annotate doc/manual.tex @ 654:a0f2b070af01

Revise manual, through end of Syntax
author Adam Chlipala <adamc@hcoop.net>
date Thu, 12 Mar 2009 10:38:13 -0400
parents 9db6880184d0
children 42ca2ab55f91
rev   line source
adamc@524 1 \documentclass{article}
adamc@554 2 \usepackage{fullpage,amsmath,amssymb,proof,url}
adamc@524 3
adamc@524 4 \newcommand{\cd}[1]{\texttt{#1}}
adamc@524 5 \newcommand{\mt}[1]{\mathsf{#1}}
adamc@524 6
adamc@524 7 \newcommand{\rc}{+ \hspace{-.075in} + \;}
adamc@527 8 \newcommand{\rcut}{\; \texttt{--} \;}
adamc@527 9 \newcommand{\rcutM}{\; \texttt{---} \;}
adamc@524 10
adamc@524 11 \begin{document}
adamc@524 12
adamc@524 13 \title{The Ur/Web Manual}
adamc@524 14 \author{Adam Chlipala}
adamc@524 15
adamc@524 16 \maketitle
adamc@524 17
adamc@540 18 \tableofcontents
adamc@540 19
adamc@554 20
adamc@554 21 \section{Introduction}
adamc@554 22
adamc@554 23 \emph{Ur} is a programming language designed to introduce richer type system features into functional programming in the tradition of ML and Haskell. Ur is functional, pure, statically-typed, and strict. Ur supports a powerful kind of \emph{metaprogramming} based on \emph{row types}.
adamc@554 24
adamc@554 25 \emph{Ur/Web} is Ur plus a special standard library and associated rules for parsing and optimization. Ur/Web supports construction of dynamic web applications backed by SQL databases. The signature of the standard library is such that well-typed Ur/Web programs ``don't go wrong'' in a very broad sense. Not only do they not crash during particular page generations, but they also may not:
adamc@554 26
adamc@554 27 \begin{itemize}
adamc@554 28 \item Suffer from any kinds of code-injection attacks
adamc@554 29 \item Return invalid HTML
adamc@554 30 \item Contain dead intra-application links
adamc@554 31 \item Have mismatches between HTML forms and the fields expected by their handlers
adamc@652 32 \item Include client-side code that makes incorrect assumptions about the ``AJAX''-style services that the remote web server provides
adamc@554 33 \item Attempt invalid SQL queries
adamc@652 34 \item Use improper marshaling or unmarshaling in communication with SQL databases or between browsers and web servers
adamc@554 35 \end{itemize}
adamc@554 36
adamc@554 37 This type safety is just the foundation of the Ur/Web methodology. It is also possible to use metaprogramming to build significant application pieces by analysis of type structure. For instance, the demo includes an ML-style functor for building an admin interface for an arbitrary SQL table. The type system guarantees that the admin interface sub-application that comes out will always be free of the above-listed bugs, no matter which well-typed table description is given as input.
adamc@554 38
adamc@652 39 The Ur/Web compiler also produces very efficient object code that does not use garbage collection. These compiled programs will often be even more efficient than what most programmers would bother to write in C. The compiler also generates JavaScript versions of client-side code, with no need to write those parts of applications in a different language.
adamc@554 40
adamc@554 41 \medskip
adamc@554 42
adamc@554 43 The official web site for Ur is:
adamc@554 44 \begin{center}
adamc@554 45 \url{http://www.impredicative.com/ur/}
adamc@554 46 \end{center}
adamc@554 47
adamc@555 48
adamc@555 49 \section{Installation}
adamc@555 50
adamc@555 51 If you are lucky, then the following standard command sequence will suffice for installation, in a directory to which you have unpacked the latest distribution tarball.
adamc@555 52
adamc@555 53 \begin{verbatim}
adamc@555 54 ./configure
adamc@555 55 make
adamc@555 56 sudo make install
adamc@555 57 \end{verbatim}
adamc@555 58
adamc@555 59 Some other packages must be installed for the above to work. At a minimum, you need a standard UNIX shell, with standard UNIX tools like sed and GCC in your execution path; and MLton, the whole-program optimizing compiler for Standard ML. To build programs that access SQL databases, you also need libpq, the PostgreSQL client library. As of this writing, in the ``testing'' version of Debian Linux, this command will install the more uncommon of these dependencies:
adamc@555 60
adamc@555 61 \begin{verbatim}
adamc@555 62 apt-get install mlton libpq-dev
adamc@555 63 \end{verbatim}
adamc@555 64
adamc@555 65 It is also possible to access the modules of the Ur/Web compiler interactively, within Standard ML of New Jersey. To install the prerequisites in Debian testing:
adamc@555 66
adamc@555 67 \begin{verbatim}
adamc@555 68 apt-get install smlnj libsmlnj-smlnj ml-yacc ml-lpt
adamc@555 69 \end{verbatim}
adamc@555 70
adamc@555 71 To begin an interactive session with the Ur compiler modules, run \texttt{make smlnj}, and then, from within an \texttt{sml} session, run \texttt{CM.make "src/urweb.cm";}. The \texttt{Compiler} module is the main entry point.
adamc@555 72
adamc@555 73 To run an SQL-backed application, you will probably want to install the PostgreSQL server. Version 8.3 or higher is required.
adamc@555 74
adamc@555 75 \begin{verbatim}
adamc@555 76 apt-get install postgresql-8.3
adamc@555 77 \end{verbatim}
adamc@555 78
adamc@555 79 To use the Emacs mode, you must have a modern Emacs installed. We assume that you already know how to do this, if you're in the business of looking for an Emacs mode. The demo generation facility of the compiler will also call out to Emacs to syntax-highlight code, and that process depends on the \texttt{htmlize} module, which can be installed in Debian testing via:
adamc@555 80
adamc@555 81 \begin{verbatim}
adamc@555 82 apt-get install emacs-goodies-el
adamc@555 83 \end{verbatim}
adamc@555 84
adamc@555 85 Even with the right packages installed, configuration and building might fail to work. After you run \texttt{./configure}, you will see the values of some named environment variables printed. You may need to adjust these values to get proper installation for your system. To change a value, store your preferred alternative in the corresponding UNIX environment variable, before running \texttt{./configure}. For instance, here is how to change the list of extra arguments that the Ur/Web compiler will pass to GCC on every invocation.
adamc@555 86
adamc@555 87 \begin{verbatim}
adamc@555 88 GCCARGS=-fnested-functions ./configure
adamc@555 89 \end{verbatim}
adamc@555 90
adamc@555 91 Some OSX users have reported needing to use this particular GCCARGS value.
adamc@555 92
adamc@555 93 The Emacs mode can be set to autoload by adding the following to your \texttt{.emacs} file.
adamc@555 94
adamc@555 95 \begin{verbatim}
adamc@555 96 (add-to-list 'load-path "/usr/local/share/emacs/site-lisp/urweb-mode")
adamc@555 97 (load "urweb-mode-startup")
adamc@555 98 \end{verbatim}
adamc@555 99
adamc@555 100 Change the path in the first line if you chose a different Emacs installation path during configuration.
adamc@555 101
adamc@555 102
adamc@556 103 \section{Command-Line Compiler}
adamc@556 104
adamc@556 105 \subsection{Project Files}
adamc@556 106
adamc@556 107 The basic inputs to the \texttt{urweb} compiler are project files, which have the extension \texttt{.urp}. Here is a sample \texttt{.urp} file.
adamc@556 108
adamc@556 109 \begin{verbatim}
adamc@556 110 database dbname=test
adamc@556 111 sql crud1.sql
adamc@556 112
adamc@556 113 crud
adamc@556 114 crud1
adamc@556 115 \end{verbatim}
adamc@556 116
adamc@556 117 The \texttt{database} line gives the database information string to pass to libpq. In this case, the string only says to connect to a local database named \texttt{test}.
adamc@556 118
adamc@556 119 The \texttt{sql} line asks for an SQL source file to be generated, giving the commands to run to create the tables and sequences that this application expects to find. After building this \texttt{.urp} file, the following commands could be used to initialize the database, assuming that the current UNIX user exists as a Postgres user with database creation privileges:
adamc@556 120
adamc@556 121 \begin{verbatim}
adamc@556 122 createdb test
adamc@556 123 psql -f crud1.sql test
adamc@556 124 \end{verbatim}
adamc@556 125
adamc@556 126 A blank line always separates the named directives from a list of modules to include in the project; if there are no named directives, a blank line must begin the file.
adamc@556 127
adamc@556 128 For each entry \texttt{M} in the module list, the file \texttt{M.urs} is included in the project if it exists, and the file \texttt{M.ur} must exist and is always included.
adamc@556 129
adamc@556 130 A few other named directives are supported. \texttt{prefix PREFIX} sets the prefix included before every URI within the generated application; the default is \texttt{/}. \texttt{exe FILENAME} sets the filename to which to write the output executable; the default for file \texttt{P.urp} is \texttt{P.exe}. \texttt{debug} saves some intermediate C files, which is mostly useful to help in debugging the compiler itself. \texttt{profile} generates an executable that may be used with gprof.
adamc@556 131
adamc@557 132 \subsection{Building an Application}
adamc@557 133
adamc@557 134 To compile project \texttt{P.urp}, simply run
adamc@557 135 \begin{verbatim}
adamc@557 136 urweb P
adamc@557 137 \end{verbatim}
adamc@558 138 The output executable is a standalone web server. Run it with the command-line argument \texttt{-h} to see which options it takes. If the project file lists a database, the web server will attempt to connect to that database on startup.
adamc@557 139
adamc@557 140 To time how long the different compiler phases run, without generating an executable, run
adamc@557 141 \begin{verbatim}
adamc@557 142 urweb -timing P
adamc@557 143 \end{verbatim}
adamc@557 144
adamc@556 145
adamc@529 146 \section{Ur Syntax}
adamc@529 147
adamc@529 148 In this section, we describe the syntax of Ur, deferring to a later section discussion of most of the syntax specific to SQL and XML. The sole exceptions are the declaration forms for tables, sequences, and cookies.
adamc@524 149
adamc@524 150 \subsection{Lexical Conventions}
adamc@524 151
adamc@524 152 We give the Ur language definition in \LaTeX $\;$ math mode, since that is prettier than monospaced ASCII. The corresponding ASCII syntax can be read off directly. Here is the key for mapping math symbols to ASCII character sequences.
adamc@524 153
adamc@524 154 \begin{center}
adamc@524 155 \begin{tabular}{rl}
adamc@524 156 \textbf{\LaTeX} & \textbf{ASCII} \\
adamc@524 157 $\to$ & \cd{->} \\
adamc@652 158 $\longrightarrow$ & \cd{-->} \\
adamc@524 159 $\times$ & \cd{*} \\
adamc@524 160 $\lambda$ & \cd{fn} \\
adamc@524 161 $\Rightarrow$ & \cd{=>} \\
adamc@652 162 $\Longrightarrow$ & \cd{==>} \\
adamc@529 163 $\neq$ & \cd{<>} \\
adamc@529 164 $\leq$ & \cd{<=} \\
adamc@529 165 $\geq$ & \cd{>=} \\
adamc@524 166 \\
adamc@524 167 $x$ & Normal textual identifier, not beginning with an uppercase letter \\
adamc@525 168 $X$ & Normal textual identifier, beginning with an uppercase letter \\
adamc@524 169 \end{tabular}
adamc@524 170 \end{center}
adamc@524 171
adamc@525 172 We often write syntax like $e^*$ to indicate zero or more copies of $e$, $e^+$ to indicate one or more copies, and $e,^*$ and $e,^+$ to indicate multiple copies separated by commas. Another separator may be used in place of a comma. The $e$ term may be surrounded by parentheses to indicate grouping; those parentheses should not be included in the actual ASCII.
adamc@524 173
adamc@526 174 We write $\ell$ for literals of the primitive types, for the most part following C conventions. There are $\mt{int}$, $\mt{float}$, and $\mt{string}$ literals.
adamc@526 175
adamc@527 176 This version of the manual doesn't include operator precedences; see \texttt{src/urweb.grm} for that.
adamc@527 177
adamc@552 178 \subsection{\label{core}Core Syntax}
adamc@524 179
adamc@524 180 \emph{Kinds} classify types and other compile-time-only entities. Each kind in the grammar is listed with a description of the sort of data it classifies.
adamc@524 181 $$\begin{array}{rrcll}
adamc@524 182 \textrm{Kinds} & \kappa &::=& \mt{Type} & \textrm{proper types} \\
adamc@525 183 &&& \mt{Unit} & \textrm{the trivial constructor} \\
adamc@525 184 &&& \mt{Name} & \textrm{field names} \\
adamc@525 185 &&& \kappa \to \kappa & \textrm{type-level functions} \\
adamc@525 186 &&& \{\kappa\} & \textrm{type-level records} \\
adamc@525 187 &&& (\kappa\times^+) & \textrm{type-level tuples} \\
adamc@652 188 &&& X & \textrm{variable} \\
adamc@652 189 &&& X \longrightarrow k & \textrm{kind-polymorphic type-level function} \\
adamc@529 190 &&& \_\_ & \textrm{wildcard} \\
adamc@525 191 &&& (\kappa) & \textrm{explicit precedence} \\
adamc@524 192 \end{array}$$
adamc@524 193
adamc@524 194 Ur supports several different notions of functions that take types as arguments. These arguments can be either implicit, causing them to be inferred at use sites; or explicit, forcing them to be specified manually at use sites. There is a common explicitness annotation convention applied at the definitions of and in the types of such functions.
adamc@524 195 $$\begin{array}{rrcll}
adamc@524 196 \textrm{Explicitness} & ? &::=& :: & \textrm{explicit} \\
adamc@558 197 &&& ::: & \textrm{implicit}
adamc@524 198 \end{array}$$
adamc@524 199
adamc@524 200 \emph{Constructors} are the main class of compile-time-only data. They include proper types and are classified by kinds.
adamc@524 201 $$\begin{array}{rrcll}
adamc@524 202 \textrm{Constructors} & c, \tau &::=& (c) :: \kappa & \textrm{kind annotation} \\
adamc@530 203 &&& \hat{x} & \textrm{constructor variable} \\
adamc@524 204 \\
adamc@525 205 &&& \tau \to \tau & \textrm{function type} \\
adamc@525 206 &&& x \; ? \; \kappa \to \tau & \textrm{polymorphic function type} \\
adamc@652 207 &&& X \longrightarrow \tau & \textrm{kind-polymorphic function type} \\
adamc@525 208 &&& \$ c & \textrm{record type} \\
adamc@524 209 \\
adamc@525 210 &&& c \; c & \textrm{type-level function application} \\
adamc@530 211 &&& \lambda x \; :: \; \kappa \Rightarrow c & \textrm{type-level function abstraction} \\
adamc@524 212 \\
adamc@652 213 &&& X \Longrightarrow c & \textrm{type-level kind-polymorphic function abstraction} \\
adamc@652 214 \\
adamc@525 215 &&& () & \textrm{type-level unit} \\
adamc@525 216 &&& \#X & \textrm{field name} \\
adamc@524 217 \\
adamc@525 218 &&& [(c = c)^*] & \textrm{known-length type-level record} \\
adamc@525 219 &&& c \rc c & \textrm{type-level record concatenation} \\
adamc@652 220 &&& \mt{map} & \textrm{type-level record map} \\
adamc@524 221 \\
adamc@558 222 &&& (c,^+) & \textrm{type-level tuple} \\
adamc@525 223 &&& c.n & \textrm{type-level tuple projection ($n \in \mathbb N^+$)} \\
adamc@524 224 \\
adamc@652 225 &&& [c \sim c] \Rightarrow \tau & \textrm{guarded type} \\
adamc@524 226 \\
adamc@529 227 &&& \_ :: \kappa & \textrm{wildcard} \\
adamc@525 228 &&& (c) & \textrm{explicit precedence} \\
adamc@530 229 \\
adamc@530 230 \textrm{Qualified uncapitalized variables} & \hat{x} &::=& x & \textrm{not from a module} \\
adamc@530 231 &&& M.x & \textrm{projection from a module} \\
adamc@525 232 \end{array}$$
adamc@525 233
adamc@525 234 Modules of the module system are described by \emph{signatures}.
adamc@525 235 $$\begin{array}{rrcll}
adamc@525 236 \textrm{Signatures} & S &::=& \mt{sig} \; s^* \; \mt{end} & \textrm{constant} \\
adamc@525 237 &&& X & \textrm{variable} \\
adamc@525 238 &&& \mt{functor}(X : S) : S & \textrm{functor} \\
adamc@529 239 &&& S \; \mt{where} \; \mt{con} \; x = c & \textrm{concretizing an abstract constructor} \\
adamc@525 240 &&& M.X & \textrm{projection from a module} \\
adamc@525 241 \\
adamc@525 242 \textrm{Signature items} & s &::=& \mt{con} \; x :: \kappa & \textrm{abstract constructor} \\
adamc@525 243 &&& \mt{con} \; x :: \kappa = c & \textrm{concrete constructor} \\
adamc@528 244 &&& \mt{datatype} \; x \; x^* = dc\mid^+ & \textrm{algebraic datatype definition} \\
adamc@529 245 &&& \mt{datatype} \; x = \mt{datatype} \; M.x & \textrm{algebraic datatype import} \\
adamc@525 246 &&& \mt{val} \; x : \tau & \textrm{value} \\
adamc@525 247 &&& \mt{structure} \; X : S & \textrm{sub-module} \\
adamc@525 248 &&& \mt{signature} \; X = S & \textrm{sub-signature} \\
adamc@525 249 &&& \mt{include} \; S & \textrm{signature inclusion} \\
adamc@525 250 &&& \mt{constraint} \; c \sim c & \textrm{record disjointness constraint} \\
adamc@654 251 &&& \mt{class} \; x :: \kappa & \textrm{abstract constructor class} \\
adamc@654 252 &&& \mt{class} \; x :: \kappa = c & \textrm{concrete constructor class} \\
adamc@525 253 \\
adamc@525 254 \textrm{Datatype constructors} & dc &::=& X & \textrm{nullary constructor} \\
adamc@525 255 &&& X \; \mt{of} \; \tau & \textrm{unary constructor} \\
adamc@524 256 \end{array}$$
adamc@524 257
adamc@526 258 \emph{Patterns} are used to describe structural conditions on expressions, such that expressions may be tested against patterns, generating assignments to pattern variables if successful.
