annotate doc/manual.tex @ 783:ec0a0dd0ca12

Revising manual through end of Section 3
author Adam Chlipala <adamc@hcoop.net>
date Tue, 05 May 2009 11:45:03 -0400
parents f963356b53fd
children 990f80c1cec1
rev   line source
adamc@524 1 \documentclass{article}
adamc@554 2 \usepackage{fullpage,amsmath,amssymb,proof,url}
adamc@524 3
adamc@524 4 \newcommand{\cd}[1]{\texttt{#1}}
adamc@524 5 \newcommand{\mt}[1]{\mathsf{#1}}
adamc@524 6
adamc@524 7 \newcommand{\rc}{+ \hspace{-.075in} + \;}
adamc@527 8 \newcommand{\rcut}{\; \texttt{--} \;}
adamc@527 9 \newcommand{\rcutM}{\; \texttt{---} \;}
adamc@524 10
adamc@524 11 \begin{document}
adamc@524 12
adamc@524 13 \title{The Ur/Web Manual}
adamc@524 14 \author{Adam Chlipala}
adamc@524 15
adamc@524 16 \maketitle
adamc@524 17
adamc@540 18 \tableofcontents
adamc@540 19
adamc@554 20
adamc@554 21 \section{Introduction}
adamc@554 22
adamc@554 23 \emph{Ur} is a programming language designed to introduce richer type system features into functional programming in the tradition of ML and Haskell. Ur is functional, pure, statically-typed, and strict. Ur supports a powerful kind of \emph{metaprogramming} based on \emph{row types}.
adamc@554 24
adamc@554 25 \emph{Ur/Web} is Ur plus a special standard library and associated rules for parsing and optimization. Ur/Web supports construction of dynamic web applications backed by SQL databases. The signature of the standard library is such that well-typed Ur/Web programs ``don't go wrong'' in a very broad sense. Not only do they not crash during particular page generations, but they also may not:
adamc@554 26
adamc@554 27 \begin{itemize}
adamc@554 28 \item Suffer from any kinds of code-injection attacks
adamc@554 29 \item Return invalid HTML
adamc@554 30 \item Contain dead intra-application links
adamc@554 31 \item Have mismatches between HTML forms and the fields expected by their handlers
adamc@652 32 \item Include client-side code that makes incorrect assumptions about the ``AJAX''-style services that the remote web server provides
adamc@554 33 \item Attempt invalid SQL queries
adamc@652 34 \item Use improper marshaling or unmarshaling in communication with SQL databases or between browsers and web servers
adamc@554 35 \end{itemize}
adamc@554 36
adamc@554 37 This type safety is just the foundation of the Ur/Web methodology. It is also possible to use metaprogramming to build significant application pieces by analysis of type structure. For instance, the demo includes an ML-style functor for building an admin interface for an arbitrary SQL table. The type system guarantees that the admin interface sub-application that comes out will always be free of the above-listed bugs, no matter which well-typed table description is given as input.
adamc@554 38
adamc@652 39 The Ur/Web compiler also produces very efficient object code that does not use garbage collection. These compiled programs will often be even more efficient than what most programmers would bother to write in C. The compiler also generates JavaScript versions of client-side code, with no need to write those parts of applications in a different language.
adamc@554 40
adamc@554 41 \medskip
adamc@554 42
adamc@554 43 The official web site for Ur is:
adamc@554 44 \begin{center}
adamc@554 45 \url{http://www.impredicative.com/ur/}
adamc@554 46 \end{center}
adamc@554 47
adamc@555 48
adamc@555 49 \section{Installation}
adamc@555 50
adamc@555 51 If you are lucky, then the following standard command sequence will suffice for installation, in a directory to which you have unpacked the latest distribution tarball.
adamc@555 52
adamc@555 53 \begin{verbatim}
adamc@555 54 ./configure
adamc@555 55 make
adamc@555 56 sudo make install
adamc@555 57 \end{verbatim}
adamc@555 58
adamc@783 59 Some other packages must be installed for the above to work. At a minimum, you need a standard UNIX shell, with standard UNIX tools like sed and GCC in your execution path; MLton, the whole-program optimizing compiler for Standard ML; and the mhash C library. To build programs that access SQL databases, you also need libpq, the PostgreSQL client library. As of this writing, in the ``testing'' version of Debian Linux, this command will install the more uncommon of these dependencies:
adamc@555 60
adamc@555 61 \begin{verbatim}
adamc@783 62 apt-get install mlton libmhash-dev libpq-dev
adamc@555 63 \end{verbatim}
adamc@555 64
adamc@555 65 It is also possible to access the modules of the Ur/Web compiler interactively, within Standard ML of New Jersey. To install the prerequisites in Debian testing:
adamc@555 66
adamc@555 67 \begin{verbatim}
adamc@555 68 apt-get install smlnj libsmlnj-smlnj ml-yacc ml-lpt
adamc@555 69 \end{verbatim}
adamc@555 70
adamc@555 71 To begin an interactive session with the Ur compiler modules, run \texttt{make smlnj}, and then, from within an \texttt{sml} session, run \texttt{CM.make "src/urweb.cm";}. The \texttt{Compiler} module is the main entry point.
adamc@555 72
adamc@555 73 To run an SQL-backed application, you will probably want to install the PostgreSQL server. Version 8.3 or higher is required.
adamc@555 74
adamc@555 75 \begin{verbatim}
adamc@555 76 apt-get install postgresql-8.3
adamc@555 77 \end{verbatim}
adamc@555 78
adamc@555 79 To use the Emacs mode, you must have a modern Emacs installed. We assume that you already know how to do this, if you're in the business of looking for an Emacs mode. The demo generation facility of the compiler will also call out to Emacs to syntax-highlight code, and that process depends on the \texttt{htmlize} module, which can be installed in Debian testing via:
adamc@555 80
adamc@555 81 \begin{verbatim}
adamc@555 82 apt-get install emacs-goodies-el
adamc@555 83 \end{verbatim}
adamc@555 84
adamc@555 85 Even with the right packages installed, configuration and building might fail to work. After you run \texttt{./configure}, you will see the values of some named environment variables printed. You may need to adjust these values to get proper installation for your system. To change a value, store your preferred alternative in the corresponding UNIX environment variable, before running \texttt{./configure}. For instance, here is how to change the list of extra arguments that the Ur/Web compiler will pass to GCC on every invocation.
adamc@555 86
adamc@555 87 \begin{verbatim}
adamc@555 88 GCCARGS=-fnested-functions ./configure
adamc@555 89 \end{verbatim}
adamc@555 90
adamc@555 91 Some OSX users have reported needing to use this particular GCCARGS value.
adamc@555 92
adamc@555 93 The Emacs mode can be set to autoload by adding the following to your \texttt{.emacs} file.
adamc@555 94
adamc@555 95 \begin{verbatim}
adamc@555 96 (add-to-list 'load-path "/usr/local/share/emacs/site-lisp/urweb-mode")
adamc@555 97 (load "urweb-mode-startup")
adamc@555 98 \end{verbatim}
adamc@555 99
adamc@555 100 Change the path in the first line if you chose a different Emacs installation path during configuration.
adamc@555 101
adamc@555 102
adamc@556 103 \section{Command-Line Compiler}
adamc@556 104
adamc@556 105 \subsection{Project Files}
adamc@556 106
adamc@556 107 The basic inputs to the \texttt{urweb} compiler are project files, which have the extension \texttt{.urp}. Here is a sample \texttt{.urp} file.
adamc@556 108
adamc@556 109 \begin{verbatim}
adamc@556 110 database dbname=test
adamc@556 111 sql crud1.sql
adamc@556 112
adamc@556 113 crud
adamc@556 114 crud1
adamc@556 115 \end{verbatim}
adamc@556 116
adamc@556 117 The \texttt{database} line gives the database information string to pass to libpq. In this case, the string only says to connect to a local database named \texttt{test}.
adamc@556 118
adamc@556 119 The \texttt{sql} line asks for an SQL source file to be generated, giving the commands to run to create the tables and sequences that this application expects to find. After building this \texttt{.urp} file, the following commands could be used to initialize the database, assuming that the current UNIX user exists as a Postgres user with database creation privileges:
adamc@556 120
adamc@556 121 \begin{verbatim}
adamc@556 122 createdb test
adamc@556 123 psql -f crud1.sql test
adamc@556 124 \end{verbatim}
adamc@556 125
adamc@556 126 A blank line always separates the named directives from a list of modules to include in the project; if there are no named directives, a blank line must begin the file.
adamc@556 127
adamc@556 128 For each entry \texttt{M} in the module list, the file \texttt{M.urs} is included in the project if it exists, and the file \texttt{M.ur} must exist and is always included.
adamc@556 129
adamc@783 130 Here is the complete list of directive forms. ``FFI'' stands for ``foreign function interface,'' Ur's facility for interaction between Ur programs and C and JavaScript libraries.
adamc@783 131 \begin{itemize}
adamc@783 132 \item \texttt{[allow|deny] [url|mime] PATTERN} registers a rule governing which URLs or MIME types are allowed in this application. The first such rule to match a URL or MIME type determines the verdict. If \texttt{PATTERN} ends in \texttt{*}, it is interpreted as a prefix rule. Otherwise, a string must match it exactly.
adamc@783 133 \item \texttt{clientOnly Module.ident} registers an FFI function or transaction that may only be run in client browsers.
adamc@783 134 \item \texttt{clientToServer Module.ident} adds FFI type \texttt{Module.ident} to the list of types that are OK to marshal from clients to servers. Values like XML trees and SQL queries are hard to marshal without introducing expensive validity checks, so it's easier to ensure that the server never trusts clients to send such values. The file \texttt{include/urweb.h} shows examples of the C support functions that are required of any type that may be marshalled. These include \texttt{attrify}, \texttt{urlify}, and \texttt{unurlify} functions.
adamc@783 135 \item \texttt{database DBSTRING} sets the string to pass to libpq to open a database connection.
adamc@783 136 \item \texttt{debug} saves some intermediate C files, which is mostly useful to help in debugging the compiler itself.
adamc@783 137 \item \texttt{effectful Module.ident} registers an FFI function or transaction as having side effects. The optimizer avoids removing, moving, or duplicating calls to such functions. Every effectful FFI function must be registered, or the optimizer may make invalid transformations.
adamc@783 138 \item \texttt{exe FILENAME} sets the filename to which to write the output executable. The default for file \texttt{P.urp} is \texttt{P.exe}.
adamc@783 139 \item \texttt{ffi FILENAME} reads the file \texttt{FILENAME.urs} to determine the interface to a new FFI module. The name of the module is calculated from \texttt{FILENAME} in the same way as for normal source files. See the files \texttt{include/urweb.h} and \texttt{src/c/urweb.c} for examples of C headers and implementations for FFI modules. In general, every type or value \texttt{Module.ident} becomes \texttt{uw\_Module\_ident} in C.
adamc@783 140 \item \texttt{jsFunc Module.ident=name} gives the JavaScript name of an FFI value.
adamc@783 141 \item \texttt{library FILENAME} parses \texttt{FILENAME.urp} and merges its contents with the rest of the current file's contents.
adamc@783 142 \item \texttt{link FILENAME} adds \texttt{FILENAME} to the list of files to be passed to the GCC linker at the end of compilation. This is most useful for importing extra libraries needed by new FFI modules.
adamc@783 143 \item \texttt{prefix PREFIX} sets the prefix included before every URI within the generated application. The default is \texttt{/}.
adamc@783 144 \item \texttt{profile} generates an executable that may be used with gprof.
adamc@783 145 \item \texttt{rewrite KIND FROM TO} gives a rule for rewriting canonical module paths. For instance, the canonical path of a page may be \texttt{Mod1.Mod2.mypage}, while you would rather the page were accessed via a URL containing only \texttt{page}. The directive \texttt{rewrite url Mod1/Mod2/mypage page} would accomplish that. The possible values of \texttt{KIND} determine which kinds of objects are affected. The kind \texttt{all} matches any object, and \texttt{url} matches page URLs. The kinds \texttt{table}, \texttt{sequence}, and \texttt{view} match those sorts of SQL entities, and \texttt{relation} matches any of those three. \texttt{cookie} matches HTTP cookies, and \texttt{style} matches CSS class names. If \texttt{FROM} ends in \texttt{/*}, it is interpreted as a prefix matching rule, and rewriting occurs by replacing only the appropriate prefix of a path with \texttt{TO}. While the actual external names of relations and styles have parts separated by underscores instead of slashes, all rewrite rules must be written in terms of slashes.
adamc@783 146 \item \texttt{script URL} adds \texttt{URL} to the list of extra JavaScript files to be included at the beginning of any page that uses JavaScript. This is most useful for importing JavaScript versions of functions found in new FFI modules.
adamc@783 147 \item \texttt{serverOnly Module.ident} registers an FFI function or transaction that may only be run on the server.
adamc@783 148 \item \texttt{sql FILENAME} sets where to write an SQL file with the commands to create the expected database schema. The default is not to create such a file.
adamc@783 149 \item \texttt{timeout N} sets to \texttt{N} seconds the amount of time that the generated server will wait after the last contact from a client before determining that that client has exited the application. Clients that remain active will take the timeout setting into account in determining how often to ping the server, so it only makes sense to set a high timeout to cope with browser and network delays and failures. Higher timeouts can lead to more unnecessary client information taking up memory on the server. The timeout goes unused by any page that doesn't involve the \texttt{recv} function, since the server only needs to store per-client information for clients that receive asynchronous messages.
adamc@783 150 \end{itemize}
adamc@701 151
adamc@701 152
adamc@557 153 \subsection{Building an Application}
adamc@557 154
adamc@557 155 To compile project \texttt{P.urp}, simply run
adamc@557 156 \begin{verbatim}
adamc@557 157 urweb P
adamc@557 158 \end{verbatim}
adamc@558 159 The output executable is a standalone web server. Run it with the command-line argument \texttt{-h} to see which options it takes. If the project file lists a database, the web server will attempt to connect to that database on startup.
adamc@557 160
adamc@557 161 To time how long the different compiler phases run, without generating an executable, run
adamc@557 162 \begin{verbatim}
adamc@557 163 urweb -timing P
adamc@557 164 \end{verbatim}
adamc@557 165
adamc@556 166
adamc@529 167 \section{Ur Syntax}
adamc@529 168
adamc@529 169 In this section, we describe the syntax of Ur, deferring to a later section discussion of most of the syntax specific to SQL and XML. The sole exceptions are the declaration forms for tables, sequences, and cookies.
adamc@524 170
adamc@524 171 \subsection{Lexical Conventions}
adamc@524 172
adamc@524 173 We give the Ur language definition in \LaTeX $\;$ math mode, since that is prettier than monospaced ASCII. The corresponding ASCII syntax can be read off directly. Here is the key for mapping math symbols to ASCII character sequences.
adamc@524 174
adamc@524 175 \begin{center}
adamc@524 176 \begin{tabular}{rl}
adamc@524 177 \textbf{\LaTeX} & \textbf{ASCII} \\
adamc@524 178 $\to$ & \cd{->} \\
adamc@652 179 $\longrightarrow$ & \cd{-->} \\
adamc@524 180 $\times$ & \cd{*} \\
adamc@524 181 $\lambda$ & \cd{fn} \\
adamc@524 182 $\Rightarrow$ & \cd{=>} \\
adamc@652 183 $\Longrightarrow$ & \cd{==>} \\
adamc@529 184 $\neq$ & \cd{<>} \\
adamc@529 185 $\leq$ & \cd{<=} \\
adamc@529 186 $\geq$ & \cd{>=} \\
adamc@524 187 \\
adamc@524 188 $x$ & Normal textual identifier, not beginning with an uppercase letter \\
adamc@525 189 $X$ & Normal textual identifier, beginning with an uppercase letter \\
adamc@524 190 \end{tabular}
adamc@524 191 \end{center}
adamc@524 192
adamc@525 193 We often write syntax like $e^*$ to indicate zero or more copies of $e$, $e^+$ to indicate one or more copies, and $e,^*$ and $e,^+$ to indicate multiple copies separated by commas. Another separator may be used in place of a comma. The $e$ term may be surrounded by parentheses to indicate grouping; those parentheses should not be included in the actual ASCII.
adamc@524 194
adamc@526 195 We write $\ell$ for literals of the primitive types, for the most part following C conventions. There are $\mt{int}$, $\mt{float}$, and $\mt{string}$ literals.
adamc@526 196
adamc@527 197 This version of the manual doesn't include operator precedences; see \texttt{src/urweb.grm} for that.
adamc@527 198
adamc@552 199 \subsection{\label{core}Core Syntax}
adamc@524 200
adamc@524 201 \emph{Kinds} classify types and other compile-time-only entities. Each kind in the grammar is listed with a description of the sort of data it classifies.
adamc@524 202 $$\begin{array}{rrcll}
adamc@524 203 \textrm{Kinds} & \kappa &::=& \mt{Type} & \textrm{proper types} \\
adamc@525 204 &&& \mt{Unit} & \textrm{the trivial constructor} \\
adamc@525 205 &&& \mt{Name} & \textrm{field names} \\
adamc@525 206 &&& \kappa \to \kappa & \textrm{type-level functions} \\
adamc@525 207 &&& \{\kappa\} & \textrm{type-level records} \\
adamc@525 208 &&& (\kappa\times^+) & \textrm{type-level tuples} \\
adamc@652 209 &&& X & \textrm{variable} \\
adamc@652 210 &&& X \longrightarrow k & \textrm{kind-polymorphic type-level function} \\
adamc@529 211 &&& \_\_ & \textrm{wildcard} \\
adamc@525 212 &&& (\kappa) & \textrm{explicit precedence} \\
adamc@524 213 \end{array}$$
adamc@524 214
adamc@524 215 Ur supports several different notions of functions that take types as arguments. These arguments can be either implicit, causing them to be inferred at use sites; or explicit, forcing them to be specified manually at use sites. There is a common explicitness annotation convention applied at the definitions of and in the types of such functions.
adamc@524 216 $$\begin{array}{rrcll}
adamc@524 217 \textrm{Explicitness} & ? &::=& :: & \textrm{explicit} \\
adamc@558 218 &&& ::: & \textrm{implicit}
adamc@524 219 \end{array}$$
adamc@524 220
adamc@524 221 \emph{Constructors} are the main class of compile-time-only data. They include proper types and are classified by kinds.
adamc@524 222 $$\begin{array}{rrcll}
adamc@524 223 \textrm{Constructors} & c, \tau &::=& (c) :: \kappa & \textrm{kind annotation} \\
adamc@530 224 &&& \hat{x} & \textrm{constructor variable} \\
adamc@524 225 \\
adamc@525 226 &&& \tau \to \tau & \textrm{function type} \\
adamc@525 227 &&& x \; ? \; \kappa \to \tau & \textrm{polymorphic function type} \\
adamc@652 228 &&& X \longrightarrow \tau & \textrm{kind-polymorphic function type} \\
adamc@525 229 &&& \$ c & \textrm{record type} \\
adamc@524 230 \\
adamc@525 231 &&& c \; c & \textrm{type-level function application} \\
adamc@530 232 &&& \lambda x \; :: \; \kappa \Rightarrow c & \textrm{type-level function abstraction} \\
adamc@524 233 \\
adamc@652 234 &&& X \Longrightarrow c & \textrm{type-level kind-polymorphic function abstraction} \\
adamc@655 235 &&& c [\kappa] & \textrm{type-level kind-polymorphic function application} \\
adamc@652 236 \\
adamc@525 237 &&& () & \textrm{type-level unit} \\
adamc@525 238 &&& \#X & \textrm{field name} \\
adamc@524 239 \\
adamc@525 240 &&& [(c = c)^*] & \textrm{known-length type-level record} \\
adamc@525 241 &&& c \rc c & \textrm{type-level record concatenation} \\
adamc@652 242 &&& \mt{map} & \textrm{type-level record map} \\
adamc@524 243 \\
adamc@558 244 &&& (c,^+) & \textrm{type-level tuple} \\
adamc@525 245 &&& c.n & \textrm{type-level tuple projection ($n \in \mathbb N^+$)} \\
adamc@524 246 \\
adamc@652 247 &&& [c \sim c] \Rightarrow \tau & \textrm{guarded type} \\
adamc@524 248 \\
adamc@529 249 &&& \_ :: \kappa & \textrm{wildcard} \\
adamc@525 250 &&& (c) & \textrm{explicit precedence} \\
adamc@530 251 \\
adamc@530 252 \textrm{Qualified uncapitalized variables} & \hat{x} &::=& x & \textrm{not from a module} \\
adamc@530 253 &&& M.x & \textrm{projection from a module} \\
adamc@525 254 \end{array}$$
adamc@525 255
adamc@655 256 We include both abstraction and application for kind polymorphism, but applications are only inferred internally; they may not be written explicitly in source programs.
