annotate doc/manual.tex @ 536:e32d0f6a1e15

Signature compatibility
author Adam Chlipala <adamc@hcoop.net>
date Sat, 29 Nov 2008 12:58:58 -0500
parents b742bf4e377b
children a4a7cd341a1b
rev   line source
adamc@524 1 \documentclass{article}
adamc@524 2 \usepackage{fullpage,amsmath,amssymb,proof}
adamc@524 3
adamc@524 4 \newcommand{\cd}[1]{\texttt{#1}}
adamc@524 5 \newcommand{\mt}[1]{\mathsf{#1}}
adamc@524 6
adamc@524 7 \newcommand{\rc}{+ \hspace{-.075in} + \;}
adamc@527 8 \newcommand{\rcut}{\; \texttt{--} \;}
adamc@527 9 \newcommand{\rcutM}{\; \texttt{---} \;}
adamc@524 10
adamc@524 11 \begin{document}
adamc@524 12
adamc@524 13 \title{The Ur/Web Manual}
adamc@524 14 \author{Adam Chlipala}
adamc@524 15
adamc@524 16 \maketitle
adamc@524 17
adamc@529 18 \section{Ur Syntax}
adamc@529 19
adamc@529 20 In this section, we describe the syntax of Ur, deferring to a later section discussion of most of the syntax specific to SQL and XML. The sole exceptions are the declaration forms for tables, sequences, and cookies.
adamc@524 21
adamc@524 22 \subsection{Lexical Conventions}
adamc@524 23
adamc@524 24 We give the Ur language definition in \LaTeX $\;$ math mode, since that is prettier than monospaced ASCII. The corresponding ASCII syntax can be read off directly. Here is the key for mapping math symbols to ASCII character sequences.
adamc@524 25
adamc@524 26 \begin{center}
adamc@524 27 \begin{tabular}{rl}
adamc@524 28 \textbf{\LaTeX} & \textbf{ASCII} \\
adamc@524 29 $\to$ & \cd{->} \\
adamc@524 30 $\times$ & \cd{*} \\
adamc@524 31 $\lambda$ & \cd{fn} \\
adamc@524 32 $\Rightarrow$ & \cd{=>} \\
adamc@529 33 $\neq$ & \cd{<>} \\
adamc@529 34 $\leq$ & \cd{<=} \\
adamc@529 35 $\geq$ & \cd{>=} \\
adamc@524 36 \\
adamc@524 37 $x$ & Normal textual identifier, not beginning with an uppercase letter \\
adamc@525 38 $X$ & Normal textual identifier, beginning with an uppercase letter \\
adamc@524 39 \end{tabular}
adamc@524 40 \end{center}
adamc@524 41
adamc@525 42 We often write syntax like $e^*$ to indicate zero or more copies of $e$, $e^+$ to indicate one or more copies, and $e,^*$ and $e,^+$ to indicate multiple copies separated by commas. Another separator may be used in place of a comma. The $e$ term may be surrounded by parentheses to indicate grouping; those parentheses should not be included in the actual ASCII.
adamc@524 43
adamc@526 44 We write $\ell$ for literals of the primitive types, for the most part following C conventions. There are $\mt{int}$, $\mt{float}$, and $\mt{string}$ literals.
adamc@526 45
adamc@527 46 This version of the manual doesn't include operator precedences; see \texttt{src/urweb.grm} for that.
adamc@527 47
adamc@524 48 \subsection{Core Syntax}
adamc@524 49
adamc@524 50 \emph{Kinds} classify types and other compile-time-only entities. Each kind in the grammar is listed with a description of the sort of data it classifies.
adamc@524 51 $$\begin{array}{rrcll}
adamc@524 52 \textrm{Kinds} & \kappa &::=& \mt{Type} & \textrm{proper types} \\
adamc@525 53 &&& \mt{Unit} & \textrm{the trivial constructor} \\
adamc@525 54 &&& \mt{Name} & \textrm{field names} \\
adamc@525 55 &&& \kappa \to \kappa & \textrm{type-level functions} \\
adamc@525 56 &&& \{\kappa\} & \textrm{type-level records} \\
adamc@525 57 &&& (\kappa\times^+) & \textrm{type-level tuples} \\
adamc@529 58 &&& \_\_ & \textrm{wildcard} \\
adamc@525 59 &&& (\kappa) & \textrm{explicit precedence} \\
adamc@524 60 \end{array}$$
adamc@524 61
adamc@524 62 Ur supports several different notions of functions that take types as arguments. These arguments can be either implicit, causing them to be inferred at use sites; or explicit, forcing them to be specified manually at use sites. There is a common explicitness annotation convention applied at the definitions of and in the types of such functions.
adamc@524 63 $$\begin{array}{rrcll}
adamc@524 64 \textrm{Explicitness} & ? &::=& :: & \textrm{explicit} \\
adamc@525 65 &&& \; ::: & \textrm{implicit}
adamc@524 66 \end{array}$$
adamc@524 67
adamc@524 68 \emph{Constructors} are the main class of compile-time-only data. They include proper types and are classified by kinds.
adamc@524 69 $$\begin{array}{rrcll}
adamc@524 70 \textrm{Constructors} & c, \tau &::=& (c) :: \kappa & \textrm{kind annotation} \\
adamc@530 71 &&& \hat{x} & \textrm{constructor variable} \\
adamc@524 72 \\
adamc@525 73 &&& \tau \to \tau & \textrm{function type} \\
adamc@525 74 &&& x \; ? \; \kappa \to \tau & \textrm{polymorphic function type} \\
adamc@525 75 &&& \$ c & \textrm{record type} \\
adamc@524 76 \\
adamc@525 77 &&& c \; c & \textrm{type-level function application} \\
adamc@530 78 &&& \lambda x \; :: \; \kappa \Rightarrow c & \textrm{type-level function abstraction} \\
adamc@524 79 \\
adamc@525 80 &&& () & \textrm{type-level unit} \\
adamc@525 81 &&& \#X & \textrm{field name} \\
adamc@524 82 \\
adamc@525 83 &&& [(c = c)^*] & \textrm{known-length type-level record} \\
adamc@525 84 &&& c \rc c & \textrm{type-level record concatenation} \\
adamc@525 85 &&& \mt{fold} & \textrm{type-level record fold} \\
adamc@524 86 \\
adamc@525 87 &&& (c^+) & \textrm{type-level tuple} \\
adamc@525 88 &&& c.n & \textrm{type-level tuple projection ($n \in \mathbb N^+$)} \\
adamc@524 89 \\
adamc@525 90 &&& \lambda [c \sim c] \Rightarrow c & \textrm{guarded constructor} \\
adamc@524 91 \\
adamc@529 92 &&& \_ :: \kappa & \textrm{wildcard} \\
adamc@525 93 &&& (c) & \textrm{explicit precedence} \\
adamc@530 94 \\
adamc@530 95 \textrm{Qualified uncapitalized variables} & \hat{x} &::=& x & \textrm{not from a module} \\
adamc@530 96 &&& M.x & \textrm{projection from a module} \\
adamc@525 97 \end{array}$$
adamc@525 98
adamc@525 99 Modules of the module system are described by \emph{signatures}.
