Mercurial > urweb
comparison src/disjoint.sml @ 82:b4f2a258e52c
Initial disjointness prover
author | Adam Chlipala <adamc@hcoop.net> |
---|---|
date | Tue, 01 Jul 2008 10:55:38 -0400 |
parents | |
children | 0a1baddd8ab2 |
comparison
equal
deleted
inserted
replaced
81:60d97de1bbe8 | 82:b4f2a258e52c |
---|---|
1 (* Copyright (c) 2008, Adam Chlipala | |
2 * All rights reserved. | |
3 * | |
4 * Redistribution and use in source and binary forms, with or without | |
5 * modification, are permitted provided that the following conditions are met: | |
6 * | |
7 * - Redistributions of source code must retain the above copyright notice, | |
8 * this list of conditions and the following disclaimer. | |
9 * - Redistributions in binary form must reproduce the above copyright notice, | |
10 * this list of conditions and the following disclaimer in the documentation | |
11 * and/or other materials provided with the distribution. | |
12 * - The names of contributors may not be used to endorse or promote products | |
13 * derived from this software without specific prior written permission. | |
14 * | |
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |
16 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | |
19 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | |
20 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | |
21 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |
22 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | |
23 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | |
24 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | |
25 * POSSIBILITY OF SUCH DAMAGE. | |
26 *) | |
27 | |
28 structure Disjoint :> DISJOINT = struct | |
29 | |
30 open Elab | |
31 open ElabOps | |
32 | |
33 structure SS = BinarySetFn(struct | |
34 type ord_key = string | |
35 val compare = String.compare | |
36 end) | |
37 | |
38 structure IS = IntBinarySet | |
39 structure IM = IntBinaryMap | |
40 | |
41 type name_ineqs = { | |
42 namesC : SS.set, | |
43 namesR : IS.set, | |
44 namesN : IS.set | |
45 } | |
46 | |
47 val name_default = { | |
48 namesC = SS.empty, | |
49 namesR = IS.empty, | |
50 namesN = IS.empty | |
51 } | |
52 | |
53 type row_ineqs = { | |
54 namesC : SS.set, | |
55 namesR : IS.set, | |
56 namesN : IS.set, | |
57 rowsR : IS.set, | |
58 rowsN : IS.set | |
59 } | |
60 | |
61 val row_default = { | |
62 namesC = SS.empty, | |
63 namesR = IS.empty, | |
64 namesN = IS.empty, | |
65 rowsR = IS.empty, | |
66 rowsN = IS.empty | |
67 } | |
68 | |
69 fun nameToRow_ineqs {namesC, namesR, namesN} = | |
70 {namesC = namesC, | |
71 namesR = namesR, | |
72 namesN = namesN, | |
73 rowsR = IS.empty, | |
74 rowsN = IS.empty} | |
75 | |
76 type env = { | |
77 namesR : name_ineqs IM.map, | |
78 namesN : name_ineqs IM.map, | |
79 rowsR : row_ineqs IM.map, | |
80 rowsN : row_ineqs IM.map | |
81 } | |
82 | |
83 val empty = { | |
84 namesR = IM.empty, | |
85 namesN = IM.empty, | |
86 rowsR = IM.empty, | |
87 rowsN = IM.empty | |
88 } | |
89 | |
90 datatype piece = | |
91 NameC of string | |
92 | NameR of int | |
93 | NameN of int | |
94 | RowR of int | |
95 | RowN of int | |
96 | Unknown | |
97 | |
98 fun nameToRow (c, loc) = | |
99 (CRecord ((KUnit, loc), [((c, loc), (CUnit, loc))]), loc) | |
100 | |
101 fun pieceToRow (p, loc) = | |