adamc@655 257
adamc@525 258 Modules of the module system are described by \emph{signatures}.
adamc@525 259 $$\begin{array}{rrcll}
adamc@525 260 \textrm{Signatures} & S &::=& \mt{sig} \; s^* \; \mt{end} & \textrm{constant} \\
adamc@525 261 &&& X & \textrm{variable} \\
adamc@525 262 &&& \mt{functor}(X : S) : S & \textrm{functor} \\
adamc@529 263 &&& S \; \mt{where} \; \mt{con} \; x = c & \textrm{concretizing an abstract constructor} \\
adamc@525 264 &&& M.X & \textrm{projection from a module} \\
adamc@525 265 \\
adamc@525 266 \textrm{Signature items} & s &::=& \mt{con} \; x :: \kappa & \textrm{abstract constructor} \\
adamc@525 267 &&& \mt{con} \; x :: \kappa = c & \textrm{concrete constructor} \\
adamc@528 268 &&& \mt{datatype} \; x \; x^* = dc\mid^+ & \textrm{algebraic datatype definition} \\
adamc@529 269 &&& \mt{datatype} \; x = \mt{datatype} \; M.x & \textrm{algebraic datatype import} \\
adamc@525 270 &&& \mt{val} \; x : \tau & \textrm{value} \\
adamc@525 271 &&& \mt{structure} \; X : S & \textrm{sub-module} \\
adamc@525 272 &&& \mt{signature} \; X = S & \textrm{sub-signature} \\
adamc@525 273 &&& \mt{include} \; S & \textrm{signature inclusion} \\
adamc@525 274 &&& \mt{constraint} \; c \sim c & \textrm{record disjointness constraint} \\
adamc@654 275 &&& \mt{class} \; x :: \kappa & \textrm{abstract constructor class} \\
adamc@654 276 &&& \mt{class} \; x :: \kappa = c & \textrm{concrete constructor class} \\
adamc@525 277 \\
adamc@525 278 \textrm{Datatype constructors} & dc &::=& X & \textrm{nullary constructor} \\
adamc@525 279 &&& X \; \mt{of} \; \tau & \textrm{unary constructor} \\
adamc@524 280 \end{array}$$
adamc@524 281
adamc@526 282 \emph{Patterns} are used to describe structural conditions on expressions, such that expressions may be tested against patterns, generating assignments to pattern variables if successful.
adamc@526 283 $$\begin{array}{rrcll}
adamc@526 284 \textrm{Patterns} & p &::=& \_ & \textrm{wildcard} \\
adamc@526 285 &&& x & \textrm{variable} \\
adamc@526 286 &&& \ell & \textrm{constant} \\
adamc@526 287 &&& \hat{X} & \textrm{nullary constructor} \\
adamc@526 288 &&& \hat{X} \; p & \textrm{unary constructor} \\
adamc@526 289 &&& \{(x = p,)^*\} & \textrm{rigid record pattern} \\
adamc@526 290 &&& \{(x = p,)^+, \ldots\} & \textrm{flexible record pattern} \\
adamc@527 291 &&& (p) & \textrm{explicit precedence} \\
adamc@526 292 \\
adamc@529 293 \textrm{Qualified capitalized variables} & \hat{X} &::=& X & \textrm{not from a module} \\
adamc@526 294 &&& M.X & \textrm{projection from a module} \\
adamc@526 295 \end{array}$$
adamc@526 296
adamc@527 297 \emph{Expressions} are the main run-time entities, corresponding to both ``expressions'' and ``statements'' in mainstream imperative languages.
adamc@527 298 $$\begin{array}{rrcll}
adamc@527 299 \textrm{Expressions} & e &::=& e : \tau & \textrm{type annotation} \\
adamc@529 300 &&& \hat{x} & \textrm{variable} \\
adamc@529 301 &&& \hat{X} & \textrm{datatype constructor} \\
adamc@527 302 &&& \ell & \textrm{constant} \\
adamc@527 303 \\
adamc@527 304 &&& e \; e & \textrm{function application} \\
adamc@527 305 &&& \lambda x : \tau \Rightarrow e & \textrm{function abstraction} \\
adamc@527 306 &&& e [c] & \textrm{polymorphic function application} \\
adamc@527 307 &&& \lambda x \; ? \; \kappa \Rightarrow e & \textrm{polymorphic function abstraction} \\
adamc@655 308 &&& e [\kappa] & \textrm{kind-polymorphic function application} \\
adamc@652 309 &&& X \Longrightarrow e & \textrm{kind-polymorphic function abstraction} \\
adamc@527 310 \\
adamc@527 311 &&& \{(c = e,)^*\} & \textrm{known-length record} \\
adamc@527 312 &&& e.c & \textrm{record field projection} \\
adamc@527 313 &&& e \rc e & \textrm{record concatenation} \\
adamc@527 314 &&& e \rcut c & \textrm{removal of a single record field} \\
adamc@527 315 &&& e \rcutM c & \textrm{removal of multiple record fields} \\
adamc@527 316 \\
adamc@527 317 &&& \mt{let} \; ed^* \; \mt{in} \; e \; \mt{end} & \textrm{local definitions} \\
adamc@527 318 \\
adamc@527 319 &&& \mt{case} \; e \; \mt{of} \; (p \Rightarrow e|)^+ & \textrm{pattern matching} \\
adamc@527 320 \\
adamc@654 321 &&& \lambda [c \sim c] \Rightarrow e & \textrm{guarded expression abstraction} \\
adamc@654 322 &&& e \; ! & \textrm{guarded expression application} \\
adamc@527 323 \\
adamc@527 324 &&& \_ & \textrm{wildcard} \\
adamc@527 325 &&& (e) & \textrm{explicit precedence} \\
adamc@527 326 \\
adamc@527 327 \textrm{Local declarations} & ed &::=& \cd{val} \; x : \tau = e & \textrm{non-recursive value} \\
adamc@527 328 &&& \cd{val} \; \cd{rec} \; (x : \tau = e \; \cd{and})^+ & \textrm{mutually-recursive values} \\
adamc@527 329 \end{array}$$
adamc@527 330
adamc@655 331 As with constructors, we include both abstraction and application for kind polymorphism, but applications are only inferred internally.
adamc@655 332
adamc@528 333 \emph{Declarations} primarily bring new symbols into context.
adamc@528 334 $$\begin{array}{rrcll}
adamc@528 335 \textrm{Declarations} & d &::=& \mt{con} \; x :: \kappa = c & \textrm{constructor synonym} \\
adamc@528 336 &&& \mt{datatype} \; x \; x^* = dc\mid^+ & \textrm{algebraic datatype definition} \\
adamc@529 337 &&& \mt{datatype} \; x = \mt{datatype} \; M.x & \textrm{algebraic datatype import} \\
adamc@528 338 &&& \mt{val} \; x : \tau = e & \textrm{value} \\
adamc@528 339 &&& \mt{val} \; \cd{rec} \; (x : \tau = e \; \mt{and})^+ & \textrm{mutually-recursive values} \\
adamc@528 340 &&& \mt{structure} \; X : S = M & \textrm{module definition} \\
adamc@528 341 &&& \mt{signature} \; X = S & \textrm{signature definition} \\
adamc@528 342 &&& \mt{open} \; M & \textrm{module inclusion} \\
adamc@528 343 &&& \mt{constraint} \; c \sim c & \textrm{record disjointness constraint} \\
adamc@528 344 &&& \mt{open} \; \mt{constraints} \; M & \textrm{inclusion of just the constraints from a module} \\
adamc@528 345 &&& \mt{table} \; x : c & \textrm{SQL table} \\
adamc@528 346 &&& \mt{sequence} \; x & \textrm{SQL sequence} \\
adamc@535 347 &&& \mt{cookie} \; x : \tau & \textrm{HTTP cookie} \\
adamc@654 348 &&& \mt{class} \; x :: \kappa = c & \textrm{concrete constructor class} \\
adamc@528 349 \\
adamc@529 350 \textrm{Modules} & M &::=& \mt{struct} \; d^* \; \mt{end} & \textrm{constant} \\
adamc@529 351 &&& X & \textrm{variable} \\
adamc@529 352 &&& M.X & \textrm{projection} \\
adamc@529 353 &&& M(M) & \textrm{functor application} \\
adamc@529 354 &&& \mt{functor}(X : S) : S = M & \textrm{functor abstraction} \\
adamc@528 355 \end{array}$$
adamc@528 356
adamc@528 357 There are two kinds of Ur files. A file named $M\texttt{.ur}$ is an \emph{implementation file}, and it should contain a sequence of declarations $d^*$. A file named $M\texttt{.urs}$ is an \emph{interface file}; it must always have a matching $M\texttt{.ur}$ and should contain a sequence of signature items $s^*$. When both files are present, the overall effect is the same as a monolithic declaration $\mt{structure} \; M : \mt{sig} \; s^* \; \mt{end} = \mt{struct} \; d^* \; \mt{end}$. When no interface file is included, the overall effect is similar, with a signature for module $M$ being inferred rather than just checked against an interface.
adamc@527 358
adamc@529 359 \subsection{Shorthands}
adamc@529 360
adamc@529 361 There are a variety of derived syntactic forms that elaborate into the core syntax from the last subsection. We will present the additional forms roughly following the order in which we presented the constructs that they elaborate into.
adamc@529 362
adamc@529 363 In many contexts where record fields are expected, like in a projection $e.c$, a constant field may be written as simply $X$, rather than $\#X$.
adamc@529 364
adamc@529 365 A record type may be written $\{(c = c,)^*\}$, which elaborates to $\$[(c = c,)^*]$.
adamc@529 366
adamc@533 367 The notation $[c_1, \ldots, c_n]$ is shorthand for $[c_1 = (), \ldots, c_n = ()]$.
adamc@533 368
adamc@529 369 A tuple type $(\tau_1, \ldots, \tau_n)$ expands to a record type $\{1 = \tau_1, \ldots, n = \tau_n\}$, with natural numbers as field names. A tuple pattern $(p_1, \ldots, p_n)$ expands to a rigid record pattern $\{1 = p_1, \ldots, n = p_n\}$. Positive natural numbers may be used in most places where field names would be allowed.
adamc@529 370
adamc@654 371 In general, several adjacent $\lambda$ forms may be combined into one, and kind and type annotations may be omitted, in which case they are implicitly included as wildcards. More formally, for constructor-level abstractions, we can define a new non-terminal $b ::= x \mid (x :: \kappa) \mid X$ and allow composite abstractions of the form $\lambda b^+ \Rightarrow c$, elaborating into the obvious sequence of one core $\lambda$ per element of $b^+$.
adamc@529 372
adamc@529 373 For any signature item or declaration that defines some entity to be equal to $A$ with classification annotation $B$ (e.g., $\mt{val} \; x : B = A$), $B$ and the preceding colon (or similar punctuation) may be omitted, in which case it is filled in as a wildcard.
adamc@529 374
adamc@529 375 A signature item or declaration $\mt{type} \; x$ or $\mt{type} \; x = \tau$ is elaborated into $\mt{con} \; x :: \mt{Type}$ or $\mt{con} \; x :: \mt{Type} = \tau$, respectively.
adamc@529 376
adamc@654 377 A signature item or declaration $\mt{class} \; x = \lambda y \Rightarrow c$ may be abbreviated $\mt{class} \; x \; y = c$.
adamc@529 378
adamc@654 379 Handling of implicit and explicit constructor arguments may be tweaked with some prefixes to variable references. An expression $@x$ is a version of $x$ where all implicit constructor arguments have been made explicit. An expression $@@x$ achieves the same effect, additionally halting automatic resolution of type class instances and automatic proving of disjointness constraints. The default is that any prefix of a variable's type consisting only of implicit polymorphism, type class instances, and disjointness obligations is resolved automatically, with the variable treated as having the type that starts after the last implicit element, with suitable unification variables substituted. The same syntax works for variables projected out of modules and for capitalized variables (datatype constructors).
adamc@529 380
adamc@654 381 At the expression level, an analogue is available of the composite $\lambda$ form for constructors. We define the language of binders as $b ::= x \mid (x : \tau) \mid (x \; ? \; \kappa) \mid X \mid [c \sim c]$. A lone variable $x$ as a binder stands for an expression variable of unspecified type.
adamc@529 382
adamc@529 383 A $\mt{val}$ or $\mt{val} \; \mt{rec}$ declaration may include expression binders before the equal sign, following the binder grammar from the last paragraph. Such declarations are elaborated into versions that add additional $\lambda$s to the fronts of the righthand sides, as appropriate. The keyword $\mt{fun}$ is a synonym for $\mt{val} \; \mt{rec}$.
adamc@529 384
adamc@529 385 A signature item $\mt{functor} \; X_1 \; (X_2 : S_1) : S_2$ is elaborated into $\mt{structure} \; X_1 : \mt{functor}(X_2 : S_1) : S_2$. A declaration $\mt{functor} \; X_1 \; (X_2 : S_1) : S_2 = M$ is elaborated into $\mt{structure} \; X_1 : \mt{functor}(X_2 : S_1) : S_2 = \mt{functor}(X_2 : S_1) : S_2 = M$.
adamc@529 386
adamc@529 387 A declaration $\mt{table} \; x : \{(c = c,)^*\}$ is elaborated into $\mt{table} \; x : [(c = c,)^*]$
adamc@529 388
adamc@529 389 The syntax $\mt{where} \; \mt{type}$ is an alternate form of $\mt{where} \; \mt{con}$.
adamc@529 390
adamc@529 391 The syntax $\mt{if} \; e \; \mt{then} \; e_1 \; \mt{else} \; e_2$ expands to $\mt{case} \; e \; \mt{of} \; \mt{Basis}.\mt{True} \Rightarrow e_1 \mid \mt{Basis}.\mt{False} \Rightarrow e_2$.
adamc@529 392
adamc@529 393 There are infix operator syntaxes for a number of functions defined in the $\mt{Basis}$ module. There is $=$ for $\mt{eq}$, $\neq$ for $\mt{neq}$, $-$ for $\mt{neg}$ (as a prefix operator) and $\mt{minus}$, $+$ for $\mt{plus}$, $\times$ for $\mt{times}$, $/$ for $\mt{div}$, $\%$ for $\mt{mod}$, $<$ for $\mt{lt}$, $\leq$ for $\mt{le}$, $>$ for $\mt{gt}$, and $\geq$ for $\mt{ge}$.
adamc@529 394
adamc@529 395 A signature item $\mt{table} \; x : c$ is shorthand for $\mt{val} \; x : \mt{Basis}.\mt{sql\_table} \; c$. $\mt{sequence} \; x$ is short for $\mt{val} \; x : \mt{Basis}.\mt{sql\_sequence}$, and $\mt{cookie} \; x : \tau$ is shorthand for $\mt{val} \; x : \mt{Basis}.\mt{http\_cookie} \; \tau$.
adamc@529 396
adamc@530 397
adamc@530 398 \section{Static Semantics}
adamc@530 399
adamc@530 400 In this section, we give a declarative presentation of Ur's typing rules and related judgments. Inference is the subject of the next section; here, we assume that an oracle has filled in all wildcards with concrete values.
adamc@530 401
adamc@530 402 Since there is significant mutual recursion among the judgments, we introduce them all before beginning to give rules. We use the same variety of contexts throughout this section, implicitly introducing new sorts of context entries as needed.
adamc@530 403 \begin{itemize}
adamc@655 404 \item $\Gamma \vdash \kappa$ expresses kind well-formedness.
adamc@530 405 \item $\Gamma \vdash c :: \kappa$ assigns a kind to a constructor in a context.
adamc@530 406 \item $\Gamma \vdash c \sim c$ proves the disjointness of two record constructors; that is, that they share no field names. We overload the judgment to apply to pairs of field names as well.
adamc@531 407 \item $\Gamma \vdash c \hookrightarrow C$ proves that record constructor $c$ decomposes into set $C$ of field names and record constructors.
adamc@530 408 \item $\Gamma \vdash c \equiv c$ proves the computational equivalence of two constructors. This is often called a \emph{definitional equality} in the world of type theory.
adamc@530 409 \item $\Gamma \vdash e : \tau$ is a standard typing judgment.
adamc@534 410 \item $\Gamma \vdash p \leadsto \Gamma; \tau$ combines typing of patterns with calculation of which new variables they bind.
adamc@537 411 \item $\Gamma \vdash d \leadsto \Gamma$ expresses how a declaration modifies a context. We overload this judgment to apply to sequences of declarations, as well as to signature items and sequences of signature items.
adamc@537 412 \item $\Gamma \vdash S \equiv S$ is the signature equivalence judgment.
adamc@536 413 \item $\Gamma \vdash S \leq S$ is the signature compatibility judgment. We write $\Gamma \vdash S$ as shorthand for $\Gamma \vdash S \leq S$.
adamc@530 414 \item $\Gamma \vdash M : S$ is the module signature checking judgment.
adamc@537 415 \item $\mt{proj}(M, \overline{s}, V)$ is a partial function for projecting a signature item from $\overline{s}$, given the module $M$ that we project from. $V$ may be $\mt{con} \; x$, $\mt{datatype} \; x$, $\mt{val} \; x$, $\mt{signature} \; X$, or $\mt{structure} \; X$. The parameter $M$ is needed because the projected signature item may refer to other items from $\overline{s}$.
adamc@539 416 \item $\mt{selfify}(M, \overline{s})$ adds information to signature items $\overline{s}$ to reflect the fact that we are concerned with the particular module $M$. This function is overloaded to work over individual signature items as well.
adamc@530 417 \end{itemize}
adamc@530 418
adamc@655 419
adamc@655 420 \subsection{Kind Well-Formedness}
adamc@655 421
adamc@655 422 $$\infer{\Gamma \vdash \mt{Type}}{}
adamc@655 423 \quad \infer{\Gamma \vdash \mt{Unit}}{}
adamc@655 424 \quad \infer{\Gamma \vdash \mt{Name}}{}
adamc@655 425 \quad \infer{\Gamma \vdash \kappa_1 \to \kappa_2}{
adamc@655 426 \Gamma \vdash \kappa_1
adamc@655 427 & \Gamma \vdash \kappa_2
adamc@655 428 }
adamc@655 429 \quad \infer{\Gamma \vdash \{\kappa\}}{
adamc@655 430 \Gamma \vdash \kappa
adamc@655 431 }
adamc@655 432 \quad \infer{\Gamma \vdash (\kappa_1 \times \ldots \times \kappa_n)}{
adamc@655 433 \forall i: \Gamma \vdash \kappa_i
adamc@655 434 }$$
adamc@655 435
adamc@655 436 $$\infer{\Gamma \vdash X}{
adamc@655 437 X \in \Gamma
adamc@655 438 }
adamc@655 439 \quad \infer{\Gamma \vdash X \longrightarrow \kappa}{
adamc@655 440 \Gamma, X \vdash \kappa
adamc@655 441 }$$
adamc@655 442
adamc@530 443 \subsection{Kinding}
adamc@530 444
adamc@655 445 We write $[X \mapsto \kappa_1]\kappa_2$ for capture-avoiding substitution of $\kappa_1$ for $X$ in $\kappa_2$.