adamc@525 100 $$\begin{array}{rrcll}
adamc@525 101 \textrm{Signatures} & S &::=& \mt{sig} \; s^* \; \mt{end} & \textrm{constant} \\
adamc@525 102 &&& X & \textrm{variable} \\
adamc@525 103 &&& \mt{functor}(X : S) : S & \textrm{functor} \\
adamc@529 104 &&& S \; \mt{where} \; \mt{con} \; x = c & \textrm{concretizing an abstract constructor} \\
adamc@525 105 &&& M.X & \textrm{projection from a module} \\
adamc@525 106 \\
adamc@525 107 \textrm{Signature items} & s &::=& \mt{con} \; x :: \kappa & \textrm{abstract constructor} \\
adamc@525 108 &&& \mt{con} \; x :: \kappa = c & \textrm{concrete constructor} \\
adamc@528 109 &&& \mt{datatype} \; x \; x^* = dc\mid^+ & \textrm{algebraic datatype definition} \\
adamc@529 110 &&& \mt{datatype} \; x = \mt{datatype} \; M.x & \textrm{algebraic datatype import} \\
adamc@525 111 &&& \mt{val} \; x : \tau & \textrm{value} \\
adamc@525 112 &&& \mt{structure} \; X : S & \textrm{sub-module} \\
adamc@525 113 &&& \mt{signature} \; X = S & \textrm{sub-signature} \\
adamc@525 114 &&& \mt{include} \; S & \textrm{signature inclusion} \\
adamc@525 115 &&& \mt{constraint} \; c \sim c & \textrm{record disjointness constraint} \\
adamc@525 116 &&& \mt{class} \; x & \textrm{abstract type class} \\
adamc@525 117 &&& \mt{class} \; x = c & \textrm{concrete type class} \\
adamc@525 118 \\
adamc@525 119 \textrm{Datatype constructors} & dc &::=& X & \textrm{nullary constructor} \\
adamc@525 120 &&& X \; \mt{of} \; \tau & \textrm{unary constructor} \\
adamc@524 121 \end{array}$$
adamc@524 122
adamc@526 123 \emph{Patterns} are used to describe structural conditions on expressions, such that expressions may be tested against patterns, generating assignments to pattern variables if successful.
adamc@526 124 $$\begin{array}{rrcll}
adamc@526 125 \textrm{Patterns} & p &::=& \_ & \textrm{wildcard} \\
adamc@526 126 &&& x & \textrm{variable} \\
adamc@526 127 &&& \ell & \textrm{constant} \\
adamc@526 128 &&& \hat{X} & \textrm{nullary constructor} \\
adamc@526 129 &&& \hat{X} \; p & \textrm{unary constructor} \\
adamc@526 130 &&& \{(x = p,)^*\} & \textrm{rigid record pattern} \\
adamc@526 131 &&& \{(x = p,)^+, \ldots\} & \textrm{flexible record pattern} \\
adamc@527 132 &&& (p) & \textrm{explicit precedence} \\
adamc@526 133 \\
adamc@529 134 \textrm{Qualified capitalized variables} & \hat{X} &::=& X & \textrm{not from a module} \\
adamc@526 135 &&& M.X & \textrm{projection from a module} \\
adamc@526 136 \end{array}$$
adamc@526 137
adamc@527 138 \emph{Expressions} are the main run-time entities, corresponding to both ``expressions'' and ``statements'' in mainstream imperative languages.
adamc@527 139 $$\begin{array}{rrcll}
adamc@527 140 \textrm{Expressions} & e &::=& e : \tau & \textrm{type annotation} \\
adamc@529 141 &&& \hat{x} & \textrm{variable} \\
adamc@529 142 &&& \hat{X} & \textrm{datatype constructor} \\
adamc@527 143 &&& \ell & \textrm{constant} \\
adamc@527 144 \\
adamc@527 145 &&& e \; e & \textrm{function application} \\
adamc@527 146 &&& \lambda x : \tau \Rightarrow e & \textrm{function abstraction} \\
adamc@527 147 &&& e [c] & \textrm{polymorphic function application} \\
adamc@527 148 &&& \lambda x \; ? \; \kappa \Rightarrow e & \textrm{polymorphic function abstraction} \\
adamc@527 149 \\
adamc@527 150 &&& \{(c = e,)^*\} & \textrm{known-length record} \\
adamc@527 151 &&& e.c & \textrm{record field projection} \\
adamc@527 152 &&& e \rc e & \textrm{record concatenation} \\
adamc@527 153 &&& e \rcut c & \textrm{removal of a single record field} \\
adamc@527 154 &&& e \rcutM c & \textrm{removal of multiple record fields} \\
adamc@527 155 &&& \mt{fold} & \textrm{fold over fields of a type-level record} \\
adamc@527 156 \\
adamc@527 157 &&& \mt{let} \; ed^* \; \mt{in} \; e \; \mt{end} & \textrm{local definitions} \\
adamc@527 158 \\
adamc@527 159 &&& \mt{case} \; e \; \mt{of} \; (p \Rightarrow e|)^+ & \textrm{pattern matching} \\
adamc@527 160 \\
adamc@527 161 &&& \lambda [c \sim c] \Rightarrow e & \textrm{guarded expression} \\
adamc@527 162 \\
adamc@527 163 &&& \_ & \textrm{wildcard} \\
adamc@527 164 &&& (e) & \textrm{explicit precedence} \\
adamc@527 165 \\
adamc@527 166 \textrm{Local declarations} & ed &::=& \cd{val} \; x : \tau = e & \textrm{non-recursive value} \\
adamc@527 167 &&& \cd{val} \; \cd{rec} \; (x : \tau = e \; \cd{and})^+ & \textrm{mutually-recursive values} \\
adamc@527 168 \end{array}$$
adamc@527 169
adamc@528 170 \emph{Declarations} primarily bring new symbols into context.
