xk kname; ((x', e', et), gs1 @ gs2 @ gs) end) [] xes val k = (L'.KType, loc) fun prove (xets, gs) = case xets of [] => gs | (x, _, t) :: rest => let val xc = (x, t) val r1 = (L'.CRecord (k, [xc]), loc) val gs = foldl (fn ((x', _, t'), gs) => let val xc' = (x', t') val r2 = (L'.CRecord (k, [xc']), loc) in D.prove env denv (r1, r2, loc) @ gs end) gs rest in prove (rest, gs) end in ((L'.ERecord xes', loc), (L'.TRecord (L'.CRecord (ktype, map (fn (x', _, et) => (x', et)) xes'), loc), loc), prove (xes', gs)) end | L.EField (e, c) => let val (e', et, gs1) = elabExp (env, denv) e val (c', ck, gs2) = elabCon (env, denv) c val ft = cunif (loc, ktype) val rest = cunif (loc, ktype_record) val first = (L'.CRecord (ktype, [(c', ft)]), loc) val gs3 = checkCon (env, denv) e' et (L'.TRecord (L'.CConcat (first, rest), loc), loc) val gs4 = D.prove env denv (first, rest, loc) in ((L'.EField (e', c', {field = ft, rest = rest}), loc), ft, gs1 @ gs2 @ gs3 @ gs4) end | L.EFold => let val dom = kunif loc in ((L'.EFold dom, loc), foldType (dom, loc), []) end end datatype decl_error = KunifsRemain of L'.decl list | CunifsRemain of L'.decl list fun lspan [] = ErrorMsg.dummySpan | lspan ((_, loc) :: _) = loc fun declError env err = case err of KunifsRemain ds => (ErrorMsg.errorAt (lspan ds) "Some kind unification variables are undetermined in declaration"; eprefaces' [("Decl", p_list_sep PD.newline (p_decl env) ds)]) | CunifsRemain ds => (ErrorMsg.errorAt (lspan ds) "Some constructor unification variables are undetermined in declaration"; eprefaces' [("Decl", p_list_sep PD.newline (p_decl env) ds)]) datatype sgn_error = UnboundSgn of ErrorMsg.span * string | UnmatchedSgi of L'.sgn_item | SgiWrongKind of L'.sgn_item * L'.kind * L'.sgn_item * L'.kind * kunify_error | SgiWrongCon of L'.sgn_item * L'.con * L'.sgn_item * L'.con * cunify_error | SgnWrongForm of L'.sgn * L'.sgn | UnWhereable of L'.sgn * string | WhereWrongKind of L'.kind * L'.kind * kunify_error | NotIncludable of L'.sgn | DuplicateCon of ErrorMsg.span * string | DuplicateVal of ErrorMsg.span * string | DuplicateSgn of ErrorMsg.span * string | DuplicateStr of ErrorMsg.span * string | NotConstraintsable of L'.sgn fun sgnError env err = case err of UnboundSgn (loc, s) => ErrorMsg.errorAt loc ("Unbound signature variable " ^ s) | UnmatchedSgi (sgi as (_, loc)) => (ErrorMsg.errorAt loc "Unmatched signature item"; eprefaces' [("Item", p_sgn_item env sgi)]) | SgiWrongKind (sgi1, k1, sgi2, k2, kerr) => (ErrorMsg.errorAt (#2 sgi1) "Kind unification failure in signature matching:"; eprefaces' [("Have", p_sgn_item env sgi1), ("Need", p_sgn_item env sgi2), ("Kind 1", p_kind k1), ("Kind 2", p_kind k2)]; kunifyError kerr) | SgiWrongCon (sgi1, c1, sgi2, c2, cerr) => (ErrorMsg.errorAt (#2 sgi1) "Constructor unification failure in signature matching:"; eprefaces' [("Have", p_sgn_item env sgi1), ("Need", p_sgn_item env sgi2), ("Con 1", p_con env c1), ("Con 2", p_con env c2)]; cunifyError env cerr) | SgnWrongForm (sgn1, sgn2) => (ErrorMsg.errorAt (#2 sgn1) "Incompatible signatures:"; eprefaces' [("Sig 1", p_sgn env sgn1), ("Sig 2", p_sgn env sgn2)]) | UnWhereable (sgn, x) => (ErrorMsg.errorAt (#2 sgn) "Unavailable field for 'where'"; eprefaces' [("Signature", p_sgn env sgn), ("Field", PD.string x)]) | WhereWrongKind (k1, k2, kerr) => (ErrorMsg.errorAt (#2 k1) "Wrong kind for 'where'"; eprefaces' [("Have", p_kind k1), ("Need", p_kind k2)]; kunifyError kerr) | NotIncludable sgn => (ErrorMsg.errorAt (#2 sgn) "Invalid signature to 'include'"; eprefaces' [("Signature", p_sgn env sgn)]) | DuplicateCon (loc, s) => ErrorMsg.errorAt loc ("Duplicate constructor " ^ s ^ " in signature") | DuplicateVal (loc, s) => ErrorMsg.errorAt loc ("Duplicate value " ^ s ^ " in signature") | DuplicateSgn (loc, s) => ErrorMsg.errorAt loc ("Duplicate signature " ^ s ^ " in signature") | DuplicateStr (loc, s) => ErrorMsg.errorAt loc ("Duplicate structure " ^ s ^ " in signature") | NotConstraintsable sgn => (ErrorMsg.errorAt (#2 sgn) "Invalid signature for 'open constraints'"; eprefaces' [("Signature", p_sgn env sgn)]) datatype str_error = UnboundStr of ErrorMsg.span * string | NotFunctor of L'.sgn | FunctorRebind of ErrorMsg.span | UnOpenable of L'.sgn | NotType of L'.kind * (L'.kind * L'.kind * kunify_error) fun strError env err = case err of UnboundStr (loc, s) => ErrorMsg.errorAt loc ("Unbound structure variable " ^ s) | NotFunctor sgn => (ErrorMsg.errorAt (#2 sgn) "Application of non-functor"; eprefaces' [("Signature", p_sgn env sgn)]) | FunctorRebind loc => ErrorMsg.errorAt loc "Attempt to rebind functor" | UnOpenable sgn => (ErrorMsg.errorAt (#2 sgn) "Un-openable structure"; eprefaces' [("Signature", p_sgn env sgn)]) | NotType (k, (k1, k2, ue)) => (ErrorMsg.errorAt (#2 k) "'val' type kind is not 'Type'"; eprefaces' [("Kind", p_kind k), ("Subkind 1", p_kind k1), ("Subkind 2", p_kind k2)]; kunifyError ue) val hnormSgn = E.hnormSgn fun elabSgn_item ((sgi, loc), (env, denv, gs)) = case sgi of L.SgiConAbs (x, k) => let val k' = elabKind k val (env', n) = E.pushCNamed env x k' NONE in ([(L'.SgiConAbs (x, n, k'), loc)], (env', denv, gs)) end | L.SgiCon (x, ko, c) => let val k' = case ko of NONE => kunif loc | SOME k => elabKind k val (c', ck, gs') = elabCon (env, denv) c val (env', n) = E.pushCNamed env x k' (SOME c') in checkKind env c' ck k'; ([(L'.SgiCon (x, n, k', c'), loc)], (env', denv, gs' @ gs)) end | L.SgiVal (x, c) => let val (c', ck, gs') = elabCon (env, denv) c val (env', n) = E.pushENamed env x c' in (unifyKinds ck ktype handle KUnify ue => strError env (NotType (ck, ue))); ([(L'.SgiVal (x, n, c'), loc)], (env', denv, gs' @ gs)) end | L.SgiStr (x, sgn) => let val (sgn', gs') = elabSgn (env, denv) sgn val (env', n) = E.pushStrNamed env x sgn' in ([(L'.SgiStr (x, n, sgn'), loc)], (env', denv, gs' @ gs)) end | L.SgiSgn (x, sgn) => let val (sgn', gs') = elabSgn (env, denv) sgn val (env', n) = E.pushSgnNamed env x sgn' in ([(L'.SgiSgn (x, n, sgn'), loc)], (env', denv, gs' @ gs)) end | L.SgiInclude sgn => let val (sgn', gs') = elabSgn (env, denv) sgn in case #1 (hnormSgn env sgn') of L'.SgnConst sgis => (sgis, (foldl (fn (sgi, env) => E.sgiBinds env sgi) env sgis, denv, gs' @ gs)) | _ => (sgnError env (NotIncludable sgn'); ([], (env, denv, []))) end | L.SgiConstraint (c1, c2) => let val (c1', k1, gs1) = elabCon (env, denv) c1 val (c2', k2, gs2) = elabCon (env, denv) c2 val (denv, gs3) = D.assert env denv (c1', c2') in checkKind env c1' k1 (L'.KRecord (kunif loc), loc); checkKind env c2' k2 (L'.KRecord (kunif loc), loc); ([(L'.SgiConstraint (c1', c2'), loc)], (env, denv, gs1 @ gs2 @ gs3)) end and elabSgn (env, denv) (sgn, loc) = case sgn of L.SgnConst sgis => let val (sgis', (_, _, gs)) = ListUtil.foldlMapConcat elabSgn_item (env, denv, []) sgis val _ = foldl (fn ((sgi, loc), (cons, vals, sgns, strs)) => case sgi of L'.SgiConAbs (x, _, _) => (if SS.member (cons, x) then sgnError env (DuplicateCon (loc, x)) else (); (SS.add (cons, x), vals, sgns, strs)) | L'.SgiCon (x, _, _, _) => (if SS.member (cons, x) then sgnError env (DuplicateCon (loc, x)) else (); (SS.add (cons, x), vals, sgns, strs)) | L'.SgiVal (x, _, _) => (if SS.member (vals, x) then sgnError env (DuplicateVal (loc, x)) else (); (cons, SS.add (vals, x), sgns, strs)) | L'.SgiSgn (x, _, _) => (if SS.member (sgns, x) then sgnError env (DuplicateSgn (loc, x)) else (); (cons, vals, SS.add (sgns, x), strs)) | L'.SgiStr (x, _, _) => (if SS.member (strs, x) then sgnError env (DuplicateStr (loc, x)) else (); (cons, vals, sgns, SS.add (strs, x))) | L'.SgiConstraint _ => (cons, vals, sgns, strs)) (SS.empty, SS.empty, SS.empty, SS.empty) sgis' in ((L'.SgnConst sgis', loc), gs) end | L.SgnVar x => (case E.lookupSgn env x of NONE => (sgnError env (UnboundSgn (loc, x)); ((L'.SgnError, loc), [])) | SOME (n, sgis) => ((L'.SgnVar n, loc), [])) | L.SgnFun (m, dom, ran) => let val (dom', gs1) = elabSgn (env, denv) dom val (env', n) = E.pushStrNamed env m dom' val (ran', gs2) = elabSgn (env', denv) ran in ((L'.SgnFun (m, n, dom', ran'), loc), gs1 @ gs2) end | L.SgnWhere (sgn, x, c) => let val (sgn', ds1) = elabSgn (env, denv) sgn val (c', ck, ds2) = elabCon (env, denv) c in case #1 (hnormSgn env sgn') of L'.SgnError => (sgnerror, []) | L'.SgnConst sgis => if List.exists (fn (L'.SgiConAbs (x', _, k), _) => x' = x andalso (unifyKinds k ck handle KUnify x => sgnError env (WhereWrongKind x); true) | _ => false) sgis then ((L'.SgnWhere (sgn', x, c'), loc), ds1 @ ds2) else (sgnError env (UnWhereable (sgn', x)); (sgnerror, [])) | _ => (sgnError env (UnWhereable (sgn', x)); (sgnerror, [])) end | L.SgnProj (m, ms, x) => (case E.lookupStr env m of NONE => (strError env (UnboundStr (loc, m)); (sgnerror, [])) | SOME (n, sgn) => let val (str, sgn) = foldl (fn (m, (str, sgn)) => case E.projectStr env {sgn = sgn, str = str, field = m} of NONE => (strError env (UnboundStr (loc, m)); (strerror, sgnerror)) | SOME sgn => ((L'.StrProj (str, m), loc), sgn)) ((L'.StrVar n, loc), sgn) ms in case E.projectSgn env {sgn = sgn, str = str, field = x} of NONE => (sgnError env (UnboundSgn (loc, x)); (sgnerror, [])) | SOME _ => ((L'.SgnProj (n, ms, x), loc), []) end) fun selfify env {str, strs, sgn} = case #1 (hnormSgn env sgn) of L'.SgnError => sgn | L'.SgnVar _ => sgn | L'.SgnConst sgis => (L'.SgnConst (map (fn (L'.SgiConAbs (x, n, k), loc) => (L'.SgiCon (x, n, k, (L'.CModProj (str, strs, x), loc)), loc) | (L'.SgiStr (x, n, sgn), loc) => (L'.SgiStr (x, n, selfify env {str = str, strs = strs @ [x], sgn = sgn}), loc) | x => x) sgis), #2 sgn) | L'.SgnFun _ => sgn | L'.SgnWhere _ => sgn | L'.SgnProj (m, ms, x) => case E.projectSgn env {str = foldl (fn (m, str) => (L'.StrProj (str, m), #2 sgn)) (L'.StrVar m, #2 sgn) ms, sgn = #2 (E.lookupStrNamed env m), field = x} of NONE => raise Fail "Elaborate.selfify: projectSgn returns NONE" | SOME sgn => selfify env {str = str, strs = strs, sgn = sgn} fun selfifyAt env {str, sgn} = let fun self (str, _) = case str of L'.StrVar x => SOME (x, []) | L'.StrProj (str, x) => (case self str of NONE => NONE | SOME (m, ms) => SOME (m, ms @ [x])) | _ => NONE in case self str of NONE => sgn | SOME (str, strs) => selfify env {sgn = sgn, str = str, strs = strs} end fun dopen (env, denv) {str, strs, sgn} = let val m = foldl (fn (m, str) => (L'.StrProj (str, m), #2 sgn)) (L'.StrVar str, #2 sgn) strs in case #1 (hnormSgn env sgn) of L'.SgnConst sgis => ListUtil.foldlMap (fn ((sgi, loc), (env', denv')) => case sgi of L'.SgiConAbs (x, n, k) => let val c = (L'.CModProj (str, strs, x), loc) in ((L'.DCon (x, n, k, c), loc), (E.pushCNamedAs env' x n k (SOME c), denv')) end | L'.SgiCon (x, n, k, c) => ((L'.DCon (x, n, k, (L'.CModProj (str, strs, x), loc)), loc), (E.pushCNamedAs env' x n k (SOME c), denv')) | L'.SgiVal (x, n, t) => ((L'.DVal (x, n, t, (L'.EModProj (str, strs, x), loc)), loc), (E.pushENamedAs env' x n t, denv')) | L'.SgiStr (x, n, sgn) => ((L'.DStr (x, n, sgn, (L'.StrProj (m, x), loc)), loc), (E.pushStrNamedAs env' x n sgn, denv')) | L'.SgiSgn (x, n, sgn) => ((L'.DSgn (x, n, (L'.SgnProj (str, strs, x), loc)), loc), (E.pushSgnNamedAs env' x n sgn, denv')) | L'.SgiConstraint (c1, c2) => ((L'.DConstraint (c1, c2), loc), (env', denv (* D.assert env denv (c1, c2) *) ))) (env, denv) sgis | _ => (strError env (UnOpenable sgn); ([], (env, denv))) end fun dopenConstraints (loc, env, denv) {str, strs} = case E.lookupStr env str of NONE => (strError env (UnboundStr (loc, str)); denv) | SOME (n, sgn) => let val (st, sgn) = foldl (fn (m, (str, sgn)) => case E.projectStr env {str = str, sgn = sgn, field = m} of NONE => (strError env (UnboundStr (loc, m)); (strerror, sgnerror)) | SOME sgn => ((L'.StrProj (str, m), loc), sgn)) ((L'.StrVar n, loc), sgn) strs val cso = E.projectConstraints env {sgn = sgn, str = st} val denv = case cso of NONE => (strError env (UnboundStr (loc, str)); denv) | SOME cs => foldl (fn ((c1, c2), denv) => let val (denv, gs) = D.assert env denv (c1, c2) in case gs of [] => () | _ => raise Fail "dopenConstraints: Sub-constraints remain"; denv end) denv cs in denv end fun sgiOfDecl (d, loc) = case d of L'.DCon (x, n, k, c) => [(L'.SgiCon (x, n, k, c), loc)] | L'.DVal (x, n, t, _) => [(L'.SgiVal (x, n, t), loc)] | L'.DValRec vis => map (fn (x, n, t, _) => (L'.SgiVal (x, n, t), loc)) vis | L'.DSgn (x, n, sgn) => [(L'.SgiSgn (x, n, sgn), loc)] | L'.DStr (x, n, sgn, _) => [(L'.SgiStr (x, n, sgn), loc)] | L'.DFfiStr (x, n, sgn) => [(L'.SgiStr (x, n, sgn), loc)] | L'.DConstraint cs => [(L'.SgiConstraint cs, loc)] | L'.DExport _ => [] fun sgiBindsD (env, denv) (sgi, _) = case sgi of L'.SgiConstraint (c1, c2) => (case D.assert env denv (c1, c2) of (denv, []) => denv | _ => raise Fail "sgiBindsD: Sub-constraints remain") | _ => denv fun subSgn (env, denv) sgn1 (sgn2 as (_, loc2)) = case (#1 (hnormSgn env sgn1), #1 (hnormSgn env sgn2)) of (L'.SgnError, _) => () | (_, L'.SgnError) => () | (L'.SgnConst sgis1, L'.SgnConst sgis2) => let fun folder (sgi2All as (sgi, _), (env, denv)) = let fun seek p = let fun seek (env, denv) ls = case ls of [] => (sgnError env (UnmatchedSgi sgi2All); (env, denv)) | h :: t => case p h of NONE => seek (E.sgiBinds env h, sgiBindsD (env, denv) h) t | SOME envs => envs in seek (env, denv) sgis1 end in case sgi of L'.SgiConAbs (x, n2, k2) => seek (fn sgi1All as (sgi1, _) => let fun found (x', n1, k1, co1) = if x = x' then let val () = unifyKinds k1 k2 handle KUnify (k1, k2, err) => sgnError env (SgiWrongKind (sgi1All, k1, sgi2All, k2, err)) val env = E.pushCNamedAs env x n1 k1 co1 in SOME (if n1 = n2 then env else E.pushCNamedAs env x n2 k2 (SOME (L'.CNamed n1, loc2)), denv) end else NONE in case sgi1 of L'.SgiConAbs (x', n1, k1) => found (x', n1, k1, NONE) | L'.SgiCon (x', n1, k1, c1) => found (x', n1, k1, SOME c1) | _ => NONE end) | L'.SgiCon (x, n2, k2, c2) => seek (fn sgi1All as (sgi1, _) => case sgi1 of L'.SgiCon (x', n1, k1, c1) => if x = x' then let fun good () = SOME (E.pushCNamedAs env x n2 k2 (SOME c2), denv) in (case unifyCons (env, denv) c1 c2 of [] => good () | _ => NONE) handle CUnify (c1, c2, err) => (sgnError env (SgiWrongCon (sgi1All, c1, sgi2All, c2, err)); good ()) end else NONE | _ => NONE) | L'.SgiVal (x, n2, c2) => seek (fn sgi1All as (sgi1, _) => case sgi1 of L'.SgiVal (x', n1, c1) => if x = x' then (case unifyCons (env, denv) c1 c2 of [] => SOME (env, denv) | _ => NONE) handle CUnify (c1, c2, err) => (sgnError env (SgiWrongCon (sgi1All, c1, sgi2All, c2, err)); SOME (env, denv)) else NONE | _ => NONE) | L'.SgiStr (x, n2, sgn2) => seek (fn sgi1All as (sgi1, _) => case sgi1 of L'.SgiStr (x', n1, sgn1) => if x = x' then let val () = subSgn (env, denv) sgn1 sgn2 val env = E.pushStrNamedAs env x n1 sgn1 val env = if n1 = n2 then env else E.pushStrNamedAs env x n2 (selfifyAt env {str = (L'.StrVar n1, #2 sgn2), sgn = sgn2}) in SOME (env, denv) end else NONE | _ => NONE) | L'.SgiSgn (x, n2, sgn2) => seek (fn sgi1All as (sgi1, _) => case sgi1 of L'.SgiSgn (x', n1, sgn1) => if x = x' then let val () = subSgn (env, denv) sgn1 sgn2 val () = subSgn (env, denv) sgn2 sgn1 val env = E.pushSgnNamedAs env x n2 sgn2 val env = if n1 = n2 then env else E.pushSgnNamedAs env x n1 sgn2 in SOME (env, denv) end else NONE | _ => NONE) | L'.SgiConstraint (c2, d2) => seek (fn sgi1All as (sgi1, _) => case sgi1 of L'.SgiConstraint (c1, d1) => if consEq (env, denv) (c1, c2) andalso consEq (env, denv) (d1, d2) then let val (denv, gs) = D.assert env denv (c2, d2) in case gs of [] => () | _ => raise Fail "subSgn: Sub-constraints remain"; SOME (env, denv) end else NONE | _ => NONE) end in ignore (foldl folder (env, denv) sgis2) end | (L'.SgnFun (m1, n1, dom1, ran1), L'.SgnFun (m2, n2, dom2, ran2)) => let val ran1 = if n1 = n2 then ran1 else subStrInSgn (n1, n2) ran1 in subSgn (env, denv) dom2 dom1; subSgn (E.pushStrNamedAs env m2 n2 