adamc@655 446
adamc@530 447 $$\infer{\Gamma \vdash (c) :: \kappa :: \kappa}{
adamc@530 448 \Gamma \vdash c :: \kappa
adamc@530 449 }
adamc@530 450 \quad \infer{\Gamma \vdash x :: \kappa}{
adamc@530 451 x :: \kappa \in \Gamma
adamc@530 452 }
adamc@530 453 \quad \infer{\Gamma \vdash x :: \kappa}{
adamc@530 454 x :: \kappa = c \in \Gamma
adamc@530 455 }$$
adamc@530 456
adamc@530 457 $$\infer{\Gamma \vdash M.x :: \kappa}{
adamc@537 458 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 459 & \mt{proj}(M, \overline{s}, \mt{con} \; x) = \kappa
adamc@530 460 }
adamc@530 461 \quad \infer{\Gamma \vdash M.x :: \kappa}{
adamc@537 462 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 463 & \mt{proj}(M, \overline{s}, \mt{con} \; x) = (\kappa, c)
adamc@530 464 }$$
adamc@530 465
adamc@530 466 $$\infer{\Gamma \vdash \tau_1 \to \tau_2 :: \mt{Type}}{
adamc@530 467 \Gamma \vdash \tau_1 :: \mt{Type}
adamc@530 468 & \Gamma \vdash \tau_2 :: \mt{Type}
adamc@530 469 }
adamc@530 470 \quad \infer{\Gamma \vdash x \; ? \: \kappa \to \tau :: \mt{Type}}{
adamc@530 471 \Gamma, x :: \kappa \vdash \tau :: \mt{Type}
adamc@530 472 }
adamc@655 473 \quad \infer{\Gamma \vdash X \longrightarrow \tau :: \mt{Type}}{
adamc@655 474 \Gamma, X \vdash \tau :: \mt{Type}
adamc@655 475 }
adamc@530 476 \quad \infer{\Gamma \vdash \$c :: \mt{Type}}{
adamc@530 477 \Gamma \vdash c :: \{\mt{Type}\}
adamc@530 478 }$$
adamc@530 479
adamc@530 480 $$\infer{\Gamma \vdash c_1 \; c_2 :: \kappa_2}{
adamc@530 481 \Gamma \vdash c_1 :: \kappa_1 \to \kappa_2
adamc@530 482 & \Gamma \vdash c_2 :: \kappa_1
adamc@530 483 }
adamc@530 484 \quad \infer{\Gamma \vdash \lambda x \; :: \; \kappa_1 \Rightarrow c :: \kappa_1 \to \kappa_2}{
adamc@530 485 \Gamma, x :: \kappa_1 \vdash c :: \kappa_2
adamc@530 486 }$$
adamc@530 487
adamc@655 488 $$\infer{\Gamma \vdash c[\kappa'] :: [X \mapsto \kappa']\kappa}{
adamc@655 489 \Gamma \vdash c :: X \to \kappa
adamc@655 490 & \Gamma \vdash \kappa'
adamc@655 491 }
adamc@655 492 \quad \infer{\Gamma \vdash X \Longrightarrow c :: X \to \kappa}{
adamc@655 493 \Gamma, X \vdash c :: \kappa
adamc@655 494 }$$
adamc@655 495
adamc@530 496 $$\infer{\Gamma \vdash () :: \mt{Unit}}{}
adamc@530 497 \quad \infer{\Gamma \vdash \#X :: \mt{Name}}{}$$
adamc@530 498
adamc@530 499 $$\infer{\Gamma \vdash [\overline{c_i = c'_i}] :: \{\kappa\}}{
adamc@530 500 \forall i: \Gamma \vdash c_i : \mt{Name}
adamc@530 501 & \Gamma \vdash c'_i :: \kappa
adamc@530 502 & \forall i \neq j: \Gamma \vdash c_i \sim c_j
adamc@530 503 }
adamc@530 504 \quad \infer{\Gamma \vdash c_1 \rc c_2 :: \{\kappa\}}{
adamc@530 505 \Gamma \vdash c_1 :: \{\kappa\}
adamc@530 506 & \Gamma \vdash c_2 :: \{\kappa\}
adamc@530 507 & \Gamma \vdash c_1 \sim c_2
adamc@530 508 }$$
adamc@530 509
adamc@655 510 $$\infer{\Gamma \vdash \mt{map} :: (\kappa_1 \to \kappa_2) \to \{\kappa_1\} \to \{\kappa_2\}}{}$$
adamc@530 511
adamc@573 512 $$\infer{\Gamma \vdash (\overline c) :: (\kappa_1 \times \ldots \times \kappa_n)}{
adamc@573 513 \forall i: \Gamma \vdash c_i :: \kappa_i
adamc@530 514 }
adamc@573 515 \quad \infer{\Gamma \vdash c.i :: \kappa_i}{
adamc@573 516 \Gamma \vdash c :: (\kappa_1 \times \ldots \times \kappa_n)
adamc@530 517 }$$
adamc@530 518
adamc@655 519 $$\infer{\Gamma \vdash \lambda [c_1 \sim c_2] \Rightarrow \tau :: \mt{Type}}{
adamc@655 520 \Gamma \vdash c_1 :: \{\kappa\}
adamc@530 521 & \Gamma \vdash c_2 :: \{\kappa'\}
adamc@655 522 & \Gamma, c_1 \sim c_2 \vdash \tau :: \mt{Type}
adamc@530 523 }$$
adamc@530 524
adamc@531 525 \subsection{Record Disjointness}
adamc@531 526
adamc@531 527 $$\infer{\Gamma \vdash c_1 \sim c_2}{
adamc@558 528 \Gamma \vdash c_1 \hookrightarrow C_1
adamc@558 529 & \Gamma \vdash c_2 \hookrightarrow C_2
adamc@558 530 & \forall c'_1 \in C_1, c'_2 \in C_2: \Gamma \vdash c'_1 \sim c'_2
adamc@531 531 }
adamc@531 532 \quad \infer{\Gamma \vdash X \sim X'}{
adamc@531 533 X \neq X'
adamc@531 534 }$$
adamc@531 535
adamc@531 536 $$\infer{\Gamma \vdash c_1 \sim c_2}{
adamc@531 537 c'_1 \sim c'_2 \in \Gamma
adamc@558 538 & \Gamma \vdash c'_1 \hookrightarrow C_1
adamc@558 539 & \Gamma \vdash c'_2 \hookrightarrow C_2
adamc@558 540 & c_1 \in C_1
adamc@558 541 & c_2 \in C_2
adamc@531 542 }$$
adamc@531 543
adamc@531 544 $$\infer{\Gamma \vdash c \hookrightarrow \{c\}}{}
adamc@531 545 \quad \infer{\Gamma \vdash [\overline{c = c'}] \hookrightarrow \{\overline{c}\}}{}
adamc@531 546 \quad \infer{\Gamma \vdash c_1 \rc c_2 \hookrightarrow C_1 \cup C_2}{
adamc@531 547 \Gamma \vdash c_1 \hookrightarrow C_1
adamc@531 548 & \Gamma \vdash c_2 \hookrightarrow C_2
adamc@531 549 }
adamc@531 550 \quad \infer{\Gamma \vdash c \hookrightarrow C}{
adamc@531 551 \Gamma \vdash c \equiv c'
adamc@531 552 & \Gamma \vdash c' \hookrightarrow C
adamc@531 553 }
adamc@531 554 \quad \infer{\Gamma \vdash \mt{map} \; f \; c \hookrightarrow C}{
adamc@531 555 \Gamma \vdash c \hookrightarrow C
adamc@531 556 }$$
adamc@531 557
adamc@541 558 \subsection{\label{definitional}Definitional Equality}
adamc@532 559
adamc@655 560 We use $\mathcal C$ to stand for a one-hole context that, when filled, yields a constructor. The notation $\mathcal C[c]$ plugs $c$ into $\mathcal C$. We omit the standard definition of one-hole contexts. We write $[x \mapsto c_1]c_2$ for capture-avoiding substitution of $c_1$ for $x$ in $c_2$, with analogous notation for substituting a kind in a constructor.
adamc@532 561
adamc@532 562 $$\infer{\Gamma \vdash c \equiv c}{}
adamc@532 563 \quad \infer{\Gamma \vdash c_1 \equiv c_2}{
adamc@532 564 \Gamma \vdash c_2 \equiv c_1
adamc@532 565 }
adamc@532 566 \quad \infer{\Gamma \vdash c_1 \equiv c_3}{
adamc@532 567 \Gamma \vdash c_1 \equiv c_2
adamc@532 568 & \Gamma \vdash c_2 \equiv c_3
adamc@532 569 }
adamc@532 570 \quad \infer{\Gamma \vdash \mathcal C[c_1] \equiv \mathcal C[c_2]}{
adamc@532 571 \Gamma \vdash c_1 \equiv c_2
adamc@532 572 }$$
adamc@532 573
adamc@532 574 $$\infer{\Gamma \vdash x \equiv c}{
adamc@532 575 x :: \kappa = c \in \Gamma
adamc@532 576 }
adamc@532 577 \quad \infer{\Gamma \vdash M.x \equiv c}{
adamc@537 578 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 579 & \mt{proj}(M, \overline{s}, \mt{con} \; x) = (\kappa, c)
adamc@532 580 }
adamc@532 581 \quad \infer{\Gamma \vdash (\overline c).i \equiv c_i}{}$$
adamc@532 582
adamc@532 583 $$\infer{\Gamma \vdash (\lambda x :: \kappa \Rightarrow c) \; c' \equiv [x \mapsto c'] c}{}
adamc@655 584 \quad \infer{\Gamma \vdash (X \Longrightarrow c) [\kappa] \equiv [X \mapsto \kappa] c}{}$$
adamc@655 585
adamc@655 586 $$\infer{\Gamma \vdash c_1 \rc c_2 \equiv c_2 \rc c_1}{}
adamc@532 587 \quad \infer{\Gamma \vdash c_1 \rc (c_2 \rc c_3) \equiv (c_1 \rc c_2) \rc c_3}{}$$
adamc@532 588
adamc@532 589 $$\infer{\Gamma \vdash [] \rc c \equiv c}{}
adamc@532 590 \quad \infer{\Gamma \vdash [\overline{c_1 = c'_1}] \rc [\overline{c_2 = c'_2}] \equiv [\overline{c_1 = c'_1}, \overline{c_2 = c'_2}]}{}$$
adamc@532 591
adamc@655 592 $$\infer{\Gamma \vdash \mt{map} \; f \; [] \equiv []}{}
adamc@655 593 \quad \infer{\Gamma \vdash \mt{map} \; f \; ([c_1 = c_2] \rc c) \equiv [c_1 = f \; c_2] \rc \mt{map} \; f \; c}{}$$
adamc@532 594
adamc@532 595 $$\infer{\Gamma \vdash \mt{map} \; (\lambda x \Rightarrow x) \; c \equiv c}{}
adamc@655 596 \quad \infer{\Gamma \vdash \mt{map} \; f \; (\mt{map} \; f' \; c)
adamc@655 597 \equiv \mt{map} \; (\lambda x \Rightarrow f \; (f' \; x)) \; c}{}$$
adamc@532 598
adamc@532 599 $$\infer{\Gamma \vdash \mt{map} \; f \; (c_1 \rc c_2) \equiv \mt{map} \; f \; c_1 \rc \mt{map} \; f \; c_2}{}$$
adamc@531 600
adamc@534 601 \subsection{Expression Typing}
adamc@533 602
adamc@533 603 We assume the existence of a function $T$ assigning types to literal constants. It maps integer constants to $\mt{Basis}.\mt{int}$, float constants to $\mt{Basis}.\mt{float}$, and string constants to $\mt{Basis}.\mt{string}$.
adamc@533 604
adamc@533 605 We also refer to a function $\mathcal I$, such that $\mathcal I(\tau)$ ``uses an oracle'' to instantiate all constructor function arguments at the beginning of $\tau$ that are marked implicit; i.e., replace $x_1 ::: \kappa_1 \to \ldots \to x_n ::: \kappa_n \to \tau$ with $[x_1 \mapsto c_1]\ldots[x_n \mapsto c_n]\tau$, where the $c_i$s are inferred and $\tau$ does not start like $x ::: \kappa \to \tau'$.
adamc@533 606
adamc@533 607 $$\infer{\Gamma \vdash e : \tau : \tau}{
adamc@533 608 \Gamma \vdash e : \tau
adamc@533 609 }
adamc@533 610 \quad \infer{\Gamma \vdash e : \tau}{
adamc@533 611 \Gamma \vdash e : \tau'
adamc@533 612 & \Gamma \vdash \tau' \equiv \tau
adamc@533 613 }
adamc@533 614 \quad \infer{\Gamma \vdash \ell : T(\ell)}{}$$
adamc@533 615
adamc@533 616 $$\infer{\Gamma \vdash x : \mathcal I(\tau)}{
adamc@533 617 x : \tau \in \Gamma
adamc@533 618 }
adamc@533 619 \quad \infer{\Gamma \vdash M.x : \mathcal I(\tau)}{
adamc@537 620 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 621 & \mt{proj}(M, \overline{s}, \mt{val} \; x) = \tau
adamc@533 622 }
adamc@533 623 \quad \infer{\Gamma \vdash X : \mathcal I(\tau)}{
adamc@533 624 X : \tau \in \Gamma
adamc@533 625 }
adamc@533 626 \quad \infer{\Gamma \vdash M.X : \mathcal I(\tau)}{
adamc@537 627 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 628 & \mt{proj}(M, \overline{s}, \mt{val} \; X) = \tau
adamc@533 629 }$$
adamc@533 630
adamc@533 631 $$\infer{\Gamma \vdash e_1 \; e_2 : \tau_2}{
adamc@533 632 \Gamma \vdash e_1 : \tau_1 \to \tau_2
adamc@533 633 & \Gamma \vdash e_2 : \tau_1
adamc@533 634 }
adamc@533 635 \quad \infer{\Gamma \vdash \lambda x : \tau_1 \Rightarrow e : \tau_1 \to \tau_2}{
adamc@533 636 \Gamma, x : \tau_1 \vdash e : \tau_2
adamc@533 637 }$$
adamc@533 638
adamc@533 639 $$\infer{\Gamma \vdash e [c] : [x \mapsto c]\tau}{
adamc@533 640 \Gamma \vdash e : x :: \kappa \to \tau
adamc@533 641 & \Gamma \vdash c :: \kappa
adamc@533 642 }
adamc@533 643 \quad \infer{\Gamma \vdash \lambda x \; ? \; \kappa \Rightarrow e : x \; ? \; \kappa \to \tau}{
adamc@533 644 \Gamma, x :: \kappa \vdash e : \tau
adamc@533 645 }$$
adamc@533 646
adamc@655 647 $$\infer{\Gamma \vdash e [\kappa] : [X \mapsto \kappa]\tau}{
adamc@655 648 \Gamma \vdash e : X \longrightarrow \tau
adamc@655 649 & \Gamma \vdash \kappa
adamc@655 650 }
adamc@655 651 \quad \infer{\Gamma \vdash X \Longrightarrow e : X \longrightarrow \tau}{
adamc@655 652 \Gamma, X \vdash e : \tau
adamc@655 653 }$$
adamc@655 654
adamc@533 655 $$\infer{\Gamma \vdash \{\overline{c = e}\} : \{\overline{c : \tau}\}}{
adamc@533 656 \forall i: \Gamma \vdash c_i :: \mt{Name}
adamc@533 657 & \Gamma \vdash e_i : \tau_i
adamc@533 658 & \forall i \neq j: \Gamma \vdash c_i \sim c_j
adamc@533 659 }
adamc@533 660 \quad \infer{\Gamma \vdash e.c : \tau}{
adamc@533 661 \Gamma \vdash e : \$([c = \tau] \rc c')
adamc@533 662 }
adamc@533 663 \quad \infer{\Gamma \vdash e_1 \rc e_2 : \$(c_1 \rc c_2)}{
adamc@533 664 \Gamma \vdash e_1 : \$c_1
adamc@533 665 & \Gamma \vdash e_2 : \$c_2
adamc@573 666 & \Gamma \vdash c_1 \sim c_2
adamc@533 667 }$$
adamc@533 668
adamc@533 669 $$\infer{\Gamma \vdash e \rcut c : \$c'}{
adamc@533 670 \Gamma \vdash e : \$([c = \tau] \rc c')
adamc@533 671 }
adamc@533 672 \quad \infer{\Gamma \vdash e \rcutM c : \$c'}{
adamc@533 673 \Gamma \vdash e : \$(c \rc c')
adamc@533 674 }$$
adamc@533 675
adamc@533 676 $$\infer{\Gamma \vdash \mt{let} \; \overline{ed} \; \mt{in} \; e \; \mt{end} : \tau}{
adamc@533 677 \Gamma \vdash \overline{ed} \leadsto \Gamma'
adamc@533 678 & \Gamma' \vdash e : \tau
adamc@533 679 }
adamc@533 680 \quad \infer{\Gamma \vdash \mt{case} \; e \; \mt{of} \; \overline{p \Rightarrow e} : \tau}{
adamc@533 681 \forall i: \Gamma \vdash p_i \leadsto \Gamma_i, \tau'
adamc@533 682 & \Gamma_i \vdash e_i : \tau
adamc@533 683 }$$
adamc@533 684
adamc@573 685 $$\infer{\Gamma \vdash \lambda [c_1 \sim c_2] \Rightarrow e : \lambda [c_1 \sim c_2] \Rightarrow \tau}{
adamc@533 686 \Gamma \vdash c_1 :: \{\kappa\}
adamc@655 687 & \Gamma \vdash c_2 :: \{\kappa'\}
adamc@533 688 & \Gamma, c_1 \sim c_2 \vdash e : \tau
adamc@662 689 }
adamc@662 690 \quad \infer{\Gamma \vdash e \; ! : \tau}{
adamc@662 691 \Gamma \vdash e : [c_1 \sim c_2] \Rightarrow \tau
adamc@662 692 & \Gamma \vdash c_1 \sim c_2
adamc@533 693 }$$
adamc@533 694
adamc@534 695 \subsection{Pattern Typing}
adamc@534 696
adamc@534 697 $$\infer{\Gamma \vdash \_ \leadsto \Gamma; \tau}{}
adamc@534 698 \quad \infer{\Gamma \vdash x \leadsto \Gamma, x : \tau; \tau}{}
adamc@534 699 \quad \infer{\Gamma \vdash \ell \leadsto \Gamma; T(\ell)}{}$$
adamc@534 700
adamc@534 701 $$\infer{\Gamma \vdash X \leadsto \Gamma; \overline{[x_i \mapsto \tau'_i]}\tau}{
adamc@534 702 X : \overline{x ::: \mt{Type}} \to \tau \in \Gamma
adamc@534 703 & \textrm{$\tau$ not a function type}
adamc@534 704 }
adamc@534 705 \quad \infer{\Gamma \vdash X \; p \leadsto \Gamma'; \overline{[x_i \mapsto \tau'_i]}\tau}{
adamc@534 706 X : \overline{x ::: \mt{Type}} \to \tau'' \to \tau \in \Gamma
adamc@534 707 & \Gamma \vdash p \leadsto \Gamma'; \overline{[x_i \mapsto \tau'_i]}\tau''
adamc@534 708 }$$
adamc@534 709
adamc@534 710 $$\infer{\Gamma \vdash M.X \leadsto \Gamma; \overline{[x_i \mapsto \tau'_i]}\tau}{
adamc@537 711 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 712 & \mt{proj}(M, \overline{s}, \mt{val} \; X) = \overline{x ::: \mt{Type}} \to \tau
adamc@534 713 & \textrm{$\tau$ not a function type}
adamc@534 714 }$$
adamc@534 715
adamc@534 716 $$\infer{\Gamma \vdash M.X \; p \leadsto \Gamma'; \overline{[x_i \mapsto \tau'_i]}\tau}{
adamc@537 717 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 718 & \mt{proj}(M, \overline{s}, \mt{val} \; X) = \overline{x ::: \mt{Type}} \to \tau'' \to \tau
adamc@534 719 & \Gamma \vdash p \leadsto \Gamma'; \overline{[x_i \mapsto \tau'_i]}\tau''
adamc@534 720 }$$
adamc@534 721
adamc@534 722 $$\infer{\Gamma \vdash \{\overline{x = p}\} \leadsto \Gamma_n; \{\overline{x = \tau}\}}{
adamc@534 723 \Gamma_0 = \Gamma
adamc@534 724 & \forall i: \Gamma_i \vdash p_i \leadsto \Gamma_{i+1}; \tau_i
adamc@534 725 }
adamc@534 726 \quad \infer{\Gamma \vdash \{\overline{x = p}, \ldots\} \leadsto \Gamma_n; \$([\overline{x = \tau}] \rc c)}{
adamc@534 727 \Gamma_0 = \Gamma
adamc@534 728 & \forall i: \Gamma_i \vdash p_i \leadsto \Gamma_{i+1}; \tau_i
adamc@534 729 }$$
adamc@534 730
adamc@535 731 \subsection{Declaration Typing}
adamc@535 732
adamc@535 733 We use an auxiliary judgment $\overline{y}; x; \Gamma \vdash \overline{dc} \leadsto \Gamma'$, expressing the enrichment of $\Gamma$ with the types of the datatype constructors $\overline{dc}$, when they are known to belong to datatype $x$ with type parameters $\overline{y}$.