adamc@528 171 $$\begin{array}{rrcll}
adamc@528 172 \textrm{Declarations} & d &::=& \mt{con} \; x :: \kappa = c & \textrm{constructor synonym} \\
adamc@528 173 &&& \mt{datatype} \; x \; x^* = dc\mid^+ & \textrm{algebraic datatype definition} \\
adamc@529 174 &&& \mt{datatype} \; x = \mt{datatype} \; M.x & \textrm{algebraic datatype import} \\
adamc@528 175 &&& \mt{val} \; x : \tau = e & \textrm{value} \\
adamc@528 176 &&& \mt{val} \; \cd{rec} \; (x : \tau = e \; \mt{and})^+ & \textrm{mutually-recursive values} \\
adamc@528 177 &&& \mt{structure} \; X : S = M & \textrm{module definition} \\
adamc@528 178 &&& \mt{signature} \; X = S & \textrm{signature definition} \\
adamc@528 179 &&& \mt{open} \; M & \textrm{module inclusion} \\
adamc@528 180 &&& \mt{constraint} \; c \sim c & \textrm{record disjointness constraint} \\
adamc@528 181 &&& \mt{open} \; \mt{constraints} \; M & \textrm{inclusion of just the constraints from a module} \\
adamc@528 182 &&& \mt{table} \; x : c & \textrm{SQL table} \\
adamc@528 183 &&& \mt{sequence} \; x & \textrm{SQL sequence} \\
adamc@535 184 &&& \mt{cookie} \; x : \tau & \textrm{HTTP cookie} \\
adamc@528 185 &&& \mt{class} \; x = c & \textrm{concrete type class} \\
adamc@528 186 \\
adamc@529 187 \textrm{Modules} & M &::=& \mt{struct} \; d^* \; \mt{end} & \textrm{constant} \\
adamc@529 188 &&& X & \textrm{variable} \\
adamc@529 189 &&& M.X & \textrm{projection} \\
adamc@529 190 &&& M(M) & \textrm{functor application} \\
adamc@529 191 &&& \mt{functor}(X : S) : S = M & \textrm{functor abstraction} \\
adamc@528 192 \end{array}$$
adamc@528 193
adamc@528 194 There are two kinds of Ur files. A file named $M\texttt{.ur}$ is an \emph{implementation file}, and it should contain a sequence of declarations $d^*$. A file named $M\texttt{.urs}$ is an \emph{interface file}; it must always have a matching $M\texttt{.ur}$ and should contain a sequence of signature items $s^*$. When both files are present, the overall effect is the same as a monolithic declaration $\mt{structure} \; M : \mt{sig} \; s^* \; \mt{end} = \mt{struct} \; d^* \; \mt{end}$. When no interface file is included, the overall effect is similar, with a signature for module $M$ being inferred rather than just checked against an interface.
adamc@527 195
adamc@529 196 \subsection{Shorthands}
adamc@529 197
adamc@529 198 There are a variety of derived syntactic forms that elaborate into the core syntax from the last subsection. We will present the additional forms roughly following the order in which we presented the constructs that they elaborate into.
adamc@529 199
adamc@529 200 In many contexts where record fields are expected, like in a projection $e.c$, a constant field may be written as simply $X$, rather than $\#X$.
adamc@529 201
adamc@529 202 A record type may be written $\{(c = c,)^*\}$, which elaborates to $\$[(c = c,)^*]$.
adamc@529 203
adamc@533 204 The notation $[c_1, \ldots, c_n]$ is shorthand for $[c_1 = (), \ldots, c_n = ()]$.
adamc@533 205
adamc@529 206 A tuple type $(\tau_1, \ldots, \tau_n)$ expands to a record type $\{1 = \tau_1, \ldots, n = \tau_n\}$, with natural numbers as field names. A tuple pattern $(p_1, \ldots, p_n)$ expands to a rigid record pattern $\{1 = p_1, \ldots, n = p_n\}$. Positive natural numbers may be used in most places where field names would be allowed.
adamc@529 207
adamc@529 208 In general, several adjacent $\lambda$ forms may be combined into one, and kind and type annotations may be omitted, in which case they are implicitly included as wildcards. More formally, for constructor-level abstractions, we can define a new non-terminal $b ::= x \mid (x :: \kappa) \mid [c \sim c]$ and allow composite abstractions of the form $\lambda b^+ \Rightarrow c$, elaborating into the obvious sequence of one core $\lambda$ per element of $b^+$.
adamc@529 209
adamc@529 210 For any signature item or declaration that defines some entity to be equal to $A$ with classification annotation $B$ (e.g., $\mt{val} \; x : B = A$), $B$ and the preceding colon (or similar punctuation) may be omitted, in which case it is filled in as a wildcard.
adamc@529 211
adamc@529 212 A signature item or declaration $\mt{type} \; x$ or $\mt{type} \; x = \tau$ is elaborated into $\mt{con} \; x :: \mt{Type}$ or $\mt{con} \; x :: \mt{Type} = \tau$, respectively.
adamc@529 213
adamc@529 214 A signature item or declaration $\mt{class} \; x = \lambda y :: \mt{Type} \Rightarrow c$ may be abbreviated $\mt{class} \; x \; y = c$.
adamc@529 215
adamc@529 216 Handling of implicit and explicit constructor arguments may be tweaked with some prefixes to variable references. An expression $@x$ is a version of $x$ where all implicit constructor arguments have been made explicit. An expression $@@x$ achieves the same effect, additionally halting automatic resolution of type class instances. The same syntax works for variables projected out of modules and for capitalized variables (datatype constructors).
adamc@529 217
adamc@529 218 At the expression level, an analogue is available of the composite $\lambda$ form for constructors. We define the language of binders as $b ::= x \mid (x : \tau) \mid (x \; ? \; \kappa) \mid [c \sim c]$. A lone variable $x$ as a binder stands for an expression variable of unspecified type.
adamc@529 219
adamc@529 220 A $\mt{val}$ or $\mt{val} \; \mt{rec}$ declaration may include expression binders before the equal sign, following the binder grammar from the last paragraph. Such declarations are elaborated into versions that add additional $\lambda$s to the fronts of the righthand sides, as appropriate. The keyword $\mt{fun}$ is a synonym for $\mt{val} \; \mt{rec}$.
adamc@529 221
adamc@529 222 A signature item $\mt{functor} \; X_1 \; (X_2 : S_1) : S_2$ is elaborated into $\mt{structure} \; X_1 : \mt{functor}(X_2 : S_1) : S_2$. A declaration $\mt{functor} \; X_1 \; (X_2 : S_1) : S_2 = M$ is elaborated into $\mt{structure} \; X_1 : \mt{functor}(X_2 : S_1) : S_2 = \mt{functor}(X_2 : S_1) : S_2 = M$.
adamc@529 223
adamc@529 224 A declaration $\mt{table} \; x : \{(c = c,)^*\}$ is elaborated into $\mt{table} \; x : [(c = c,)^*]$
adamc@529 225
adamc@529 226 The syntax $\mt{where} \; \mt{type}$ is an alternate form of $\mt{where} \; \mt{con}$.
adamc@529 227
adamc@529 228 The syntax $\mt{if} \; e \; \mt{then} \; e_1 \; \mt{else} \; e_2$ expands to $\mt{case} \; e \; \mt{of} \; \mt{Basis}.\mt{True} \Rightarrow e_1 \mid \mt{Basis}.\mt{False} \Rightarrow e_2$.