adamc@526 259 $$\begin{array}{rrcll}
adamc@526 260 \textrm{Patterns} & p &::=& \_ & \textrm{wildcard} \\
adamc@526 261 &&& x & \textrm{variable} \\
adamc@526 262 &&& \ell & \textrm{constant} \\
adamc@526 263 &&& \hat{X} & \textrm{nullary constructor} \\
adamc@526 264 &&& \hat{X} \; p & \textrm{unary constructor} \\
adamc@526 265 &&& \{(x = p,)^*\} & \textrm{rigid record pattern} \\
adamc@526 266 &&& \{(x = p,)^+, \ldots\} & \textrm{flexible record pattern} \\
adamc@527 267 &&& (p) & \textrm{explicit precedence} \\
adamc@526 268 \\
adamc@529 269 \textrm{Qualified capitalized variables} & \hat{X} &::=& X & \textrm{not from a module} \\
adamc@526 270 &&& M.X & \textrm{projection from a module} \\
adamc@526 271 \end{array}$$
adamc@526 272
adamc@527 273 \emph{Expressions} are the main run-time entities, corresponding to both ``expressions'' and ``statements'' in mainstream imperative languages.
adamc@527 274 $$\begin{array}{rrcll}
adamc@527 275 \textrm{Expressions} & e &::=& e : \tau & \textrm{type annotation} \\
adamc@529 276 &&& \hat{x} & \textrm{variable} \\
adamc@529 277 &&& \hat{X} & \textrm{datatype constructor} \\
adamc@527 278 &&& \ell & \textrm{constant} \\
adamc@527 279 \\
adamc@527 280 &&& e \; e & \textrm{function application} \\
adamc@527 281 &&& \lambda x : \tau \Rightarrow e & \textrm{function abstraction} \\
adamc@527 282 &&& e [c] & \textrm{polymorphic function application} \\
adamc@527 283 &&& \lambda x \; ? \; \kappa \Rightarrow e & \textrm{polymorphic function abstraction} \\
adamc@652 284 &&& X \Longrightarrow e & \textrm{kind-polymorphic function abstraction} \\
adamc@527 285 \\
adamc@527 286 &&& \{(c = e,)^*\} & \textrm{known-length record} \\
adamc@527 287 &&& e.c & \textrm{record field projection} \\
adamc@527 288 &&& e \rc e & \textrm{record concatenation} \\
adamc@527 289 &&& e \rcut c & \textrm{removal of a single record field} \\
adamc@527 290 &&& e \rcutM c & \textrm{removal of multiple record fields} \\
adamc@527 291 \\
adamc@527 292 &&& \mt{let} \; ed^* \; \mt{in} \; e \; \mt{end} & \textrm{local definitions} \\
adamc@527 293 \\
adamc@527 294 &&& \mt{case} \; e \; \mt{of} \; (p \Rightarrow e|)^+ & \textrm{pattern matching} \\
adamc@527 295 \\
adamc@654 296 &&& \lambda [c \sim c] \Rightarrow e & \textrm{guarded expression abstraction} \\
adamc@654 297 &&& e \; ! & \textrm{guarded expression application} \\
adamc@527 298 \\
adamc@527 299 &&& \_ & \textrm{wildcard} \\
adamc@527 300 &&& (e) & \textrm{explicit precedence} \\
adamc@527 301 \\
adamc@527 302 \textrm{Local declarations} & ed &::=& \cd{val} \; x : \tau = e & \textrm{non-recursive value} \\
adamc@527 303 &&& \cd{val} \; \cd{rec} \; (x : \tau = e \; \cd{and})^+ & \textrm{mutually-recursive values} \\
adamc@527 304 \end{array}$$
adamc@527 305
adamc@528 306 \emph{Declarations} primarily bring new symbols into context.
adamc@528 307 $$\begin{array}{rrcll}
adamc@528 308 \textrm{Declarations} & d &::=& \mt{con} \; x :: \kappa = c & \textrm{constructor synonym} \\
adamc@528 309 &&& \mt{datatype} \; x \; x^* = dc\mid^+ & \textrm{algebraic datatype definition} \\
adamc@529 310 &&& \mt{datatype} \; x = \mt{datatype} \; M.x & \textrm{algebraic datatype import} \\
adamc@528 311 &&& \mt{val} \; x : \tau = e & \textrm{value} \\
adamc@528 312 &&& \mt{val} \; \cd{rec} \; (x : \tau = e \; \mt{and})^+ & \textrm{mutually-recursive values} \\
adamc@528 313 &&& \mt{structure} \; X : S = M & \textrm{module definition} \\
adamc@528 314 &&& \mt{signature} \; X = S & \textrm{signature definition} \\
adamc@528 315 &&& \mt{open} \; M & \textrm{module inclusion} \\
adamc@528 316 &&& \mt{constraint} \; c \sim c & \textrm{record disjointness constraint} \\
adamc@528 317 &&& \mt{open} \; \mt{constraints} \; M & \textrm{inclusion of just the constraints from a module} \\
adamc@528 318 &&& \mt{table} \; x : c & \textrm{SQL table} \\
adamc@528 319 &&& \mt{sequence} \; x & \textrm{SQL sequence} \\
adamc@535 320 &&& \mt{cookie} \; x : \tau & \textrm{HTTP cookie} \\
adamc@654 321 &&& \mt{class} \; x :: \kappa = c & \textrm{concrete constructor class} \\
adamc@528 322 \\
adamc@529 323 \textrm{Modules} & M &::=& \mt{struct} \; d^* \; \mt{end} & \textrm{constant} \\
adamc@529 324 &&& X & \textrm{variable} \\
adamc@529 325 &&& M.X & \textrm{projection} \\
adamc@529 326 &&& M(M) & \textrm{functor application} \\
adamc@529 327 &&& \mt{functor}(X : S) : S = M & \textrm{functor abstraction} \\
adamc@528 328 \end{array}$$
adamc@528 329
adamc@528 330 There are two kinds of Ur files. A file named $M\texttt{.ur}$ is an \emph{implementation file}, and it should contain a sequence of declarations $d^*$. A file named $M\texttt{.urs}$ is an \emph{interface file}; it must always have a matching $M\texttt{.ur}$ and should contain a sequence of signature items $s^*$. When both files are present, the overall effect is the same as a monolithic declaration $\mt{structure} \; M : \mt{sig} \; s^* \; \mt{end} = \mt{struct} \; d^* \; \mt{end}$. When no interface file is included, the overall effect is similar, with a signature for module $M$ being inferred rather than just checked against an interface.
adamc@527 331
adamc@529 332 \subsection{Shorthands}
adamc@529 333
adamc@529 334 There are a variety of derived syntactic forms that elaborate into the core syntax from the last subsection. We will present the additional forms roughly following the order in which we presented the constructs that they elaborate into.
adamc@529 335
adamc@529 336 In many contexts where record fields are expected, like in a projection $e.c$, a constant field may be written as simply $X$, rather than $\#X$.
adamc@529 337
adamc@529 338 A record type may be written $\{(c = c,)^*\}$, which elaborates to $\$[(c = c,)^*]$.
adamc@529 339
adamc@533 340 The notation $[c_1, \ldots, c_n]$ is shorthand for $[c_1 = (), \ldots, c_n = ()]$.
adamc@533 341
adamc@529 342 A tuple type $(\tau_1, \ldots, \tau_n)$ expands to a record type $\{1 = \tau_1, \ldots, n = \tau_n\}$, with natural numbers as field names. A tuple pattern $(p_1, \ldots, p_n)$ expands to a rigid record pattern $\{1 = p_1, \ldots, n = p_n\}$. Positive natural numbers may be used in most places where field names would be allowed.
adamc@529 343
adamc@654 344 In general, several adjacent $\lambda$ forms may be combined into one, and kind and type annotations may be omitted, in which case they are implicitly included as wildcards. More formally, for constructor-level abstractions, we can define a new non-terminal $b ::= x \mid (x :: \kappa) \mid X$ and allow composite abstractions of the form $\lambda b^+ \Rightarrow c$, elaborating into the obvious sequence of one core $\lambda$ per element of $b^+$.
adamc@529 345
adamc@529 346 For any signature item or declaration that defines some entity to be equal to $A$ with classification annotation $B$ (e.g., $\mt{val} \; x : B = A$), $B$ and the preceding colon (or similar punctuation) may be omitted, in which case it is filled in as a wildcard.
adamc@529 347
adamc@529 348 A signature item or declaration $\mt{type} \; x$ or $\mt{type} \; x = \tau$ is elaborated into $\mt{con} \; x :: \mt{Type}$ or $\mt{con} \; x :: \mt{Type} = \tau$, respectively.
adamc@529 349
adamc@654 350 A signature item or declaration $\mt{class} \; x = \lambda y \Rightarrow c$ may be abbreviated $\mt{class} \; x \; y = c$.
adamc@529 351
adamc@654 352 Handling of implicit and explicit constructor arguments may be tweaked with some prefixes to variable references. An expression $@x$ is a version of $x$ where all implicit constructor arguments have been made explicit. An expression $@@x$ achieves the same effect, additionally halting automatic resolution of type class instances and automatic proving of disjointness constraints. The default is that any prefix of a variable's type consisting only of implicit polymorphism, type class instances, and disjointness obligations is resolved automatically, with the variable treated as having the type that starts after the last implicit element, with suitable unification variables substituted. The same syntax works for variables projected out of modules and for capitalized variables (datatype constructors).
adamc@529 353
adamc@654 354 At the expression level, an analogue is available of the composite $\lambda$ form for constructors. We define the language of binders as $b ::= x \mid (x : \tau) \mid (x \; ? \; \kappa) \mid X \mid [c \sim c]$. A lone variable $x$ as a binder stands for an expression variable of unspecified type.
adamc@529 355
adamc@529 356 A $\mt{val}$ or $\mt{val} \; \mt{rec}$ declaration may include expression binders before the equal sign, following the binder grammar from the last paragraph. Such declarations are elaborated into versions that add additional $\lambda$s to the fronts of the righthand sides, as appropriate. The keyword $\mt{fun}$ is a synonym for $\mt{val} \; \mt{rec}$.
adamc@529 357
adamc@529 358 A signature item $\mt{functor} \; X_1 \; (X_2 : S_1) : S_2$ is elaborated into $\mt{structure} \; X_1 : \mt{functor}(X_2 : S_1) : S_2$. A declaration $\mt{functor} \; X_1 \; (X_2 : S_1) : S_2 = M$ is elaborated into $\mt{structure} \; X_1 : \mt{functor}(X_2 : S_1) : S_2 = \mt{functor}(X_2 : S_1) : S_2 = M$.
adamc@529 359
adamc@529 360 A declaration $\mt{table} \; x : \{(c = c,)^*\}$ is elaborated into $\mt{table} \; x : [(c = c,)^*]$
adamc@529 361
adamc@529 362 The syntax $\mt{where} \; \mt{type}$ is an alternate form of $\mt{where} \; \mt{con}$.
adamc@529 363
adamc@529 364 The syntax $\mt{if} \; e \; \mt{then} \; e_1 \; \mt{else} \; e_2$ expands to $\mt{case} \; e \; \mt{of} \; \mt{Basis}.\mt{True} \Rightarrow e_1 \mid \mt{Basis}.\mt{False} \Rightarrow e_2$.
adamc@529 365
adamc@529 366 There are infix operator syntaxes for a number of functions defined in the $\mt{Basis}$ module. There is $=$ for $\mt{eq}$, $\neq$ for $\mt{neq}$, $-$ for $\mt{neg}$ (as a prefix operator) and $\mt{minus}$, $+$ for $\mt{plus}$, $\times$ for $\mt{times}$, $/$ for $\mt{div}$, $\%$ for $\mt{mod}$, $<$ for $\mt{lt}$, $\leq$ for $\mt{le}$, $>$ for $\mt{gt}$, and $\geq$ for $\mt{ge}$.
adamc@529 367
adamc@529 368 A signature item $\mt{table} \; x : c$ is shorthand for $\mt{val} \; x : \mt{Basis}.\mt{sql\_table} \; c$. $\mt{sequence} \; x$ is short for $\mt{val} \; x : \mt{Basis}.\mt{sql\_sequence}$, and $\mt{cookie} \; x : \tau$ is shorthand for $\mt{val} \; x : \mt{Basis}.\mt{http\_cookie} \; \tau$.
adamc@529 369
adamc@530 370
adamc@530 371 \section{Static Semantics}
adamc@530 372
adamc@530 373 In this section, we give a declarative presentation of Ur's typing rules and related judgments. Inference is the subject of the next section; here, we assume that an oracle has filled in all wildcards with concrete values.
adamc@530 374
adamc@530 375 Since there is significant mutual recursion among the judgments, we introduce them all before beginning to give rules. We use the same variety of contexts throughout this section, implicitly introducing new sorts of context entries as needed.
adamc@530 376 \begin{itemize}
adamc@530 377 \item $\Gamma \vdash c :: \kappa$ assigns a kind to a constructor in a context.
adamc@530 378 \item $\Gamma \vdash c \sim c$ proves the disjointness of two record constructors; that is, that they share no field names. We overload the judgment to apply to pairs of field names as well.
adamc@531 379 \item $\Gamma \vdash c \hookrightarrow C$ proves that record constructor $c$ decomposes into set $C$ of field names and record constructors.
adamc@530 380 \item $\Gamma \vdash c \equiv c$ proves the computational equivalence of two constructors. This is often called a \emph{definitional equality} in the world of type theory.
adamc@530 381 \item $\Gamma \vdash e : \tau$ is a standard typing judgment.
adamc@534 382 \item $\Gamma \vdash p \leadsto \Gamma; \tau$ combines typing of patterns with calculation of which new variables they bind.
adamc@537 383 \item $\Gamma \vdash d \leadsto \Gamma$ expresses how a declaration modifies a context. We overload this judgment to apply to sequences of declarations, as well as to signature items and sequences of signature items.
adamc@537 384 \item $\Gamma \vdash S \equiv S$ is the signature equivalence judgment.
adamc@536 385 \item $\Gamma \vdash S \leq S$ is the signature compatibility judgment. We write $\Gamma \vdash S$ as shorthand for $\Gamma \vdash S \leq S$.
adamc@530 386 \item $\Gamma \vdash M : S$ is the module signature checking judgment.
adamc@537 387 \item $\mt{proj}(M, \overline{s}, V)$ is a partial function for projecting a signature item from $\overline{s}$, given the module $M$ that we project from. $V$ may be $\mt{con} \; x$, $\mt{datatype} \; x$, $\mt{val} \; x$, $\mt{signature} \; X$, or $\mt{structure} \; X$. The parameter $M$ is needed because the projected signature item may refer to other items from $\overline{s}$.
adamc@539 388 \item $\mt{selfify}(M, \overline{s})$ adds information to signature items $\overline{s}$ to reflect the fact that we are concerned with the particular module $M$. This function is overloaded to work over individual signature items as well.