adamc@535 734
adamc@655 735 This is the first judgment where we deal with constructor classes, for the $\mt{class}$ declaration form. We will omit their special handling in this formal specification. Section \ref{typeclasses} gives an informal description of how constructor classes influence type inference.
adamc@535 736
adamc@558 737 We presuppose the existence of a function $\mathcal O$, where $\mathcal O(M, \overline{s})$ implements the $\mt{open}$ declaration by producing a context with the appropriate entry for each available component of module $M$ with signature items $\overline{s}$. Where possible, $\mathcal O$ uses ``transparent'' entries (e.g., an abstract type $M.x$ is mapped to $x :: \mt{Type} = M.x$), so that the relationship with $M$ is maintained. A related function $\mathcal O_c$ builds a context containing the disjointness constraints found in $\overline s$.
adamc@537 738 We write $\kappa_1^n \to \kappa$ as a shorthand, where $\kappa_1^0 \to \kappa = \kappa$ and $\kappa_1^{n+1} \to \kappa_2 = \kappa_1 \to (\kappa_1^n \to \kappa_2)$. We write $\mt{len}(\overline{y})$ for the length of vector $\overline{y}$ of variables.
adamc@535 739
adamc@535 740 $$\infer{\Gamma \vdash \cdot \leadsto \Gamma}{}
adamc@535 741 \quad \infer{\Gamma \vdash d, \overline{d} \leadsto \Gamma''}{
adamc@535 742 \Gamma \vdash d \leadsto \Gamma'
adamc@535 743 & \Gamma' \vdash \overline{d} \leadsto \Gamma''
adamc@535 744 }$$
adamc@535 745
adamc@535 746 $$\infer{\Gamma \vdash \mt{con} \; x :: \kappa = c \leadsto \Gamma, x :: \kappa = c}{
adamc@535 747 \Gamma \vdash c :: \kappa
adamc@535 748 }
adamc@535 749 \quad \infer{\Gamma \vdash \mt{datatype} \; x \; \overline{y} = \overline{dc} \leadsto \Gamma'}{
adamc@535 750 \overline{y}; x; \Gamma, x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type} \vdash \overline{dc} \leadsto \Gamma'
adamc@535 751 }$$
adamc@535 752
adamc@535 753 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leadsto \Gamma'}{
adamc@537 754 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 755 & \mt{proj}(M, \overline{s}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})
adamc@535 756 & \overline{y}; x; \Gamma, x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type} = M.z \vdash \overline{dc} \leadsto \Gamma'
adamc@535 757 }$$
adamc@535 758
adamc@535 759 $$\infer{\Gamma \vdash \mt{val} \; x : \tau = e \leadsto \Gamma, x : \tau}{
adamc@535 760 \Gamma \vdash e : \tau
adamc@535 761 }$$
adamc@535 762
adamc@535 763 $$\infer{\Gamma \vdash \mt{val} \; \mt{rec} \; \overline{x : \tau = e} \leadsto \Gamma, \overline{x : \tau}}{
adamc@535 764 \forall i: \Gamma, \overline{x : \tau} \vdash e_i : \tau_i
adamc@535 765 & \textrm{$e_i$ starts with an expression $\lambda$, optionally preceded by constructor and disjointness $\lambda$s}
adamc@535 766 }$$
adamc@535 767
adamc@535 768 $$\infer{\Gamma \vdash \mt{structure} \; X : S = M \leadsto \Gamma, X : S}{
adamc@535 769 \Gamma \vdash M : S
adamc@558 770 & \textrm{ $M$ not a constant or application}
adamc@535 771 }
adamc@558 772 \quad \infer{\Gamma \vdash \mt{structure} \; X : S = M \leadsto \Gamma, X : \mt{selfify}(X, \overline{s})}{
adamc@558 773 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@539 774 }$$
adamc@539 775
adamc@539 776 $$\infer{\Gamma \vdash \mt{signature} \; X = S \leadsto \Gamma, X = S}{
adamc@535 777 \Gamma \vdash S
adamc@535 778 }$$
adamc@535 779
adamc@537 780 $$\infer{\Gamma \vdash \mt{open} \; M \leadsto \Gamma, \mathcal O(M, \overline{s})}{
adamc@537 781 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@535 782 }$$
adamc@535 783
adamc@535 784 $$\infer{\Gamma \vdash \mt{constraint} \; c_1 \sim c_2 \leadsto \Gamma}{
adamc@535 785 \Gamma \vdash c_1 :: \{\kappa\}
adamc@535 786 & \Gamma \vdash c_2 :: \{\kappa\}
adamc@535 787 & \Gamma \vdash c_1 \sim c_2
adamc@535 788 }
adamc@537 789 \quad \infer{\Gamma \vdash \mt{open} \; \mt{constraints} \; M \leadsto \Gamma, \mathcal O_c(M, \overline{s})}{
adamc@537 790 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@535 791 }$$
adamc@535 792
adamc@535 793 $$\infer{\Gamma \vdash \mt{table} \; x : c \leadsto \Gamma, x : \mt{Basis}.\mt{sql\_table} \; c}{
adamc@535 794 \Gamma \vdash c :: \{\mt{Type}\}
adamc@535 795 }
adamc@535 796 \quad \infer{\Gamma \vdash \mt{sequence} \; x \leadsto \Gamma, x : \mt{Basis}.\mt{sql\_sequence}}{}$$
adamc@535 797
adamc@535 798 $$\infer{\Gamma \vdash \mt{cookie} \; x : \tau \leadsto \Gamma, x : \mt{Basis}.\mt{http\_cookie} \; \tau}{
adamc@535 799 \Gamma \vdash \tau :: \mt{Type}
adamc@535 800 }$$
adamc@535 801
adamc@655 802 $$\infer{\Gamma \vdash \mt{class} \; x :: \kappa = c \leadsto \Gamma, x :: \kappa \to \mt{Type} = c}{
adamc@655 803 \Gamma \vdash c :: \kappa \to \mt{Type}
adamc@535 804 }$$
adamc@535 805
adamc@535 806 $$\infer{\overline{y}; x; \Gamma \vdash \cdot \leadsto \Gamma}{}
adamc@535 807 \quad \infer{\overline{y}; x; \Gamma \vdash X \mid \overline{dc} \leadsto \Gamma', X : \overline{y ::: \mt{Type}} \to x \; \overline{y}}{
adamc@535 808 \overline{y}; x; \Gamma \vdash \overline{dc} \leadsto \Gamma'
adamc@535 809 }
adamc@535 810 \quad \infer{\overline{y}; x; \Gamma \vdash X \; \mt{of} \; \tau \mid \overline{dc} \leadsto \Gamma', X : \overline{y ::: \mt{Type}} \to \tau \to x \; \overline{y}}{
adamc@535 811 \overline{y}; x; \Gamma \vdash \overline{dc} \leadsto \Gamma'
adamc@535 812 }$$
adamc@535 813
adamc@537 814 \subsection{Signature Item Typing}
adamc@537 815
adamc@537 816 We appeal to a signature item analogue of the $\mathcal O$ function from the last subsection.
adamc@537 817
adamc@537 818 $$\infer{\Gamma \vdash \cdot \leadsto \Gamma}{}
adamc@537 819 \quad \infer{\Gamma \vdash s, \overline{s} \leadsto \Gamma''}{
adamc@537 820 \Gamma \vdash s \leadsto \Gamma'
adamc@537 821 & \Gamma' \vdash \overline{s} \leadsto \Gamma''
adamc@537 822 }$$
adamc@537 823
adamc@537 824 $$\infer{\Gamma \vdash \mt{con} \; x :: \kappa \leadsto \Gamma, x :: \kappa}{}
adamc@537 825 \quad \infer{\Gamma \vdash \mt{con} \; x :: \kappa = c \leadsto \Gamma, x :: \kappa = c}{
adamc@537 826 \Gamma \vdash c :: \kappa
adamc@537 827 }
adamc@537 828 \quad \infer{\Gamma \vdash \mt{datatype} \; x \; \overline{y} = \overline{dc} \leadsto \Gamma'}{
adamc@537 829 \overline{y}; x; \Gamma, x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type} \vdash \overline{dc} \leadsto \Gamma'
adamc@537 830 }$$
adamc@537 831
adamc@537 832 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leadsto \Gamma'}{
adamc@537 833 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 834 & \mt{proj}(M, \overline{s}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})
adamc@537 835 & \overline{y}; x; \Gamma, x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type} = M.z \vdash \overline{dc} \leadsto \Gamma'
adamc@537 836 }$$
adamc@537 837
adamc@537 838 $$\infer{\Gamma \vdash \mt{val} \; x : \tau \leadsto \Gamma, x : \tau}{
adamc@537 839 \Gamma \vdash \tau :: \mt{Type}
adamc@537 840 }$$
adamc@537 841
adamc@537 842 $$\infer{\Gamma \vdash \mt{structure} \; X : S \leadsto \Gamma, X : S}{
adamc@537 843 \Gamma \vdash S
adamc@537 844 }
adamc@537 845 \quad \infer{\Gamma \vdash \mt{signature} \; X = S \leadsto \Gamma, X = S}{
adamc@537 846 \Gamma \vdash S
adamc@537 847 }$$
adamc@537 848
adamc@537 849 $$\infer{\Gamma \vdash \mt{include} \; S \leadsto \Gamma, \mathcal O(\overline{s})}{
adamc@537 850 \Gamma \vdash S
adamc@537 851 & \Gamma \vdash S \equiv \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 852 }$$
adamc@537 853
adamc@537 854 $$\infer{\Gamma \vdash \mt{constraint} \; c_1 \sim c_2 \leadsto \Gamma, c_1 \sim c_2}{
adamc@537 855 \Gamma \vdash c_1 :: \{\kappa\}
adamc@537 856 & \Gamma \vdash c_2 :: \{\kappa\}
adamc@537 857 }$$
adamc@537 858
adamc@655 859 $$\infer{\Gamma \vdash \mt{class} \; x :: \kappa = c \leadsto \Gamma, x :: \kappa \to \mt{Type} = c}{
adamc@655 860 \Gamma \vdash c :: \kappa \to \mt{Type}
adamc@537 861 }
adamc@655 862 \quad \infer{\Gamma \vdash \mt{class} \; x :: \kappa \leadsto \Gamma, x :: \kappa \to \mt{Type}}{}$$
adamc@537 863
adamc@536 864 \subsection{Signature Compatibility}
adamc@536 865
adamc@558 866 To simplify the judgments in this section, we assume that all signatures are alpha-varied as necessary to avoid including multiple bindings for the same identifier. This is in addition to the usual alpha-variation of locally-bound variables.
adamc@537 867
adamc@537 868 We rely on a judgment $\Gamma \vdash \overline{s} \leq s'$, which expresses the occurrence in signature items $\overline{s}$ of an item compatible with $s'$. We also use a judgment $\Gamma \vdash \overline{dc} \leq \overline{dc}$, which expresses compatibility of datatype definitions.
adamc@537 869
adamc@536 870 $$\infer{\Gamma \vdash S \equiv S}{}
adamc@536 871 \quad \infer{\Gamma \vdash S_1 \equiv S_2}{
adamc@536 872 \Gamma \vdash S_2 \equiv S_1
adamc@536 873 }
adamc@536 874 \quad \infer{\Gamma \vdash X \equiv S}{
adamc@536 875 X = S \in \Gamma
adamc@536 876 }
adamc@536 877 \quad \infer{\Gamma \vdash M.X \equiv S}{
adamc@537 878 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 879 & \mt{proj}(M, \overline{s}, \mt{signature} \; X) = S
adamc@536 880 }$$
adamc@536 881
adamc@536 882 $$\infer{\Gamma \vdash S \; \mt{where} \; \mt{con} \; x = c \equiv \mt{sig} \; \overline{s^1} \; \mt{con} \; x :: \kappa = c \; \overline{s_2} \; \mt{end}}{
adamc@536 883 \Gamma \vdash S \equiv \mt{sig} \; \overline{s^1} \; \mt{con} \; x :: \kappa \; \overline{s_2} \; \mt{end}
adamc@536 884 & \Gamma \vdash c :: \kappa
adamc@537 885 }
adamc@537 886 \quad \infer{\Gamma \vdash \mt{sig} \; \overline{s^1} \; \mt{include} \; S \; \overline{s^2} \; \mt{end} \equiv \mt{sig} \; \overline{s^1} \; \overline{s} \; \overline{s^2} \; \mt{end}}{
adamc@537 887 \Gamma \vdash S \equiv \mt{sig} \; \overline{s} \; \mt{end}
adamc@536 888 }$$
adamc@536 889
adamc@536 890 $$\infer{\Gamma \vdash S_1 \leq S_2}{
adamc@536 891 \Gamma \vdash S_1 \equiv S_2
adamc@536 892 }
adamc@536 893 \quad \infer{\Gamma \vdash \mt{sig} \; \overline{s} \; \mt{end} \leq \mt{sig} \; \mt{end}}{}
adamc@537 894 \quad \infer{\Gamma \vdash \mt{sig} \; \overline{s} \; \mt{end} \leq \mt{sig} \; s' \; \overline{s'} \; \mt{end}}{
adamc@537 895 \Gamma \vdash \overline{s} \leq s'
adamc@537 896 & \Gamma \vdash s' \leadsto \Gamma'
adamc@537 897 & \Gamma' \vdash \mt{sig} \; \overline{s} \; \mt{end} \leq \mt{sig} \; \overline{s'} \; \mt{end}
adamc@537 898 }$$
adamc@537 899
adamc@537 900 $$\infer{\Gamma \vdash s \; \overline{s} \leq s'}{
adamc@537 901 \Gamma \vdash s \leq s'
adamc@537 902 }
adamc@537 903 \quad \infer{\Gamma \vdash s \; \overline{s} \leq s'}{
adamc@537 904 \Gamma \vdash s \leadsto \Gamma'
adamc@537 905 & \Gamma' \vdash \overline{s} \leq s'
adamc@536 906 }$$
adamc@536 907
adamc@536 908 $$\infer{\Gamma \vdash \mt{functor} (X : S_1) : S_2 \leq \mt{functor} (X : S'_1) : S'_2}{
adamc@536 909 \Gamma \vdash S'_1 \leq S_1
adamc@536 910 & \Gamma, X : S'_1 \vdash S_2 \leq S'_2
adamc@536 911 }$$
adamc@536 912
adamc@537 913 $$\infer{\Gamma \vdash \mt{con} \; x :: \kappa \leq \mt{con} \; x :: \kappa}{}
adamc@537 914 \quad \infer{\Gamma \vdash \mt{con} \; x :: \kappa = c \leq \mt{con} \; x :: \kappa}{}
adamc@558 915 \quad \infer{\Gamma \vdash \mt{datatype} \; x \; \overline{y} = \overline{dc} \leq \mt{con} \; x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type}}{}$$
adamc@537 916
adamc@537 917 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leq \mt{con} \; x :: \mt{Type}^{\mt{len}(y)} \to \mt{Type}}{
adamc@537 918 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 919 & \mt{proj}(M, \overline{s}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})
adamc@537 920 }$$
adamc@537 921
adamc@655 922 $$\infer{\Gamma \vdash \mt{class} \; x :: \kappa \leq \mt{con} \; x :: \kappa \to \mt{Type}}{}
adamc@655 923 \quad \infer{\Gamma \vdash \mt{class} \; x :: \kappa = c \leq \mt{con} \; x :: \kappa \to \mt{Type}}{}$$
adamc@537 924
adamc@537 925 $$\infer{\Gamma \vdash \mt{con} \; x :: \kappa = c_1 \leq \mt{con} \; x :: \mt{\kappa} = c_2}{
adamc@537 926 \Gamma \vdash c_1 \equiv c_2
adamc@537 927 }
adamc@655 928 \quad \infer{\Gamma \vdash \mt{class} \; x :: \kappa = c_1 \leq \mt{con} \; x :: \kappa \to \mt{Type} = c_2}{
adamc@537 929 \Gamma \vdash c_1 \equiv c_2
adamc@537 930 }$$
adamc@537 931
adamc@537 932 $$\infer{\Gamma \vdash \mt{datatype} \; x \; \overline{y} = \overline{dc} \leq \mt{datatype} \; x \; \overline{y} = \overline{dc'}}{
adamc@537 933 \Gamma, \overline{y :: \mt{Type}} \vdash \overline{dc} \leq \overline{dc'}
adamc@537 934 }$$
adamc@537 935
adamc@537 936 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leq \mt{datatype} \; x \; \overline{y} = \overline{dc'}}{
adamc@537 937 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 938 & \mt{proj}(M, \overline{s}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})
adamc@537 939 & \Gamma, \overline{y :: \mt{Type}} \vdash \overline{dc} \leq \overline{dc'}
adamc@537 940 }$$
adamc@537 941
adamc@537 942 $$\infer{\Gamma \vdash \cdot \leq \cdot}{}
adamc@537 943 \quad \infer{\Gamma \vdash X; \overline{dc} \leq X; \overline{dc'}}{
adamc@537 944 \Gamma \vdash \overline{dc} \leq \overline{dc'}
adamc@537 945 }
adamc@537 946 \quad \infer{\Gamma \vdash X \; \mt{of} \; \tau_1; \overline{dc} \leq X \; \mt{of} \; \tau_2; \overline{dc'}}{
adamc@537 947 \Gamma \vdash \tau_1 \equiv \tau_2
adamc@537 948 & \Gamma \vdash \overline{dc} \leq \overline{dc'}
adamc@537 949 }$$
adamc@537 950
adamc@537 951 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leq \mt{datatype} \; x = \mt{datatype} \; M'.z'}{
adamc@537 952 \Gamma \vdash M.z \equiv M'.z'
adamc@537 953 }$$
adamc@537 954
adamc@537 955 $$\infer{\Gamma \vdash \mt{val} \; x : \tau_1 \leq \mt{val} \; x : \tau_2}{
adamc@537 956 \Gamma \vdash \tau_1 \equiv \tau_2
adamc@537 957 }
adamc@537 958 \quad \infer{\Gamma \vdash \mt{structure} \; X : S_1 \leq \mt{structure} \; X : S_2}{
adamc@537 959 \Gamma \vdash S_1 \leq S_2
adamc@537 960 }
adamc@537 961 \quad \infer{\Gamma \vdash \mt{signature} \; X = S_1 \leq \mt{signature} \; X = S_2}{
adamc@537 962 \Gamma \vdash S_1 \leq S_2
adamc@537 963 & \Gamma \vdash S_2 \leq S_1
adamc@537 964 }$$
adamc@537 965
adamc@537 966 $$\infer{\Gamma \vdash \mt{constraint} \; c_1 \sim c_2 \leq \mt{constraint} \; c'_1 \sim c'_2}{
adamc@537 967 \Gamma \vdash c_1 \equiv c'_1
adamc@537 968 & \Gamma \vdash c_2 \equiv c'_2
adamc@537 969 }$$
adamc@537 970
adamc@655 971 $$\infer{\Gamma \vdash \mt{class} \; x :: \kappa \leq \mt{class} \; x :: \kappa}{}
adamc@655 972 \quad \infer{\Gamma \vdash \mt{class} \; x :: \kappa = c \leq \mt{class} \; x :: \kappa}{}
adamc@655 973 \quad \infer{\Gamma \vdash \mt{class} \; x :: \kappa = c_1 \leq \mt{class} \; x :: \kappa = c_2}{
adamc@537 974 \Gamma \vdash c_1 \equiv c_2
adamc@537 975 }$$
adamc@537 976
adamc@538 977 \subsection{Module Typing}
adamc@538 978
adamc@538 979 We use a helper function $\mt{sigOf}$, which converts declarations and sequences of declarations into their principal signature items and sequences of signature items, respectively.