adamc@529 229
adamc@529 230 There are infix operator syntaxes for a number of functions defined in the $\mt{Basis}$ module. There is $=$ for $\mt{eq}$, $\neq$ for $\mt{neq}$, $-$ for $\mt{neg}$ (as a prefix operator) and $\mt{minus}$, $+$ for $\mt{plus}$, $\times$ for $\mt{times}$, $/$ for $\mt{div}$, $\%$ for $\mt{mod}$, $<$ for $\mt{lt}$, $\leq$ for $\mt{le}$, $>$ for $\mt{gt}$, and $\geq$ for $\mt{ge}$.
adamc@529 231
adamc@529 232 A signature item $\mt{table} \; x : c$ is shorthand for $\mt{val} \; x : \mt{Basis}.\mt{sql\_table} \; c$. $\mt{sequence} \; x$ is short for $\mt{val} \; x : \mt{Basis}.\mt{sql\_sequence}$, and $\mt{cookie} \; x : \tau$ is shorthand for $\mt{val} \; x : \mt{Basis}.\mt{http\_cookie} \; \tau$.
adamc@529 233
adamc@530 234
adamc@530 235 \section{Static Semantics}
adamc@530 236
adamc@530 237 In this section, we give a declarative presentation of Ur's typing rules and related judgments. Inference is the subject of the next section; here, we assume that an oracle has filled in all wildcards with concrete values.
adamc@530 238
adamc@530 239 Since there is significant mutual recursion among the judgments, we introduce them all before beginning to give rules. We use the same variety of contexts throughout this section, implicitly introducing new sorts of context entries as needed.
adamc@530 240 \begin{itemize}
adamc@530 241 \item $\Gamma \vdash c :: \kappa$ assigns a kind to a constructor in a context.
adamc@530 242 \item $\Gamma \vdash c \sim c$ proves the disjointness of two record constructors; that is, that they share no field names. We overload the judgment to apply to pairs of field names as well.
adamc@531 243 \item $\Gamma \vdash c \hookrightarrow C$ proves that record constructor $c$ decomposes into set $C$ of field names and record constructors.
adamc@530 244 \item $\Gamma \vdash c \equiv c$ proves the computational equivalence of two constructors. This is often called a \emph{definitional equality} in the world of type theory.
adamc@530 245 \item $\Gamma \vdash e : \tau$ is a standard typing judgment.
adamc@534 246 \item $\Gamma \vdash p \leadsto \Gamma; \tau$ combines typing of patterns with calculation of which new variables they bind.
adamc@533 247 \item $\Gamma \vdash d \leadsto \Gamma$ expresses how a declaration modifies a context. We overload this judgment to apply to sequences of declarations.
adamc@536 248 \item $\Gamma \vdash S \leq S$ is the signature compatibility judgment. We write $\Gamma \vdash S$ as shorthand for $\Gamma \vdash S \leq S$.
adamc@530 249 \item $\Gamma \vdash M : S$ is the module signature checking judgment.
adamc@535 250 \item $\mt{proj}(M, S, V)$ is a partial function for projecting a signature item from a signature $S$, given the module $M$ that we project from. $V$ may be $\mt{con} \; x$, $\mt{datatype} \; x$, $\mt{val} \; x$, $\mt{signature} \; X$, or $\mt{structure} \; X$. The parameter $M$ is needed because the projected signature item may refer to other items of $S$.
adamc@530 251 \end{itemize}
adamc@530 252
adamc@530 253 \subsection{Kinding}
adamc@530 254
adamc@530 255 $$\infer{\Gamma \vdash (c) :: \kappa :: \kappa}{
adamc@530 256 \Gamma \vdash c :: \kappa
adamc@530 257 }
adamc@530 258 \quad \infer{\Gamma \vdash x :: \kappa}{
adamc@530 259 x :: \kappa \in \Gamma
adamc@530 260 }
adamc@530 261 \quad \infer{\Gamma \vdash x :: \kappa}{
adamc@530 262 x :: \kappa = c \in \Gamma
adamc@530 263 }$$
adamc@530 264
adamc@530 265 $$\infer{\Gamma \vdash M.x :: \kappa}{
adamc@530 266 \Gamma \vdash M : S
adamc@530 267 & \mt{proj}(M, S, \mt{con} \; x) = \kappa
adamc@530 268 }
adamc@530 269 \quad \infer{\Gamma \vdash M.x :: \kappa}{
adamc@530 270 \Gamma \vdash M : S
adamc@530 271 & \mt{proj}(M, S, \mt{con} \; x) = (\kappa, c)
adamc@530 272 }$$
adamc@530 273
adamc@530 274 $$\infer{\Gamma \vdash \tau_1 \to \tau_2 :: \mt{Type}}{
adamc@530 275 \Gamma \vdash \tau_1 :: \mt{Type}
adamc@530 276 & \Gamma \vdash \tau_2 :: \mt{Type}
adamc@530 277 }
adamc@530 278 \quad \infer{\Gamma \vdash x \; ? \: \kappa \to \tau :: \mt{Type}}{
adamc@530 279 \Gamma, x :: \kappa \vdash \tau :: \mt{Type}
adamc@530 280 }
adamc@530 281 \quad \infer{\Gamma \vdash \$c :: \mt{Type}}{
adamc@530 282 \Gamma \vdash c :: \{\mt{Type}\}
adamc@530 283 }$$
adamc@530 284
adamc@530 285 $$\infer{\Gamma \vdash c_1 \; c_2 :: \kappa_2}{
adamc@530 286 \Gamma \vdash c_1 :: \kappa_1 \to \kappa_2
adamc@530 287 & \Gamma \vdash c_2 :: \kappa_1
adamc@530 288 }
adamc@530 289 \quad \infer{\Gamma \vdash \lambda x \; :: \; \kappa_1 \Rightarrow c :: \kappa_1 \to \kappa_2}{
adamc@530 290 \Gamma, x :: \kappa_1 \vdash c :: \kappa_2
adamc@530 291 }$$
adamc@530 292
adamc@530 293 $$\infer{\Gamma \vdash () :: \mt{Unit}}{}
adamc@530 294 \quad \infer{\Gamma \vdash \#X :: \mt{Name}}{}$$
adamc@530 295
adamc@530 296 $$\infer{\Gamma \vdash [\overline{c_i = c'_i}] :: \{\kappa\}}{
adamc@530 297 \forall i: \Gamma \vdash c_i : \mt{Name}
adamc@530 298 & \Gamma \vdash c'_i :: \kappa
adamc@530 299 & \forall i \neq j: \Gamma \vdash c_i \sim c_j
adamc@530 300 }
adamc@530 301 \quad \infer{\Gamma \vdash c_1 \rc c_2 :: \{\kappa\}}{
adamc@530 302 \Gamma \vdash c_1 :: \{\kappa\}
adamc@530 303 & \Gamma \vdash c_2 :: \{\kappa\}
adamc@530 304 & \Gamma \vdash c_1 \sim c_2
adamc@530 305 }$$
adamc@530 306
adamc@530 307 $$\infer{\Gamma \vdash \mt{fold} :: ((\mt{Name} \to \kappa_1 \to \kappa_2 \to \kappa_2) \to \kappa_2 \to \{\kappa_1\} \to \kappa_2}{}$$
adamc@530 308
adamc@530 309 $$\infer{\Gamma \vdash (\overline c) :: (k_1 \times \ldots \times k_n)}{
adamc@530 310 \forall i: \Gamma \vdash c_i :: k_i
adamc@530 311 }
adamc@530 312 \quad \infer{\Gamma \vdash c.i :: k_i}{
adamc@530 313 \Gamma \vdash c :: (k_1 \times \ldots \times k_n)
adamc@530 314 }$$
adamc@530 315
adamc@530 316 $$\infer{\Gamma \vdash \lambda [c_1 \sim c_2] \Rightarrow c :: \kappa}{
adamc@530 317 \Gamma \vdash c_1 :: \{\kappa'\}
adamc@530 318 & \Gamma \vdash c_2 :: \{\kappa'\}
adamc@530 319 & \Gamma, c_1 \sim c_2 \vdash c :: \kappa
adamc@530 320 }$$
adamc@530 321
adamc@531 322 \subsection{Record Disjointness}
adamc@531 323
adamc@531 324 We will use a keyword $\mt{map}$ as a shorthand, such that, for $f$ of kind $\kappa \to \kappa'$, $\mt{map} \; f$ stands for $\mt{fold} \; (\lambda (x_1 :: \mt{Name}) (x_2 :: \kappa) (x_3 :: \{\kappa'\}) \Rightarrow [x_1 = f \; x_2] \rc x_3) \; []$.