adamc@530 389 \end{itemize}
adamc@530 390
adamc@530 391 \subsection{Kinding}
adamc@530 392
adamc@530 393 $$\infer{\Gamma \vdash (c) :: \kappa :: \kappa}{
adamc@530 394 \Gamma \vdash c :: \kappa
adamc@530 395 }
adamc@530 396 \quad \infer{\Gamma \vdash x :: \kappa}{
adamc@530 397 x :: \kappa \in \Gamma
adamc@530 398 }
adamc@530 399 \quad \infer{\Gamma \vdash x :: \kappa}{
adamc@530 400 x :: \kappa = c \in \Gamma
adamc@530 401 }$$
adamc@530 402
adamc@530 403 $$\infer{\Gamma \vdash M.x :: \kappa}{
adamc@537 404 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 405 & \mt{proj}(M, \overline{s}, \mt{con} \; x) = \kappa
adamc@530 406 }
adamc@530 407 \quad \infer{\Gamma \vdash M.x :: \kappa}{
adamc@537 408 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 409 & \mt{proj}(M, \overline{s}, \mt{con} \; x) = (\kappa, c)
adamc@530 410 }$$
adamc@530 411
adamc@530 412 $$\infer{\Gamma \vdash \tau_1 \to \tau_2 :: \mt{Type}}{
adamc@530 413 \Gamma \vdash \tau_1 :: \mt{Type}
adamc@530 414 & \Gamma \vdash \tau_2 :: \mt{Type}
adamc@530 415 }
adamc@530 416 \quad \infer{\Gamma \vdash x \; ? \: \kappa \to \tau :: \mt{Type}}{
adamc@530 417 \Gamma, x :: \kappa \vdash \tau :: \mt{Type}
adamc@530 418 }
adamc@530 419 \quad \infer{\Gamma \vdash \$c :: \mt{Type}}{
adamc@530 420 \Gamma \vdash c :: \{\mt{Type}\}
adamc@530 421 }$$
adamc@530 422
adamc@530 423 $$\infer{\Gamma \vdash c_1 \; c_2 :: \kappa_2}{
adamc@530 424 \Gamma \vdash c_1 :: \kappa_1 \to \kappa_2
adamc@530 425 & \Gamma \vdash c_2 :: \kappa_1
adamc@530 426 }
adamc@530 427 \quad \infer{\Gamma \vdash \lambda x \; :: \; \kappa_1 \Rightarrow c :: \kappa_1 \to \kappa_2}{
adamc@530 428 \Gamma, x :: \kappa_1 \vdash c :: \kappa_2
adamc@530 429 }$$
adamc@530 430
adamc@530 431 $$\infer{\Gamma \vdash () :: \mt{Unit}}{}
adamc@530 432 \quad \infer{\Gamma \vdash \#X :: \mt{Name}}{}$$
adamc@530 433
adamc@530 434 $$\infer{\Gamma \vdash [\overline{c_i = c'_i}] :: \{\kappa\}}{
adamc@530 435 \forall i: \Gamma \vdash c_i : \mt{Name}
adamc@530 436 & \Gamma \vdash c'_i :: \kappa
adamc@530 437 & \forall i \neq j: \Gamma \vdash c_i \sim c_j
adamc@530 438 }
adamc@530 439 \quad \infer{\Gamma \vdash c_1 \rc c_2 :: \{\kappa\}}{
adamc@530 440 \Gamma \vdash c_1 :: \{\kappa\}
adamc@530 441 & \Gamma \vdash c_2 :: \{\kappa\}
adamc@530 442 & \Gamma \vdash c_1 \sim c_2
adamc@530 443 }$$
adamc@530 444
adamc@530 445 $$\infer{\Gamma \vdash \mt{fold} :: ((\mt{Name} \to \kappa_1 \to \kappa_2 \to \kappa_2) \to \kappa_2 \to \{\kappa_1\} \to \kappa_2}{}$$
adamc@530 446
adamc@573 447 $$\infer{\Gamma \vdash (\overline c) :: (\kappa_1 \times \ldots \times \kappa_n)}{
adamc@573 448 \forall i: \Gamma \vdash c_i :: \kappa_i
adamc@530 449 }
adamc@573 450 \quad \infer{\Gamma \vdash c.i :: \kappa_i}{
adamc@573 451 \Gamma \vdash c :: (\kappa_1 \times \ldots \times \kappa_n)
adamc@530 452 }$$
adamc@530 453
adamc@530 454 $$\infer{\Gamma \vdash \lambda [c_1 \sim c_2] \Rightarrow c :: \kappa}{
adamc@530 455 \Gamma \vdash c_1 :: \{\kappa'\}
adamc@530 456 & \Gamma \vdash c_2 :: \{\kappa'\}
adamc@530 457 & \Gamma, c_1 \sim c_2 \vdash c :: \kappa
adamc@530 458 }$$
adamc@530 459
adamc@531 460 \subsection{Record Disjointness}
adamc@531 461
adamc@531 462 We will use a keyword $\mt{map}$ as a shorthand, such that, for $f$ of kind $\kappa \to \kappa'$, $\mt{map} \; f$ stands for $\mt{fold} \; (\lambda (x_1 :: \mt{Name}) (x_2 :: \kappa) (x_3 :: \{\kappa'\}) \Rightarrow [x_1 = f \; x_2] \rc x_3) \; []$.
adamc@531 463
adamc@531 464 $$\infer{\Gamma \vdash c_1 \sim c_2}{
adamc@558 465 \Gamma \vdash c_1 \hookrightarrow C_1
adamc@558 466 & \Gamma \vdash c_2 \hookrightarrow C_2
adamc@558 467 & \forall c'_1 \in C_1, c'_2 \in C_2: \Gamma \vdash c'_1 \sim c'_2
adamc@531 468 }
adamc@531 469 \quad \infer{\Gamma \vdash X \sim X'}{
adamc@531 470 X \neq X'
adamc@531 471 }$$
adamc@531 472
adamc@531 473 $$\infer{\Gamma \vdash c_1 \sim c_2}{
adamc@531 474 c'_1 \sim c'_2 \in \Gamma
adamc@558 475 & \Gamma \vdash c'_1 \hookrightarrow C_1
adamc@558 476 & \Gamma \vdash c'_2 \hookrightarrow C_2
adamc@558 477 & c_1 \in C_1
adamc@558 478 & c_2 \in C_2
adamc@531 479 }$$
adamc@531 480
adamc@531 481 $$\infer{\Gamma \vdash c \hookrightarrow \{c\}}{}
adamc@531 482 \quad \infer{\Gamma \vdash [\overline{c = c'}] \hookrightarrow \{\overline{c}\}}{}
adamc@531 483 \quad \infer{\Gamma \vdash c_1 \rc c_2 \hookrightarrow C_1 \cup C_2}{
adamc@531 484 \Gamma \vdash c_1 \hookrightarrow C_1
adamc@531 485 & \Gamma \vdash c_2 \hookrightarrow C_2
adamc@531 486 }
adamc@531 487 \quad \infer{\Gamma \vdash c \hookrightarrow C}{
adamc@531 488 \Gamma \vdash c \equiv c'
adamc@531 489 & \Gamma \vdash c' \hookrightarrow C
adamc@531 490 }
adamc@531 491 \quad \infer{\Gamma \vdash \mt{map} \; f \; c \hookrightarrow C}{
adamc@531 492 \Gamma \vdash c \hookrightarrow C
adamc@531 493 }$$
adamc@531 494
adamc@541 495 \subsection{\label{definitional}Definitional Equality}
adamc@532 496
adamc@532 497 We use $\mathcal C$ to stand for a one-hole context that, when filled, yields a constructor. The notation $\mathcal C[c]$ plugs $c$ into $\mathcal C$. We omit the standard definition of one-hole contexts. We write $[x \mapsto c_1]c_2$ for capture-avoiding substitution of $c_1$ for $x$ in $c_2$.
adamc@532 498
adamc@532 499 $$\infer{\Gamma \vdash c \equiv c}{}
adamc@532 500 \quad \infer{\Gamma \vdash c_1 \equiv c_2}{
adamc@532 501 \Gamma \vdash c_2 \equiv c_1
adamc@532 502 }
adamc@532 503 \quad \infer{\Gamma \vdash c_1 \equiv c_3}{
adamc@532 504 \Gamma \vdash c_1 \equiv c_2
adamc@532 505 & \Gamma \vdash c_2 \equiv c_3
adamc@532 506 }
adamc@532 507 \quad \infer{\Gamma \vdash \mathcal C[c_1] \equiv \mathcal C[c_2]}{
adamc@532 508 \Gamma \vdash c_1 \equiv c_2
adamc@532 509 }$$
adamc@532 510
adamc@532 511 $$\infer{\Gamma \vdash x \equiv c}{
adamc@532 512 x :: \kappa = c \in \Gamma
adamc@532 513 }
adamc@532 514 \quad \infer{\Gamma \vdash M.x \equiv c}{
adamc@537 515 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 516 & \mt{proj}(M, \overline{s}, \mt{con} \; x) = (\kappa, c)
adamc@532 517 }
adamc@532 518 \quad \infer{\Gamma \vdash (\overline c).i \equiv c_i}{}$$
adamc@532 519
adamc@532 520 $$\infer{\Gamma \vdash (\lambda x :: \kappa \Rightarrow c) \; c' \equiv [x \mapsto c'] c}{}
adamc@532 521 \quad \infer{\Gamma \vdash c_1 \rc c_2 \equiv c_2 \rc c_1}{}
adamc@532 522 \quad \infer{\Gamma \vdash c_1 \rc (c_2 \rc c_3) \equiv (c_1 \rc c_2) \rc c_3}{}$$
adamc@532 523
adamc@532 524 $$\infer{\Gamma \vdash [] \rc c \equiv c}{}
adamc@532 525 \quad \infer{\Gamma \vdash [\overline{c_1 = c'_1}] \rc [\overline{c_2 = c'_2}] \equiv [\overline{c_1 = c'_1}, \overline{c_2 = c'_2}]}{}$$
adamc@532 526
adamc@532 527 $$\infer{\Gamma \vdash \lambda [c_1 \sim c_2] \Rightarrow c \equiv c}{
adamc@532 528 \Gamma \vdash c_1 \sim c_2
adamc@532 529 }
adamc@532 530 \quad \infer{\Gamma \vdash \mt{fold} \; f \; i \; [] \equiv i}{}
adamc@532 531 \quad \infer{\Gamma \vdash \mt{fold} \; f \; i \; ([c_1 = c_2] \rc c) \equiv f \; c_1 \; c_2 \; (\mt{fold} \; f \; i \; c)}{}$$
adamc@532 532
adamc@532 533 $$\infer{\Gamma \vdash \mt{map} \; (\lambda x \Rightarrow x) \; c \equiv c}{}
adamc@532 534 \quad \infer{\Gamma \vdash \mt{fold} \; f \; i \; (\mt{map} \; f' \; c)
adamc@532 535 \equiv \mt{fold} \; (\lambda (x_1 :: \mt{Name}) (x_2 :: \kappa) \Rightarrow f \; x_1 \; (f' \; x_2)) \; i \; c}{}$$
adamc@532 536
adamc@532 537 $$\infer{\Gamma \vdash \mt{map} \; f \; (c_1 \rc c_2) \equiv \mt{map} \; f \; c_1 \rc \mt{map} \; f \; c_2}{}$$
adamc@531 538
adamc@534 539 \subsection{Expression Typing}
adamc@533 540
adamc@533 541 We assume the existence of a function $T$ assigning types to literal constants. It maps integer constants to $\mt{Basis}.\mt{int}$, float constants to $\mt{Basis}.\mt{float}$, and string constants to $\mt{Basis}.\mt{string}$.
adamc@533 542
adamc@533 543 We also refer to a function $\mathcal I$, such that $\mathcal I(\tau)$ ``uses an oracle'' to instantiate all constructor function arguments at the beginning of $\tau$ that are marked implicit; i.e., replace $x_1 ::: \kappa_1 \to \ldots \to x_n ::: \kappa_n \to \tau$ with $[x_1 \mapsto c_1]\ldots[x_n \mapsto c_n]\tau$, where the $c_i$s are inferred and $\tau$ does not start like $x ::: \kappa \to \tau'$.
adamc@533 544
adamc@533 545 $$\infer{\Gamma \vdash e : \tau : \tau}{
adamc@533 546 \Gamma \vdash e : \tau
adamc@533 547 }
adamc@533 548 \quad \infer{\Gamma \vdash e : \tau}{
adamc@533 549 \Gamma \vdash e : \tau'
adamc@533 550 & \Gamma \vdash \tau' \equiv \tau
adamc@533 551 }
adamc@533 552 \quad \infer{\Gamma \vdash \ell : T(\ell)}{}$$
adamc@533 553
adamc@533 554 $$\infer{\Gamma \vdash x : \mathcal I(\tau)}{
adamc@533 555 x : \tau \in \Gamma
adamc@533 556 }
adamc@533 557 \quad \infer{\Gamma \vdash M.x : \mathcal I(\tau)}{
adamc@537 558 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 559 & \mt{proj}(M, \overline{s}, \mt{val} \; x) = \tau
adamc@533 560 }
adamc@533 561 \quad \infer{\Gamma \vdash X : \mathcal I(\tau)}{
adamc@533 562 X : \tau \in \Gamma
adamc@533 563 }
adamc@533 564 \quad \infer{\Gamma \vdash M.X : \mathcal I(\tau)}{
adamc@537 565 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 566 & \mt{proj}(M, \overline{s}, \mt{val} \; X) = \tau
adamc@533 567 }$$
adamc@533 568
adamc@533 569 $$\infer{\Gamma \vdash e_1 \; e_2 : \tau_2}{
adamc@533 570 \Gamma \vdash e_1 : \tau_1 \to \tau_2
adamc@533 571 & \Gamma \vdash e_2 : \tau_1
adamc@533 572 }
adamc@533 573 \quad \infer{\Gamma \vdash \lambda x : \tau_1 \Rightarrow e : \tau_1 \to \tau_2}{
adamc@533 574 \Gamma, x : \tau_1 \vdash e : \tau_2
adamc@533 575 }$$
adamc@533 576
adamc@533 577 $$\infer{\Gamma \vdash e [c] : [x \mapsto c]\tau}{
adamc@533 578 \Gamma \vdash e : x :: \kappa \to \tau
adamc@533 579 & \Gamma \vdash c :: \kappa
adamc@533 580 }
adamc@533 581 \quad \infer{\Gamma \vdash \lambda x \; ? \; \kappa \Rightarrow e : x \; ? \; \kappa \to \tau}{
adamc@533 582 \Gamma, x :: \kappa \vdash e : \tau
adamc@533 583 }$$
adamc@533 584
adamc@533 585 $$\infer{\Gamma \vdash \{\overline{c = e}\} : \{\overline{c : \tau}\}}{
adamc@533 586 \forall i: \Gamma \vdash c_i :: \mt{Name}
adamc@533 587 & \Gamma \vdash e_i : \tau_i
adamc@533 588 & \forall i \neq j: \Gamma \vdash c_i \sim c_j
adamc@533 589 }
adamc@533 590 \quad \infer{\Gamma \vdash e.c : \tau}{
adamc@533 591 \Gamma \vdash e : \$([c = \tau] \rc c')
adamc@533 592 }
adamc@533 593 \quad \infer{\Gamma \vdash e_1 \rc e_2 : \$(c_1 \rc c_2)}{
adamc@533 594 \Gamma \vdash e_1 : \$c_1
adamc@533 595 & \Gamma \vdash e_2 : \$c_2
adamc@573 596 & \Gamma \vdash c_1 \sim c_2
adamc@533 597 }$$
adamc@533 598
adamc@533 599 $$\infer{\Gamma \vdash e \rcut c : \$c'}{
adamc@533 600 \Gamma \vdash e : \$([c = \tau] \rc c')
adamc@533 601 }
adamc@533 602 \quad \infer{\Gamma \vdash e \rcutM c : \$c'}{
adamc@533 603 \Gamma \vdash e : \$(c \rc c')
adamc@533 604 }$$
adamc@533 605
adamc@533 606 $$\infer{\Gamma \vdash \mt{fold} : \begin{array}{c}
adamc@533 607 x_1 :: (\{\kappa\} \to \tau)
adamc@533 608 \to (x_2 :: \mt{Name} \to x_3 :: \kappa \to x_4 :: \{\kappa\} \to \lambda [[x_2] \sim x_4]
adamc@533 609 \Rightarrow x_1 \; x_4 \to x_1 \; ([x_2 = x_3] \rc x_4)) \\
adamc@533 610 \to x_1 \; [] \to x_5 :: \{\kappa\} \to x_1 \; x_5
adamc@533 611 \end{array}}{}$$
adamc@533 612
adamc@533 613 $$\infer{\Gamma \vdash \mt{let} \; \overline{ed} \; \mt{in} \; e \; \mt{end} : \tau}{
adamc@533 614 \Gamma \vdash \overline{ed} \leadsto \Gamma'
adamc@533 615 & \Gamma' \vdash e : \tau
adamc@533 616 }
adamc@533 617 \quad \infer{\Gamma \vdash \mt{case} \; e \; \mt{of} \; \overline{p \Rightarrow e} : \tau}{
adamc@533 618 \forall i: \Gamma \vdash p_i \leadsto \Gamma_i, \tau'
adamc@533 619 & \Gamma_i \vdash e_i : \tau
adamc@533 620 }$$
adamc@533 621
adamc@573 622 $$\infer{\Gamma \vdash \lambda [c_1 \sim c_2] \Rightarrow e : \lambda [c_1 \sim c_2] \Rightarrow \tau}{
adamc@533 623 \Gamma \vdash c_1 :: \{\kappa\}
adamc@533 624 & \Gamma \vdash c_2 :: \{\kappa\}
adamc@533 625 & \Gamma, c_1 \sim c_2 \vdash e : \tau
adamc@533 626 }$$
adamc@533 627
adamc@534 628 \subsection{Pattern Typing}
adamc@534 629
adamc@534 630 $$\infer{\Gamma \vdash \_ \leadsto \Gamma; \tau}{}
adamc@534 631 \quad \infer{\Gamma \vdash x \leadsto \Gamma, x : \tau; \tau}{}
adamc@534 632 \quad \infer{\Gamma \vdash \ell \leadsto \Gamma; T(\ell)}{}$$
adamc@534 633
adamc@534 634 $$\infer{\Gamma \vdash X \leadsto \Gamma; \overline{[x_i \mapsto \tau'_i]}\tau}{
adamc@534 635 X : \overline{x ::: \mt{Type}} \to \tau \in \Gamma
adamc@534 636 & \textrm{$\tau$ not a function type}
adamc@534 637 }
adamc@534 638 \quad \infer{\Gamma \vdash X \; p \leadsto \Gamma'; \overline{[x_i \mapsto \tau'_i]}\tau}{
adamc@534 639 X : \overline{x ::: \mt{Type}} \to \tau'' \to \tau \in \Gamma
adamc@534 640 & \Gamma \vdash p \leadsto \Gamma'; \overline{[x_i \mapsto \tau'_i]}\tau''
adamc@534 641 }$$
adamc@534 642
adamc@534 643 $$\infer{\Gamma \vdash M.X \leadsto \Gamma; \overline{[x_i \mapsto \tau'_i]}\tau}{
adamc@537 644 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 645 & \mt{proj}(M, \overline{s}, \mt{val} \; X) = \overline{x ::: \mt{Type}} \to \tau
adamc@534 646 & \textrm{$\tau$ not a function type}
adamc@534 647 }$$
adamc@534 648
adamc@534 649 $$\infer{\Gamma \vdash M.X \; p \leadsto \Gamma'; \overline{[x_i \mapsto \tau'_i]}\tau}{
adamc@537 650 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 651 & \mt{proj}(M, \overline{s}, \mt{val} \; X) = \overline{x ::: \mt{Type}} \to \tau'' \to \tau
adamc@534 652 & \Gamma \vdash p \leadsto \Gamma'; \overline{[x_i \mapsto \tau'_i]}\tau''
adamc@534 653 }$$
adamc@534 654
adamc@534 655 $$\infer{\Gamma \vdash \{\overline{x = p}\} \leadsto \Gamma_n; \{\overline{x = \tau}\}}{
adamc@534 656 \Gamma_0 = \Gamma
adamc@534 657 & \forall i: \Gamma_i \vdash p_i \leadsto \Gamma_{i+1}; \tau_i
adamc@534 658 }
adamc@534 659 \quad \infer{\Gamma \vdash \{\overline{x = p}, \ldots\} \leadsto \Gamma_n; \$([\overline{x = \tau}] \rc c)}{
adamc@534 660 \Gamma_0 = \Gamma
adamc@534 661 & \forall i: \Gamma_i \vdash p_i \leadsto \Gamma_{i+1}; \tau_i
adamc@534 662 }$$
adamc@534 663
adamc@535 664 \subsection{Declaration Typing}
adamc@535 665
adamc@535 666 We use an auxiliary judgment $\overline{y}; x; \Gamma \vdash \overline{dc} \leadsto \Gamma'$, expressing the enrichment of $\Gamma$ with the types of the datatype constructors $\overline{dc}$, when they are known to belong to datatype $x$ with type parameters $\overline{y}$.