adamc@538 980
adamc@538 981 $$\infer{\Gamma \vdash M : S}{
adamc@538 982 \Gamma \vdash M : S'
adamc@538 983 & \Gamma \vdash S' \leq S
adamc@538 984 }
adamc@538 985 \quad \infer{\Gamma \vdash \mt{struct} \; \overline{d} \; \mt{end} : \mt{sig} \; \mt{sigOf}(\overline{d}) \; \mt{end}}{
adamc@538 986 \Gamma \vdash \overline{d} \leadsto \Gamma'
adamc@538 987 }
adamc@538 988 \quad \infer{\Gamma \vdash X : S}{
adamc@538 989 X : S \in \Gamma
adamc@538 990 }$$
adamc@538 991
adamc@538 992 $$\infer{\Gamma \vdash M.X : S}{
adamc@538 993 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@538 994 & \mt{proj}(M, \overline{s}, \mt{structure} \; X) = S
adamc@538 995 }$$
adamc@538 996
adamc@538 997 $$\infer{\Gamma \vdash M_1(M_2) : [X \mapsto M_2]S_2}{
adamc@538 998 \Gamma \vdash M_1 : \mt{functor}(X : S_1) : S_2
adamc@538 999 & \Gamma \vdash M_2 : S_1
adamc@538 1000 }
adamc@538 1001 \quad \infer{\Gamma \vdash \mt{functor} (X : S_1) : S_2 = M : \mt{functor} (X : S_1) : S_2}{
adamc@538 1002 \Gamma \vdash S_1
adamc@538 1003 & \Gamma, X : S_1 \vdash S_2
adamc@538 1004 & \Gamma, X : S_1 \vdash M : S_2
adamc@538 1005 }$$
adamc@538 1006
adamc@538 1007 \begin{eqnarray*}
adamc@538 1008 \mt{sigOf}(\cdot) &=& \cdot \\
adamc@538 1009 \mt{sigOf}(s \; \overline{s'}) &=& \mt{sigOf}(s) \; \mt{sigOf}(\overline{s'}) \\
adamc@538 1010 \\
adamc@538 1011 \mt{sigOf}(\mt{con} \; x :: \kappa = c) &=& \mt{con} \; x :: \kappa = c \\
adamc@538 1012 \mt{sigOf}(\mt{datatype} \; x \; \overline{y} = \overline{dc}) &=& \mt{datatype} \; x \; \overline{y} = \overline{dc} \\
adamc@538 1013 \mt{sigOf}(\mt{datatype} \; x = \mt{datatype} \; M.z) &=& \mt{datatype} \; x = \mt{datatype} \; M.z \\
adamc@538 1014 \mt{sigOf}(\mt{val} \; x : \tau = e) &=& \mt{val} \; x : \tau \\
adamc@538 1015 \mt{sigOf}(\mt{val} \; \mt{rec} \; \overline{x : \tau = e}) &=& \overline{\mt{val} \; x : \tau} \\
adamc@538 1016 \mt{sigOf}(\mt{structure} \; X : S = M) &=& \mt{structure} \; X : S \\
adamc@538 1017 \mt{sigOf}(\mt{signature} \; X = S) &=& \mt{signature} \; X = S \\
adamc@538 1018 \mt{sigOf}(\mt{open} \; M) &=& \mt{include} \; S \textrm{ (where $\Gamma \vdash M : S$)} \\
adamc@538 1019 \mt{sigOf}(\mt{constraint} \; c_1 \sim c_2) &=& \mt{constraint} \; c_1 \sim c_2 \\
adamc@538 1020 \mt{sigOf}(\mt{open} \; \mt{constraints} \; M) &=& \cdot \\
adamc@538 1021 \mt{sigOf}(\mt{table} \; x : c) &=& \mt{table} \; x : c \\
adamc@538 1022 \mt{sigOf}(\mt{sequence} \; x) &=& \mt{sequence} \; x \\
adamc@538 1023 \mt{sigOf}(\mt{cookie} \; x : \tau) &=& \mt{cookie} \; x : \tau \\
adamc@655 1024 \mt{sigOf}(\mt{class} \; x :: \kappa = c) &=& \mt{class} \; x :: \kappa = c \\
adamc@538 1025 \end{eqnarray*}
adamc@539 1026 \begin{eqnarray*}
adamc@539 1027 \mt{selfify}(M, \cdot) &=& \cdot \\
adamc@558 1028 \mt{selfify}(M, s \; \overline{s'}) &=& \mt{selfify}(M, s) \; \mt{selfify}(M, \overline{s'}) \\
adamc@539 1029 \\
adamc@539 1030 \mt{selfify}(M, \mt{con} \; x :: \kappa) &=& \mt{con} \; x :: \kappa = M.x \\
adamc@539 1031 \mt{selfify}(M, \mt{con} \; x :: \kappa = c) &=& \mt{con} \; x :: \kappa = c \\
adamc@539 1032 \mt{selfify}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc}) &=& \mt{datatype} \; x \; \overline{y} = \mt{datatype} \; M.x \\
adamc@539 1033 \mt{selfify}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z) &=& \mt{datatype} \; x = \mt{datatype} \; M'.z \\
adamc@539 1034 \mt{selfify}(M, \mt{val} \; x : \tau) &=& \mt{val} \; x : \tau \\
adamc@539 1035 \mt{selfify}(M, \mt{structure} \; X : S) &=& \mt{structure} \; X : \mt{selfify}(M.X, \overline{s}) \textrm{ (where $\Gamma \vdash S \equiv \mt{sig} \; \overline{s} \; \mt{end}$)} \\
adamc@539 1036 \mt{selfify}(M, \mt{signature} \; X = S) &=& \mt{signature} \; X = S \\
adamc@539 1037 \mt{selfify}(M, \mt{include} \; S) &=& \mt{include} \; S \\
adamc@539 1038 \mt{selfify}(M, \mt{constraint} \; c_1 \sim c_2) &=& \mt{constraint} \; c_1 \sim c_2 \\
adamc@655 1039 \mt{selfify}(M, \mt{class} \; x :: \kappa) &=& \mt{class} \; x :: \kappa = M.x \\
adamc@655 1040 \mt{selfify}(M, \mt{class} \; x :: \kappa = c) &=& \mt{class} \; x :: \kappa = c \\
adamc@539 1041 \end{eqnarray*}
adamc@539 1042
adamc@540 1043 \subsection{Module Projection}
adamc@540 1044
adamc@540 1045 \begin{eqnarray*}
adamc@540 1046 \mt{proj}(M, \mt{con} \; x :: \kappa \; \overline{s}, \mt{con} \; x) &=& \kappa \\
adamc@540 1047 \mt{proj}(M, \mt{con} \; x :: \kappa = c \; \overline{s}, \mt{con} \; x) &=& (\kappa, c) \\
adamc@540 1048 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, \mt{con} \; x) &=& \mt{Type}^{\mt{len}(\overline{y})} \to \mt{Type} \\
adamc@540 1049 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z \; \overline{s}, \mt{con} \; x) &=& (\mt{Type}^{\mt{len}(\overline{y})} \to \mt{Type}, M'.z) \textrm{ (where $\Gamma \vdash M' : \mt{sig} \; \overline{s'} \; \mt{end}$} \\
adamc@540 1050 && \textrm{and $\mt{proj}(M', \overline{s'}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})$)} \\
adamc@655 1051 \mt{proj}(M, \mt{class} \; x :: \kappa \; \overline{s}, \mt{con} \; x) &=& \kappa \to \mt{Type} \\
adamc@655 1052 \mt{proj}(M, \mt{class} \; x :: \kappa = c \; \overline{s}, \mt{con} \; x) &=& (\kappa \to \mt{Type}, c) \\
adamc@540 1053 \\
adamc@540 1054 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, \mt{datatype} \; x) &=& (\overline{y}, \overline{dc}) \\
adamc@540 1055 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z \; \overline{s}, \mt{con} \; x) &=& \mt{proj}(M', \overline{s'}, \mt{datatype} \; z) \textrm{ (where $\Gamma \vdash M' : \mt{sig} \; \overline{s'} \; \mt{end}$)} \\
adamc@540 1056 \\
adamc@540 1057 \mt{proj}(M, \mt{val} \; x : \tau \; \overline{s}, \mt{val} \; x) &=& \tau \\
adamc@540 1058 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, \mt{val} \; X) &=& \overline{y ::: \mt{Type}} \to M.x \; \overline y \textrm{ (where $X \in \overline{dc}$)} \\
adamc@540 1059 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, \mt{val} \; X) &=& \overline{y ::: \mt{Type}} \to \tau \to M.x \; \overline y \textrm{ (where $X \; \mt{of} \; \tau \in \overline{dc}$)} \\
adamc@540 1060 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z, \mt{val} \; X) &=& \overline{y ::: \mt{Type}} \to M.x \; \overline y \textrm{ (where $\Gamma \vdash M' : \mt{sig} \; \overline{s'} \; \mt{end}$} \\
adamc@540 1061 && \textrm{and $\mt{proj}(M', \overline{s'}, \mt{datatype} \; z = (\overline{y}, \overline{dc})$ and $X \in \overline{dc}$)} \\
adamc@540 1062 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z, \mt{val} \; X) &=& \overline{y ::: \mt{Type}} \to \tau \to M.x \; \overline y \textrm{ (where $\Gamma \vdash M' : \mt{sig} \; \overline{s'} \; \mt{end}$} \\
adamc@558 1063 && \textrm{and $\mt{proj}(M', \overline{s'}, \mt{datatype} \; z = (\overline{y}, \overline{dc})$ and $X \; \mt{of} \; \tau \in \overline{dc}$)} \\
adamc@540 1064 \\
adamc@540 1065 \mt{proj}(M, \mt{structure} \; X : S \; \overline{s}, \mt{structure} \; X) &=& S \\
adamc@540 1066 \\
adamc@540 1067 \mt{proj}(M, \mt{signature} \; X = S \; \overline{s}, \mt{signature} \; X) &=& S \\
adamc@540 1068 \\
adamc@540 1069 \mt{proj}(M, \mt{con} \; x :: \kappa \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1070 \mt{proj}(M, \mt{con} \; x :: \kappa = c \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1071 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1072 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1073 \mt{proj}(M, \mt{val} \; x : \tau \; \overline{s}, V) &=& \mt{proj}(M, \overline{s}, V) \\
adamc@540 1074 \mt{proj}(M, \mt{structure} \; X : S \; \overline{s}, V) &=& [X \mapsto M.X]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1075 \mt{proj}(M, \mt{signature} \; X = S \; \overline{s}, V) &=& [X \mapsto M.X]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1076 \mt{proj}(M, \mt{include} \; S \; \overline{s}, V) &=& \mt{proj}(M, \overline{s'} \; \overline{s}, V) \textrm{ (where $\Gamma \vdash S \equiv \mt{sig} \; \overline{s'} \; \mt{end}$)} \\
adamc@540 1077 \mt{proj}(M, \mt{constraint} \; c_1 \sim c_2 \; \overline{s}, V) &=& \mt{proj}(M, \overline{s}, V) \\
adamc@655 1078 \mt{proj}(M, \mt{class} \; x :: \kappa \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@655 1079 \mt{proj}(M, \mt{class} \; x :: \kappa = c \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1080 \end{eqnarray*}
adamc@540 1081
adamc@541 1082
adamc@541 1083 \section{Type Inference}
adamc@541 1084
adamc@541 1085 The Ur/Web compiler uses \emph{heuristic type inference}, with no claims of completeness with respect to the declarative specification of the last section. The rules in use seem to work well in practice. This section summarizes those rules, to help Ur programmers predict what will work and what won't.
adamc@541 1086
adamc@541 1087 \subsection{Basic Unification}
adamc@541 1088
adamc@560 1089 Type-checkers for languages based on the Hindley-Milner type discipline, like ML and Haskell, take advantage of \emph{principal typing} properties, making complete type inference relatively straightforward. Inference algorithms are traditionally implemented using type unification variables, at various points asserting equalities between types, in the process discovering the values of type variables. The Ur/Web compiler uses the same basic strategy, but the complexity of the type system rules out easy completeness.
adamc@541 1090
adamc@656 1091 Type-checking can require evaluating recursive functional programs, thanks to the type-level $\mt{map}$ operator. When a unification variable appears in such a type, the next step of computation can be undetermined. The value of that variable might be determined later, but this would be ``too late'' for the unification problems generated at the first occurrence. This is the essential source of incompleteness.
adamc@541 1092
adamc@541 1093 Nonetheless, the unification engine tends to do reasonably well. Unlike in ML, polymorphism is never inferred in definitions; it must be indicated explicitly by writing out constructor-level parameters. By writing these and other annotations, the programmer can generally get the type inference engine to do most of the type reconstruction work.
adamc@541 1094
adamc@541 1095 \subsection{Unifying Record Types}
adamc@541 1096
adamc@570 1097 The type inference engine tries to take advantage of the algebraic rules governing type-level records, as shown in Section \ref{definitional}. When two constructors of record kind are unified, they are reduced to normal forms, with like terms crossed off from each normal form until, hopefully, nothing remains. This cannot be complete, with the inclusion of unification variables. The type-checker can help you understand what goes wrong when the process fails, as it outputs the unmatched remainders of the two normal forms.
adamc@541 1098
adamc@656 1099 \subsection{\label{typeclasses}Constructor Classes}
adamc@541 1100
adamc@656 1101 Ur includes a constructor class facility inspired by Haskell's. The current version is very rudimentary, only supporting instances for particular constructors built up from abstract constructors and datatypes and type-level application.
adamc@541 1102
adamc@656 1103 Constructor classes are integrated with the module system. A constructor class of kind $\kappa$ is just a constructor of kind $\kappa \to \mt{Type}$. By marking such a constructor $c$ as a constructor class, the programmer instructs the type inference engine to, in each scope, record all values of types $c \; c'$ as \emph{instances}. Any function argument whose type is of such a form is treated as implicit, to be determined by examining the current instance database.
adamc@541 1104
adamc@656 1105 The ``dictionary encoding'' often used in Haskell implementations is made explicit in Ur. Constructor class instances are just properly-typed values, and they can also be considered as ``proofs'' of membership in the class. In some cases, it is useful to pass these proofs around explicitly. An underscore written where a proof is expected will also be inferred, if possible, from the current instance database.
adamc@541 1106
adamc@656 1107 Just as for constructors, constructors classes may be exported from modules, and they may be exported as concrete or abstract. Concrete constructor classes have their ``real'' definitions exposed, so that client code may add new instances freely. Abstract constructor classes are useful as ``predicates'' that can be used to enforce invariants, as we will see in some definitions of SQL syntax in the Ur/Web standard library.
adamc@541 1108
adamc@541 1109 \subsection{Reverse-Engineering Record Types}
adamc@541 1110
adamc@656 1111 It's useful to write Ur functions and functors that take record constructors as inputs, but these constructors can grow quite long, even though their values are often implied by other arguments. The compiler uses a simple heuristic to infer the values of unification variables that are mapped over, yielding known results. If the result is empty, we're done; if it's not empty, we replace a single unification variable with a new constructor formed from three new unification variables, as in $[\alpha = \beta] \rc \gamma$. This process can often be repeated to determine a unification variable fully.
adamc@541 1112
adamc@541 1113 \subsection{Implicit Arguments in Functor Applications}
adamc@541 1114
adamc@656 1115 Constructor, constraint, and constructor class witness members of structures may be omitted, when those structures are used in contexts where their assigned signatures imply how to fill in those missing members. This feature combines well with reverse-engineering to allow for uses of complicated meta-programming functors with little more code than would be necessary to invoke an untyped, ad-hoc code generator.
adamc@541 1116
adamc@541 1117
adamc@542 1118 \section{The Ur Standard Library}
adamc@542 1119
adamc@542 1120 The built-in parts of the Ur/Web standard library are described by the signature in \texttt{lib/basis.urs} in the distribution. A module $\mt{Basis}$ ascribing to that signature is available in the initial environment, and every program is implicitly prefixed by $\mt{open} \; \mt{Basis}$.
adamc@542 1121
adamc@542 1122 Additionally, other common functions that are definable within Ur are included in \texttt{lib/top.urs} and \texttt{lib/top.ur}. This $\mt{Top}$ module is also opened implicitly.
adamc@542 1123
adamc@542 1124 The idea behind Ur is to serve as the ideal host for embedded domain-specific languages. For now, however, the ``generic'' functionality is intermixed with Ur/Web-specific functionality, including in these two library modules. We hope that these generic library components have types that speak for themselves. The next section introduces the Ur/Web-specific elements. Here, we only give the type declarations from the beginning of $\mt{Basis}$.
adamc@542 1125 $$\begin{array}{l}
adamc@542 1126 \mt{type} \; \mt{int} \\
adamc@542 1127 \mt{type} \; \mt{float} \\
adamc@542 1128 \mt{type} \; \mt{string} \\
adamc@542 1129 \mt{type} \; \mt{time} \\
adamc@542 1130 \\
adamc@542 1131 \mt{type} \; \mt{unit} = \{\} \\
adamc@542 1132 \\
adamc@542 1133 \mt{datatype} \; \mt{bool} = \mt{False} \mid \mt{True} \\
adamc@542 1134 \\
adamc@542 1135 \mt{datatype} \; \mt{option} \; \mt{t} = \mt{None} \mid \mt{Some} \; \mt{of} \; \mt{t}
adamc@542 1136 \end{array}$$
adamc@542 1137
adamc@657 1138 Another important generic Ur element comes at the beginning of \texttt{top.urs}.
adamc@657 1139
adamc@657 1140 $$\begin{array}{l}
adamc@657 1141 \mt{con} \; \mt{folder} :: \mt{K} \longrightarrow \{\mt{K}\} \to \mt{Type} \\
adamc@657 1142 \\
adamc@657 1143 \mt{val} \; \mt{fold} : \mt{K} \longrightarrow \mt{tf} :: (\{\mt{K}\} \to \mt{Type}) \\
adamc@657 1144 \hspace{.1in} \to (\mt{nm} :: \mt{Name} \to \mt{v} :: \mt{K} \to \mt{r} :: \{\mt{K}\} \to [[\mt{nm}] \sim \mt{r}] \Rightarrow \\
adamc@657 1145 \hspace{.2in} \mt{tf} \; \mt{r} \to \mt{tf} \; ([\mt{nm} = \mt{v}] \rc \mt{r})) \\
adamc@657 1146 \hspace{.1in} \to \mt{tf} \; [] \\
adamc@657 1147 \hspace{.1in} \to \mt{r} :: \{\mt{K}\} \to \mt{folder} \; \mt{r} \to \mt{tf} \; \mt{r}
adamc@657 1148 \end{array}$$
adamc@657 1149
adamc@657 1150 For a type-level record $\mt{r}$, a $\mt{folder} \; \mt{r}$ encodes a permutation of $\mt{r}$'s elements. The $\mt{fold}$ function can be called on a $\mt{folder}$ to iterate over the elements of $\mt{r}$ in that order. $\mt{fold}$ is parameterized on a type-level function to be used to calculate the type of each intermediate result of folding. After processing a subset $\mt{r'}$ of $\mt{r}$'s entries, the type of the accumulator should be $\mt{tf} \; \mt{r'}$. The next two expression arguments to $\mt{fold}$ are the usual step function and initial accumulator, familiar from fold functions over lists. The final two arguments are the record to fold over and a $\mt{folder}$ for it.