adamc@531 325
adamc@531 326 $$\infer{\Gamma \vdash c_1 \sim c_2}{
adamc@531 327 \Gamma \vdash c_1 \hookrightarrow c'_1
adamc@531 328 & \Gamma \vdash c_2 \hookrightarrow c'_2
adamc@531 329 & \forall c''_1 \in c'_1, c''_2 \in c'_2: \Gamma \vdash c''_1 \sim c''_2
adamc@531 330 }
adamc@531 331 \quad \infer{\Gamma \vdash X \sim X'}{
adamc@531 332 X \neq X'
adamc@531 333 }$$
adamc@531 334
adamc@531 335 $$\infer{\Gamma \vdash c_1 \sim c_2}{
adamc@531 336 c'_1 \sim c'_2 \in \Gamma
adamc@531 337 & \Gamma \vdash c'_1 \hookrightarrow c''_1
adamc@531 338 & \Gamma \vdash c'_2 \hookrightarrow c''_2
adamc@531 339 & c_1 \in c''_1
adamc@531 340 & c_2 \in c''_2
adamc@531 341 }$$
adamc@531 342
adamc@531 343 $$\infer{\Gamma \vdash c \hookrightarrow \{c\}}{}
adamc@531 344 \quad \infer{\Gamma \vdash [\overline{c = c'}] \hookrightarrow \{\overline{c}\}}{}
adamc@531 345 \quad \infer{\Gamma \vdash c_1 \rc c_2 \hookrightarrow C_1 \cup C_2}{
adamc@531 346 \Gamma \vdash c_1 \hookrightarrow C_1
adamc@531 347 & \Gamma \vdash c_2 \hookrightarrow C_2
adamc@531 348 }
adamc@531 349 \quad \infer{\Gamma \vdash c \hookrightarrow C}{
adamc@531 350 \Gamma \vdash c \equiv c'
adamc@531 351 & \Gamma \vdash c' \hookrightarrow C
adamc@531 352 }
adamc@531 353 \quad \infer{\Gamma \vdash \mt{map} \; f \; c \hookrightarrow C}{
adamc@531 354 \Gamma \vdash c \hookrightarrow C
adamc@531 355 }$$
adamc@531 356
adamc@532 357 \subsection{Definitional Equality}
adamc@532 358
adamc@532 359 We use $\mathcal C$ to stand for a one-hole context that, when filled, yields a constructor. The notation $\mathcal C[c]$ plugs $c$ into $\mathcal C$. We omit the standard definition of one-hole contexts. We write $[x \mapsto c_1]c_2$ for capture-avoiding substitution of $c_1$ for $x$ in $c_2$.
adamc@532 360
adamc@532 361 $$\infer{\Gamma \vdash c \equiv c}{}
adamc@532 362 \quad \infer{\Gamma \vdash c_1 \equiv c_2}{
adamc@532 363 \Gamma \vdash c_2 \equiv c_1
adamc@532 364 }
adamc@532 365 \quad \infer{\Gamma \vdash c_1 \equiv c_3}{
adamc@532 366 \Gamma \vdash c_1 \equiv c_2
adamc@532 367 & \Gamma \vdash c_2 \equiv c_3
adamc@532 368 }
adamc@532 369 \quad \infer{\Gamma \vdash \mathcal C[c_1] \equiv \mathcal C[c_2]}{
adamc@532 370 \Gamma \vdash c_1 \equiv c_2
adamc@532 371 }$$
adamc@532 372
adamc@532 373 $$\infer{\Gamma \vdash x \equiv c}{
adamc@532 374 x :: \kappa = c \in \Gamma
adamc@532 375 }
adamc@532 376 \quad \infer{\Gamma \vdash M.x \equiv c}{
adamc@532 377 \Gamma \vdash M : S
adamc@532 378 & \mt{proj}(M, S, \mt{con} \; x) = (\kappa, c)
adamc@532 379 }
adamc@532 380 \quad \infer{\Gamma \vdash (\overline c).i \equiv c_i}{}$$
adamc@532 381
adamc@532 382 $$\infer{\Gamma \vdash (\lambda x :: \kappa \Rightarrow c) \; c' \equiv [x \mapsto c'] c}{}
adamc@532 383 \quad \infer{\Gamma \vdash c_1 \rc c_2 \equiv c_2 \rc c_1}{}
adamc@532 384 \quad \infer{\Gamma \vdash c_1 \rc (c_2 \rc c_3) \equiv (c_1 \rc c_2) \rc c_3}{}$$
adamc@532 385
adamc@532 386 $$\infer{\Gamma \vdash [] \rc c \equiv c}{}
adamc@532 387 \quad \infer{\Gamma \vdash [\overline{c_1 = c'_1}] \rc [\overline{c_2 = c'_2}] \equiv [\overline{c_1 = c'_1}, \overline{c_2 = c'_2}]}{}$$
adamc@532 388
adamc@532 389 $$\infer{\Gamma \vdash \lambda [c_1 \sim c_2] \Rightarrow c \equiv c}{
adamc@532 390 \Gamma \vdash c_1 \sim c_2
adamc@532 391 }
adamc@532 392 \quad \infer{\Gamma \vdash \mt{fold} \; f \; i \; [] \equiv i}{}
adamc@532 393 \quad \infer{\Gamma \vdash \mt{fold} \; f \; i \; ([c_1 = c_2] \rc c) \equiv f \; c_1 \; c_2 \; (\mt{fold} \; f \; i \; c)}{}$$
adamc@532 394
adamc@532 395 $$\infer{\Gamma \vdash \mt{map} \; (\lambda x \Rightarrow x) \; c \equiv c}{}
adamc@532 396 \quad \infer{\Gamma \vdash \mt{fold} \; f \; i \; (\mt{map} \; f' \; c)
adamc@532 397 \equiv \mt{fold} \; (\lambda (x_1 :: \mt{Name}) (x_2 :: \kappa) \Rightarrow f \; x_1 \; (f' \; x_2)) \; i \; c}{}$$
adamc@532 398
adamc@532 399 $$\infer{\Gamma \vdash \mt{map} \; f \; (c_1 \rc c_2) \equiv \mt{map} \; f \; c_1 \rc \mt{map} \; f \; c_2}{}$$
adamc@531 400
adamc@534 401 \subsection{Expression Typing}
adamc@533 402
adamc@533 403 We assume the existence of a function $T$ assigning types to literal constants. It maps integer constants to $\mt{Basis}.\mt{int}$, float constants to $\mt{Basis}.\mt{float}$, and string constants to $\mt{Basis}.\mt{string}$.