adamc@535 667
adamc@541 668 This is the first judgment where we deal with type classes, for the $\mt{class}$ declaration form. We will omit their special handling in this formal specification. Section \ref{typeclasses} gives an informal description of how type classes influence type inference.
adamc@535 669
adamc@558 670 We presuppose the existence of a function $\mathcal O$, where $\mathcal O(M, \overline{s})$ implements the $\mt{open}$ declaration by producing a context with the appropriate entry for each available component of module $M$ with signature items $\overline{s}$. Where possible, $\mathcal O$ uses ``transparent'' entries (e.g., an abstract type $M.x$ is mapped to $x :: \mt{Type} = M.x$), so that the relationship with $M$ is maintained. A related function $\mathcal O_c$ builds a context containing the disjointness constraints found in $\overline s$.
adamc@537 671 We write $\kappa_1^n \to \kappa$ as a shorthand, where $\kappa_1^0 \to \kappa = \kappa$ and $\kappa_1^{n+1} \to \kappa_2 = \kappa_1 \to (\kappa_1^n \to \kappa_2)$. We write $\mt{len}(\overline{y})$ for the length of vector $\overline{y}$ of variables.
adamc@535 672
adamc@535 673 $$\infer{\Gamma \vdash \cdot \leadsto \Gamma}{}
adamc@535 674 \quad \infer{\Gamma \vdash d, \overline{d} \leadsto \Gamma''}{
adamc@535 675 \Gamma \vdash d \leadsto \Gamma'
adamc@535 676 & \Gamma' \vdash \overline{d} \leadsto \Gamma''
adamc@535 677 }$$
adamc@535 678
adamc@535 679 $$\infer{\Gamma \vdash \mt{con} \; x :: \kappa = c \leadsto \Gamma, x :: \kappa = c}{
adamc@535 680 \Gamma \vdash c :: \kappa
adamc@535 681 }
adamc@535 682 \quad \infer{\Gamma \vdash \mt{datatype} \; x \; \overline{y} = \overline{dc} \leadsto \Gamma'}{
adamc@535 683 \overline{y}; x; \Gamma, x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type} \vdash \overline{dc} \leadsto \Gamma'
adamc@535 684 }$$
adamc@535 685
adamc@535 686 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leadsto \Gamma'}{
adamc@537 687 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 688 & \mt{proj}(M, \overline{s}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})
adamc@535 689 & \overline{y}; x; \Gamma, x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type} = M.z \vdash \overline{dc} \leadsto \Gamma'
adamc@535 690 }$$
adamc@535 691
adamc@535 692 $$\infer{\Gamma \vdash \mt{val} \; x : \tau = e \leadsto \Gamma, x : \tau}{
adamc@535 693 \Gamma \vdash e : \tau
adamc@535 694 }$$
adamc@535 695
adamc@535 696 $$\infer{\Gamma \vdash \mt{val} \; \mt{rec} \; \overline{x : \tau = e} \leadsto \Gamma, \overline{x : \tau}}{
adamc@535 697 \forall i: \Gamma, \overline{x : \tau} \vdash e_i : \tau_i
adamc@535 698 & \textrm{$e_i$ starts with an expression $\lambda$, optionally preceded by constructor and disjointness $\lambda$s}
adamc@535 699 }$$
adamc@535 700
adamc@535 701 $$\infer{\Gamma \vdash \mt{structure} \; X : S = M \leadsto \Gamma, X : S}{
adamc@535 702 \Gamma \vdash M : S
adamc@558 703 & \textrm{ $M$ not a constant or application}
adamc@535 704 }
adamc@558 705 \quad \infer{\Gamma \vdash \mt{structure} \; X : S = M \leadsto \Gamma, X : \mt{selfify}(X, \overline{s})}{
adamc@558 706 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@539 707 }$$
adamc@539 708
adamc@539 709 $$\infer{\Gamma \vdash \mt{signature} \; X = S \leadsto \Gamma, X = S}{
adamc@535 710 \Gamma \vdash S
adamc@535 711 }$$
adamc@535 712
adamc@537 713 $$\infer{\Gamma \vdash \mt{open} \; M \leadsto \Gamma, \mathcal O(M, \overline{s})}{
adamc@537 714 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@535 715 }$$
adamc@535 716
adamc@535 717 $$\infer{\Gamma \vdash \mt{constraint} \; c_1 \sim c_2 \leadsto \Gamma}{
adamc@535 718 \Gamma \vdash c_1 :: \{\kappa\}
adamc@535 719 & \Gamma \vdash c_2 :: \{\kappa\}
adamc@535 720 & \Gamma \vdash c_1 \sim c_2
adamc@535 721 }
adamc@537 722 \quad \infer{\Gamma \vdash \mt{open} \; \mt{constraints} \; M \leadsto \Gamma, \mathcal O_c(M, \overline{s})}{
adamc@537 723 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@535 724 }$$
adamc@535 725
adamc@535 726 $$\infer{\Gamma \vdash \mt{table} \; x : c \leadsto \Gamma, x : \mt{Basis}.\mt{sql\_table} \; c}{
adamc@535 727 \Gamma \vdash c :: \{\mt{Type}\}
adamc@535 728 }
adamc@535 729 \quad \infer{\Gamma \vdash \mt{sequence} \; x \leadsto \Gamma, x : \mt{Basis}.\mt{sql\_sequence}}{}$$
adamc@535 730
adamc@535 731 $$\infer{\Gamma \vdash \mt{cookie} \; x : \tau \leadsto \Gamma, x : \mt{Basis}.\mt{http\_cookie} \; \tau}{
adamc@535 732 \Gamma \vdash \tau :: \mt{Type}
adamc@535 733 }$$
adamc@535 734
adamc@535 735 $$\infer{\Gamma \vdash \mt{class} \; x = c \leadsto \Gamma, x :: \mt{Type} \to \mt{Type} = c}{
adamc@535 736 \Gamma \vdash c :: \mt{Type} \to \mt{Type}
adamc@535 737 }$$
adamc@535 738
adamc@535 739 $$\infer{\overline{y}; x; \Gamma \vdash \cdot \leadsto \Gamma}{}
adamc@535 740 \quad \infer{\overline{y}; x; \Gamma \vdash X \mid \overline{dc} \leadsto \Gamma', X : \overline{y ::: \mt{Type}} \to x \; \overline{y}}{
adamc@535 741 \overline{y}; x; \Gamma \vdash \overline{dc} \leadsto \Gamma'
adamc@535 742 }
adamc@535 743 \quad \infer{\overline{y}; x; \Gamma \vdash X \; \mt{of} \; \tau \mid \overline{dc} \leadsto \Gamma', X : \overline{y ::: \mt{Type}} \to \tau \to x \; \overline{y}}{
adamc@535 744 \overline{y}; x; \Gamma \vdash \overline{dc} \leadsto \Gamma'
adamc@535 745 }$$
adamc@535 746
adamc@537 747 \subsection{Signature Item Typing}
adamc@537 748
adamc@537 749 We appeal to a signature item analogue of the $\mathcal O$ function from the last subsection.
adamc@537 750
adamc@537 751 $$\infer{\Gamma \vdash \cdot \leadsto \Gamma}{}
adamc@537 752 \quad \infer{\Gamma \vdash s, \overline{s} \leadsto \Gamma''}{
adamc@537 753 \Gamma \vdash s \leadsto \Gamma'
adamc@537 754 & \Gamma' \vdash \overline{s} \leadsto \Gamma''
adamc@537 755 }$$
adamc@537 756
adamc@537 757 $$\infer{\Gamma \vdash \mt{con} \; x :: \kappa \leadsto \Gamma, x :: \kappa}{}
adamc@537 758 \quad \infer{\Gamma \vdash \mt{con} \; x :: \kappa = c \leadsto \Gamma, x :: \kappa = c}{
adamc@537 759 \Gamma \vdash c :: \kappa
adamc@537 760 }
adamc@537 761 \quad \infer{\Gamma \vdash \mt{datatype} \; x \; \overline{y} = \overline{dc} \leadsto \Gamma'}{
adamc@537 762 \overline{y}; x; \Gamma, x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type} \vdash \overline{dc} \leadsto \Gamma'
adamc@537 763 }$$
adamc@537 764
adamc@537 765 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leadsto \Gamma'}{
adamc@537 766 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 767 & \mt{proj}(M, \overline{s}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})
adamc@537 768 & \overline{y}; x; \Gamma, x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type} = M.z \vdash \overline{dc} \leadsto \Gamma'
adamc@537 769 }$$
adamc@537 770
adamc@537 771 $$\infer{\Gamma \vdash \mt{val} \; x : \tau \leadsto \Gamma, x : \tau}{
adamc@537 772 \Gamma \vdash \tau :: \mt{Type}
adamc@537 773 }$$
adamc@537 774
adamc@537 775 $$\infer{\Gamma \vdash \mt{structure} \; X : S \leadsto \Gamma, X : S}{
adamc@537 776 \Gamma \vdash S
adamc@537 777 }
adamc@537 778 \quad \infer{\Gamma \vdash \mt{signature} \; X = S \leadsto \Gamma, X = S}{
adamc@537 779 \Gamma \vdash S
adamc@537 780 }$$
adamc@537 781
adamc@537 782 $$\infer{\Gamma \vdash \mt{include} \; S \leadsto \Gamma, \mathcal O(\overline{s})}{
adamc@537 783 \Gamma \vdash S
adamc@537 784 & \Gamma \vdash S \equiv \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 785 }$$
adamc@537 786
adamc@537 787 $$\infer{\Gamma \vdash \mt{constraint} \; c_1 \sim c_2 \leadsto \Gamma, c_1 \sim c_2}{
adamc@537 788 \Gamma \vdash c_1 :: \{\kappa\}
adamc@537 789 & \Gamma \vdash c_2 :: \{\kappa\}
adamc@537 790 }$$
adamc@537 791
adamc@537 792 $$\infer{\Gamma \vdash \mt{class} \; x = c \leadsto \Gamma, x :: \mt{Type} \to \mt{Type} = c}{
adamc@537 793 \Gamma \vdash c :: \mt{Type} \to \mt{Type}
adamc@537 794 }
adamc@537 795 \quad \infer{\Gamma \vdash \mt{class} \; x \leadsto \Gamma, x :: \mt{Type} \to \mt{Type}}{}$$
adamc@537 796
adamc@536 797 \subsection{Signature Compatibility}
adamc@536 798
adamc@558 799 To simplify the judgments in this section, we assume that all signatures are alpha-varied as necessary to avoid including multiple bindings for the same identifier. This is in addition to the usual alpha-variation of locally-bound variables.
adamc@537 800
adamc@537 801 We rely on a judgment $\Gamma \vdash \overline{s} \leq s'$, which expresses the occurrence in signature items $\overline{s}$ of an item compatible with $s'$. We also use a judgment $\Gamma \vdash \overline{dc} \leq \overline{dc}$, which expresses compatibility of datatype definitions.
adamc@537 802
adamc@536 803 $$\infer{\Gamma \vdash S \equiv S}{}
adamc@536 804 \quad \infer{\Gamma \vdash S_1 \equiv S_2}{
adamc@536 805 \Gamma \vdash S_2 \equiv S_1
adamc@536 806 }
adamc@536 807 \quad \infer{\Gamma \vdash X \equiv S}{
adamc@536 808 X = S \in \Gamma
adamc@536 809 }
adamc@536 810 \quad \infer{\Gamma \vdash M.X \equiv S}{
adamc@537 811 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 812 & \mt{proj}(M, \overline{s}, \mt{signature} \; X) = S
adamc@536 813 }$$
adamc@536 814
adamc@536 815 $$\infer{\Gamma \vdash S \; \mt{where} \; \mt{con} \; x = c \equiv \mt{sig} \; \overline{s^1} \; \mt{con} \; x :: \kappa = c \; \overline{s_2} \; \mt{end}}{
adamc@536 816 \Gamma \vdash S \equiv \mt{sig} \; \overline{s^1} \; \mt{con} \; x :: \kappa \; \overline{s_2} \; \mt{end}
adamc@536 817 & \Gamma \vdash c :: \kappa
adamc@537 818 }
adamc@537 819 \quad \infer{\Gamma \vdash \mt{sig} \; \overline{s^1} \; \mt{include} \; S \; \overline{s^2} \; \mt{end} \equiv \mt{sig} \; \overline{s^1} \; \overline{s} \; \overline{s^2} \; \mt{end}}{
adamc@537 820 \Gamma \vdash S \equiv \mt{sig} \; \overline{s} \; \mt{end}
adamc@536 821 }$$
adamc@536 822
adamc@536 823 $$\infer{\Gamma \vdash S_1 \leq S_2}{
adamc@536 824 \Gamma \vdash S_1 \equiv S_2
adamc@536 825 }
adamc@536 826 \quad \infer{\Gamma \vdash \mt{sig} \; \overline{s} \; \mt{end} \leq \mt{sig} \; \mt{end}}{}
adamc@537 827 \quad \infer{\Gamma \vdash \mt{sig} \; \overline{s} \; \mt{end} \leq \mt{sig} \; s' \; \overline{s'} \; \mt{end}}{
adamc@537 828 \Gamma \vdash \overline{s} \leq s'
adamc@537 829 & \Gamma \vdash s' \leadsto \Gamma'
adamc@537 830 & \Gamma' \vdash \mt{sig} \; \overline{s} \; \mt{end} \leq \mt{sig} \; \overline{s'} \; \mt{end}
adamc@537 831 }$$
adamc@537 832
adamc@537 833 $$\infer{\Gamma \vdash s \; \overline{s} \leq s'}{
adamc@537 834 \Gamma \vdash s \leq s'
adamc@537 835 }
adamc@537 836 \quad \infer{\Gamma \vdash s \; \overline{s} \leq s'}{
adamc@537 837 \Gamma \vdash s \leadsto \Gamma'
adamc@537 838 & \Gamma' \vdash \overline{s} \leq s'
adamc@536 839 }$$
adamc@536 840
adamc@536 841 $$\infer{\Gamma \vdash \mt{functor} (X : S_1) : S_2 \leq \mt{functor} (X : S'_1) : S'_2}{
adamc@536 842 \Gamma \vdash S'_1 \leq S_1
adamc@536 843 & \Gamma, X : S'_1 \vdash S_2 \leq S'_2
adamc@536 844 }$$
adamc@536 845
adamc@537 846 $$\infer{\Gamma \vdash \mt{con} \; x :: \kappa \leq \mt{con} \; x :: \kappa}{}
adamc@537 847 \quad \infer{\Gamma \vdash \mt{con} \; x :: \kappa = c \leq \mt{con} \; x :: \kappa}{}
adamc@558 848 \quad \infer{\Gamma \vdash \mt{datatype} \; x \; \overline{y} = \overline{dc} \leq \mt{con} \; x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type}}{}$$
adamc@537 849
adamc@537 850 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leq \mt{con} \; x :: \mt{Type}^{\mt{len}(y)} \to \mt{Type}}{
adamc@537 851 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 852 & \mt{proj}(M, \overline{s}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})
adamc@537 853 }$$
adamc@537 854
adamc@537 855 $$\infer{\Gamma \vdash \mt{class} \; x \leq \mt{con} \; x :: \mt{Type} \to \mt{Type}}{}
adamc@537 856 \quad \infer{\Gamma \vdash \mt{class} \; x = c \leq \mt{con} \; x :: \mt{Type} \to \mt{Type}}{}$$
adamc@537 857
adamc@537 858 $$\infer{\Gamma \vdash \mt{con} \; x :: \kappa = c_1 \leq \mt{con} \; x :: \mt{\kappa} = c_2}{
adamc@537 859 \Gamma \vdash c_1 \equiv c_2
adamc@537 860 }
adamc@537 861 \quad \infer{\Gamma \vdash \mt{class} \; x = c_1 \leq \mt{con} \; x :: \mt{Type} \to \mt{Type} = c_2}{
adamc@537 862 \Gamma \vdash c_1 \equiv c_2
adamc@537 863 }$$
adamc@537 864
adamc@537 865 $$\infer{\Gamma \vdash \mt{datatype} \; x \; \overline{y} = \overline{dc} \leq \mt{datatype} \; x \; \overline{y} = \overline{dc'}}{
adamc@537 866 \Gamma, \overline{y :: \mt{Type}} \vdash \overline{dc} \leq \overline{dc'}
adamc@537 867 }$$
adamc@537 868
adamc@537 869 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leq \mt{datatype} \; x \; \overline{y} = \overline{dc'}}{
adamc@537 870 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 871 & \mt{proj}(M, \overline{s}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})
adamc@537 872 & \Gamma, \overline{y :: \mt{Type}} \vdash \overline{dc} \leq \overline{dc'}
adamc@537 873 }$$
adamc@537 874
adamc@537 875 $$\infer{\Gamma \vdash \cdot \leq \cdot}{}
adamc@537 876 \quad \infer{\Gamma \vdash X; \overline{dc} \leq X; \overline{dc'}}{
adamc@537 877 \Gamma \vdash \overline{dc} \leq \overline{dc'}
adamc@537 878 }
adamc@537 879 \quad \infer{\Gamma \vdash X \; \mt{of} \; \tau_1; \overline{dc} \leq X \; \mt{of} \; \tau_2; \overline{dc'}}{
adamc@537 880 \Gamma \vdash \tau_1 \equiv \tau_2
adamc@537 881 & \Gamma \vdash \overline{dc} \leq \overline{dc'}
adamc@537 882 }$$
adamc@537 883
adamc@537 884 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leq \mt{datatype} \; x = \mt{datatype} \; M'.z'}{
adamc@537 885 \Gamma \vdash M.z \equiv M'.z'
adamc@537 886 }$$
adamc@537 887
adamc@537 888 $$\infer{\Gamma \vdash \mt{val} \; x : \tau_1 \leq \mt{val} \; x : \tau_2}{
adamc@537 889 \Gamma \vdash \tau_1 \equiv \tau_2
adamc@537 890 }
adamc@537 891 \quad \infer{\Gamma \vdash \mt{structure} \; X : S_1 \leq \mt{structure} \; X : S_2}{
adamc@537 892 \Gamma \vdash S_1 \leq S_2
adamc@537 893 }
adamc@537 894 \quad \infer{\Gamma \vdash \mt{signature} \; X = S_1 \leq \mt{signature} \; X = S_2}{
adamc@537 895 \Gamma \vdash S_1 \leq S_2
adamc@537 896 & \Gamma \vdash S_2 \leq S_1
adamc@537 897 }$$
adamc@537 898
adamc@537 899 $$\infer{\Gamma \vdash \mt{constraint} \; c_1 \sim c_2 \leq \mt{constraint} \; c'_1 \sim c'_2}{
adamc@537 900 \Gamma \vdash c_1 \equiv c'_1
adamc@537 901 & \Gamma \vdash c_2 \equiv c'_2
adamc@537 902 }$$
adamc@537 903
adamc@537 904 $$\infer{\Gamma \vdash \mt{class} \; x \leq \mt{class} \; x}{}
adamc@537 905 \quad \infer{\Gamma \vdash \mt{class} \; x = c \leq \mt{class} \; x}{}
adamc@537 906 \quad \infer{\Gamma \vdash \mt{class} \; x = c_1 \leq \mt{class} \; x = c_2}{
adamc@537 907 \Gamma \vdash c_1 \equiv c_2
adamc@537 908 }$$
adamc@537 909
adamc@538 910 \subsection{Module Typing}
adamc@538 911
adamc@538 912 We use a helper function $\mt{sigOf}$, which converts declarations and sequences of declarations into their principal signature items and sequences of signature items, respectively.