adamc@657 1151
adamc@664 1152 The Ur compiler treats $\mt{folder}$ like a constructor class, using built-in rules to infer $\mt{folder}$s for records with known structure. The order in which field names are mentioned in source code is used as a hint about the permutation that the programmer would like.
adamc@657 1153
adamc@542 1154
adamc@542 1155 \section{The Ur/Web Standard Library}
adamc@542 1156
adamc@658 1157 \subsection{Monads}
adamc@658 1158
adamc@658 1159 The Ur Basis defines the monad constructor class from Haskell.
adamc@658 1160
adamc@658 1161 $$\begin{array}{l}
adamc@658 1162 \mt{class} \; \mt{monad} :: \mt{Type} \to \mt{Type} \\
adamc@658 1163 \mt{val} \; \mt{return} : \mt{m} ::: (\mt{Type} \to \mt{Type}) \to \mt{t} ::: \mt{Type} \\
adamc@658 1164 \hspace{.1in} \to \mt{monad} \; \mt{m} \\
adamc@658 1165 \hspace{.1in} \to \mt{t} \to \mt{m} \; \mt{t} \\
adamc@658 1166 \mt{val} \; \mt{bind} : \mt{m} ::: (\mt{Type} \to \mt{Type}) \to \mt{t1} ::: \mt{Type} \to \mt{t2} ::: \mt{Type} \\
adamc@658 1167 \hspace{.1in} \to \mt{monad} \; \mt{m} \\
adamc@658 1168 \hspace{.1in} \to \mt{m} \; \mt{t1} \to (\mt{t1} \to \mt{m} \; \mt{t2}) \\
adamc@658 1169 \hspace{.1in} \to \mt{m} \; \mt{t2}
adamc@658 1170 \end{array}$$
adamc@658 1171
adamc@542 1172 \subsection{Transactions}
adamc@542 1173
adamc@542 1174 Ur is a pure language; we use Haskell's trick to support controlled side effects. The standard library defines a monad $\mt{transaction}$, meant to stand for actions that may be undone cleanly. By design, no other kinds of actions are supported.
adamc@542 1175 $$\begin{array}{l}
adamc@542 1176 \mt{con} \; \mt{transaction} :: \mt{Type} \to \mt{Type} \\
adamc@658 1177 \mt{val} \; \mt{transaction\_monad} : \mt{monad} \; \mt{transaction}
adamc@542 1178 \end{array}$$
adamc@542 1179
adamc@542 1180 \subsection{HTTP}
adamc@542 1181
adamc@542 1182 There are transactions for reading an HTTP header by name and for getting and setting strongly-typed cookies. Cookies may only be created by the $\mt{cookie}$ declaration form, ensuring that they be named consistently based on module structure.
adamc@542 1183 $$\begin{array}{l}
adamc@542 1184 \mt{val} \; \mt{requestHeader} : \mt{string} \to \mt{transaction} \; (\mt{option} \; \mt{string}) \\
adamc@542 1185 \\
adamc@542 1186 \mt{con} \; \mt{http\_cookie} :: \mt{Type} \to \mt{Type} \\
adamc@542 1187 \mt{val} \; \mt{getCookie} : \mt{t} ::: \mt{Type} \to \mt{http\_cookie} \; \mt{t} \to \mt{transaction} \; (\mt{option} \; \mt{t}) \\
adamc@542 1188 \mt{val} \; \mt{setCookie} : \mt{t} ::: \mt{Type} \to \mt{http\_cookie} \; \mt{t} \to \mt{t} \to \mt{transaction} \; \mt{unit}
adamc@542 1189 \end{array}$$
adamc@542 1190
adamc@543 1191 \subsection{SQL}
adamc@543 1192
adamc@543 1193 The fundamental unit of interest in the embedding of SQL is tables, described by a type family and creatable only via the $\mt{table}$ declaration form.
adamc@543 1194 $$\begin{array}{l}
adamc@543 1195 \mt{con} \; \mt{sql\_table} :: \{\mt{Type}\} \to \mt{Type}
adamc@543 1196 \end{array}$$
adamc@543 1197
adamc@543 1198 \subsubsection{Queries}
adamc@543 1199
adamc@543 1200 A final query is constructed via the $\mt{sql\_query}$ function. Constructor arguments respectively specify the table fields we select (as records mapping tables to the subsets of their fields that we choose) and the (always named) extra expressions that we select.
adamc@543 1201 $$\begin{array}{l}
adamc@543 1202 \mt{con} \; \mt{sql\_query} :: \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \\
adamc@543 1203 \mt{val} \; \mt{sql\_query} : \mt{tables} ::: \{\{\mt{Type}\}\} \\
adamc@543 1204 \hspace{.1in} \to \mt{selectedFields} ::: \{\{\mt{Type}\}\} \\
adamc@543 1205 \hspace{.1in} \to \mt{selectedExps} ::: \{\mt{Type}\} \\
adamc@543 1206 \hspace{.1in} \to \{\mt{Rows} : \mt{sql\_query1} \; \mt{tables} \; \mt{selectedFields} \; \mt{selectedExps}, \\
adamc@543 1207 \hspace{.2in} \mt{OrderBy} : \mt{sql\_order\_by} \; \mt{tables} \; \mt{selectedExps}, \\
adamc@543 1208 \hspace{.2in} \mt{Limit} : \mt{sql\_limit}, \\
adamc@543 1209 \hspace{.2in} \mt{Offset} : \mt{sql\_offset}\} \\
adamc@543 1210 \hspace{.1in} \to \mt{sql\_query} \; \mt{selectedFields} \; \mt{selectedExps}
adamc@543 1211 \end{array}$$
adamc@543 1212
adamc@545 1213 Queries are used by folding over their results inside transactions.
adamc@545 1214 $$\begin{array}{l}
adamc@545 1215 \mt{val} \; \mt{query} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \lambda [\mt{tables} \sim \mt{exps}] \Rightarrow \mt{state} ::: \mt{Type} \to \mt{sql\_query} \; \mt{tables} \; \mt{exps} \\
adamc@658 1216 \hspace{.1in} \to (\$(\mt{exps} \rc \mt{map} \; (\lambda \mt{fields} :: \{\mt{Type}\} \Rightarrow \$\mt{fields}) \; \mt{tables}) \\
adamc@545 1217 \hspace{.2in} \to \mt{state} \to \mt{transaction} \; \mt{state}) \\
adamc@545 1218 \hspace{.1in} \to \mt{state} \to \mt{transaction} \; \mt{state}
adamc@545 1219 \end{array}$$
adamc@545 1220
adamc@543 1221 Most of the complexity of the query encoding is in the type $\mt{sql\_query1}$, which includes simple queries and derived queries based on relational operators. Constructor arguments respectively specify the tables we select from, the subset of fields that we keep from each table for the result rows, and the extra expressions that we select.
adamc@543 1222 $$\begin{array}{l}
adamc@543 1223 \mt{con} \; \mt{sql\_query1} :: \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \\
adamc@543 1224 \\
adamc@543 1225 \mt{type} \; \mt{sql\_relop} \\
adamc@543 1226 \mt{val} \; \mt{sql\_union} : \mt{sql\_relop} \\
adamc@543 1227 \mt{val} \; \mt{sql\_intersect} : \mt{sql\_relop} \\
adamc@543 1228 \mt{val} \; \mt{sql\_except} : \mt{sql\_relop} \\
adamc@543 1229 \mt{val} \; \mt{sql\_relop} : \mt{tables1} ::: \{\{\mt{Type}\}\} \\
adamc@543 1230 \hspace{.1in} \to \mt{tables2} ::: \{\{\mt{Type}\}\} \\
adamc@543 1231 \hspace{.1in} \to \mt{selectedFields} ::: \{\{\mt{Type}\}\} \\
adamc@543 1232 \hspace{.1in} \to \mt{selectedExps} ::: \{\mt{Type}\} \\
adamc@543 1233 \hspace{.1in} \to \mt{sql\_relop} \\
adamc@543 1234 \hspace{.1in} \to \mt{sql\_query1} \; \mt{tables1} \; \mt{selectedFields} \; \mt{selectedExps} \\
adamc@543 1235 \hspace{.1in} \to \mt{sql\_query1} \; \mt{tables2} \; \mt{selectedFields} \; \mt{selectedExps} \\
adamc@543 1236 \hspace{.1in} \to \mt{sql\_query1} \; \mt{selectedFields} \; \mt{selectedFields} \; \mt{selectedExps}
adamc@543 1237 \end{array}$$
adamc@543 1238
adamc@543 1239 $$\begin{array}{l}
adamc@543 1240 \mt{val} \; \mt{sql\_query1} : \mt{tables} ::: \{\{\mt{Type}\}\} \\
adamc@543 1241 \hspace{.1in} \to \mt{grouped} ::: \{\{\mt{Type}\}\} \\
adamc@543 1242 \hspace{.1in} \to \mt{selectedFields} ::: \{\{\mt{Type}\}\} \\
adamc@543 1243 \hspace{.1in} \to \mt{selectedExps} ::: \{\mt{Type}\} \\
adamc@658 1244 \hspace{.1in} \to \{\mt{From} : \$(\mt{map} \; \mt{sql\_table} \; \mt{tables}), \\
adamc@543 1245 \hspace{.2in} \mt{Where} : \mt{sql\_exp} \; \mt{tables} \; [] \; [] \; \mt{bool}, \\
adamc@543 1246 \hspace{.2in} \mt{GroupBy} : \mt{sql\_subset} \; \mt{tables} \; \mt{grouped}, \\
adamc@543 1247 \hspace{.2in} \mt{Having} : \mt{sql\_exp} \; \mt{grouped} \; \mt{tables} \; [] \; \mt{bool}, \\
adamc@543 1248 \hspace{.2in} \mt{SelectFields} : \mt{sql\_subset} \; \mt{grouped} \; \mt{selectedFields}, \\
adamc@658 1249 \hspace{.2in} \mt {SelectExps} : \$(\mt{map} \; (\mt{sql\_exp} \; \mt{grouped} \; \mt{tables} \; []) \; \mt{selectedExps}) \} \\
adamc@543 1250 \hspace{.1in} \to \mt{sql\_query1} \; \mt{tables} \; \mt{selectedFields} \; \mt{selectedExps}
adamc@543 1251 \end{array}$$
adamc@543 1252
adamc@543 1253 To encode projection of subsets of fields in $\mt{SELECT}$ clauses, and to encode $\mt{GROUP} \; \mt{BY}$ clauses, we rely on a type family $\mt{sql\_subset}$, capturing what it means for one record of table fields to be a subset of another. The main constructor $\mt{sql\_subset}$ ``proves subset facts'' by requiring a split of a record into kept and dropped parts. The extra constructor $\mt{sql\_subset\_all}$ is a convenience for keeping all fields of a record.
adamc@543 1254 $$\begin{array}{l}
adamc@543 1255 \mt{con} \; \mt{sql\_subset} :: \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \mt{Type} \\
adamc@543 1256 \mt{val} \; \mt{sql\_subset} : \mt{keep\_drop} :: \{(\{\mt{Type}\} \times \{\mt{Type}\})\} \\
adamc@543 1257 \hspace{.1in} \to \mt{sql\_subset} \\
adamc@658 1258 \hspace{.2in} (\mt{map} \; (\lambda \mt{fields} :: (\{\mt{Type}\} \times \{\mt{Type}\}) \Rightarrow \mt{fields}.1 \rc \mt{fields}.2)\; \mt{keep\_drop}) \\
adamc@658 1259 \hspace{.2in} (\mt{map} \; (\lambda \mt{fields} :: (\{\mt{Type}\} \times \{\mt{Type}\}) \Rightarrow \mt{fields}.1) \; \mt{keep\_drop}) \\
adamc@543 1260 \mt{val} \; \mt{sql\_subset\_all} : \mt{tables} :: \{\{\mt{Type}\}\} \to \mt{sql\_subset} \; \mt{tables} \; \mt{tables}
adamc@543 1261 \end{array}$$
adamc@543 1262
adamc@560 1263 SQL expressions are used in several places, including $\mt{SELECT}$, $\mt{WHERE}$, $\mt{HAVING}$, and $\mt{ORDER} \; \mt{BY}$ clauses. They reify a fragment of the standard SQL expression language, while making it possible to inject ``native'' Ur values in some places. The arguments to the $\mt{sql\_exp}$ type family respectively give the unrestricted-availability table fields, the table fields that may only be used in arguments to aggregate functions, the available selected expressions, and the type of the expression.
adamc@543 1264 $$\begin{array}{l}
adamc@543 1265 \mt{con} \; \mt{sql\_exp} :: \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \to \mt{Type}
adamc@543 1266 \end{array}$$
adamc@543 1267
adamc@543 1268 Any field in scope may be converted to an expression.
adamc@543 1269 $$\begin{array}{l}
adamc@543 1270 \mt{val} \; \mt{sql\_field} : \mt{otherTabs} ::: \{\{\mt{Type}\}\} \to \mt{otherFields} ::: \{\mt{Type}\} \\
adamc@543 1271 \hspace{.1in} \to \mt{fieldType} ::: \mt{Type} \to \mt{agg} ::: \{\{\mt{Type}\}\} \\
adamc@543 1272 \hspace{.1in} \to \mt{exps} ::: \{\mt{Type}\} \\
adamc@543 1273 \hspace{.1in} \to \mt{tab} :: \mt{Name} \to \mt{field} :: \mt{Name} \\
adamc@543 1274 \hspace{.1in} \to \mt{sql\_exp} \; ([\mt{tab} = [\mt{field} = \mt{fieldType}] \rc \mt{otherFields}] \rc \mt{otherTabs}) \; \mt{agg} \; \mt{exps} \; \mt{fieldType}
adamc@543 1275 \end{array}$$
adamc@543 1276
adamc@544 1277 There is an analogous function for referencing named expressions.
adamc@544 1278 $$\begin{array}{l}
adamc@544 1279 \mt{val} \; \mt{sql\_exp} : \mt{tabs} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{t} ::: \mt{Type} \to \mt{rest} ::: \{\mt{Type}\} \to \mt{nm} :: \mt{Name} \\
adamc@544 1280 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tabs} \; \mt{agg} \; ([\mt{nm} = \mt{t}] \rc \mt{rest}) \; \mt{t}
adamc@544 1281 \end{array}$$
adamc@544 1282
adamc@544 1283 Ur values of appropriate types may be injected into SQL expressions.
adamc@544 1284 $$\begin{array}{l}
adamc@544 1285 \mt{class} \; \mt{sql\_injectable} \\
adamc@544 1286 \mt{val} \; \mt{sql\_bool} : \mt{sql\_injectable} \; \mt{bool} \\
adamc@544 1287 \mt{val} \; \mt{sql\_int} : \mt{sql\_injectable} \; \mt{int} \\
adamc@544 1288 \mt{val} \; \mt{sql\_float} : \mt{sql\_injectable} \; \mt{float} \\
adamc@544 1289 \mt{val} \; \mt{sql\_string} : \mt{sql\_injectable} \; \mt{string} \\
adamc@544 1290 \mt{val} \; \mt{sql\_time} : \mt{sql\_injectable} \; \mt{time} \\
adamc@544 1291 \mt{val} \; \mt{sql\_option\_bool} : \mt{sql\_injectable} \; (\mt{option} \; \mt{bool}) \\
adamc@544 1292 \mt{val} \; \mt{sql\_option\_int} : \mt{sql\_injectable} \; (\mt{option} \; \mt{int}) \\
adamc@544 1293 \mt{val} \; \mt{sql\_option\_float} : \mt{sql\_injectable} \; (\mt{option} \; \mt{float}) \\
adamc@544 1294 \mt{val} \; \mt{sql\_option\_string} : \mt{sql\_injectable} \; (\mt{option} \; \mt{string}) \\
adamc@544 1295 \mt{val} \; \mt{sql\_option\_time} : \mt{sql\_injectable} \; (\mt{option} \; \mt{time}) \\
adamc@544 1296 \mt{val} \; \mt{sql\_inject} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \to \mt{sql\_injectable} \; \mt{t} \\
adamc@544 1297 \hspace{.1in} \to \mt{t} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t}
adamc@544 1298 \end{array}$$
adamc@544 1299
adamc@544 1300 We have the SQL nullness test, which is necessary because of the strange SQL semantics of equality in the presence of null values.
adamc@544 1301 $$\begin{array}{l}
adamc@544 1302 \mt{val} \; \mt{sql\_is\_null} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \\
adamc@544 1303 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; (\mt{option} \; \mt{t}) \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{bool}
adamc@544 1304 \end{array}$$
adamc@544 1305
adamc@559 1306 We have generic nullary, unary, and binary operators.
adamc@544 1307 $$\begin{array}{l}
adamc@544 1308 \mt{con} \; \mt{sql\_nfunc} :: \mt{Type} \to \mt{Type} \\
adamc@544 1309 \mt{val} \; \mt{sql\_current\_timestamp} : \mt{sql\_nfunc} \; \mt{time} \\
adamc@544 1310 \mt{val} \; \mt{sql\_nfunc} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \\
adamc@544 1311 \hspace{.1in} \to \mt{sql\_nfunc} \; \mt{t} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t} \\\end{array}$$
adamc@544 1312
adamc@544 1313 $$\begin{array}{l}
adamc@544 1314 \mt{con} \; \mt{sql\_unary} :: \mt{Type} \to \mt{Type} \to \mt{Type} \\
adamc@544 1315 \mt{val} \; \mt{sql\_not} : \mt{sql\_unary} \; \mt{bool} \; \mt{bool} \\
adamc@544 1316 \mt{val} \; \mt{sql\_unary} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{arg} ::: \mt{Type} \to \mt{res} ::: \mt{Type} \\
adamc@544 1317 \hspace{.1in} \to \mt{sql\_unary} \; \mt{arg} \; \mt{res} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{arg} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{res} \\
adamc@544 1318 \end{array}$$
adamc@544 1319
adamc@544 1320 $$\begin{array}{l}
adamc@544 1321 \mt{con} \; \mt{sql\_binary} :: \mt{Type} \to \mt{Type} \to \mt{Type} \to \mt{Type} \\
adamc@544 1322 \mt{val} \; \mt{sql\_and} : \mt{sql\_binary} \; \mt{bool} \; \mt{bool} \; \mt{bool} \\
adamc@544 1323 \mt{val} \; \mt{sql\_or} : \mt{sql\_binary} \; \mt{bool} \; \mt{bool} \; \mt{bool} \\
adamc@544 1324 \mt{val} \; \mt{sql\_binary} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{arg_1} ::: \mt{Type} \to \mt{arg_2} ::: \mt{Type} \to \mt{res} ::: \mt{Type} \\
adamc@544 1325 \hspace{.1in} \to \mt{sql\_binary} \; \mt{arg_1} \; \mt{arg_2} \; \mt{res} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{arg_1} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{arg_2} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{res}
adamc@544 1326 \end{array}$$
adamc@544 1327
adamc@544 1328 $$\begin{array}{l}
adamc@559 1329 \mt{class} \; \mt{sql\_arith} \\
adamc@559 1330 \mt{val} \; \mt{sql\_int\_arith} : \mt{sql\_arith} \; \mt{int} \\
adamc@559 1331 \mt{val} \; \mt{sql\_float\_arith} : \mt{sql\_arith} \; \mt{float} \\
adamc@559 1332 \mt{val} \; \mt{sql\_neg} : \mt{t} ::: \mt{Type} \to \mt{sql\_arith} \; \mt{t} \to \mt{sql\_unary} \; \mt{t} \; \mt{t} \\
adamc@559 1333 \mt{val} \; \mt{sql\_plus} : \mt{t} ::: \mt{Type} \to \mt{sql\_arith} \; \mt{t} \to \mt{sql\_binary} \; \mt{t} \; \mt{t} \; \mt{t} \\
adamc@559 1334 \mt{val} \; \mt{sql\_minus} : \mt{t} ::: \mt{Type} \to \mt{sql\_arith} \; \mt{t} \to \mt{sql\_binary} \; \mt{t} \; \mt{t} \; \mt{t} \\
adamc@559 1335 \mt{val} \; \mt{sql\_times} : \mt{t} ::: \mt{Type} \to \mt{sql\_arith} \; \mt{t} \to \mt{sql\_binary} \; \mt{t} \; \mt{t} \; \mt{t} \\
adamc@559 1336 \mt{val} \; \mt{sql\_div} : \mt{t} ::: \mt{Type} \to \mt{sql\_arith} \; \mt{t} \to \mt{sql\_binary} \; \mt{t} \; \mt{t} \; \mt{t} \\
adamc@559 1337 \mt{val} \; \mt{sql\_mod} : \mt{sql\_binary} \; \mt{int} \; \mt{int} \; \mt{int}
adamc@559 1338 \end{array}$$
adamc@544 1339
adamc@656 1340 Finally, we have aggregate functions. The $\mt{COUNT(\ast)}$ syntax is handled specially, since it takes no real argument. The other aggregate functions are placed into a general type family, using constructor classes to restrict usage to properly-typed arguments. The key aspect of the $\mt{sql\_aggregate}$ function's type is the shift of aggregate-function-only fields into unrestricted fields.