adamc@533 404
adamc@533 405 We also refer to a function $\mathcal I$, such that $\mathcal I(\tau)$ ``uses an oracle'' to instantiate all constructor function arguments at the beginning of $\tau$ that are marked implicit; i.e., replace $x_1 ::: \kappa_1 \to \ldots \to x_n ::: \kappa_n \to \tau$ with $[x_1 \mapsto c_1]\ldots[x_n \mapsto c_n]\tau$, where the $c_i$s are inferred and $\tau$ does not start like $x ::: \kappa \to \tau'$.
adamc@533 406
adamc@533 407 $$\infer{\Gamma \vdash e : \tau : \tau}{
adamc@533 408 \Gamma \vdash e : \tau
adamc@533 409 }
adamc@533 410 \quad \infer{\Gamma \vdash e : \tau}{
adamc@533 411 \Gamma \vdash e : \tau'
adamc@533 412 & \Gamma \vdash \tau' \equiv \tau
adamc@533 413 }
adamc@533 414 \quad \infer{\Gamma \vdash \ell : T(\ell)}{}$$
adamc@533 415
adamc@533 416 $$\infer{\Gamma \vdash x : \mathcal I(\tau)}{
adamc@533 417 x : \tau \in \Gamma
adamc@533 418 }
adamc@533 419 \quad \infer{\Gamma \vdash M.x : \mathcal I(\tau)}{
adamc@533 420 \Gamma \vdash M : S
adamc@533 421 & \mt{proj}(M, S, \mt{val} \; x) = \tau
adamc@533 422 }
adamc@533 423 \quad \infer{\Gamma \vdash X : \mathcal I(\tau)}{
adamc@533 424 X : \tau \in \Gamma
adamc@533 425 }
adamc@533 426 \quad \infer{\Gamma \vdash M.X : \mathcal I(\tau)}{
adamc@533 427 \Gamma \vdash M : S
adamc@533 428 & \mt{proj}(M, S, \mt{val} \; X) = \tau
adamc@533 429 }$$
adamc@533 430
adamc@533 431 $$\infer{\Gamma \vdash e_1 \; e_2 : \tau_2}{
adamc@533 432 \Gamma \vdash e_1 : \tau_1 \to \tau_2
adamc@533 433 & \Gamma \vdash e_2 : \tau_1
adamc@533 434 }
adamc@533 435 \quad \infer{\Gamma \vdash \lambda x : \tau_1 \Rightarrow e : \tau_1 \to \tau_2}{
adamc@533 436 \Gamma, x : \tau_1 \vdash e : \tau_2
adamc@533 437 }$$
adamc@533 438
adamc@533 439 $$\infer{\Gamma \vdash e [c] : [x \mapsto c]\tau}{
adamc@533 440 \Gamma \vdash e : x :: \kappa \to \tau
adamc@533 441 & \Gamma \vdash c :: \kappa
adamc@533 442 }
adamc@533 443 \quad \infer{\Gamma \vdash \lambda x \; ? \; \kappa \Rightarrow e : x \; ? \; \kappa \to \tau}{
adamc@533 444 \Gamma, x :: \kappa \vdash e : \tau
adamc@533 445 }$$
adamc@533 446
adamc@533 447 $$\infer{\Gamma \vdash \{\overline{c = e}\} : \{\overline{c : \tau}\}}{
adamc@533 448 \forall i: \Gamma \vdash c_i :: \mt{Name}
adamc@533 449 & \Gamma \vdash e_i : \tau_i
adamc@533 450 & \forall i \neq j: \Gamma \vdash c_i \sim c_j
adamc@533 451 }
adamc@533 452 \quad \infer{\Gamma \vdash e.c : \tau}{
adamc@533 453 \Gamma \vdash e : \$([c = \tau] \rc c')
adamc@533 454 }
adamc@533 455 \quad \infer{\Gamma \vdash e_1 \rc e_2 : \$(c_1 \rc c_2)}{
adamc@533 456 \Gamma \vdash e_1 : \$c_1
adamc@533 457 & \Gamma \vdash e_2 : \$c_2
adamc@533 458 }$$
adamc@533 459
adamc@533 460 $$\infer{\Gamma \vdash e \rcut c : \$c'}{
adamc@533 461 \Gamma \vdash e : \$([c = \tau] \rc c')
adamc@533 462 }
adamc@533 463 \quad \infer{\Gamma \vdash e \rcutM c : \$c'}{
adamc@533 464 \Gamma \vdash e : \$(c \rc c')
adamc@533 465 }$$
adamc@533 466
adamc@533 467 $$\infer{\Gamma \vdash \mt{fold} : \begin{array}{c}
adamc@533 468 x_1 :: (\{\kappa\} \to \tau)
adamc@533 469 \to (x_2 :: \mt{Name} \to x_3 :: \kappa \to x_4 :: \{\kappa\} \to \lambda [[x_2] \sim x_4]
adamc@533 470 \Rightarrow x_1 \; x_4 \to x_1 \; ([x_2 = x_3] \rc x_4)) \\
adamc@533 471 \to x_1 \; [] \to x_5 :: \{\kappa\} \to x_1 \; x_5
adamc@533 472 \end{array}}{}$$
adamc@533 473
adamc@533 474 $$\infer{\Gamma \vdash \mt{let} \; \overline{ed} \; \mt{in} \; e \; \mt{end} : \tau}{
adamc@533 475 \Gamma \vdash \overline{ed} \leadsto \Gamma'
adamc@533 476 & \Gamma' \vdash e : \tau
adamc@533 477 }
adamc@533 478 \quad \infer{\Gamma \vdash \mt{case} \; e \; \mt{of} \; \overline{p \Rightarrow e} : \tau}{