dom2, denv) ran1 ran2 end | _ => sgnError env (SgnWrongForm (sgn1, sgn2)) fun elabDecl ((d, loc), (env, denv, gs)) = case d of L.DCon (x, ko, c) => let val k' = case ko of NONE => kunif loc | SOME k => elabKind k val (c', ck, gs') = elabCon (env, denv) c val (env', n) = E.pushCNamed env x k' (SOME c') in checkKind env c' ck k'; ([(L'.DCon (x, n, k', c'), loc)], (env', denv, gs' @ gs)) end | L.DVal (x, co, e) => let val (c', _, gs1) = case co of NONE => (cunif (loc, ktype), ktype, []) | SOME c => elabCon (env, denv) c val (e', et, gs2) = elabExp (env, denv) e val (env', n) = E.pushENamed env x c' val gs3 = checkCon (env, denv) e' et c' in ([(L'.DVal (x, n, c', e'), loc)], (env', denv, gs1 @ gs2 @ gs3 @ gs)) end | L.DValRec vis => let val (vis, gs) = ListUtil.foldlMap (fn ((x, co, e), gs) => let val (c', _, gs1) = case co of NONE => (cunif (loc, ktype), ktype, []) | SOME c => elabCon (env, denv) c in ((x, c', e), gs1 @ gs) end) [] vis val (vis, env) = ListUtil.foldlMap (fn ((x, c', e), env) => let val (env, n) = E.pushENamed env x c' in ((x, n, c', e), env) end) env vis val (vis, gs) = ListUtil.foldlMap (fn ((x, n, c', e), gs) => let val (e', et, gs1) = elabExp (env, denv) e val gs2 = checkCon (env, denv) e' et c' in ((x, n, c', e'), gs1 @ gs2 @ gs) end) gs vis in ([(L'.DValRec vis, loc)], (env, denv, gs)) end | L.DSgn (x, sgn) => let val (sgn', gs') = elabSgn (env, denv) sgn val (env', n) = E.pushSgnNamed env x sgn' in ([(L'.DSgn (x, n, sgn'), loc)], (env', denv, gs' @ gs)) end | L.DStr (x, sgno, str) => let val () = if x = "Basis" then raise Fail "Not allowed to redefine structure 'Basis'" else () val formal = Option.map (elabSgn (env, denv)) sgno val (str', sgn', gs') = case formal of NONE => let val (str', actual, ds) = elabStr (env, denv) str in (str', selfifyAt env {str = str', sgn = actual}, ds) end | SOME (formal, gs1) => let val str = case #1 (hnormSgn env formal) of L'.SgnConst sgis => (case #1 str of L.StrConst ds => let val needed = foldl (fn ((sgi, _), needed) => case sgi of L'.SgiConAbs (x, _, _) => SS.add (needed, x) | _ => needed) SS.empty sgis val needed = foldl (fn ((d, _), needed) => case d of L.DCon (x, _, _) => (SS.delete (needed, x) handle NotFound => needed) | L.DOpen _ => SS.empty | _ => needed) needed ds in case SS.listItems needed of [] => str | xs => let val kwild = (L.KWild, #2 str) val cwild = (L.CWild kwild, #2 str) val ds' = map (fn x => (L.DCon (x, NONE, cwild), #2 str)) xs in (L.StrConst (ds @ ds'), #2 str) end end | _ => str) | _ => str val (str', actual, gs2) = elabStr (env, denv) str in subSgn (env, denv) actual formal; (str', formal, gs1 @ gs2) end val (env', n) = E.pushStrNamed env x sgn' in case #1 (hnormSgn env sgn') of L'.SgnFun _ => (case #1 str' of L'.StrFun _ => () | _ => strError env (FunctorRebind loc)) | _ => (); ([(L'.DStr (x, n, sgn', str'), loc)], (env', denv, gs' @ gs)) end | L.DFfiStr (x, sgn) => let val (sgn', gs') = elabSgn (env, denv) sgn val (env', n) = E.pushStrNamed env x sgn' in ([(L'.DFfiStr (x, n, sgn'), loc)], (env', denv, gs' @ gs)) end | L.DOpen (m, ms) => (case E.lookupStr env m of NONE => (strError env (UnboundStr (loc, m)); ([], (env, denv, []))) | SOME (n, sgn) => let val (_, sgn) = foldl (fn (m, (str, sgn)) => case E.projectStr env {str = str, sgn = sgn, field = m} of NONE => (strError env (UnboundStr (loc, m)); (strerror, sgnerror)) | SOME sgn => ((L'.StrProj (str, m), loc), sgn)) ((L'.StrVar n, loc), sgn) ms val (ds, (env', denv')) = dopen (env, denv) {str = n, strs = ms, sgn = sgn} val denv' = dopenConstraints (loc, env', denv') {str = m, strs = ms} in (ds, (env', denv', [])) end) | L.DConstraint (c1, c2) => let val (c1', k1, gs1) = elabCon (env, denv) c1 val (c2', k2, gs2) = elabCon (env, denv) c2 val gs3 = D.prove env denv (c1', c2', loc) val (denv', gs4) = D.assert env denv (c1', c2') in checkKind env c1' k1 (L'.KRecord (kunif loc), loc); checkKind env c2' k2 (L'.KRecord (kunif loc), loc); ([(L'.DConstraint (c1', c2'), loc)], (env, denv', gs1 @ gs2 @ gs3 @ gs4)) end | L.DOpenConstraints (m, ms) => let val denv = dopenConstraints (loc, env, denv) {str = m, strs = ms} in ([], (env, denv, [])) end | L.DExport str => let val (str', sgn, gs) = elabStr (env, denv) str val sgn = case #1 (hnormSgn env sgn) of L'.SgnConst sgis => let fun doOne (all as (sgi, _)) = case sgi of L'.SgiVal (x, n, t) => (case hnormCon (env, denv) t of ((L'.TFun (dom, ran), _), []) => (case (hnormCon (env, denv) dom, hnormCon (env, denv) ran) of (((L'.TRecord domR, _), []), ((L'.CApp (tf, ranR), _), [])) => (case (hnormCon (env, denv) tf, hnormCon (env, denv) ranR) of ((tf, []), (ranR, [])) => (case (hnormCon (env, denv) domR, hnormCon (env, denv) ranR) of ((domR, []), (ranR, [])) => (L'.SgiVal (x, n, (L'.TFun ((L'.TRecord domR, loc), (L'.CApp (tf, ranR), loc)), loc)), loc) | _ => all) | _ => all) | _ => all) | _ => all) | _ => all in (L'.SgnConst (map doOne sgis), loc) end | _ => sgn in ([(L'.DExport (E.newNamed (), sgn, str'), loc)], (env, denv, gs)) end and elabStr (env, denv) (str, loc) = case str of L.StrConst ds => let val (ds', (_, _, gs)) = ListUtil.foldlMapConcat elabDecl (env, denv, []) ds val sgis = ListUtil.mapConcat sgiOfDecl ds' val (sgis, _, _, _, _) = foldr (fn ((sgi, loc), (sgis, cons, vals, sgns, strs)) => case sgi of L'.SgiConAbs (x, n, k) => let val (cons, x) = if SS.member (cons, x) then (cons, "?" ^ x) else (SS.add (cons, x), x) in ((L'.SgiConAbs (x, n, k), loc) :: sgis, cons, vals, sgns, strs) end | L'.SgiCon (x, n, k, c) => let val (cons, x) = if SS.member (cons, x) then (cons, "?" ^ x) else (SS.add (cons, x), x) in ((L'.SgiCon (x, n, k, c), loc) :: sgis, cons, vals, sgns, strs) end | L'.SgiVal (x, n, c) => let val (vals, x) = if SS.member (vals, x) then (vals, "?" ^ x) else (SS.add (vals, x), x) in ((L'.SgiVal (x, n, c), loc) :: sgis, cons, vals, sgns, strs) end | L'.SgiSgn (x, n, sgn) => let val (sgns, x) = if SS.member (sgns, x) then (sgns, "?" ^ x) else (SS.add (sgns, x), x) in ((L'.SgiSgn (x, n, sgn), loc) :: sgis, cons, vals, sgns, strs) end | L'.SgiStr (x, n, sgn) => let val (strs, x) = if SS.member (strs, x) then (strs, "?" ^ x) else (SS.add (strs, x), x) in ((L'.SgiStr (x, n, sgn), loc) :: sgis, cons, vals, sgns, strs) end | L'.SgiConstraint _ => ((sgi, loc) :: sgis, cons, vals, sgns, strs)) ([], SS.empty, SS.empty, SS.empty, SS.empty) sgis