102 case p of | |
103 NameC s => nameToRow (CName s, loc) | |
104 | NameR n => nameToRow (CRel n, loc) | |
105 | NameN n => nameToRow (CNamed n, loc) | |
106 | RowR n => (CRel n, loc) | |
107 | RowN n => (CRel n, loc) | |
108 | Unknown => raise Fail "Unknown to row" | |
109 | |
110 fun decomposeRow env c = | |
111 let | |
112 fun decomposeName (c, acc) = | |
113 case #1 (hnormCon env c) of | |
114 CName s => NameC s :: acc | |
115 | CRel n => NameR n :: acc | |
116 | CNamed n => NameN n :: acc | |
117 | _ => Unknown :: acc | |
118 | |
119 fun decomposeRow (c, acc) = | |
120 case #1 (hnormCon env c) of | |
121 CRecord (_, xcs) => foldl (fn ((x, _), acc) => decomposeName (x, acc)) acc xcs | |
122 | CConcat (c1, c2) => decomposeRow (c1, decomposeRow (c2, acc)) | |
123 | CRel n => RowR n :: acc | |
124 | CNamed n => RowN n :: acc | |
125 | _ => Unknown :: acc | |
126 in | |
127 decomposeRow (c, []) | |
128 end | |
129 | |
130 fun assertPiece_name (ps, ineqs : name_ineqs) = | |
131 {namesC = foldl (fn (p', namesC) => | |
132 case p' of | |
133 NameC s => SS.add (namesC, s) | |
134 | _ => namesC) (#namesC ineqs) ps, | |
135 namesR = foldl (fn (p', namesR) => | |
136 case p' of | |
137 NameR n => IS.add (namesR, n) | |
138 | _ => namesR) (#namesR ineqs) ps, | |
139 namesN = foldl (fn (p', namesN) => | |
140 case p' of | |
141 NameN n => IS.add (namesN, n) | |
142 | _ => namesN) (#namesN ineqs) ps} | |
143 | |
144 fun assertPiece_row (ps, ineqs : row_ineqs) = | |
145 {namesC = foldl (fn (p', namesC) => | |
146 case p' of | |
147 NameC s => SS.add (namesC, s) | |
148 | _ => namesC) (#namesC ineqs) ps, | |
149 namesR = foldl (fn (p', namesR) => | |
150 case p' of | |
151 NameR n => IS.add (namesR, n) | |
152 | _ => namesR) (#namesR ineqs) ps, | |
153 namesN = foldl (fn (p', namesN) => | |
154 case p' of | |
155 NameN n => IS.add (namesN, n) | |
156 | _ => namesN) (#namesN ineqs) ps, | |
157 rowsR = foldl (fn (p', rowsR) => | |
158 case p' of | |
159 RowR n => IS.add (rowsR, n) | |
160 | _ => rowsR) (#rowsR ineqs) ps, | |
161 rowsN = foldl (fn (p', rowsN) => | |
162 case p' of | |
163 RowN n => IS.add (rowsN, n) | |
164 | _ => rowsN) (#rowsN ineqs) ps} | |
165 | |
166 fun assertPiece ps (p, denv) = | |
167 case p of | |
168 Unknown => denv | |
169 | NameC _ => denv | |
170 | |
171 | NameR n => | |
172 let | |
173 val ineqs = Option.getOpt (IM.find (#namesR denv, n), name_default) | |
174 val ineqs = assertPiece_name (ps, ineqs) | |
175 in | |
176 {namesR = IM.insert (#namesR denv, n, ineqs), | |
177 namesN = #namesN denv, | |
178 rowsR = #rowsR denv, | |
179 rowsN = #rowsN denv} | |
180 end | |
181 | |
182 | NameN n => | |
183 let | |
184 val ineqs = Option.getOpt (IM.find (#namesN denv, n), name_default) | |
185 val ineqs = assertPiece_name (ps, ineqs) | |
186 in | |
187 {namesR = #namesR denv, | |
188 namesN = IM.insert (#namesN denv, n, ineqs), | |
189 rowsR = #rowsR denv, | |
190 rowsN = #rowsN denv} | |
191 end | |
192 | |
193 | RowR n => | |
194 let | |
195 val ineqs = Option.getOpt (IM.find (#rowsR denv, n), row_default) | |
196 val ineqs = assertPiece_row (ps, ineqs) | |
197 in | |
198 {namesR = #namesR denv, | |
199 namesN = #namesN denv, | |
200 rowsR = IM.insert (#rowsR denv, n, ineqs), | |