adamc@533 479 \forall i: \Gamma \vdash p_i \leadsto \Gamma_i, \tau'
adamc@533 480 & \Gamma_i \vdash e_i : \tau
adamc@533 481 }$$
adamc@533 482
adamc@533 483 $$\infer{\Gamma \vdash [c_1 \sim c_2] \Rightarrow e : [c_1 \sim c_2] \Rightarrow \tau}{
adamc@533 484 \Gamma \vdash c_1 :: \{\kappa\}
adamc@533 485 & \Gamma \vdash c_2 :: \{\kappa\}
adamc@533 486 & \Gamma, c_1 \sim c_2 \vdash e : \tau
adamc@533 487 }$$
adamc@533 488
adamc@534 489 \subsection{Pattern Typing}
adamc@534 490
adamc@534 491 $$\infer{\Gamma \vdash \_ \leadsto \Gamma; \tau}{}
adamc@534 492 \quad \infer{\Gamma \vdash x \leadsto \Gamma, x : \tau; \tau}{}
adamc@534 493 \quad \infer{\Gamma \vdash \ell \leadsto \Gamma; T(\ell)}{}$$
adamc@534 494
adamc@534 495 $$\infer{\Gamma \vdash X \leadsto \Gamma; \overline{[x_i \mapsto \tau'_i]}\tau}{
adamc@534 496 X : \overline{x ::: \mt{Type}} \to \tau \in \Gamma
adamc@534 497 & \textrm{$\tau$ not a function type}
adamc@534 498 }
adamc@534 499 \quad \infer{\Gamma \vdash X \; p \leadsto \Gamma'; \overline{[x_i \mapsto \tau'_i]}\tau}{
adamc@534 500 X : \overline{x ::: \mt{Type}} \to \tau'' \to \tau \in \Gamma
adamc@534 501 & \Gamma \vdash p \leadsto \Gamma'; \overline{[x_i \mapsto \tau'_i]}\tau''
adamc@534 502 }$$
adamc@534 503
adamc@534 504 $$\infer{\Gamma \vdash M.X \leadsto \Gamma; \overline{[x_i \mapsto \tau'_i]}\tau}{
adamc@534 505 \Gamma \vdash M : S
adamc@534 506 & \mt{proj}(M, S, \mt{val} \; X) = \overline{x ::: \mt{Type}} \to \tau
adamc@534 507 & \textrm{$\tau$ not a function type}
adamc@534 508 }$$
adamc@534 509
adamc@534 510 $$\infer{\Gamma \vdash M.X \; p \leadsto \Gamma'; \overline{[x_i \mapsto \tau'_i]}\tau}{
adamc@534 511 \Gamma \vdash M : S
adamc@534 512 & \mt{proj}(M, S, \mt{val} \; X) = \overline{x ::: \mt{Type}} \to \tau'' \to \tau
adamc@534 513 & \Gamma \vdash p \leadsto \Gamma'; \overline{[x_i \mapsto \tau'_i]}\tau''
adamc@534 514 }$$
adamc@534 515
adamc@534 516 $$\infer{\Gamma \vdash \{\overline{x = p}\} \leadsto \Gamma_n; \{\overline{x = \tau}\}}{
adamc@534 517 \Gamma_0 = \Gamma
adamc@534 518 & \forall i: \Gamma_i \vdash p_i \leadsto \Gamma_{i+1}; \tau_i
adamc@534 519 }
adamc@534 520 \quad \infer{\Gamma \vdash \{\overline{x = p}, \ldots\} \leadsto \Gamma_n; \$([\overline{x = \tau}] \rc c)}{
adamc@534 521 \Gamma_0 = \Gamma
adamc@534 522 & \forall i: \Gamma_i \vdash p_i \leadsto \Gamma_{i+1}; \tau_i
adamc@534 523 }$$
adamc@534 524
adamc@535 525 \subsection{Declaration Typing}
adamc@535 526
adamc@535 527 We use an auxiliary judgment $\overline{y}; x; \Gamma \vdash \overline{dc} \leadsto \Gamma'$, expressing the enrichment of $\Gamma$ with the types of the datatype constructors $\overline{dc}$, when they are known to belong to datatype $x$ with type parameters $\overline{y}$.
adamc@535 528
adamc@535 529 This is the first judgment where we deal with type classes, for the $\mt{class}$ declaration form. We will omit their special handling in this formal specification. In the compiler, a set of available type classes and their instances is maintained, and these instances are used to fill in expression wildcards.
adamc@535 530
adamc@535 531 We presuppose the existence of a function $\mathcal O$, where $\mathcal(M, S)$ implements the $\mt{open}$ declaration by producing a context with the appropriate entry for each available component of module $M$ with signature $S$. Where possible, $\mathcal O$ uses ``transparent'' entries (e.g., an abstract type $M.x$ is mapped to $x :: \mt{Type} = M.x$), so that the relationship with $M$ is maintained. A related function $\mathcal O_c$ builds a context containing the disjointness constraints found in $S$.