in ((L'.StrConst ds', loc), (L'.SgnConst sgis, loc), gs) end | L.StrVar x => (case E.lookupStr env x of NONE => (strError env (UnboundStr (loc, x)); (strerror, sgnerror, [])) | SOME (n, sgn) => ((L'.StrVar n, loc), sgn, [])) | L.StrProj (str, x) => let val (str', sgn, gs) = elabStr (env, denv) str in case E.projectStr env {str = str', sgn = sgn, field = x} of NONE => (strError env (UnboundStr (loc, x)); (strerror, sgnerror, [])) | SOME sgn => ((L'.StrProj (str', x), loc), sgn, gs) end | L.StrFun (m, dom, ranO, str) => let val (dom', gs1) = elabSgn (env, denv) dom val (env', n) = E.pushStrNamed env m dom' val (str', actual, gs2) = elabStr (env', denv) str val (formal, gs3) = case ranO of NONE => (actual, []) | SOME ran => let val (ran', gs) = elabSgn (env', denv) ran in subSgn (env', denv) actual ran'; (ran', gs) end in ((L'.StrFun (m, n, dom', formal, str'), loc), (L'.SgnFun (m, n, dom', formal), loc), gs1 @ gs2 @ gs3) end | L.StrApp (str1, str2) => let val (str1', sgn1, gs1) = elabStr (env, denv) str1 val (str2', sgn2, gs2) = elabStr (env, denv) str2 in case #1 (hnormSgn env sgn1) of L'.SgnError => (strerror, sgnerror, []) | L'.SgnFun (m, n, dom, ran) => (subSgn (env, denv) sgn2 dom; case #1 (hnormSgn env ran) of L'.SgnError => (strerror, sgnerror, []) | L'.SgnConst sgis => ((L'.StrApp (str1', str2'), loc), (L'.SgnConst ((L'.SgiStr (m, n, selfifyAt env {str = str2', sgn = sgn2}), loc) :: sgis), loc), gs1 @ gs2) | _ => raise Fail "Unable to hnormSgn in functor application") | _ => (strError env (NotFunctor sgn1); (strerror, sgnerror, [])) end fun elabFile basis env file = let val (sgn, gs) = elabSgn (env, D.empty) (L.SgnConst basis, ErrorMsg.dummySpan) val () = case gs of [] => () | _ => raise Fail "Unresolved disjointness constraints in Basis" val (env', basis_n) = E.pushStrNamed env "Basis" sgn val (ds, (env', _)) = dopen (env', D.empty) {str = basis_n, strs = [], sgn = sgn} fun discoverC r x = case E.lookupC env' x of E.NotBound => raise Fail ("Constructor " ^ x ^ " unbound in Basis") | E.Rel _ => raise Fail ("Constructor " ^ x ^ " bound relatively in Basis") | E.Named (n, (_, loc)) => r := (L'.CNamed n, loc) val () = discoverC int "int" val () = discoverC float "float" val () = discoverC string "string" fun elabDecl' (d, (env, gs)) = let val () = resetKunif () val () = resetCunif () val (ds, (env, _, gs)) = elabDecl (d, (env, D.empty, gs)) in if ErrorMsg.anyErrors () then () else ( if List.exists kunifsInDecl ds then declError env (KunifsRemain ds) else (); case ListUtil.search cunifsInDecl ds of NONE => () | SOME loc => declError env (CunifsRemain ds) ); (ds, (env, gs)) end val (file, (_, gs)) = ListUtil.foldlMapConcat elabDecl' (env', []) file in if ErrorMsg.anyErrors () then () else app (fn (loc, env, denv, c1, c2) => case D.prove env denv (c1, c2, loc) of [] => () | _ => (ErrorMsg.errorAt loc "Couldn't prove field name disjointness"; eprefaces' [("Con 1", p_con env c1), ("Con 2", p_con env c2), ("Hnormed 1", p_con env (ElabOps.hnormCon env c1)), ("Hnormed 2", p_con env (ElabOps.hnormCon env c2))])) gs; (L'.DFfiStr ("Basis", basis_n, sgn), ErrorMsg.dummySpan) :: ds @ file end end