201 rowsN = #rowsN denv} | |
202 end | |
203 | |
204 | RowN n => | |
205 let | |
206 val ineqs = Option.getOpt (IM.find (#rowsN denv, n), row_default) | |
207 val ineqs = assertPiece_row (ps, ineqs) | |
208 in | |
209 {namesR = #namesR denv, | |
210 namesN = #namesN denv, | |
211 rowsR = #rowsR denv, | |
212 rowsN = IM.insert (#rowsN denv, n, ineqs)} | |
213 end | |
214 | |
215 fun assert env denv (c1, c2) = | |
216 let | |
217 val ps1 = decomposeRow env c1 | |
218 val ps2 = decomposeRow env c2 | |
219 | |
220 val denv = foldl (assertPiece ps2) denv ps1 | |
221 in | |
222 foldl (assertPiece ps1) denv ps2 | |
223 end | |
224 | |
225 fun nameEnter {namesC, namesR, namesN} = | |
226 {namesC = namesC, | |
227 namesR = IS.map (fn n => n + 1) namesR, | |
228 namesN = namesN} | |
229 | |
230 fun rowEnter {namesC, namesR, namesN, rowsR, rowsN} = | |
231 {namesC = namesC, | |
232 namesR = IS.map (fn n => n + 1) namesR, | |
233 namesN = namesN, | |
234 rowsR = IS.map (fn n => n + 1) rowsR, | |
235 rowsN = rowsN} | |
236 | |
237 fun enter {namesR, namesN, rowsR, rowsN} = | |
238 {namesR = IM.foldli (fn (n, ineqs, namesR) => IM.insert (namesR, n+1, nameEnter ineqs)) IM.empty namesR, | |
239 namesN = IM.map nameEnter namesN, | |
240 rowsR = IM.foldli (fn (n, ineqs, rowsR) => IM.insert (rowsR, n+1, rowEnter ineqs)) IM.empty rowsR, | |
241 rowsN = IM.map rowEnter rowsN} | |
242 | |
243 fun getIneqs (denv : env) p = | |
244 case p of | |
245 Unknown => raise Fail "getIneqs: Unknown" | |
246 | NameC _ => raise Fail "getIneqs: NameC" | |
247 | NameR n => nameToRow_ineqs (Option.getOpt (IM.find (#namesR denv, n), name_default)) | |
248 | NameN n => nameToRow_ineqs (Option.getOpt (IM.find (#namesN denv, n), name_default)) | |
249 | RowR n => Option.getOpt (IM.find (#rowsR denv, n), row_default) | |
250 | RowN n => Option.getOpt (IM.find (#rowsN denv, n), row_default) | |
251 | |
252 fun prove1' denv (p1, p2) = | |
253 let | |
254 val {namesC, namesR, namesN, rowsR, rowsN} = getIneqs denv p1 | |
255 in | |
256 case p2 of | |
257 Unknown => raise Fail "prove1': Unknown" | |
258 | NameC s => SS.member (namesC, s) | |
259 | NameR n => IS.member (namesR, n) | |
260 | NameN n => IS.member (namesN, n) | |
261 | RowR n => IS.member (rowsR, n) | |
262 | RowN n => IS.member (rowsN, n) | |
263 end | |
264 | |
265 fun prove1 denv (p1, p2) = | |
266 case (p1, p2) of | |
267 (NameC s1, NameC s2) => s1 <> s2 | |
268 | (_, RowR _) => prove1' denv (p2, p1) | |
269 | (_, RowN _) => prove1' denv (p2, p1) | |
270 | _ => prove1' denv (p1, p2) | |
271 | |
272 fun prove env denv (c1, c2, loc) = | |
273 let | |
274 val ps1 = decomposeRow env c1 | |
275 val ps2 = decomposeRow env c2 | |
276 | |
277 val hasUnknown = List.exists (fn p => p = Unknown) | |
278 in | |
279 if hasUnknown ps1 orelse hasUnknown ps2 then | |
280 (ErrorMsg.errorAt loc "Structure of row is too complicated to prove disjointness"; | |
281 Print.eprefaces' [("Row 1", ElabPrint.p_con env c1), | |
282 ("Row 2", ElabPrint.p_con env c2)]; | |
283 []) | |
284 else | |
285 foldl (fn (p1, rem) => | |
286 foldl (fn (p2, rem) => | |
287 if prove1 denv (p1, p2) then | |
288 rem | |
289 else | |
290 (pieceToRow (p1, loc), pieceToRow (p2, loc)) :: rem) rem ps2) | |
291 [] ps1 | |
292 end | |
293 | |
294 end |