adamc@535 532
adamc@535 533 $$\infer{\Gamma \vdash \cdot \leadsto \Gamma}{}
adamc@535 534 \quad \infer{\Gamma \vdash d, \overline{d} \leadsto \Gamma''}{
adamc@535 535 \Gamma \vdash d \leadsto \Gamma'
adamc@535 536 & \Gamma' \vdash \overline{d} \leadsto \Gamma''
adamc@535 537 }$$
adamc@535 538
adamc@535 539 $$\infer{\Gamma \vdash \mt{con} \; x :: \kappa = c \leadsto \Gamma, x :: \kappa = c}{
adamc@535 540 \Gamma \vdash c :: \kappa
adamc@535 541 }
adamc@535 542 \quad \infer{\Gamma \vdash \mt{datatype} \; x \; \overline{y} = \overline{dc} \leadsto \Gamma'}{
adamc@535 543 \overline{y}; x; \Gamma, x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type} \vdash \overline{dc} \leadsto \Gamma'
adamc@535 544 }$$
adamc@535 545
adamc@535 546 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leadsto \Gamma'}{
adamc@535 547 \Gamma \vdash M : S
adamc@535 548 & \mt{proj}(M, S, \mt{datatype} \; z) = (\overline{y}, \overline{dc})
adamc@535 549 & \overline{y}; x; \Gamma, x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type} = M.z \vdash \overline{dc} \leadsto \Gamma'
adamc@535 550 }$$
adamc@535 551
adamc@535 552 $$\infer{\Gamma \vdash \mt{val} \; x : \tau = e \leadsto \Gamma, x : \tau}{
adamc@535 553 \Gamma \vdash e : \tau
adamc@535 554 }$$
adamc@535 555
adamc@535 556 $$\infer{\Gamma \vdash \mt{val} \; \mt{rec} \; \overline{x : \tau = e} \leadsto \Gamma, \overline{x : \tau}}{
adamc@535 557 \forall i: \Gamma, \overline{x : \tau} \vdash e_i : \tau_i
adamc@535 558 & \textrm{$e_i$ starts with an expression $\lambda$, optionally preceded by constructor and disjointness $\lambda$s}
adamc@535 559 }$$
adamc@535 560
adamc@535 561 $$\infer{\Gamma \vdash \mt{structure} \; X : S = M \leadsto \Gamma, X : S}{
adamc@535 562 \Gamma \vdash M : S
adamc@535 563 }
adamc@535 564 \quad \infer{\Gamma \vdash \mt{siganture} \; X = S \leadsto \Gamma, X = S}{
adamc@535 565 \Gamma \vdash S
adamc@535 566 }$$
adamc@535 567
adamc@535 568 $$\infer{\Gamma \vdash \mt{open} \; M \leadsto \Gamma, \mathcal O(M, S)}{
adamc@535 569 \Gamma \vdash M : S
adamc@535 570 }$$
adamc@535 571
adamc@535 572 $$\infer{\Gamma \vdash \mt{constraint} \; c_1 \sim c_2 \leadsto \Gamma}{
adamc@535 573 \Gamma \vdash c_1 :: \{\kappa\}
adamc@535 574 & \Gamma \vdash c_2 :: \{\kappa\}
adamc@535 575 & \Gamma \vdash c_1 \sim c_2
adamc@535 576 }
adamc@535 577 \quad \infer{\Gamma \vdash \mt{open} \; \mt{constraints} \; M \leadsto \Gamma, \mathcal O_c(M, S)}{
adamc@535 578 \Gamma \vdash M : S
adamc@535 579 }$$
adamc@535 580
adamc@535 581 $$\infer{\Gamma \vdash \mt{table} \; x : c \leadsto \Gamma, x : \mt{Basis}.\mt{sql\_table} \; c}{
adamc@535 582 \Gamma \vdash c :: \{\mt{Type}\}
adamc@535 583 }
adamc@535 584 \quad \infer{\Gamma \vdash \mt{sequence} \; x \leadsto \Gamma, x : \mt{Basis}.\mt{sql\_sequence}}{}$$
adamc@535 585
adamc@535 586 $$\infer{\Gamma \vdash \mt{cookie} \; x : \tau \leadsto \Gamma, x : \mt{Basis}.\mt{http\_cookie} \; \tau}{
adamc@535 587 \Gamma \vdash \tau :: \mt{Type}
adamc@535 588 }$$
adamc@535 589
adamc@535 590 $$\infer{\Gamma \vdash \mt{class} \; x = c \leadsto \Gamma, x :: \mt{Type} \to \mt{Type} = c}{
adamc@535 591 \Gamma \vdash c :: \mt{Type} \to \mt{Type}
adamc@535 592 }$$
adamc@535 593
adamc@535 594 $$\infer{\overline{y}; x; \Gamma \vdash \cdot \leadsto \Gamma}{}
adamc@535 595 \quad \infer{\overline{y}; x; \Gamma \vdash X \mid \overline{dc} \leadsto \Gamma', X : \overline{y ::: \mt{Type}} \to x \; \overline{y}}{
adamc@535 596 \overline{y}; x; \Gamma \vdash \overline{dc} \leadsto \Gamma'
adamc@535 597 }
adamc@535 598 \quad \infer{\overline{y}; x; \Gamma \vdash X \; \mt{of} \; \tau \mid \overline{dc} \leadsto \Gamma', X : \overline{y ::: \mt{Type}} \to \tau \to x \; \overline{y}}{
adamc@535 599 \overline{y}; x; \Gamma \vdash \overline{dc} \leadsto \Gamma'
adamc@535 600 }$$
adamc@535 601
adamc@536 602 \subsection{Signature Compatibility}
adamc@536 603
adamc@536 604 $$\infer{\Gamma \vdash S \equiv S}{}
adamc@536 605 \quad \infer{\Gamma \vdash S_1 \equiv S_2}{
adamc@536 606 \Gamma \vdash S_2 \equiv S_1
adamc@536 607 }
adamc@536 608 \quad \infer{\Gamma \vdash X \equiv S}{
adamc@536 609 X = S \in \Gamma
adamc@536 610 }
adamc@536 611 \quad \infer{\Gamma \vdash M.X \equiv S}{
adamc@536 612 \Gamma \vdash M : S'
adamc@536 613 & \mt{proj}(M, S', \mt{signature} \; X) = S
adamc@536 614 }$$
adamc@536 615
adamc@536 616 $$\infer{\Gamma \vdash S \; \mt{where} \; \mt{con} \; x = c \equiv \mt{sig} \; \overline{s^1} \; \mt{con} \; x :: \kappa = c \; \overline{s_2} \; \mt{end}}{
adamc@536 617 \Gamma \vdash S \equiv \mt{sig} \; \overline{s^1} \; \mt{con} \; x :: \kappa \; \overline{s_2} \; \mt{end}
adamc@536 618 & \Gamma \vdash c :: \kappa
adamc@536 619 }$$
adamc@536 620
adamc@536 621 $$\infer{\Gamma \vdash S_1 \leq S_2}{
adamc@536 622 \Gamma \vdash S_1 \equiv S_2
adamc@536 623 }
adamc@536 624 \quad \infer{\Gamma \vdash \mt{sig} \; \overline{s} \; \mt{end} \leq \mt{sig} \; \mt{end}}{}
adamc@536 625 \quad \infer{\Gamma \vdash \mt{sig} \; \overline{s^1} \; s \; \overline{s^2} \; \mt{end} \leq \mt{sig} \; s' \; \overline{s} \; \mt{end}}{
adamc@536 626 \Gamma \vdash s \leq s'; \Gamma'
adamc@536 627 & \Gamma' \vdash \mt{sig} \; \overline{s^1} \; s \; \overline{s^2} \; \mt{end} \leq \mt{sig} \; \overline{s} \; \mt{end}
adamc@536 628 }$$
adamc@536 629
adamc@536 630 $$\infer{\Gamma \vdash \mt{functor} (X : S_1) : S_2 \leq \mt{functor} (X : S'_1) : S'_2}{
adamc@536 631 \Gamma \vdash S'_1 \leq S_1
adamc@536 632 & \Gamma, X : S'_1 \vdash S_2 \leq S'_2
adamc@536 633 }$$
adamc@536 634
adamc@524 635 \end{document}