adamc@538 913
adamc@538 914 $$\infer{\Gamma \vdash M : S}{
adamc@538 915 \Gamma \vdash M : S'
adamc@538 916 & \Gamma \vdash S' \leq S
adamc@538 917 }
adamc@538 918 \quad \infer{\Gamma \vdash \mt{struct} \; \overline{d} \; \mt{end} : \mt{sig} \; \mt{sigOf}(\overline{d}) \; \mt{end}}{
adamc@538 919 \Gamma \vdash \overline{d} \leadsto \Gamma'
adamc@538 920 }
adamc@538 921 \quad \infer{\Gamma \vdash X : S}{
adamc@538 922 X : S \in \Gamma
adamc@538 923 }$$
adamc@538 924
adamc@538 925 $$\infer{\Gamma \vdash M.X : S}{
adamc@538 926 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@538 927 & \mt{proj}(M, \overline{s}, \mt{structure} \; X) = S
adamc@538 928 }$$
adamc@538 929
adamc@538 930 $$\infer{\Gamma \vdash M_1(M_2) : [X \mapsto M_2]S_2}{
adamc@538 931 \Gamma \vdash M_1 : \mt{functor}(X : S_1) : S_2
adamc@538 932 & \Gamma \vdash M_2 : S_1
adamc@538 933 }
adamc@538 934 \quad \infer{\Gamma \vdash \mt{functor} (X : S_1) : S_2 = M : \mt{functor} (X : S_1) : S_2}{
adamc@538 935 \Gamma \vdash S_1
adamc@538 936 & \Gamma, X : S_1 \vdash S_2
adamc@538 937 & \Gamma, X : S_1 \vdash M : S_2
adamc@538 938 }$$
adamc@538 939
adamc@538 940 \begin{eqnarray*}
adamc@538 941 \mt{sigOf}(\cdot) &=& \cdot \\
adamc@538 942 \mt{sigOf}(s \; \overline{s'}) &=& \mt{sigOf}(s) \; \mt{sigOf}(\overline{s'}) \\
adamc@538 943 \\
adamc@538 944 \mt{sigOf}(\mt{con} \; x :: \kappa = c) &=& \mt{con} \; x :: \kappa = c \\
adamc@538 945 \mt{sigOf}(\mt{datatype} \; x \; \overline{y} = \overline{dc}) &=& \mt{datatype} \; x \; \overline{y} = \overline{dc} \\
adamc@538 946 \mt{sigOf}(\mt{datatype} \; x = \mt{datatype} \; M.z) &=& \mt{datatype} \; x = \mt{datatype} \; M.z \\
adamc@538 947 \mt{sigOf}(\mt{val} \; x : \tau = e) &=& \mt{val} \; x : \tau \\
adamc@538 948 \mt{sigOf}(\mt{val} \; \mt{rec} \; \overline{x : \tau = e}) &=& \overline{\mt{val} \; x : \tau} \\
adamc@538 949 \mt{sigOf}(\mt{structure} \; X : S = M) &=& \mt{structure} \; X : S \\
adamc@538 950 \mt{sigOf}(\mt{signature} \; X = S) &=& \mt{signature} \; X = S \\
adamc@538 951 \mt{sigOf}(\mt{open} \; M) &=& \mt{include} \; S \textrm{ (where $\Gamma \vdash M : S$)} \\
adamc@538 952 \mt{sigOf}(\mt{constraint} \; c_1 \sim c_2) &=& \mt{constraint} \; c_1 \sim c_2 \\
adamc@538 953 \mt{sigOf}(\mt{open} \; \mt{constraints} \; M) &=& \cdot \\
adamc@538 954 \mt{sigOf}(\mt{table} \; x : c) &=& \mt{table} \; x : c \\
adamc@538 955 \mt{sigOf}(\mt{sequence} \; x) &=& \mt{sequence} \; x \\
adamc@538 956 \mt{sigOf}(\mt{cookie} \; x : \tau) &=& \mt{cookie} \; x : \tau \\
adamc@538 957 \mt{sigOf}(\mt{class} \; x = c) &=& \mt{class} \; x = c \\
adamc@538 958 \end{eqnarray*}
adamc@539 959 \begin{eqnarray*}
adamc@539 960 \mt{selfify}(M, \cdot) &=& \cdot \\
adamc@558 961 \mt{selfify}(M, s \; \overline{s'}) &=& \mt{selfify}(M, s) \; \mt{selfify}(M, \overline{s'}) \\
adamc@539 962 \\
adamc@539 963 \mt{selfify}(M, \mt{con} \; x :: \kappa) &=& \mt{con} \; x :: \kappa = M.x \\
adamc@539 964 \mt{selfify}(M, \mt{con} \; x :: \kappa = c) &=& \mt{con} \; x :: \kappa = c \\
adamc@539 965 \mt{selfify}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc}) &=& \mt{datatype} \; x \; \overline{y} = \mt{datatype} \; M.x \\
adamc@539 966 \mt{selfify}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z) &=& \mt{datatype} \; x = \mt{datatype} \; M'.z \\
adamc@539 967 \mt{selfify}(M, \mt{val} \; x : \tau) &=& \mt{val} \; x : \tau \\
adamc@539 968 \mt{selfify}(M, \mt{structure} \; X : S) &=& \mt{structure} \; X : \mt{selfify}(M.X, \overline{s}) \textrm{ (where $\Gamma \vdash S \equiv \mt{sig} \; \overline{s} \; \mt{end}$)} \\
adamc@539 969 \mt{selfify}(M, \mt{signature} \; X = S) &=& \mt{signature} \; X = S \\
adamc@539 970 \mt{selfify}(M, \mt{include} \; S) &=& \mt{include} \; S \\
adamc@539 971 \mt{selfify}(M, \mt{constraint} \; c_1 \sim c_2) &=& \mt{constraint} \; c_1 \sim c_2 \\
adamc@539 972 \mt{selfify}(M, \mt{class} \; x) &=& \mt{class} \; x = M.x \\
adamc@539 973 \mt{selfify}(M, \mt{class} \; x = c) &=& \mt{class} \; x = c \\
adamc@539 974 \end{eqnarray*}
adamc@539 975
adamc@540 976 \subsection{Module Projection}
adamc@540 977
adamc@540 978 \begin{eqnarray*}
adamc@540 979 \mt{proj}(M, \mt{con} \; x :: \kappa \; \overline{s}, \mt{con} \; x) &=& \kappa \\
adamc@540 980 \mt{proj}(M, \mt{con} \; x :: \kappa = c \; \overline{s}, \mt{con} \; x) &=& (\kappa, c) \\
adamc@540 981 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, \mt{con} \; x) &=& \mt{Type}^{\mt{len}(\overline{y})} \to \mt{Type} \\
adamc@540 982 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z \; \overline{s}, \mt{con} \; x) &=& (\mt{Type}^{\mt{len}(\overline{y})} \to \mt{Type}, M'.z) \textrm{ (where $\Gamma \vdash M' : \mt{sig} \; \overline{s'} \; \mt{end}$} \\
adamc@540 983 && \textrm{and $\mt{proj}(M', \overline{s'}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})$)} \\
adamc@540 984 \mt{proj}(M, \mt{class} \; x \; \overline{s}, \mt{con} \; x) &=& \mt{Type} \to \mt{Type} \\
adamc@540 985 \mt{proj}(M, \mt{class} \; x = c \; \overline{s}, \mt{con} \; x) &=& (\mt{Type} \to \mt{Type}, c) \\
adamc@540 986 \\
adamc@540 987 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, \mt{datatype} \; x) &=& (\overline{y}, \overline{dc}) \\
adamc@540 988 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z \; \overline{s}, \mt{con} \; x) &=& \mt{proj}(M', \overline{s'}, \mt{datatype} \; z) \textrm{ (where $\Gamma \vdash M' : \mt{sig} \; \overline{s'} \; \mt{end}$)} \\
adamc@540 989 \\
adamc@540 990 \mt{proj}(M, \mt{val} \; x : \tau \; \overline{s}, \mt{val} \; x) &=& \tau \\
adamc@540 991 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, \mt{val} \; X) &=& \overline{y ::: \mt{Type}} \to M.x \; \overline y \textrm{ (where $X \in \overline{dc}$)} \\
adamc@540 992 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, \mt{val} \; X) &=& \overline{y ::: \mt{Type}} \to \tau \to M.x \; \overline y \textrm{ (where $X \; \mt{of} \; \tau \in \overline{dc}$)} \\
adamc@540 993 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z, \mt{val} \; X) &=& \overline{y ::: \mt{Type}} \to M.x \; \overline y \textrm{ (where $\Gamma \vdash M' : \mt{sig} \; \overline{s'} \; \mt{end}$} \\
adamc@540 994 && \textrm{and $\mt{proj}(M', \overline{s'}, \mt{datatype} \; z = (\overline{y}, \overline{dc})$ and $X \in \overline{dc}$)} \\
adamc@540 995 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z, \mt{val} \; X) &=& \overline{y ::: \mt{Type}} \to \tau \to M.x \; \overline y \textrm{ (where $\Gamma \vdash M' : \mt{sig} \; \overline{s'} \; \mt{end}$} \\
adamc@558 996 && \textrm{and $\mt{proj}(M', \overline{s'}, \mt{datatype} \; z = (\overline{y}, \overline{dc})$ and $X \; \mt{of} \; \tau \in \overline{dc}$)} \\
adamc@540 997 \\
adamc@540 998 \mt{proj}(M, \mt{structure} \; X : S \; \overline{s}, \mt{structure} \; X) &=& S \\
adamc@540 999 \\
adamc@540 1000 \mt{proj}(M, \mt{signature} \; X = S \; \overline{s}, \mt{signature} \; X) &=& S \\
adamc@540 1001 \\
adamc@540 1002 \mt{proj}(M, \mt{con} \; x :: \kappa \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1003 \mt{proj}(M, \mt{con} \; x :: \kappa = c \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1004 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1005 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1006 \mt{proj}(M, \mt{val} \; x : \tau \; \overline{s}, V) &=& \mt{proj}(M, \overline{s}, V) \\
adamc@540 1007 \mt{proj}(M, \mt{structure} \; X : S \; \overline{s}, V) &=& [X \mapsto M.X]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1008 \mt{proj}(M, \mt{signature} \; X = S \; \overline{s}, V) &=& [X \mapsto M.X]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1009 \mt{proj}(M, \mt{include} \; S \; \overline{s}, V) &=& \mt{proj}(M, \overline{s'} \; \overline{s}, V) \textrm{ (where $\Gamma \vdash S \equiv \mt{sig} \; \overline{s'} \; \mt{end}$)} \\
adamc@540 1010 \mt{proj}(M, \mt{constraint} \; c_1 \sim c_2 \; \overline{s}, V) &=& \mt{proj}(M, \overline{s}, V) \\
adamc@540 1011 \mt{proj}(M, \mt{class} \; x \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1012 \mt{proj}(M, \mt{class} \; x = c \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1013 \end{eqnarray*}
adamc@540 1014
adamc@541 1015
adamc@541 1016 \section{Type Inference}
adamc@541 1017
adamc@541 1018 The Ur/Web compiler uses \emph{heuristic type inference}, with no claims of completeness with respect to the declarative specification of the last section. The rules in use seem to work well in practice. This section summarizes those rules, to help Ur programmers predict what will work and what won't.
adamc@541 1019
adamc@541 1020 \subsection{Basic Unification}
adamc@541 1021
adamc@560 1022 Type-checkers for languages based on the Hindley-Milner type discipline, like ML and Haskell, take advantage of \emph{principal typing} properties, making complete type inference relatively straightforward. Inference algorithms are traditionally implemented using type unification variables, at various points asserting equalities between types, in the process discovering the values of type variables. The Ur/Web compiler uses the same basic strategy, but the complexity of the type system rules out easy completeness.
adamc@541 1023
adamc@560 1024 Type-checking can require evaluating recursive functional programs, thanks to the type-level $\mt{fold}$ operator. When a unification variable appears in such a type, the next step of computation can be undetermined. The value of that variable might be determined later, but this would be ``too late'' for the unification problems generated at the first occurrence. This is the essential source of incompleteness.
adamc@541 1025
adamc@541 1026 Nonetheless, the unification engine tends to do reasonably well. Unlike in ML, polymorphism is never inferred in definitions; it must be indicated explicitly by writing out constructor-level parameters. By writing these and other annotations, the programmer can generally get the type inference engine to do most of the type reconstruction work.
adamc@541 1027
adamc@541 1028 \subsection{Unifying Record Types}
adamc@541 1029
adamc@570 1030 The type inference engine tries to take advantage of the algebraic rules governing type-level records, as shown in Section \ref{definitional}. When two constructors of record kind are unified, they are reduced to normal forms, with like terms crossed off from each normal form until, hopefully, nothing remains. This cannot be complete, with the inclusion of unification variables. The type-checker can help you understand what goes wrong when the process fails, as it outputs the unmatched remainders of the two normal forms.
adamc@541 1031
adamc@541 1032 \subsection{\label{typeclasses}Type Classes}
adamc@541 1033
adamc@541 1034 Ur includes a type class facility inspired by Haskell's. The current version is very rudimentary, only supporting instances for particular types built up from abstract types and datatypes and type-level application.
adamc@541 1035
adamc@541 1036 Type classes are integrated with the module system. A type class is just a constructor of kind $\mt{Type} \to \mt{Type}$. By marking such a constructor $c$ as a type class, the programmer instructs the type inference engine to, in each scope, record all values of types $c \; \tau$ as \emph{instances}. Any function argument whose type is of such a form is treated as implicit, to be determined by examining the current instance database.
adamc@541 1037
adamc@541 1038 The ``dictionary encoding'' often used in Haskell implementations is made explicit in Ur. Type class instances are just properly-typed values, and they can also be considered as ``proofs'' of membership in the class. In some cases, it is useful to pass these proofs around explicitly. An underscore written where a proof is expected will also be inferred, if possible, from the current instance database.
adamc@541 1039
adamc@541 1040 Just as for types, type classes may be exported from modules, and they may be exported as concrete or abstract. Concrete type classes have their ``real'' definitions exposed, so that client code may add new instances freely. Abstract type classes are useful as ``predicates'' that can be used to enforce invariants, as we will see in some definitions of SQL syntax in the Ur/Web standard library.
adamc@541 1041
adamc@541 1042 \subsection{Reverse-Engineering Record Types}
adamc@541 1043
adamc@541 1044 It's useful to write Ur functions and functors that take record constructors as inputs, but these constructors can grow quite long, even though their values are often implied by other arguments. The compiler uses a simple heuristic to infer the values of unification variables that are folded over, yielding known results. Often, as in the case of $\mt{map}$-like folds, the base and recursive cases of a fold produce constructors with different top-level structure. Thus, if the result of the fold is known, examining its top-level structure reveals whether the record being folded over is empty or not. If it's empty, we're done; if it's not empty, we replace a single unification variable with a new constructor formed from three new unification variables, as in $[\alpha = \beta] \rc \gamma$. This process can often be repeated to determine a unification variable fully.
adamc@541 1045
adamc@541 1046 \subsection{Implicit Arguments in Functor Applications}
adamc@541 1047
adamc@541 1048 Constructor, constraint, and type class witness members of structures may be omitted, when those structures are used in contexts where their assigned signatures imply how to fill in those missing members. This feature combines well with reverse-engineering to allow for uses of complicated meta-programming functors with little more code than would be necessary to invoke an untyped, ad-hoc code generator.