adamc@544 1341
adamc@544 1342 $$\begin{array}{l}
adamc@544 1343 \mt{val} \; \mt{sql\_count} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{int}
adamc@544 1344 \end{array}$$
adamc@544 1345
adamc@544 1346 $$\begin{array}{l}
adamc@544 1347 \mt{con} \; \mt{sql\_aggregate} :: \mt{Type} \to \mt{Type} \\
adamc@544 1348 \mt{val} \; \mt{sql\_aggregate} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \\
adamc@544 1349 \hspace{.1in} \to \mt{sql\_aggregate} \; \mt{t} \to \mt{sql\_exp} \; \mt{agg} \; \mt{agg} \; \mt{exps} \; \mt{t} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t}
adamc@544 1350 \end{array}$$
adamc@544 1351
adamc@544 1352 $$\begin{array}{l}
adamc@544 1353 \mt{class} \; \mt{sql\_summable} \\
adamc@544 1354 \mt{val} \; \mt{sql\_summable\_int} : \mt{sql\_summable} \; \mt{int} \\
adamc@544 1355 \mt{val} \; \mt{sql\_summable\_float} : \mt{sql\_summable} \; \mt{float} \\
adamc@544 1356 \mt{val} \; \mt{sql\_avg} : \mt{t} ::: \mt{Type} \to \mt{sql\_summable} \; \mt{t} \to \mt{sql\_aggregate} \; \mt{t} \\
adamc@544 1357 \mt{val} \; \mt{sql\_sum} : \mt{t} ::: \mt{Type} \to \mt{sql\_summable} \mt{t} \to \mt{sql\_aggregate} \; \mt{t}
adamc@544 1358 \end{array}$$
adamc@544 1359
adamc@544 1360 $$\begin{array}{l}
adamc@544 1361 \mt{class} \; \mt{sql\_maxable} \\
adamc@544 1362 \mt{val} \; \mt{sql\_maxable\_int} : \mt{sql\_maxable} \; \mt{int} \\
adamc@544 1363 \mt{val} \; \mt{sql\_maxable\_float} : \mt{sql\_maxable} \; \mt{float} \\
adamc@544 1364 \mt{val} \; \mt{sql\_maxable\_string} : \mt{sql\_maxable} \; \mt{string} \\
adamc@544 1365 \mt{val} \; \mt{sql\_maxable\_time} : \mt{sql\_maxable} \; \mt{time} \\
adamc@544 1366 \mt{val} \; \mt{sql\_max} : \mt{t} ::: \mt{Type} \to \mt{sql\_maxable} \; \mt{t} \to \mt{sql\_aggregate} \; \mt{t} \\
adamc@544 1367 \mt{val} \; \mt{sql\_min} : \mt{t} ::: \mt{Type} \to \mt{sql\_maxable} \; \mt{t} \to \mt{sql\_aggregate} \; \mt{t}
adamc@544 1368 \end{array}$$
adamc@544 1369
adamc@544 1370 We wrap up the definition of query syntax with the types used in representing $\mt{ORDER} \; \mt{BY}$, $\mt{LIMIT}$, and $\mt{OFFSET}$ clauses.
adamc@544 1371 $$\begin{array}{l}
adamc@544 1372 \mt{type} \; \mt{sql\_direction} \\
adamc@544 1373 \mt{val} \; \mt{sql\_asc} : \mt{sql\_direction} \\
adamc@544 1374 \mt{val} \; \mt{sql\_desc} : \mt{sql\_direction} \\
adamc@544 1375 \\
adamc@544 1376 \mt{con} \; \mt{sql\_order\_by} :: \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \\
adamc@544 1377 \mt{val} \; \mt{sql\_order\_by\_Nil} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{exps} :: \{\mt{Type}\} \to \mt{sql\_order\_by} \; \mt{tables} \; \mt{exps} \\
adamc@544 1378 \mt{val} \; \mt{sql\_order\_by\_Cons} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \\
adamc@544 1379 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tables} \; [] \; \mt{exps} \; \mt{t} \to \mt{sql\_direction} \to \mt{sql\_order\_by} \; \mt{tables} \; \mt{exps} \to \mt{sql\_order\_by} \; \mt{tables} \; \mt{exps} \\
adamc@544 1380 \\
adamc@544 1381 \mt{type} \; \mt{sql\_limit} \\
adamc@544 1382 \mt{val} \; \mt{sql\_no\_limit} : \mt{sql\_limit} \\
adamc@544 1383 \mt{val} \; \mt{sql\_limit} : \mt{int} \to \mt{sql\_limit} \\
adamc@544 1384 \\
adamc@544 1385 \mt{type} \; \mt{sql\_offset} \\
adamc@544 1386 \mt{val} \; \mt{sql\_no\_offset} : \mt{sql\_offset} \\
adamc@544 1387 \mt{val} \; \mt{sql\_offset} : \mt{int} \to \mt{sql\_offset}
adamc@544 1388 \end{array}$$
adamc@544 1389
adamc@545 1390
adamc@545 1391 \subsubsection{DML}
adamc@545 1392
adamc@545 1393 The Ur/Web library also includes an embedding of a fragment of SQL's DML, the Data Manipulation Language, for modifying database tables. Any piece of DML may be executed in a transaction.
adamc@545 1394
adamc@545 1395 $$\begin{array}{l}
adamc@545 1396 \mt{type} \; \mt{dml} \\
adamc@545 1397 \mt{val} \; \mt{dml} : \mt{dml} \to \mt{transaction} \; \mt{unit}
adamc@545 1398 \end{array}$$
adamc@545 1399
adamc@545 1400 Properly-typed records may be used to form $\mt{INSERT}$ commands.
adamc@545 1401 $$\begin{array}{l}
adamc@545 1402 \mt{val} \; \mt{insert} : \mt{fields} ::: \{\mt{Type}\} \to \mt{sql\_table} \; \mt{fields} \\
adamc@658 1403 \hspace{.1in} \to \$(\mt{map} \; (\mt{sql\_exp} \; [] \; [] \; []) \; \mt{fields}) \to \mt{dml}
adamc@545 1404 \end{array}$$
adamc@545 1405
adamc@545 1406 An $\mt{UPDATE}$ command is formed from a choice of which table fields to leave alone and which to change, along with an expression to use to compute the new value of each changed field and a $\mt{WHERE}$ clause.
adamc@545 1407 $$\begin{array}{l}
adamc@545 1408 \mt{val} \; \mt{update} : \mt{unchanged} ::: \{\mt{Type}\} \to \mt{changed} :: \{\mt{Type}\} \to \lambda [\mt{changed} \sim \mt{unchanged}] \\
adamc@658 1409 \hspace{.1in} \Rightarrow \$(\mt{map} \; (\mt{sql\_exp} \; [\mt{T} = \mt{changed} \rc \mt{unchanged}] \; [] \; []) \; \mt{changed}) \\
adamc@545 1410 \hspace{.1in} \to \mt{sql\_table} \; (\mt{changed} \rc \mt{unchanged}) \to \mt{sql\_exp} \; [\mt{T} = \mt{changed} \rc \mt{unchanged}] \; [] \; [] \; \mt{bool} \to \mt{dml}
adamc@545 1411 \end{array}$$
adamc@545 1412
adamc@545 1413 A $\mt{DELETE}$ command is formed from a table and a $\mt{WHERE}$ clause.
adamc@545 1414 $$\begin{array}{l}
adamc@545 1415 \mt{val} \; \mt{delete} : \mt{fields} ::: \{\mt{Type}\} \to \mt{sql\_table} \; \mt{fields} \to \mt{sql\_exp} \; [\mt{T} = \mt{fields}] \; [] \; [] \; \mt{bool} \to \mt{dml}
adamc@545 1416 \end{array}$$
adamc@545 1417
adamc@546 1418 \subsubsection{Sequences}
adamc@546 1419
adamc@546 1420 SQL sequences are counters with concurrency control, often used to assign unique IDs. Ur/Web supports them via a simple interface. The only way to create a sequence is with the $\mt{sequence}$ declaration form.
adamc@546 1421
adamc@546 1422 $$\begin{array}{l}
adamc@546 1423 \mt{type} \; \mt{sql\_sequence} \\
adamc@546 1424 \mt{val} \; \mt{nextval} : \mt{sql\_sequence} \to \mt{transaction} \; \mt{int}
adamc@546 1425 \end{array}$$
adamc@546 1426
adamc@546 1427
adamc@547 1428 \subsection{XML}
adamc@547 1429
adamc@547 1430 Ur/Web's library contains an encoding of XML syntax and semantic constraints. We make no effort to follow the standards governing XML schemas. Rather, XML fragments are viewed more as values of ML datatypes, and we only track which tags are allowed inside which other tags.
adamc@547 1431
adamc@547 1432 The basic XML type family has arguments respectively indicating the \emph{context} of a fragment, the fields that the fragment expects to be bound on entry (and their types), and the fields that the fragment will bind (and their types). Contexts are a record-based ``poor man's subtyping'' encoding, with each possible set of valid tags corresponding to a different context record. The arguments dealing with field binding are only relevant to HTML forms.
adamc@547 1433 $$\begin{array}{l}
adamc@547 1434 \mt{con} \; \mt{xml} :: \{\mt{Unit}\} \to \{\mt{Type}\} \to \{\mt{Type}\} \to \mt{Type}
adamc@547 1435 \end{array}$$
adamc@547 1436
adamc@547 1437 We also have a type family of XML tags, indexed respectively by the record of optional attributes accepted by the tag, the context in which the tag may be placed, the context required of children of the tag, which form fields the tag uses, and which fields the tag defines.
adamc@547 1438 $$\begin{array}{l}
adamc@547 1439 \mt{con} \; \mt{tag} :: \{\mt{Type}\} \to \{\mt{Unit}\} \to \{\mt{Unit}\} \to \{\mt{Type}\} \to \{\mt{Type}\} \to \mt{Type}
adamc@547 1440 \end{array}$$
adamc@547 1441
adamc@547 1442 Literal text may be injected into XML as ``CDATA.''
adamc@547 1443 $$\begin{array}{l}
adamc@547 1444 \mt{val} \; \mt{cdata} : \mt{ctx} ::: \{\mt{Unit}\} \to \mt{use} ::: \{\mt{Type}\} \to \mt{string} \to \mt{xml} \; \mt{ctx} \; \mt{use} \; []
adamc@547 1445 \end{array}$$
adamc@547 1446
adamc@547 1447 There is a function for producing an XML tree with a particular tag at its root.
adamc@547 1448 $$\begin{array}{l}
adamc@547 1449 \mt{val} \; \mt{tag} : \mt{attrsGiven} ::: \{\mt{Type}\} \to \mt{attrsAbsent} ::: \{\mt{Type}\} \to \mt{ctxOuter} ::: \{\mt{Unit}\} \to \mt{ctxInner} ::: \{\mt{Unit}\} \\
adamc@547 1450 \hspace{.1in} \to \mt{useOuter} ::: \{\mt{Type}\} \to \mt{useInner} ::: \{\mt{Type}\} \to \mt{bindOuter} ::: \{\mt{Type}\} \to \mt{bindInner} ::: \{\mt{Type}\} \\
adamc@547 1451 \hspace{.1in} \to \lambda [\mt{attrsGiven} \sim \mt{attrsAbsent}] \; [\mt{useOuter} \sim \mt{useInner}] \; [\mt{bindOuter} \sim \mt{bindInner}] \Rightarrow \$\mt{attrsGiven} \\
adamc@547 1452 \hspace{.1in} \to \mt{tag} \; (\mt{attrsGiven} \rc \mt{attrsAbsent}) \; \mt{ctxOuter} \; \mt{ctxInner} \; \mt{useOuter} \; \mt{bindOuter} \\
adamc@547 1453 \hspace{.1in} \to \mt{xml} \; \mt{ctxInner} \; \mt{useInner} \; \mt{bindInner} \to \mt{xml} \; \mt{ctxOuter} \; (\mt{useOuter} \rc \mt{useInner}) \; (\mt{bindOuter} \rc \mt{bindInner})
adamc@547 1454 \end{array}$$
adamc@547 1455
adamc@547 1456 Two XML fragments may be concatenated.
adamc@547 1457 $$\begin{array}{l}
adamc@547 1458 \mt{val} \; \mt{join} : \mt{ctx} ::: \{\mt{Unit}\} \to \mt{use_1} ::: \{\mt{Type}\} \to \mt{bind_1} ::: \{\mt{Type}\} \to \mt{bind_2} ::: \{\mt{Type}\} \\
adamc@547 1459 \hspace{.1in} \to \lambda [\mt{use_1} \sim \mt{bind_1}] \; [\mt{bind_1} \sim \mt{bind_2}] \\
adamc@547 1460 \hspace{.1in} \Rightarrow \mt{xml} \; \mt{ctx} \; \mt{use_1} \; \mt{bind_1} \to \mt{xml} \; \mt{ctx} \; (\mt{use_1} \rc \mt{bind_1}) \; \mt{bind_2} \to \mt{xml} \; \mt{ctx} \; \mt{use_1} \; (\mt{bind_1} \rc \mt{bind_2})
adamc@547 1461 \end{array}$$
adamc@547 1462
adamc@547 1463 Finally, any XML fragment may be updated to ``claim'' to use more form fields than it does.
adamc@547 1464 $$\begin{array}{l}
adamc@547 1465 \mt{val} \; \mt{useMore} : \mt{ctx} ::: \{\mt{Unit}\} \to \mt{use_1} ::: \{\mt{Type}\} \to \mt{use_2} ::: \{\mt{Type}\} \to \mt{bind} ::: \{\mt{Type}\} \to \lambda [\mt{use_1} \sim \mt{use_2}] \\
adamc@547 1466 \hspace{.1in} \Rightarrow \mt{xml} \; \mt{ctx} \; \mt{use_1} \; \mt{bind} \to \mt{xml} \; \mt{ctx} \; (\mt{use_1} \rc \mt{use_2}) \; \mt{bind}
adamc@547 1467 \end{array}$$
adamc@547 1468
adamc@547 1469 We will not list here the different HTML tags and related functions from the standard library. They should be easy enough to understand from the code in \texttt{basis.urs}. The set of tags in the library is not yet claimed to be complete for HTML standards.
adamc@547 1470
adamc@547 1471 One last useful function is for aborting any page generation, returning some XML as an error message. This function takes the place of some uses of a general exception mechanism.
adamc@547 1472 $$\begin{array}{l}
adamc@547 1473 \mt{val} \; \mt{error} : \mt{t} ::: \mt{Type} \to \mt{xml} \; [\mt{Body}] \; [] \; [] \to \mt{t}
adamc@547 1474 \end{array}$$
adamc@547 1475
adamc@549 1476
adamc@701 1477 \subsection{Client-Side Programming}
adamc@659 1478
adamc@701 1479 Ur/Web supports running code on web browsers, via automatic compilation to JavaScript.
adamc@701 1480
adamc@701 1481 \subsubsection{The Basics}
adamc@701 1482
adamc@701 1483 Clients can open alert dialog boxes, in the usual annoying JavaScript way.
adamc@701 1484 $$\begin{array}{l}
adamc@701 1485 \mt{val} \; \mt{alert} : \mt{string} \to \mt{transaction} \; \mt{unit}
adamc@701 1486 \end{array}$$
adamc@701 1487
adamc@701 1488 Any transaction may be run in a new thread with the $\mt{spawn}$ function.
adamc@701 1489 $$\begin{array}{l}
adamc@701 1490 \mt{val} \; \mt{spawn} : \mt{transaction} \; \mt{unit} \to \mt{transaction} \; \mt{unit}
adamc@701 1491 \end{array}$$
adamc@701 1492
adamc@701 1493 The current thread can be paused for at least a specified number of milliseconds.
adamc@701 1494 $$\begin{array}{l}
adamc@701 1495 \mt{val} \; \mt{sleep} : \mt{int} \to \mt{transaction} \; \mt{unit}
adamc@701 1496 \end{array}$$
adamc@701 1497
adamc@701 1498 \subsubsection{Functional-Reactive Page Generation}
adamc@701 1499
adamc@701 1500 Most approaches to ``AJAX''-style coding involve imperative manipulation of the DOM tree representing an HTML document's structure. Ur/Web follows the \emph{functional-reactive} approach instead. Programs may allocate mutable \emph{sources} of arbitrary types, and an HTML page is effectively a pure function over the latest values of the sources. The page is not mutated directly, but rather it changes automatically as the sources are mutated.
adamc@659 1501
adamc@659 1502 $$\begin{array}{l}
adamc@659 1503 \mt{con} \; \mt{source} :: \mt{Type} \to \mt{Type} \\
adamc@659 1504 \mt{val} \; \mt{source} : \mt{t} ::: \mt{Type} \to \mt{t} \to \mt{transaction} \; (\mt{source} \; \mt{t}) \\
adamc@659 1505 \mt{val} \; \mt{set} : \mt{t} ::: \mt{Type} \to \mt{source} \; \mt{t} \to \mt{t} \to \mt{transaction} \; \mt{unit} \\
adamc@659 1506 \mt{val} \; \mt{get} : \mt{t} ::: \mt{Type} \to \mt{source} \; \mt{t} \to \mt{transaction} \; \mt{t}
adamc@659 1507 \end{array}$$
adamc@659 1508
adamc@659 1509 Pure functions over sources are represented in a monad of \emph{signals}.
adamc@659 1510
adamc@659 1511 $$\begin{array}{l}
adamc@659 1512 \mt{con} \; \mt{signal} :: \mt{Type} \to \mt{Type} \\
adamc@659 1513 \mt{val} \; \mt{signal\_monad} : \mt{monad} \; \mt{signal} \\
adamc@659 1514 \mt{val} \; \mt{signal} : \mt{t} ::: \mt{Type} \to \mt{source} \; \mt{t} \to \mt{signal} \; \mt{t}
adamc@659 1515 \end{array}$$
adamc@659 1516
adamc@659 1517 A reactive portion of an HTML page is injected with a $\mt{dyn}$ tag, which has a signal-valued attribute $\mt{Signal}$.
