annotate lib/ur/list.urs @ 1387:dd99e1702432

Handle opening of modules that define signatures
author Adam Chlipala <adam@chlipala.net>
date Thu, 06 Jan 2011 19:26:31 -0500
parents 9e0fa4f6ac93
children d328983dc5a6
rev   line source
adamc@794 1 datatype t = datatype Basis.list
adamc@794 2
adamc@846 3 val show : a ::: Type -> show a -> show (t a)
adamc@846 4 val eq : a ::: Type -> eq a -> eq (t a)
adamc@794 5
adamc@845 6 val foldl : a ::: Type -> b ::: Type -> (a -> b -> b) -> b -> t a -> b
adamc@850 7 val foldlAbort : a ::: Type -> b ::: Type -> (a -> b -> option b) -> b -> t a -> option b
adamc@850 8 val foldlMapAbort : a ::: Type -> b ::: Type -> c ::: Type
adamc@850 9 -> (a -> b -> option (c * b)) -> b -> t a -> option (t c * b)
adamc@845 10
adamc@1057 11 val foldr : a ::: Type -> b ::: Type -> (a -> b -> b) -> b -> t a -> b
adamc@1057 12
adamc@916 13 val length : a ::: Type -> t a -> int
adamc@916 14
adamc@794 15 val rev : a ::: Type -> t a -> t a
adamc@794 16
adamc@821 17 val revAppend : a ::: Type -> t a -> t a -> t a
adamc@821 18
adamc@821 19 val append : a ::: Type -> t a -> t a -> t a
adamc@821 20
adamc@794 21 val mp : a ::: Type -> b ::: Type -> (a -> b) -> t a -> t b
adamc@794 22
adamc@821 23 val mapPartial : a ::: Type -> b ::: Type -> (a -> option b) -> t a -> t b
adamc@821 24
adamc@1279 25 val mapi : a ::: Type -> b ::: Type -> (int -> a -> b) -> t a -> t b
adamc@1279 26
adamc@796 27 val mapX : a ::: Type -> ctx ::: {Unit} -> (a -> xml ctx [] []) -> t a -> xml ctx [] []
adamc@800 28
adamc@800 29 val mapM : m ::: (Type -> Type) -> monad m -> a ::: Type -> b ::: Type
adamc@830 30 -> (a -> m b) -> t a -> m (t b)
adamc@830 31
adamc@1107 32 val mapPartialM : m ::: (Type -> Type) -> monad m -> a ::: Type -> b ::: Type -> (a -> m (option b)) -> t a -> m (t b)
adamc@1107 33
adamc@830 34 val mapXM : m ::: (Type -> Type) -> monad m -> a ::: Type -> ctx ::: {Unit}
adamc@830 35 -> (a -> m (xml ctx [] [])) -> t a -> m (xml ctx [] [])
adamc@821 36
adamc@821 37 val filter : a ::: Type -> (a -> bool) -> t a -> t a
adamc@822 38
adamc@822 39 val exists : a ::: Type -> (a -> bool) -> t a -> bool
adamc@822 40
adamc@840 41 val foldlM : m ::: (Type -> Type) -> monad m -> a ::: Type -> b ::: Type
adamc@840 42 -> (a -> b -> m b) -> b -> t a -> m b
adamc@840 43
adamc@822 44 val foldlMap : a ::: Type -> b ::: Type -> c ::: Type
adamc@822 45 -> (a -> b -> c * b) -> b -> t a -> t c * b
adamc@839 46
adamc@839 47 val search : a ::: Type -> b ::: Type -> (a -> option b) -> t a -> option b
adamc@843 48
adamc@843 49 val all : a ::: Type -> (a -> bool) -> t a -> bool
adamc@844 50
adamc@844 51 val app : m ::: (Type -> Type) -> monad m -> a ::: Type
adamc@844 52 -> (a -> m unit) -> t a -> m unit
adamc@845 53
adamc@908 54 val mapQuery : tables ::: {{Type}} -> exps ::: {Type} -> t ::: Type
adamc@908 55 -> [tables ~ exps] =>
adamc@1191 56 sql_query [] tables exps
adamc@908 57 -> ($(exps ++ map (fn fields :: {Type} => $fields) tables) -> t)
adamc@908 58 -> transaction (list t)
adamc@845 59
adamc@1107 60 val mapQueryM : tables ::: {{Type}} -> exps ::: {Type} -> t ::: Type
adamc@1107 61 -> [tables ~ exps] =>
adamc@1191 62 sql_query [] tables exps
adamc@1107 63 -> ($(exps ++ map (fn fields :: {Type} => $fields) tables) -> transaction t)
adamc@1107 64 -> transaction (list t)
adamc@1107 65
adamc@1107 66 val mapQueryPartialM : tables ::: {{Type}} -> exps ::: {Type} -> t ::: Type
adamc@1107 67 -> [tables ~ exps] =>
adamc@1191 68 sql_query [] tables exps
adamc@1107 69 -> ($(exps ++ map (fn fields :: {Type} => $fields) tables) -> transaction (option t))
adamc@1107 70 -> transaction (list t)
adamc@1107 71
adam@1321 72 val sort : a ::: Type -> (a -> a -> bool) (* > predicate *) -> t a -> t a
adam@1321 73
adam@1322 74 val nth : a ::: Type -> list a -> int -> option a
adam@1345 75 val replaceNth : a ::: Type -> list a -> int -> a -> list a
adam@1322 76
adamc@845 77 (** Association lists *)
adamc@845 78
adamc@845 79 val assoc : a ::: Type -> b ::: Type -> eq a -> a -> t (a * b) -> option b
adamc@845 80
adamc@845 81 val assocAdd : a ::: Type -> b ::: Type -> eq a -> a -> b -> t (a * b) -> t (a * b)