adamc@541 1049
adamc@541 1050
adamc@542 1051 \section{The Ur Standard Library}
adamc@542 1052
adamc@542 1053 The built-in parts of the Ur/Web standard library are described by the signature in \texttt{lib/basis.urs} in the distribution. A module $\mt{Basis}$ ascribing to that signature is available in the initial environment, and every program is implicitly prefixed by $\mt{open} \; \mt{Basis}$.
adamc@542 1054
adamc@542 1055 Additionally, other common functions that are definable within Ur are included in \texttt{lib/top.urs} and \texttt{lib/top.ur}. This $\mt{Top}$ module is also opened implicitly.
adamc@542 1056
adamc@542 1057 The idea behind Ur is to serve as the ideal host for embedded domain-specific languages. For now, however, the ``generic'' functionality is intermixed with Ur/Web-specific functionality, including in these two library modules. We hope that these generic library components have types that speak for themselves. The next section introduces the Ur/Web-specific elements. Here, we only give the type declarations from the beginning of $\mt{Basis}$.
adamc@542 1058 $$\begin{array}{l}
adamc@542 1059 \mt{type} \; \mt{int} \\
adamc@542 1060 \mt{type} \; \mt{float} \\
adamc@542 1061 \mt{type} \; \mt{string} \\
adamc@542 1062 \mt{type} \; \mt{time} \\
adamc@542 1063 \\
adamc@542 1064 \mt{type} \; \mt{unit} = \{\} \\
adamc@542 1065 \\
adamc@542 1066 \mt{datatype} \; \mt{bool} = \mt{False} \mid \mt{True} \\
adamc@542 1067 \\
adamc@542 1068 \mt{datatype} \; \mt{option} \; \mt{t} = \mt{None} \mid \mt{Some} \; \mt{of} \; \mt{t}
adamc@542 1069 \end{array}$$
adamc@542 1070
adamc@542 1071
adamc@542 1072 \section{The Ur/Web Standard Library}
adamc@542 1073
adamc@542 1074 \subsection{Transactions}
adamc@542 1075
adamc@542 1076 Ur is a pure language; we use Haskell's trick to support controlled side effects. The standard library defines a monad $\mt{transaction}$, meant to stand for actions that may be undone cleanly. By design, no other kinds of actions are supported.
adamc@542 1077 $$\begin{array}{l}
adamc@542 1078 \mt{con} \; \mt{transaction} :: \mt{Type} \to \mt{Type} \\
adamc@542 1079 \\
adamc@542 1080 \mt{val} \; \mt{return} : \mt{t} ::: \mt{Type} \to \mt{t} \to \mt{transaction} \; \mt{t} \\
adamc@542 1081 \mt{val} \; \mt{bind} : \mt{t_1} ::: \mt{Type} \to \mt{t_2} ::: \mt{Type} \to \mt{transaction} \; \mt{t_1} \to (\mt{t_1} \to \mt{transaction} \; \mt{t_2}) \to \mt{transaction} \; \mt{t_2}
adamc@542 1082 \end{array}$$
adamc@542 1083
adamc@542 1084 \subsection{HTTP}
adamc@542 1085
adamc@542 1086 There are transactions for reading an HTTP header by name and for getting and setting strongly-typed cookies. Cookies may only be created by the $\mt{cookie}$ declaration form, ensuring that they be named consistently based on module structure.
adamc@542 1087 $$\begin{array}{l}
adamc@542 1088 \mt{val} \; \mt{requestHeader} : \mt{string} \to \mt{transaction} \; (\mt{option} \; \mt{string}) \\
adamc@542 1089 \\
adamc@542 1090 \mt{con} \; \mt{http\_cookie} :: \mt{Type} \to \mt{Type} \\
adamc@542 1091 \mt{val} \; \mt{getCookie} : \mt{t} ::: \mt{Type} \to \mt{http\_cookie} \; \mt{t} \to \mt{transaction} \; (\mt{option} \; \mt{t}) \\
adamc@542 1092 \mt{val} \; \mt{setCookie} : \mt{t} ::: \mt{Type} \to \mt{http\_cookie} \; \mt{t} \to \mt{t} \to \mt{transaction} \; \mt{unit}
adamc@542 1093 \end{array}$$
adamc@542 1094
adamc@543 1095 \subsection{SQL}
adamc@543 1096
adamc@543 1097 The fundamental unit of interest in the embedding of SQL is tables, described by a type family and creatable only via the $\mt{table}$ declaration form.
adamc@543 1098 $$\begin{array}{l}
adamc@543 1099 \mt{con} \; \mt{sql\_table} :: \{\mt{Type}\} \to \mt{Type}
adamc@543 1100 \end{array}$$
adamc@543 1101
adamc@543 1102 \subsubsection{Queries}
adamc@543 1103
adamc@543 1104 A final query is constructed via the $\mt{sql\_query}$ function. Constructor arguments respectively specify the table fields we select (as records mapping tables to the subsets of their fields that we choose) and the (always named) extra expressions that we select.
adamc@543 1105 $$\begin{array}{l}
adamc@543 1106 \mt{con} \; \mt{sql\_query} :: \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \\
adamc@543 1107 \mt{val} \; \mt{sql\_query} : \mt{tables} ::: \{\{\mt{Type}\}\} \\
adamc@543 1108 \hspace{.1in} \to \mt{selectedFields} ::: \{\{\mt{Type}\}\} \\
adamc@543 1109 \hspace{.1in} \to \mt{selectedExps} ::: \{\mt{Type}\} \\
adamc@543 1110 \hspace{.1in} \to \{\mt{Rows} : \mt{sql\_query1} \; \mt{tables} \; \mt{selectedFields} \; \mt{selectedExps}, \\
adamc@543 1111 \hspace{.2in} \mt{OrderBy} : \mt{sql\_order\_by} \; \mt{tables} \; \mt{selectedExps}, \\
adamc@543 1112 \hspace{.2in} \mt{Limit} : \mt{sql\_limit}, \\
adamc@543 1113 \hspace{.2in} \mt{Offset} : \mt{sql\_offset}\} \\
adamc@543 1114 \hspace{.1in} \to \mt{sql\_query} \; \mt{selectedFields} \; \mt{selectedExps}
adamc@543 1115 \end{array}$$
adamc@543 1116
adamc@545 1117 Queries are used by folding over their results inside transactions.
adamc@545 1118 $$\begin{array}{l}
adamc@545 1119 \mt{val} \; \mt{query} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \lambda [\mt{tables} \sim \mt{exps}] \Rightarrow \mt{state} ::: \mt{Type} \to \mt{sql\_query} \; \mt{tables} \; \mt{exps} \\
adamc@545 1120 \hspace{.1in} \to (\$(\mt{exps} \rc \mt{fold} \; (\lambda \mt{nm} \; (\mt{fields} :: \{\mt{Type}\}) \; \mt{acc} \; [[\mt{nm}] \sim \mt{acc}] \Rightarrow [\mt{nm} = \$\mt{fields}] \rc \mt{acc}) \; [] \; \mt{tables}) \\
adamc@545 1121 \hspace{.2in} \to \mt{state} \to \mt{transaction} \; \mt{state}) \\
adamc@545 1122 \hspace{.1in} \to \mt{state} \to \mt{transaction} \; \mt{state}
adamc@545 1123 \end{array}$$
adamc@545 1124
adamc@543 1125 Most of the complexity of the query encoding is in the type $\mt{sql\_query1}$, which includes simple queries and derived queries based on relational operators. Constructor arguments respectively specify the tables we select from, the subset of fields that we keep from each table for the result rows, and the extra expressions that we select.
adamc@543 1126 $$\begin{array}{l}
adamc@543 1127 \mt{con} \; \mt{sql\_query1} :: \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \\
adamc@543 1128 \\
adamc@543 1129 \mt{type} \; \mt{sql\_relop} \\
adamc@543 1130 \mt{val} \; \mt{sql\_union} : \mt{sql\_relop} \\
adamc@543 1131 \mt{val} \; \mt{sql\_intersect} : \mt{sql\_relop} \\
adamc@543 1132 \mt{val} \; \mt{sql\_except} : \mt{sql\_relop} \\
adamc@543 1133 \mt{val} \; \mt{sql\_relop} : \mt{tables1} ::: \{\{\mt{Type}\}\} \\
adamc@543 1134 \hspace{.1in} \to \mt{tables2} ::: \{\{\mt{Type}\}\} \\
adamc@543 1135 \hspace{.1in} \to \mt{selectedFields} ::: \{\{\mt{Type}\}\} \\
adamc@543 1136 \hspace{.1in} \to \mt{selectedExps} ::: \{\mt{Type}\} \\
adamc@543 1137 \hspace{.1in} \to \mt{sql\_relop} \\
adamc@543 1138 \hspace{.1in} \to \mt{sql\_query1} \; \mt{tables1} \; \mt{selectedFields} \; \mt{selectedExps} \\
adamc@543 1139 \hspace{.1in} \to \mt{sql\_query1} \; \mt{tables2} \; \mt{selectedFields} \; \mt{selectedExps} \\
adamc@543 1140 \hspace{.1in} \to \mt{sql\_query1} \; \mt{selectedFields} \; \mt{selectedFields} \; \mt{selectedExps}
adamc@543 1141 \end{array}$$
adamc@543 1142
adamc@543 1143 $$\begin{array}{l}
adamc@543 1144 \mt{val} \; \mt{sql\_query1} : \mt{tables} ::: \{\{\mt{Type}\}\} \\
adamc@543 1145 \hspace{.1in} \to \mt{grouped} ::: \{\{\mt{Type}\}\} \\
adamc@543 1146 \hspace{.1in} \to \mt{selectedFields} ::: \{\{\mt{Type}\}\} \\
adamc@543 1147 \hspace{.1in} \to \mt{selectedExps} ::: \{\mt{Type}\} \\
adamc@543 1148 \hspace{.1in} \to \{\mt{From} : \$(\mt{fold} \; (\lambda \mt{nm} \; (\mt{fields} :: \{\mt{Type}\}) \; \mt{acc} \; [[\mt{nm}] \sim \mt{acc}] \Rightarrow [\mt{nm} = \mt{sql\_table} \; \mt{fields}] \rc \mt{acc}) \; [] \; \mt{tables}), \\
adamc@543 1149 \hspace{.2in} \mt{Where} : \mt{sql\_exp} \; \mt{tables} \; [] \; [] \; \mt{bool}, \\
adamc@543 1150 \hspace{.2in} \mt{GroupBy} : \mt{sql\_subset} \; \mt{tables} \; \mt{grouped}, \\
adamc@543 1151 \hspace{.2in} \mt{Having} : \mt{sql\_exp} \; \mt{grouped} \; \mt{tables} \; [] \; \mt{bool}, \\
adamc@543 1152 \hspace{.2in} \mt{SelectFields} : \mt{sql\_subset} \; \mt{grouped} \; \mt{selectedFields}, \\
adamc@543 1153 \hspace{.2in} \mt {SelectExps} : \$(\mt{fold} \; (\lambda \mt{nm} \; (\mt{t} :: \mt{Type}) \; \mt{acc} \; [[\mt{nm}] \sim \mt{acc}] \Rightarrow [\mt{nm} = \mt{sql\_exp} \; \mt{grouped} \; \mt{tables} \; [] \; \mt{t}] \rc \mt{acc}) \; [] \; \mt{selectedExps}) \} \\
adamc@543 1154 \hspace{.1in} \to \mt{sql\_query1} \; \mt{tables} \; \mt{selectedFields} \; \mt{selectedExps}
adamc@543 1155 \end{array}$$
adamc@543 1156
adamc@543 1157 To encode projection of subsets of fields in $\mt{SELECT}$ clauses, and to encode $\mt{GROUP} \; \mt{BY}$ clauses, we rely on a type family $\mt{sql\_subset}$, capturing what it means for one record of table fields to be a subset of another. The main constructor $\mt{sql\_subset}$ ``proves subset facts'' by requiring a split of a record into kept and dropped parts. The extra constructor $\mt{sql\_subset\_all}$ is a convenience for keeping all fields of a record.
adamc@543 1158 $$\begin{array}{l}
adamc@543 1159 \mt{con} \; \mt{sql\_subset} :: \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \mt{Type} \\
adamc@543 1160 \mt{val} \; \mt{sql\_subset} : \mt{keep\_drop} :: \{(\{\mt{Type}\} \times \{\mt{Type}\})\} \\
adamc@543 1161 \hspace{.1in} \to \mt{sql\_subset} \\
adamc@543 1162 \hspace{.2in} (\mt{fold} \; (\lambda \mt{nm} \; (\mt{fields} :: (\{\mt{Type}\} \times \{\mt{Type}\})) \; \mt{acc} \; [[\mt{nm}] \sim \mt{acc}] \; [\mt{fields}.1 \sim \mt{fields}.2] \Rightarrow \\
adamc@543 1163 \hspace{.3in} [\mt{nm} = \mt{fields}.1 \rc \mt{fields}.2] \rc \mt{acc}) \; [] \; \mt{keep\_drop}) \\
adamc@543 1164 \hspace{.2in} (\mt{fold} \; (\lambda \mt{nm} \; (\mt{fields} :: (\{\mt{Type}\} \times \{\mt{Type}\})) \; \mt{acc} \; [[\mt{nm}] \sim \mt{acc}] \Rightarrow [\mt{nm} = \mt{fields}.1] \rc \mt{acc}) \; [] \; \mt{keep\_drop}) \\
adamc@543 1165 \mt{val} \; \mt{sql\_subset\_all} : \mt{tables} :: \{\{\mt{Type}\}\} \to \mt{sql\_subset} \; \mt{tables} \; \mt{tables}
adamc@543 1166 \end{array}$$
adamc@543 1167
adamc@560 1168 SQL expressions are used in several places, including $\mt{SELECT}$, $\mt{WHERE}$, $\mt{HAVING}$, and $\mt{ORDER} \; \mt{BY}$ clauses. They reify a fragment of the standard SQL expression language, while making it possible to inject ``native'' Ur values in some places. The arguments to the $\mt{sql\_exp}$ type family respectively give the unrestricted-availability table fields, the table fields that may only be used in arguments to aggregate functions, the available selected expressions, and the type of the expression.
adamc@543 1169 $$\begin{array}{l}
adamc@543 1170 \mt{con} \; \mt{sql\_exp} :: \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \to \mt{Type}
adamc@543 1171 \end{array}$$
adamc@543 1172
adamc@543 1173 Any field in scope may be converted to an expression.
adamc@543 1174 $$\begin{array}{l}
adamc@543 1175 \mt{val} \; \mt{sql\_field} : \mt{otherTabs} ::: \{\{\mt{Type}\}\} \to \mt{otherFields} ::: \{\mt{Type}\} \\
adamc@543 1176 \hspace{.1in} \to \mt{fieldType} ::: \mt{Type} \to \mt{agg} ::: \{\{\mt{Type}\}\} \\
adamc@543 1177 \hspace{.1in} \to \mt{exps} ::: \{\mt{Type}\} \\
adamc@543 1178 \hspace{.1in} \to \mt{tab} :: \mt{Name} \to \mt{field} :: \mt{Name} \\
adamc@543 1179 \hspace{.1in} \to \mt{sql\_exp} \; ([\mt{tab} = [\mt{field} = \mt{fieldType}] \rc \mt{otherFields}] \rc \mt{otherTabs}) \; \mt{agg} \; \mt{exps} \; \mt{fieldType}
adamc@543 1180 \end{array}$$
adamc@543 1181
adamc@544 1182 There is an analogous function for referencing named expressions.
adamc@544 1183 $$\begin{array}{l}
adamc@544 1184 \mt{val} \; \mt{sql\_exp} : \mt{tabs} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{t} ::: \mt{Type} \to \mt{rest} ::: \{\mt{Type}\} \to \mt{nm} :: \mt{Name} \\
adamc@544 1185 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tabs} \; \mt{agg} \; ([\mt{nm} = \mt{t}] \rc \mt{rest}) \; \mt{t}
adamc@544 1186 \end{array}$$
adamc@544 1187
adamc@544 1188 Ur values of appropriate types may be injected into SQL expressions.
adamc@544 1189 $$\begin{array}{l}
adamc@544 1190 \mt{class} \; \mt{sql\_injectable} \\
adamc@544 1191 \mt{val} \; \mt{sql\_bool} : \mt{sql\_injectable} \; \mt{bool} \\
adamc@544 1192 \mt{val} \; \mt{sql\_int} : \mt{sql\_injectable} \; \mt{int} \\
adamc@544 1193 \mt{val} \; \mt{sql\_float} : \mt{sql\_injectable} \; \mt{float} \\
adamc@544 1194 \mt{val} \; \mt{sql\_string} : \mt{sql\_injectable} \; \mt{string} \\
adamc@544 1195 \mt{val} \; \mt{sql\_time} : \mt{sql\_injectable} \; \mt{time} \\
adamc@544 1196 \mt{val} \; \mt{sql\_option\_bool} : \mt{sql\_injectable} \; (\mt{option} \; \mt{bool}) \\
adamc@544 1197 \mt{val} \; \mt{sql\_option\_int} : \mt{sql\_injectable} \; (\mt{option} \; \mt{int}) \\
adamc@544 1198 \mt{val} \; \mt{sql\_option\_float} : \mt{sql\_injectable} \; (\mt{option} \; \mt{float}) \\
adamc@544 1199 \mt{val} \; \mt{sql\_option\_string} : \mt{sql\_injectable} \; (\mt{option} \; \mt{string}) \\
adamc@544 1200 \mt{val} \; \mt{sql\_option\_time} : \mt{sql\_injectable} \; (\mt{option} \; \mt{time}) \\
adamc@544 1201 \mt{val} \; \mt{sql\_inject} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \to \mt{sql\_injectable} \; \mt{t} \\
adamc@544 1202 \hspace{.1in} \to \mt{t} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t}
adamc@544 1203 \end{array}$$
adamc@544 1204
adamc@544 1205 We have the SQL nullness test, which is necessary because of the strange SQL semantics of equality in the presence of null values.