adamc@659 1518
adamc@659 1519 $$\begin{array}{l}
adamc@701 1520 \mt{val} \; \mt{dyn} : \mt{use} ::: \{\mt{Type}\} \to \mt{bind} ::: \{\mt{Type}\} \to \mt{unit} \\
adamc@701 1521 \hspace{.1in} \to \mt{tag} \; [\mt{Signal} = \mt{signal} \; (\mt{xml} \; \mt{body} \; \mt{use} \; \mt{bind})] \; \mt{body} \; [] \; \mt{use} \; \mt{bind}
adamc@659 1522 \end{array}$$
adamc@659 1523
adamc@701 1524 Transactions can be run on the client by including them in attributes like the $\mt{Onclick}$ attribute of $\mt{button}$, and GUI widgets like $\mt{ctextbox}$ have $\mt{Source}$ attributes that can be used to connect them to sources, so that their values can be read by code running because of, e.g., an $\mt{Onclick}$ event.
adamc@701 1525
adamc@701 1526 \subsubsection{Asynchronous Message-Passing}
adamc@701 1527
adamc@701 1528 To support asynchronous, ``server push'' delivery of messages to clients, any client that might need to receive an asynchronous message is assigned a unique ID. These IDs may be retrieved both on the client and on the server, during execution of code related to a client.
adamc@701 1529
adamc@701 1530 $$\begin{array}{l}
adamc@701 1531 \mt{type} \; \mt{client} \\
adamc@701 1532 \mt{val} \; \mt{self} : \mt{transaction} \; \mt{client}
adamc@701 1533 \end{array}$$
adamc@701 1534
adamc@701 1535 \emph{Channels} are the means of message-passing. Each channel is created in the context of a client and belongs to that client; no other client may receive the channel's messages. Each channel type includes the type of values that may be sent over the channel. Sending and receiving are asynchronous, in the sense that a client need not be ready to receive a message right away. Rather, sent messages may queue up, waiting to be processed.
adamc@701 1536
adamc@701 1537 $$\begin{array}{l}
adamc@701 1538 \mt{con} \; \mt{channel} :: \mt{Type} \to \mt{Type} \\
adamc@701 1539 \mt{val} \; \mt{channel} : \mt{t} ::: \mt{Type} \to \mt{transaction} \; (\mt{channel} \; \mt{t}) \\
adamc@701 1540 \mt{val} \; \mt{send} : \mt{t} ::: \mt{Type} \to \mt{channel} \; \mt{t} \to \mt{t} \to \mt{transaction} \; \mt{unit} \\
adamc@701 1541 \mt{val} \; \mt{recv} : \mt{t} ::: \mt{Type} \to \mt{channel} \; \mt{t} \to \mt{transaction} \; \mt{t}
adamc@701 1542 \end{array}$$
adamc@701 1543
adamc@701 1544 The $\mt{channel}$ and $\mt{send}$ operations may only be executed on the server, and $\mt{recv}$ may only be executed on a client. Neither clients nor channels may be passed as arguments from clients to server-side functions, so persistent channels can only be maintained by storing them in the database and looking them up using the current client ID or some application-specific value as a key.
adamc@701 1545
adamc@701 1546 Clients and channels live only as long as the web browser page views that they are associated with. When a user surfs away, his client and its channels will be garbage-collected, after that user is not heard from for the timeout period. Garbage collection deletes any database row that contains a client or channel directly. Any reference to one of these types inside an $\mt{option}$ is set to $\mt{None}$ instead. Both kinds of handling have the flavor of weak pointers, and that is a useful way to think about clients and channels in the database.
adamc@701 1547
adamc@659 1548
adamc@549 1549 \section{Ur/Web Syntax Extensions}
adamc@549 1550
adamc@549 1551 Ur/Web features some syntactic shorthands for building values using the functions from the last section. This section sketches the grammar of those extensions. We write spans of syntax inside brackets to indicate that they are optional.
adamc@549 1552
adamc@549 1553 \subsection{SQL}
adamc@549 1554
adamc@549 1555 \subsubsection{Queries}
adamc@549 1556
adamc@550 1557 Queries $Q$ are added to the rules for expressions $e$.
adamc@550 1558
adamc@549 1559 $$\begin{array}{rrcll}
adamc@550 1560 \textrm{Queries} & Q &::=& (q \; [\mt{ORDER} \; \mt{BY} \; (E \; [o],)^+] \; [\mt{LIMIT} \; N] \; [\mt{OFFSET} \; N]) \\
adamc@549 1561 \textrm{Pre-queries} & q &::=& \mt{SELECT} \; P \; \mt{FROM} \; T,^+ \; [\mt{WHERE} \; E] \; [\mt{GROUP} \; \mt{BY} \; p,^+] \; [\mt{HAVING} \; E] \\
adamc@549 1562 &&& \mid q \; R \; q \\
adamc@549 1563 \textrm{Relational operators} & R &::=& \mt{UNION} \mid \mt{INTERSECT} \mid \mt{EXCEPT}
adamc@549 1564 \end{array}$$
adamc@549 1565
adamc@549 1566 $$\begin{array}{rrcll}
adamc@549 1567 \textrm{Projections} & P &::=& \ast & \textrm{all columns} \\
adamc@549 1568 &&& p,^+ & \textrm{particular columns} \\
adamc@549 1569 \textrm{Pre-projections} & p &::=& t.f & \textrm{one column from a table} \\
adamc@558 1570 &&& t.\{\{c\}\} & \textrm{a record of columns from a table (of kind $\{\mt{Type}\}$)} \\
adamc@549 1571 \textrm{Table names} & t &::=& x & \textrm{constant table name (automatically capitalized)} \\
adamc@549 1572 &&& X & \textrm{constant table name} \\
adamc@549 1573 &&& \{\{c\}\} & \textrm{computed table name (of kind $\mt{Name}$)} \\
adamc@549 1574 \textrm{Column names} & f &::=& X & \textrm{constant column name} \\
adamc@549 1575 &&& \{c\} & \textrm{computed column name (of kind $\mt{Name}$)} \\
adamc@549 1576 \textrm{Tables} & T &::=& x & \textrm{table variable, named locally by its own capitalization} \\
adamc@549 1577 &&& x \; \mt{AS} \; t & \textrm{table variable, with local name} \\
adamc@549 1578 &&& \{\{e\}\} \; \mt{AS} \; t & \textrm{computed table expression, with local name} \\
adamc@549 1579 \textrm{SQL expressions} & E &::=& p & \textrm{column references} \\
adamc@549 1580 &&& X & \textrm{named expression references} \\
adamc@549 1581 &&& \{\{e\}\} & \textrm{injected native Ur expressions} \\
adamc@549 1582 &&& \{e\} & \textrm{computed expressions, probably using $\mt{sql\_exp}$ directly} \\
adamc@549 1583 &&& \mt{TRUE} \mid \mt{FALSE} & \textrm{boolean constants} \\
adamc@549 1584 &&& \ell & \textrm{primitive type literals} \\
adamc@549 1585 &&& \mt{NULL} & \textrm{null value (injection of $\mt{None}$)} \\
adamc@549 1586 &&& E \; \mt{IS} \; \mt{NULL} & \textrm{nullness test} \\
adamc@549 1587 &&& n & \textrm{nullary operators} \\
adamc@549 1588 &&& u \; E & \textrm{unary operators} \\
adamc@549 1589 &&& E \; b \; E & \textrm{binary operators} \\
adamc@549 1590 &&& \mt{COUNT}(\ast) & \textrm{count number of rows} \\
adamc@549 1591 &&& a(E) & \textrm{other aggregate function} \\
adamc@549 1592 &&& (E) & \textrm{explicit precedence} \\
adamc@549 1593 \textrm{Nullary operators} & n &::=& \mt{CURRENT\_TIMESTAMP} \\
adamc@549 1594 \textrm{Unary operators} & u &::=& \mt{NOT} \\
adamc@549 1595 \textrm{Binary operators} & b &::=& \mt{AND} \mid \mt{OR} \mid \neq \mid < \mid \leq \mid > \mid \geq \\
adamc@549 1596 \textrm{Aggregate functions} & a &::=& \mt{AVG} \mid \mt{SUM} \mid \mt{MIN} \mid \mt{MAX} \\
adamc@550 1597 \textrm{Directions} & o &::=& \mt{ASC} \mid \mt{DESC} \\
adamc@549 1598 \textrm{SQL integer} & N &::=& n \mid \{e\} \\
adamc@549 1599 \end{array}$$
adamc@549 1600
adamc@549 1601 Additionally, an SQL expression may be inserted into normal Ur code with the syntax $(\mt{SQL} \; E)$ or $(\mt{WHERE} \; E)$.
adamc@549 1602
adamc@550 1603 \subsubsection{DML}
adamc@550 1604
adamc@550 1605 DML commands $D$ are added to the rules for expressions $e$.
adamc@550 1606
adamc@550 1607 $$\begin{array}{rrcll}
adamc@550 1608 \textrm{Commands} & D &::=& (\mt{INSERT} \; \mt{INTO} \; T^E \; (f,^+) \; \mt{VALUES} \; (E,^+)) \\
adamc@550 1609 &&& (\mt{UPDATE} \; T^E \; \mt{SET} \; (f = E,)^+ \; \mt{WHERE} \; E) \\
adamc@550 1610 &&& (\mt{DELETE} \; \mt{FROM} \; T^E \; \mt{WHERE} \; E) \\
adamc@550 1611 \textrm{Table expressions} & T^E &::=& x \mid \{\{e\}\}
adamc@550 1612 \end{array}$$
adamc@550 1613
adamc@550 1614 Inside $\mt{UPDATE}$ and $\mt{DELETE}$ commands, lone variables $X$ are interpreted as references to columns of the implicit table $\mt{T}$, rather than to named expressions.
adamc@549 1615
adamc@551 1616 \subsection{XML}
adamc@551 1617
adamc@551 1618 XML fragments $L$ are added to the rules for expressions $e$.
adamc@551 1619
adamc@551 1620 $$\begin{array}{rrcll}
adamc@551 1621 \textrm{XML fragments} & L &::=& \texttt{<xml/>} \mid \texttt{<xml>}l^*\texttt{</xml>} \\
adamc@551 1622 \textrm{XML pieces} & l &::=& \textrm{text} & \textrm{cdata} \\
adamc@551 1623 &&& \texttt{<}g\texttt{/>} & \textrm{tag with no children} \\
adamc@551 1624 &&& \texttt{<}g\texttt{>}l^*\texttt{</}x\texttt{>} & \textrm{tag with children} \\
adamc@559 1625 &&& \{e\} & \textrm{computed XML fragment} \\
adamc@559 1626 &&& \{[e]\} & \textrm{injection of an Ur expression, via the $\mt{Top}.\mt{txt}$ function} \\
adamc@551 1627 \textrm{Tag} & g &::=& h \; (x = v)^* \\
adamc@551 1628 \textrm{Tag head} & h &::=& x & \textrm{tag name} \\
adamc@551 1629 &&& h\{c\} & \textrm{constructor parameter} \\
adamc@551 1630 \textrm{Attribute value} & v &::=& \ell & \textrm{literal value} \\
adamc@551 1631 &&& \{e\} & \textrm{computed value} \\
adamc@551 1632 \end{array}$$
adamc@551 1633
adamc@552 1634
adamc@553 1635 \section{The Structure of Web Applications}
adamc@553 1636
adamc@553 1637 A web application is built from a series of modules, with one module, the last one appearing in the \texttt{.urp} file, designated as the main module. The signature of the main module determines the URL entry points to the application. Such an entry point should have type $\mt{unit} \to \mt{transaction} \; \mt{page}$, where $\mt{page}$ is a type synonym for top-level HTML pages, defined in $\mt{Basis}$. If such a function is at the top level of main module $M$, it will be accessible at URI \texttt{/M/f}, and so on for more deeply-nested functions, as described in Section \ref{tag} below.
adamc@553 1638
adamc@553 1639 When the standalone web server receives a request for a known page, it calls the function for that page, ``running'' the resulting transaction to produce the page to return to the client. Pages link to other pages with the \texttt{link} attribute of the \texttt{a} HTML tag. A link has type $\mt{transaction} \; \mt{page}$, and the semantics of a link are that this transaction should be run to compute the result page, when the link is followed. Link targets are assigned URL names in the same way as top-level entry points.
adamc@553 1640
adamc@553 1641 HTML forms are handled in a similar way. The $\mt{action}$ attribute of a $\mt{submit}$ form tag takes a value of type $\$\mt{use} \to \mt{transaction} \; \mt{page}$, where $\mt{use}$ is a kind-$\{\mt{Type}\}$ record of the form fields used by this action handler. Action handlers are assigned URL patterns in the same way as above.
adamc@553 1642
adamc@558 1643 For both links and actions, direct arguments and local variables mentioned implicitly via closures are automatically included in serialized form in URLs, in the order in which they appear in the source code.
adamc@553 1644
adamc@660 1645 Ur/Web programs generally mix server- and client-side code in a fairly transparent way. The one important restriction is that mixed client-server code must encapsulate all server-side pieces within named functions. This is because execution of such pieces will be implemented by explicit calls to the remote web server, and it is useful to get the programmer's help in designing the interface to be used. For example, this makes it easier to allow a client running an old version of an application to continue interacting with a server that has been upgraded to a new version, if the programmer took care to keep the interfaces of all of the old remote calls the same. The functions implementing these services are assigned names in the same way as normal web entry points, by using module structure.
adamc@660 1646
adamc@553 1647
adamc@552 1648 \section{Compiler Phases}
adamc@552 1649
adamc@552 1650 The Ur/Web compiler is unconventional in that it relies on a kind of \emph{heuristic compilation}. Not all valid programs will compile successfully. Informally, programs fail to compile when they are ``too higher order.'' Compiler phases do their best to eliminate different kinds of higher order-ness, but some programs just won't compile. This is a trade-off for producing very efficient executables. Compiled Ur/Web programs use native C representations and require no garbage collection.
adamc@552 1651
adamc@552 1652 In this section, we step through the main phases of compilation, noting what consequences each phase has for effective programming.
adamc@552 1653
adamc@552 1654 \subsection{Parse}
adamc@552 1655
adamc@552 1656 The compiler reads a \texttt{.urp} file, figures out which \texttt{.urs} and \texttt{.ur} files it references, and combines them all into what is conceptually a single sequence of declarations in the core language of Section \ref{core}.
adamc@552 1657
adamc@552 1658 \subsection{Elaborate}
adamc@552 1659
adamc@552 1660 This is where type inference takes place, translating programs into an explicit form with no more wildcards. This phase is the most likely source of compiler error messages.
adamc@552 1661
adamc@552 1662 \subsection{Unnest}
adamc@552 1663
adamc@552 1664 Named local function definitions are moved to the top level, to avoid the need to generate closures.
adamc@552 1665
adamc@552 1666 \subsection{Corify}
adamc@552 1667
adamc@552 1668 Module system features are compiled away, through inlining of functor definitions at application sites. Afterward, most abstraction boundaries are broken, facilitating optimization.
adamc@552 1669
adamc@552 1670 \subsection{Especialize}
adamc@552 1671
adamc@552 1672 Functions are specialized to particular argument patterns. This is an important trick for avoiding the need to maintain any closures at runtime.
adamc@552 1673
adamc@552 1674 \subsection{Untangle}
adamc@552 1675
adamc@552 1676 Remove unnecessary mutual recursion, splitting recursive groups into strongly-connected components.
adamc@552 1677
adamc@552 1678 \subsection{Shake}
adamc@552 1679
adamc@552 1680 Remove all definitions not needed to run the page handlers that are visible in the signature of the last module listed in the \texttt{.urp} file.
adamc@552 1681
adamc@661 1682 \subsection{Rpcify}
adamc@661 1683
adamc@661 1684 Pieces of code are determined to be client-side, server-side, neither, or both, by figuring out which standard library functions might be needed to execute them. Calls to server-side functions (e.g., $\mt{query}$) within mixed client-server code are identified and replaced with explicit remote calls. Some mixed functions may be converted to continuation-passing style to facilitate this transformation.
adamc@661 1685
adamc@661 1686 \subsection{Untangle, Shake}
adamc@661 1687
adamc@661 1688 Repeat these simplifications.
adamc@661 1689
adamc@553 1690 \subsection{\label{tag}Tag}
adamc@552 1691
adamc@552 1692 Assign a URL name to each link and form action. It is important that these links and actions are written as applications of named functions, because such names are used to generate URL patterns. A URL pattern has a name built from the full module path of the named function, followed by the function name, with all pieces separated by slashes. The path of a functor application is based on the name given to the result, rather than the path of the functor itself.
adamc@552 1693
adamc@552 1694 \subsection{Reduce}
adamc@552 1695
adamc@552 1696 Apply definitional equality rules to simplify the program as much as possible. This effectively includes inlining of every non-recursive definition.
adamc@552 1697
adamc@552 1698 \subsection{Unpoly}
adamc@552 1699
adamc@552 1700 This phase specializes polymorphic functions to the specific arguments passed to them in the program. If the program contains real polymorphic recursion, Unpoly will be insufficient to avoid later error messages about too much polymorphism.
adamc@552 1701
adamc@552 1702 \subsection{Specialize}
adamc@552 1703
adamc@558 1704 Replace uses of parameterized datatypes with versions specialized to specific parameters. As for Unpoly, this phase will not be effective enough in the presence of polymorphic recursion or other fancy uses of impredicative polymorphism.
adamc@552 1705
adamc@552 1706 \subsection{Shake}
adamc@552 1707
adamc@558 1708 Here the compiler repeats the earlier Shake phase.
adamc@552 1709
adamc@552 1710 \subsection{Monoize}
adamc@552 1711
adamc@552 1712 Programs are translated to a new intermediate language without polymorphism or non-$\mt{Type}$ constructors. Error messages may pop up here if earlier phases failed to remove such features.
adamc@552 1713
adamc@552 1714 This is the stage at which concrete names are generated for cookies, tables, and sequences. They are named following the same convention as for links and actions, based on module path information saved from earlier stages. Table and sequence names separate path elements with underscores instead of slashes, and they are prefixed by \texttt{uw\_}.
adamc@664 1715
adamc@552 1716 \subsection{MonoOpt}
adamc@552 1717
adamc@552 1718 Simple algebraic laws are applied to simplify the program, focusing especially on efficient imperative generation of HTML pages.
adamc@552 1719
adamc@552 1720 \subsection{MonoUntangle}
adamc@552 1721
adamc@552 1722 Unnecessary mutual recursion is broken up again.
adamc@552 1723
adamc@552 1724 \subsection{MonoReduce}
adamc@552 1725
adamc@552 1726 Equivalents of the definitional equality rules are applied to simplify programs, with inlining again playing a major role.
adamc@552 1727
adamc@552 1728 \subsection{MonoShake, MonoOpt}
adamc@552 1729
adamc@552 1730 Unneeded declarations are removed, and basic optimizations are repeated.
adamc@552 1731
adamc@552 1732 \subsection{Fuse}
adamc@552 1733
adamc@552 1734 The compiler tries to simplify calls to recursive functions whose results are immediately written as page output. The write action is pushed inside the function definitions to avoid allocation of intermediate results.
adamc@552 1735
adamc@552 1736 \subsection{MonoUntangle, MonoShake}
adamc@552 1737
adamc@552 1738 Fuse often creates more opportunities to remove spurious mutual recursion.
adamc@552 1739
adamc@552 1740 \subsection{Pathcheck}
adamc@552 1741
adamc@552 1742 The compiler checks that no link or action name has been used more than once.
adamc@552 1743
adamc@552 1744 \subsection{Cjrize}
adamc@552 1745
adamc@552 1746 The program is translated to what is more or less a subset of C. If any use of functions as data remains at this point, the compiler will complain.
adamc@552 1747
adamc@552 1748 \subsection{C Compilation and Linking}
adamc@552 1749
adamc@552 1750 The output of the last phase is pretty-printed as C source code and passed to GCC.
adamc@552 1751
adamc@552 1752
adamc@524 1753 \end{document}