adamc@544 1206 $$\begin{array}{l}
adamc@544 1207 \mt{val} \; \mt{sql\_is\_null} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \\
adamc@544 1208 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; (\mt{option} \; \mt{t}) \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{bool}
adamc@544 1209 \end{array}$$
adamc@544 1210
adamc@559 1211 We have generic nullary, unary, and binary operators.
adamc@544 1212 $$\begin{array}{l}
adamc@544 1213 \mt{con} \; \mt{sql\_nfunc} :: \mt{Type} \to \mt{Type} \\
adamc@544 1214 \mt{val} \; \mt{sql\_current\_timestamp} : \mt{sql\_nfunc} \; \mt{time} \\
adamc@544 1215 \mt{val} \; \mt{sql\_nfunc} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \\
adamc@544 1216 \hspace{.1in} \to \mt{sql\_nfunc} \; \mt{t} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t} \\\end{array}$$
adamc@544 1217
adamc@544 1218 $$\begin{array}{l}
adamc@544 1219 \mt{con} \; \mt{sql\_unary} :: \mt{Type} \to \mt{Type} \to \mt{Type} \\
adamc@544 1220 \mt{val} \; \mt{sql\_not} : \mt{sql\_unary} \; \mt{bool} \; \mt{bool} \\
adamc@544 1221 \mt{val} \; \mt{sql\_unary} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{arg} ::: \mt{Type} \to \mt{res} ::: \mt{Type} \\
adamc@544 1222 \hspace{.1in} \to \mt{sql\_unary} \; \mt{arg} \; \mt{res} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{arg} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{res} \\
adamc@544 1223 \end{array}$$
adamc@544 1224
adamc@544 1225 $$\begin{array}{l}
adamc@544 1226 \mt{con} \; \mt{sql\_binary} :: \mt{Type} \to \mt{Type} \to \mt{Type} \to \mt{Type} \\
adamc@544 1227 \mt{val} \; \mt{sql\_and} : \mt{sql\_binary} \; \mt{bool} \; \mt{bool} \; \mt{bool} \\
adamc@544 1228 \mt{val} \; \mt{sql\_or} : \mt{sql\_binary} \; \mt{bool} \; \mt{bool} \; \mt{bool} \\
adamc@544 1229 \mt{val} \; \mt{sql\_binary} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{arg_1} ::: \mt{Type} \to \mt{arg_2} ::: \mt{Type} \to \mt{res} ::: \mt{Type} \\
adamc@544 1230 \hspace{.1in} \to \mt{sql\_binary} \; \mt{arg_1} \; \mt{arg_2} \; \mt{res} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{arg_1} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{arg_2} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{res}
adamc@544 1231 \end{array}$$
adamc@544 1232
adamc@544 1233 $$\begin{array}{l}
adamc@559 1234 \mt{class} \; \mt{sql\_arith} \\
adamc@559 1235 \mt{val} \; \mt{sql\_int\_arith} : \mt{sql\_arith} \; \mt{int} \\
adamc@559 1236 \mt{val} \; \mt{sql\_float\_arith} : \mt{sql\_arith} \; \mt{float} \\
adamc@559 1237 \mt{val} \; \mt{sql\_neg} : \mt{t} ::: \mt{Type} \to \mt{sql\_arith} \; \mt{t} \to \mt{sql\_unary} \; \mt{t} \; \mt{t} \\
adamc@559 1238 \mt{val} \; \mt{sql\_plus} : \mt{t} ::: \mt{Type} \to \mt{sql\_arith} \; \mt{t} \to \mt{sql\_binary} \; \mt{t} \; \mt{t} \; \mt{t} \\
adamc@559 1239 \mt{val} \; \mt{sql\_minus} : \mt{t} ::: \mt{Type} \to \mt{sql\_arith} \; \mt{t} \to \mt{sql\_binary} \; \mt{t} \; \mt{t} \; \mt{t} \\
adamc@559 1240 \mt{val} \; \mt{sql\_times} : \mt{t} ::: \mt{Type} \to \mt{sql\_arith} \; \mt{t} \to \mt{sql\_binary} \; \mt{t} \; \mt{t} \; \mt{t} \\
adamc@559 1241 \mt{val} \; \mt{sql\_div} : \mt{t} ::: \mt{Type} \to \mt{sql\_arith} \; \mt{t} \to \mt{sql\_binary} \; \mt{t} \; \mt{t} \; \mt{t} \\
adamc@559 1242 \mt{val} \; \mt{sql\_mod} : \mt{sql\_binary} \; \mt{int} \; \mt{int} \; \mt{int}
adamc@559 1243 \end{array}$$
adamc@544 1244
adamc@544 1245 Finally, we have aggregate functions. The $\mt{COUNT(\ast)}$ syntax is handled specially, since it takes no real argument. The other aggregate functions are placed into a general type family, using type classes to restrict usage to properly-typed arguments. The key aspect of the $\mt{sql\_aggregate}$ function's type is the shift of aggregate-function-only fields into unrestricted fields.
adamc@544 1246
adamc@544 1247 $$\begin{array}{l}
adamc@544 1248 \mt{val} \; \mt{sql\_count} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{int}
adamc@544 1249 \end{array}$$
adamc@544 1250
adamc@544 1251 $$\begin{array}{l}
adamc@544 1252 \mt{con} \; \mt{sql\_aggregate} :: \mt{Type} \to \mt{Type} \\
adamc@544 1253 \mt{val} \; \mt{sql\_aggregate} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \\
adamc@544 1254 \hspace{.1in} \to \mt{sql\_aggregate} \; \mt{t} \to \mt{sql\_exp} \; \mt{agg} \; \mt{agg} \; \mt{exps} \; \mt{t} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t}
adamc@544 1255 \end{array}$$
adamc@544 1256
adamc@544 1257 $$\begin{array}{l}
adamc@544 1258 \mt{class} \; \mt{sql\_summable} \\
adamc@544 1259 \mt{val} \; \mt{sql\_summable\_int} : \mt{sql\_summable} \; \mt{int} \\
adamc@544 1260 \mt{val} \; \mt{sql\_summable\_float} : \mt{sql\_summable} \; \mt{float} \\
adamc@544 1261 \mt{val} \; \mt{sql\_avg} : \mt{t} ::: \mt{Type} \to \mt{sql\_summable} \; \mt{t} \to \mt{sql\_aggregate} \; \mt{t} \\
adamc@544 1262 \mt{val} \; \mt{sql\_sum} : \mt{t} ::: \mt{Type} \to \mt{sql\_summable} \mt{t} \to \mt{sql\_aggregate} \; \mt{t}
adamc@544 1263 \end{array}$$
adamc@544 1264
adamc@544 1265 $$\begin{array}{l}
adamc@544 1266 \mt{class} \; \mt{sql\_maxable} \\
adamc@544 1267 \mt{val} \; \mt{sql\_maxable\_int} : \mt{sql\_maxable} \; \mt{int} \\
adamc@544 1268 \mt{val} \; \mt{sql\_maxable\_float} : \mt{sql\_maxable} \; \mt{float} \\
adamc@544 1269 \mt{val} \; \mt{sql\_maxable\_string} : \mt{sql\_maxable} \; \mt{string} \\
adamc@544 1270 \mt{val} \; \mt{sql\_maxable\_time} : \mt{sql\_maxable} \; \mt{time} \\
adamc@544 1271 \mt{val} \; \mt{sql\_max} : \mt{t} ::: \mt{Type} \to \mt{sql\_maxable} \; \mt{t} \to \mt{sql\_aggregate} \; \mt{t} \\
adamc@544 1272 \mt{val} \; \mt{sql\_min} : \mt{t} ::: \mt{Type} \to \mt{sql\_maxable} \; \mt{t} \to \mt{sql\_aggregate} \; \mt{t}
adamc@544 1273 \end{array}$$
adamc@544 1274
adamc@544 1275 We wrap up the definition of query syntax with the types used in representing $\mt{ORDER} \; \mt{BY}$, $\mt{LIMIT}$, and $\mt{OFFSET}$ clauses.
adamc@544 1276 $$\begin{array}{l}
adamc@544 1277 \mt{type} \; \mt{sql\_direction} \\
adamc@544 1278 \mt{val} \; \mt{sql\_asc} : \mt{sql\_direction} \\
adamc@544 1279 \mt{val} \; \mt{sql\_desc} : \mt{sql\_direction} \\
adamc@544 1280 \\
adamc@544 1281 \mt{con} \; \mt{sql\_order\_by} :: \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \\
adamc@544 1282 \mt{val} \; \mt{sql\_order\_by\_Nil} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{exps} :: \{\mt{Type}\} \to \mt{sql\_order\_by} \; \mt{tables} \; \mt{exps} \\
adamc@544 1283 \mt{val} \; \mt{sql\_order\_by\_Cons} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \\
adamc@544 1284 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tables} \; [] \; \mt{exps} \; \mt{t} \to \mt{sql\_direction} \to \mt{sql\_order\_by} \; \mt{tables} \; \mt{exps} \to \mt{sql\_order\_by} \; \mt{tables} \; \mt{exps} \\
adamc@544 1285 \\
adamc@544 1286 \mt{type} \; \mt{sql\_limit} \\
adamc@544 1287 \mt{val} \; \mt{sql\_no\_limit} : \mt{sql\_limit} \\
adamc@544 1288 \mt{val} \; \mt{sql\_limit} : \mt{int} \to \mt{sql\_limit} \\
adamc@544 1289 \\
adamc@544 1290 \mt{type} \; \mt{sql\_offset} \\
adamc@544 1291 \mt{val} \; \mt{sql\_no\_offset} : \mt{sql\_offset} \\
adamc@544 1292 \mt{val} \; \mt{sql\_offset} : \mt{int} \to \mt{sql\_offset}
adamc@544 1293 \end{array}$$
adamc@544 1294
adamc@545 1295
adamc@545 1296 \subsubsection{DML}
adamc@545 1297
adamc@545 1298 The Ur/Web library also includes an embedding of a fragment of SQL's DML, the Data Manipulation Language, for modifying database tables. Any piece of DML may be executed in a transaction.
adamc@545 1299
adamc@545 1300 $$\begin{array}{l}
adamc@545 1301 \mt{type} \; \mt{dml} \\
adamc@545 1302 \mt{val} \; \mt{dml} : \mt{dml} \to \mt{transaction} \; \mt{unit}
adamc@545 1303 \end{array}$$
adamc@545 1304
adamc@545 1305 Properly-typed records may be used to form $\mt{INSERT}$ commands.
adamc@545 1306 $$\begin{array}{l}
adamc@545 1307 \mt{val} \; \mt{insert} : \mt{fields} ::: \{\mt{Type}\} \to \mt{sql\_table} \; \mt{fields} \\
adamc@545 1308 \hspace{.1in} \to \$(\mt{fold} \; (\lambda \mt{nm} \; (\mt{t} :: \mt{Type}) \; \mt{acc} \; [[\mt{nm}] \sim \mt{acc}] \Rightarrow [\mt{nm} = \mt{sql\_exp} \; [] \; [] \; [] \; \mt{t}] \rc \mt{acc}) \; [] \; \mt{fields}) \to \mt{dml}
adamc@545 1309 \end{array}$$
adamc@545 1310
adamc@545 1311 An $\mt{UPDATE}$ command is formed from a choice of which table fields to leave alone and which to change, along with an expression to use to compute the new value of each changed field and a $\mt{WHERE}$ clause.
adamc@545 1312 $$\begin{array}{l}
adamc@545 1313 \mt{val} \; \mt{update} : \mt{unchanged} ::: \{\mt{Type}\} \to \mt{changed} :: \{\mt{Type}\} \to \lambda [\mt{changed} \sim \mt{unchanged}] \\
adamc@545 1314 \hspace{.1in} \Rightarrow \$(\mt{fold} \; (\lambda \mt{nm} \; (\mt{t} :: \mt{Type}) \; \mt{acc} \; [[\mt{nm}] \sim \mt{acc}] \Rightarrow [\mt{nm} = \mt{sql\_exp} \; [\mt{T} = \mt{changed} \rc \mt{unchanged}] \; [] \; [] \; \mt{t}] \rc \mt{acc}) \; [] \; \mt{changed}) \\
adamc@545 1315 \hspace{.1in} \to \mt{sql\_table} \; (\mt{changed} \rc \mt{unchanged}) \to \mt{sql\_exp} \; [\mt{T} = \mt{changed} \rc \mt{unchanged}] \; [] \; [] \; \mt{bool} \to \mt{dml}
adamc@545 1316 \end{array}$$
adamc@545 1317
adamc@545 1318 A $\mt{DELETE}$ command is formed from a table and a $\mt{WHERE}$ clause.
adamc@545 1319 $$\begin{array}{l}
adamc@545 1320 \mt{val} \; \mt{delete} : \mt{fields} ::: \{\mt{Type}\} \to \mt{sql\_table} \; \mt{fields} \to \mt{sql\_exp} \; [\mt{T} = \mt{fields}] \; [] \; [] \; \mt{bool} \to \mt{dml}
adamc@545 1321 \end{array}$$
adamc@545 1322
adamc@546 1323 \subsubsection{Sequences}
adamc@546 1324
adamc@546 1325 SQL sequences are counters with concurrency control, often used to assign unique IDs. Ur/Web supports them via a simple interface. The only way to create a sequence is with the $\mt{sequence}$ declaration form.
adamc@546 1326
adamc@546 1327 $$\begin{array}{l}
adamc@546 1328 \mt{type} \; \mt{sql\_sequence} \\
adamc@546 1329 \mt{val} \; \mt{nextval} : \mt{sql\_sequence} \to \mt{transaction} \; \mt{int}
adamc@546 1330 \end{array}$$
adamc@546 1331
adamc@546 1332
adamc@547 1333 \subsection{XML}
adamc@547 1334
adamc@547 1335 Ur/Web's library contains an encoding of XML syntax and semantic constraints. We make no effort to follow the standards governing XML schemas. Rather, XML fragments are viewed more as values of ML datatypes, and we only track which tags are allowed inside which other tags.
adamc@547 1336
adamc@547 1337 The basic XML type family has arguments respectively indicating the \emph{context} of a fragment, the fields that the fragment expects to be bound on entry (and their types), and the fields that the fragment will bind (and their types). Contexts are a record-based ``poor man's subtyping'' encoding, with each possible set of valid tags corresponding to a different context record. The arguments dealing with field binding are only relevant to HTML forms.
adamc@547 1338 $$\begin{array}{l}
adamc@547 1339 \mt{con} \; \mt{xml} :: \{\mt{Unit}\} \to \{\mt{Type}\} \to \{\mt{Type}\} \to \mt{Type}
adamc@547 1340 \end{array}$$
adamc@547 1341
adamc@547 1342 We also have a type family of XML tags, indexed respectively by the record of optional attributes accepted by the tag, the context in which the tag may be placed, the context required of children of the tag, which form fields the tag uses, and which fields the tag defines.
adamc@547 1343 $$\begin{array}{l}
adamc@547 1344 \mt{con} \; \mt{tag} :: \{\mt{Type}\} \to \{\mt{Unit}\} \to \{\mt{Unit}\} \to \{\mt{Type}\} \to \{\mt{Type}\} \to \mt{Type}
adamc@547 1345 \end{array}$$
adamc@547 1346
adamc@547 1347 Literal text may be injected into XML as ``CDATA.''
adamc@547 1348 $$\begin{array}{l}
adamc@547 1349 \mt{val} \; \mt{cdata} : \mt{ctx} ::: \{\mt{Unit}\} \to \mt{use} ::: \{\mt{Type}\} \to \mt{string} \to \mt{xml} \; \mt{ctx} \; \mt{use} \; []
adamc@547 1350 \end{array}$$
adamc@547 1351
adamc@547 1352 There is a function for producing an XML tree with a particular tag at its root.
adamc@547 1353 $$\begin{array}{l}
adamc@547 1354 \mt{val} \; \mt{tag} : \mt{attrsGiven} ::: \{\mt{Type}\} \to \mt{attrsAbsent} ::: \{\mt{Type}\} \to \mt{ctxOuter} ::: \{\mt{Unit}\} \to \mt{ctxInner} ::: \{\mt{Unit}\} \\
adamc@547 1355 \hspace{.1in} \to \mt{useOuter} ::: \{\mt{Type}\} \to \mt{useInner} ::: \{\mt{Type}\} \to \mt{bindOuter} ::: \{\mt{Type}\} \to \mt{bindInner} ::: \{\mt{Type}\} \\
adamc@547 1356 \hspace{.1in} \to \lambda [\mt{attrsGiven} \sim \mt{attrsAbsent}] \; [\mt{useOuter} \sim \mt{useInner}] \; [\mt{bindOuter} \sim \mt{bindInner}] \Rightarrow \$\mt{attrsGiven} \\
adamc@547 1357 \hspace{.1in} \to \mt{tag} \; (\mt{attrsGiven} \rc \mt{attrsAbsent}) \; \mt{ctxOuter} \; \mt{ctxInner} \; \mt{useOuter} \; \mt{bindOuter} \\
adamc@547 1358 \hspace{.1in} \to \mt{xml} \; \mt{ctxInner} \; \mt{useInner} \; \mt{bindInner} \to \mt{xml} \; \mt{ctxOuter} \; (\mt{useOuter} \rc \mt{useInner}) \; (\mt{bindOuter} \rc \mt{bindInner})
adamc@547 1359 \end{array}$$
adamc@547 1360
adamc@547 1361 Two XML fragments may be concatenated.
adamc@547 1362 $$\begin{array}{l}
adamc@547 1363 \mt{val} \; \mt{join} : \mt{ctx} ::: \{\mt{Unit}\} \to \mt{use_1} ::: \{\mt{Type}\} \to \mt{bind_1} ::: \{\mt{Type}\} \to \mt{bind_2} ::: \{\mt{Type}\} \\
adamc@547 1364 \hspace{.1in} \to \lambda [\mt{use_1} \sim \mt{bind_1}] \; [\mt{bind_1} \sim \mt{bind_2}] \\
adamc@547 1365 \hspace{.1in} \Rightarrow \mt{xml} \; \mt{ctx} \; \mt{use_1} \; \mt{bind_1} \to \mt{xml} \; \mt{ctx} \; (\mt{use_1} \rc \mt{bind_1}) \; \mt{bind_2} \to \mt{xml} \; \mt{ctx} \; \mt{use_1} \; (\mt{bind_1} \rc \mt{bind_2})
adamc@547 1366 \end{array}$$
adamc@547 1367
adamc@547 1368 Finally, any XML fragment may be updated to ``claim'' to use more form fields than it does.
adamc@547 1369 $$\begin{array}{l}
adamc@547 1370 \mt{val} \; \mt{useMore} : \mt{ctx} ::: \{\mt{Unit}\} \to \mt{use_1} ::: \{\mt{Type}\} \to \mt{use_2} ::: \{\mt{Type}\} \to \mt{bind} ::: \{\mt{Type}\} \to \lambda [\mt{use_1} \sim \mt{use_2}] \\
adamc@547 1371 \hspace{.1in} \Rightarrow \mt{xml} \; \mt{ctx} \; \mt{use_1} \; \mt{bind} \to \mt{xml} \; \mt{ctx} \; (\mt{use_1} \rc \mt{use_2}) \; \mt{bind}
adamc@547 1372 \end{array}$$
adamc@547 1373
adamc@547 1374 We will not list here the different HTML tags and related functions from the standard library. They should be easy enough to understand from the code in \texttt{basis.urs}. The set of tags in the library is not yet claimed to be complete for HTML standards.
adamc@547 1375
adamc@547 1376 One last useful function is for aborting any page generation, returning some XML as an error message. This function takes the place of some uses of a general exception mechanism.
adamc@547 1377 $$\begin{array}{l}
adamc@547 1378 \mt{val} \; \mt{error} : \mt{t} ::: \mt{Type} \to \mt{xml} \; [\mt{Body}] \; [] \; [] \to \mt{t}
adamc@547 1379 \end{array}$$
adamc@547 1380
adamc@549 1381
adamc@549 1382 \section{Ur/Web Syntax Extensions}
adamc@549 1383
adamc@549 1384 Ur/Web features some syntactic shorthands for building values using the functions from the last section. This section sketches the grammar of those extensions. We write spans of syntax inside brackets to indicate that they are optional.
adamc@549 1385
adamc@549 1386 \subsection{SQL}
adamc@549 1387
adamc@549 1388 \subsubsection{Queries}
adamc@549 1389
adamc@550 1390 Queries $Q$ are added to the rules for expressions $e$.
adamc@550 1391
adamc@549 1392 $$\begin{array}{rrcll}
adamc@550 1393 \textrm{Queries} & Q &::=& (q \; [\mt{ORDER} \; \mt{BY} \; (E \; [o],)^+] \; [\mt{LIMIT} \; N] \; [\mt{OFFSET} \; N]) \\
adamc@549 1394 \textrm{Pre-queries} & q &::=& \mt{SELECT} \; P \; \mt{FROM} \; T,^+ \; [\mt{WHERE} \; E] \; [\mt{GROUP} \; \mt{BY} \; p,^+] \; [\mt{HAVING} \; E] \\
adamc@549 1395 &&& \mid q \; R \; q \\
adamc@549 1396 \textrm{Relational operators} & R &::=& \mt{UNION} \mid \mt{INTERSECT} \mid \mt{EXCEPT}
adamc@549 1397 \end{array}$$
adamc@549 1398
adamc@549 1399 $$\begin{array}{rrcll}
adamc@549 1400 \textrm{Projections} & P &::=& \ast & \textrm{all columns} \\
adamc@549 1401 &&& p,^+ & \textrm{particular columns} \\
adamc@549 1402 \textrm{Pre-projections} & p &::=& t.f & \textrm{one column from a table} \\
adamc@558 1403 &&& t.\{\{c\}\} & \textrm{a record of columns from a table (of kind $\{\mt{Type}\}$)} \\
adamc@549 1404 \textrm{Table names} & t &::=& x & \textrm{constant table name (automatically capitalized)} \\
adamc@549 1405 &&& X & \textrm{constant table name} \\
adamc@549 1406 &&& \{\{c\}\} & \textrm{computed table name (of kind $\mt{Name}$)} \\
adamc@549 1407 \textrm{Column names} & f &::=& X & \textrm{constant column name} \\
adamc@549 1408 &&& \{c\} & \textrm{computed column name (of kind $\mt{Name}$)} \\
adamc@549 1409 \textrm{Tables} & T &::=& x & \textrm{table variable, named locally by its own capitalization} \\
adamc@549 1410 &&& x \; \mt{AS} \; t & \textrm{table variable, with local name} \\
adamc@549 1411 &&& \{\{e\}\} \; \mt{AS} \; t & \textrm{computed table expression, with local name} \\
adamc@549 1412 \textrm{SQL expressions} & E &::=& p & \textrm{column references} \\
adamc@549 1413 &&& X & \textrm{named expression references} \\
adamc@549 1414 &&& \{\{e\}\} & \textrm{injected native Ur expressions} \\
adamc@549 1415 &&& \{e\} & \textrm{computed expressions, probably using $\mt{sql\_exp}$ directly} \\
adamc@549 1416 &&& \mt{TRUE} \mid \mt{FALSE} & \textrm{boolean constants} \\
adamc@549 1417 &&& \ell & \textrm{primitive type literals} \\
adamc@549 1418 &&& \mt{NULL} & \textrm{null value (injection of $\mt{None}$)} \\
adamc@549 1419 &&& E \; \mt{IS} \; \mt{NULL} & \textrm{nullness test} \\
adamc@549 1420 &&& n & \textrm{nullary operators} \\
adamc@549 1421 &&& u \; E & \textrm{unary operators} \\
adamc@549 1422 &&& E \; b \; E & \textrm{binary operators} \\
adamc@549 1423 &&& \mt{COUNT}(\ast) & \textrm{count number of rows} \\
adamc@549 1424 &&& a(E) & \textrm{other aggregate function} \\
adamc@549 1425 &&& (E) & \textrm{explicit precedence} \\
adamc@549 1426 \textrm{Nullary operators} & n &::=& \mt{CURRENT\_TIMESTAMP} \\
adamc@549 1427 \textrm{Unary operators} & u &::=& \mt{NOT} \\
adamc@549 1428 \textrm{Binary operators} & b &::=& \mt{AND} \mid \mt{OR} \mid \neq \mid < \mid \leq \mid > \mid \geq \\
adamc@549 1429 \textrm{Aggregate functions} & a &::=& \mt{AVG} \mid \mt{SUM} \mid \mt{MIN} \mid \mt{MAX} \\
adamc@550 1430 \textrm{Directions} & o &::=& \mt{ASC} \mid \mt{DESC} \\
adamc@549 1431 \textrm{SQL integer} & N &::=& n \mid \{e\} \\
adamc@549 1432 \end{array}$$
adamc@549 1433
adamc@549 1434 Additionally, an SQL expression may be inserted into normal Ur code with the syntax $(\mt{SQL} \; E)$ or $(\mt{WHERE} \; E)$.
adamc@549 1435
adamc@550 1436 \subsubsection{DML}
adamc@550 1437
adamc@550 1438 DML commands $D$ are added to the rules for expressions $e$.
adamc@550 1439
adamc@550 1440 $$\begin{array}{rrcll}
adamc@550 1441 \textrm{Commands} & D &::=& (\mt{INSERT} \; \mt{INTO} \; T^E \; (f,^+) \; \mt{VALUES} \; (E,^+)) \\
adamc@550 1442 &&& (\mt{UPDATE} \; T^E \; \mt{SET} \; (f = E,)^+ \; \mt{WHERE} \; E) \\
adamc@550 1443 &&& (\mt{DELETE} \; \mt{FROM} \; T^E \; \mt{WHERE} \; E) \\
adamc@550 1444 \textrm{Table expressions} & T^E &::=& x \mid \{\{e\}\}
adamc@550 1445 \end{array}$$
adamc@550 1446
adamc@550 1447 Inside $\mt{UPDATE}$ and $\mt{DELETE}$ commands, lone variables $X$ are interpreted as references to columns of the implicit table $\mt{T}$, rather than to named expressions.
adamc@549 1448
adamc@551 1449 \subsection{XML}
adamc@551 1450
adamc@551 1451 XML fragments $L$ are added to the rules for expressions $e$.
adamc@551 1452
adamc@551 1453 $$\begin{array}{rrcll}
adamc@551 1454 \textrm{XML fragments} & L &::=& \texttt{<xml/>} \mid \texttt{<xml>}l^*\texttt{</xml>} \\
adamc@551 1455 \textrm{XML pieces} & l &::=& \textrm{text} & \textrm{cdata} \\
adamc@551 1456 &&& \texttt{<}g\texttt{/>} & \textrm{tag with no children} \\
adamc@551 1457 &&& \texttt{<}g\texttt{>}l^*\texttt{</}x\texttt{>} & \textrm{tag with children} \\
adamc@559 1458 &&& \{e\} & \textrm{computed XML fragment} \\
adamc@559 1459 &&& \{[e]\} & \textrm{injection of an Ur expression, via the $\mt{Top}.\mt{txt}$ function} \\
adamc@551 1460 \textrm{Tag} & g &::=& h \; (x = v)^* \\
adamc@551 1461 \textrm{Tag head} & h &::=& x & \textrm{tag name} \\
adamc@551 1462 &&& h\{c\} & \textrm{constructor parameter} \\
adamc@551 1463 \textrm{Attribute value} & v &::=& \ell & \textrm{literal value} \\
adamc@551 1464 &&& \{e\} & \textrm{computed value} \\
adamc@551 1465 \end{array}$$
adamc@551 1466
adamc@552 1467
adamc@553 1468 \section{The Structure of Web Applications}
adamc@553 1469
adamc@553 1470 A web application is built from a series of modules, with one module, the last one appearing in the \texttt{.urp} file, designated as the main module. The signature of the main module determines the URL entry points to the application. Such an entry point should have type $\mt{unit} \to \mt{transaction} \; \mt{page}$, where $\mt{page}$ is a type synonym for top-level HTML pages, defined in $\mt{Basis}$. If such a function is at the top level of main module $M$, it will be accessible at URI \texttt{/M/f}, and so on for more deeply-nested functions, as described in Section \ref{tag} below.
adamc@553 1471
adamc@553 1472 When the standalone web server receives a request for a known page, it calls the function for that page, ``running'' the resulting transaction to produce the page to return to the client. Pages link to other pages with the \texttt{link} attribute of the \texttt{a} HTML tag. A link has type $\mt{transaction} \; \mt{page}$, and the semantics of a link are that this transaction should be run to compute the result page, when the link is followed. Link targets are assigned URL names in the same way as top-level entry points.
adamc@553 1473
adamc@553 1474 HTML forms are handled in a similar way. The $\mt{action}$ attribute of a $\mt{submit}$ form tag takes a value of type $\$\mt{use} \to \mt{transaction} \; \mt{page}$, where $\mt{use}$ is a kind-$\{\mt{Type}\}$ record of the form fields used by this action handler. Action handlers are assigned URL patterns in the same way as above.
adamc@553 1475
adamc@558 1476 For both links and actions, direct arguments and local variables mentioned implicitly via closures are automatically included in serialized form in URLs, in the order in which they appear in the source code.
adamc@553 1477
adamc@553 1478
adamc@552 1479 \section{Compiler Phases}
adamc@552 1480
adamc@552 1481 The Ur/Web compiler is unconventional in that it relies on a kind of \emph{heuristic compilation}. Not all valid programs will compile successfully. Informally, programs fail to compile when they are ``too higher order.'' Compiler phases do their best to eliminate different kinds of higher order-ness, but some programs just won't compile. This is a trade-off for producing very efficient executables. Compiled Ur/Web programs use native C representations and require no garbage collection.
adamc@552 1482
adamc@552 1483 In this section, we step through the main phases of compilation, noting what consequences each phase has for effective programming.
adamc@552 1484
adamc@552 1485 \subsection{Parse}
adamc@552 1486
adamc@552 1487 The compiler reads a \texttt{.urp} file, figures out which \texttt{.urs} and \texttt{.ur} files it references, and combines them all into what is conceptually a single sequence of declarations in the core language of Section \ref{core}.
adamc@552 1488
adamc@552 1489 \subsection{Elaborate}
adamc@552 1490
adamc@552 1491 This is where type inference takes place, translating programs into an explicit form with no more wildcards. This phase is the most likely source of compiler error messages.
adamc@552 1492
adamc@552 1493 \subsection{Unnest}
adamc@552 1494
adamc@552 1495 Named local function definitions are moved to the top level, to avoid the need to generate closures.
adamc@552 1496
adamc@552 1497 \subsection{Corify}
adamc@552 1498
adamc@552 1499 Module system features are compiled away, through inlining of functor definitions at application sites. Afterward, most abstraction boundaries are broken, facilitating optimization.
adamc@552 1500
adamc@552 1501 \subsection{Especialize}
adamc@552 1502
adamc@552 1503 Functions are specialized to particular argument patterns. This is an important trick for avoiding the need to maintain any closures at runtime.
adamc@552 1504
adamc@552 1505 \subsection{Untangle}
adamc@552 1506
adamc@552 1507 Remove unnecessary mutual recursion, splitting recursive groups into strongly-connected components.
adamc@552 1508
adamc@552 1509 \subsection{Shake}
adamc@552 1510
adamc@552 1511 Remove all definitions not needed to run the page handlers that are visible in the signature of the last module listed in the \texttt{.urp} file.
adamc@552 1512
adamc@553 1513 \subsection{\label{tag}Tag}
adamc@552 1514
adamc@552 1515 Assign a URL name to each link and form action. It is important that these links and actions are written as applications of named functions, because such names are used to generate URL patterns. A URL pattern has a name built from the full module path of the named function, followed by the function name, with all pieces separated by slashes. The path of a functor application is based on the name given to the result, rather than the path of the functor itself.
adamc@552 1516
adamc@552 1517 \subsection{Reduce}
adamc@552 1518
adamc@552 1519 Apply definitional equality rules to simplify the program as much as possible. This effectively includes inlining of every non-recursive definition.
adamc@552 1520
adamc@552 1521 \subsection{Unpoly}
adamc@552 1522
adamc@552 1523 This phase specializes polymorphic functions to the specific arguments passed to them in the program. If the program contains real polymorphic recursion, Unpoly will be insufficient to avoid later error messages about too much polymorphism.
adamc@552 1524
adamc@552 1525 \subsection{Specialize}
adamc@552 1526
adamc@558 1527 Replace uses of parameterized datatypes with versions specialized to specific parameters. As for Unpoly, this phase will not be effective enough in the presence of polymorphic recursion or other fancy uses of impredicative polymorphism.
adamc@552 1528
adamc@552 1529 \subsection{Shake}
adamc@552 1530
adamc@558 1531 Here the compiler repeats the earlier Shake phase.
adamc@552 1532
adamc@552 1533 \subsection{Monoize}
adamc@552 1534
adamc@552 1535 Programs are translated to a new intermediate language without polymorphism or non-$\mt{Type}$ constructors. Error messages may pop up here if earlier phases failed to remove such features.
adamc@552 1536
adamc@552 1537 This is the stage at which concrete names are generated for cookies, tables, and sequences. They are named following the same convention as for links and actions, based on module path information saved from earlier stages. Table and sequence names separate path elements with underscores instead of slashes, and they are prefixed by \texttt{uw\_}.
adamc@552 1538 \subsection{MonoOpt}
adamc@552 1539
adamc@552 1540 Simple algebraic laws are applied to simplify the program, focusing especially on efficient imperative generation of HTML pages.
adamc@552 1541
adamc@552 1542 \subsection{MonoUntangle}
adamc@552 1543
adamc@552 1544 Unnecessary mutual recursion is broken up again.
adamc@552 1545
adamc@552 1546 \subsection{MonoReduce}
adamc@552 1547
adamc@552 1548 Equivalents of the definitional equality rules are applied to simplify programs, with inlining again playing a major role.
adamc@552 1549
adamc@552 1550 \subsection{MonoShake, MonoOpt}
adamc@552 1551
adamc@552 1552 Unneeded declarations are removed, and basic optimizations are repeated.
adamc@552 1553
adamc@552 1554 \subsection{Fuse}
adamc@552 1555
adamc@552 1556 The compiler tries to simplify calls to recursive functions whose results are immediately written as page output. The write action is pushed inside the function definitions to avoid allocation of intermediate results.
adamc@552 1557
adamc@552 1558 \subsection{MonoUntangle, MonoShake}
adamc@552 1559
adamc@552 1560 Fuse often creates more opportunities to remove spurious mutual recursion.
adamc@552 1561
adamc@552 1562 \subsection{Pathcheck}
adamc@552 1563
adamc@552 1564 The compiler checks that no link or action name has been used more than once.
adamc@552 1565
adamc@552 1566 \subsection{Cjrize}
adamc@552 1567
adamc@552 1568 The program is translated to what is more or less a subset of C. If any use of functions as data remains at this point, the compiler will complain.
adamc@552 1569
adamc@552 1570 \subsection{C Compilation and Linking}
adamc@552 1571
adamc@552 1572 The output of the last phase is pretty-printed as C source code and passed to GCC.
adamc@552 1573
adamc@552 1574
adamc@524 1575 \end{document}