annotate doc/manual.tex @ 652:9db6880184d0

Revising manual, through main syntax section
author Adam Chlipala <adamc@hcoop.net>
date Thu, 12 Mar 2009 10:16:59 -0400
parents 33500a15b872
children a0f2b070af01
rev   line source
adamc@524 1 \documentclass{article}
adamc@554 2 \usepackage{fullpage,amsmath,amssymb,proof,url}
adamc@524 3
adamc@524 4 \newcommand{\cd}[1]{\texttt{#1}}
adamc@524 5 \newcommand{\mt}[1]{\mathsf{#1}}
adamc@524 6
adamc@524 7 \newcommand{\rc}{+ \hspace{-.075in} + \;}
adamc@527 8 \newcommand{\rcut}{\; \texttt{--} \;}
adamc@527 9 \newcommand{\rcutM}{\; \texttt{---} \;}
adamc@524 10
adamc@524 11 \begin{document}
adamc@524 12
adamc@524 13 \title{The Ur/Web Manual}
adamc@524 14 \author{Adam Chlipala}
adamc@524 15
adamc@524 16 \maketitle
adamc@524 17
adamc@540 18 \tableofcontents
adamc@540 19
adamc@554 20
adamc@554 21 \section{Introduction}
adamc@554 22
adamc@554 23 \emph{Ur} is a programming language designed to introduce richer type system features into functional programming in the tradition of ML and Haskell. Ur is functional, pure, statically-typed, and strict. Ur supports a powerful kind of \emph{metaprogramming} based on \emph{row types}.
adamc@554 24
adamc@554 25 \emph{Ur/Web} is Ur plus a special standard library and associated rules for parsing and optimization. Ur/Web supports construction of dynamic web applications backed by SQL databases. The signature of the standard library is such that well-typed Ur/Web programs ``don't go wrong'' in a very broad sense. Not only do they not crash during particular page generations, but they also may not:
adamc@554 26
adamc@554 27 \begin{itemize}
adamc@554 28 \item Suffer from any kinds of code-injection attacks
adamc@554 29 \item Return invalid HTML
adamc@554 30 \item Contain dead intra-application links
adamc@554 31 \item Have mismatches between HTML forms and the fields expected by their handlers
adamc@652 32 \item Include client-side code that makes incorrect assumptions about the ``AJAX''-style services that the remote web server provides
adamc@554 33 \item Attempt invalid SQL queries
adamc@652 34 \item Use improper marshaling or unmarshaling in communication with SQL databases or between browsers and web servers
adamc@554 35 \end{itemize}
adamc@554 36
adamc@554 37 This type safety is just the foundation of the Ur/Web methodology. It is also possible to use metaprogramming to build significant application pieces by analysis of type structure. For instance, the demo includes an ML-style functor for building an admin interface for an arbitrary SQL table. The type system guarantees that the admin interface sub-application that comes out will always be free of the above-listed bugs, no matter which well-typed table description is given as input.
adamc@554 38
adamc@652 39 The Ur/Web compiler also produces very efficient object code that does not use garbage collection. These compiled programs will often be even more efficient than what most programmers would bother to write in C. The compiler also generates JavaScript versions of client-side code, with no need to write those parts of applications in a different language.
adamc@554 40
adamc@554 41 \medskip
adamc@554 42
adamc@554 43 The official web site for Ur is:
adamc@554 44 \begin{center}
adamc@554 45 \url{http://www.impredicative.com/ur/}
adamc@554 46 \end{center}
adamc@554 47
adamc@555 48
adamc@555 49 \section{Installation}
adamc@555 50
adamc@555 51 If you are lucky, then the following standard command sequence will suffice for installation, in a directory to which you have unpacked the latest distribution tarball.
adamc@555 52
adamc@555 53 \begin{verbatim}
adamc@555 54 ./configure
adamc@555 55 make
adamc@555 56 sudo make install
adamc@555 57 \end{verbatim}
adamc@555 58
adamc@555 59 Some other packages must be installed for the above to work. At a minimum, you need a standard UNIX shell, with standard UNIX tools like sed and GCC in your execution path; and MLton, the whole-program optimizing compiler for Standard ML. To build programs that access SQL databases, you also need libpq, the PostgreSQL client library. As of this writing, in the ``testing'' version of Debian Linux, this command will install the more uncommon of these dependencies:
adamc@555 60
adamc@555 61 \begin{verbatim}
adamc@555 62 apt-get install mlton libpq-dev
adamc@555 63 \end{verbatim}
adamc@555 64
adamc@555 65 It is also possible to access the modules of the Ur/Web compiler interactively, within Standard ML of New Jersey. To install the prerequisites in Debian testing:
adamc@555 66
adamc@555 67 \begin{verbatim}
adamc@555 68 apt-get install smlnj libsmlnj-smlnj ml-yacc ml-lpt
adamc@555 69 \end{verbatim}
adamc@555 70
adamc@555 71 To begin an interactive session with the Ur compiler modules, run \texttt{make smlnj}, and then, from within an \texttt{sml} session, run \texttt{CM.make "src/urweb.cm";}. The \texttt{Compiler} module is the main entry point.
adamc@555 72
adamc@555 73 To run an SQL-backed application, you will probably want to install the PostgreSQL server. Version 8.3 or higher is required.
adamc@555 74
adamc@555 75 \begin{verbatim}
adamc@555 76 apt-get install postgresql-8.3
adamc@555 77 \end{verbatim}
adamc@555 78
adamc@555 79 To use the Emacs mode, you must have a modern Emacs installed. We assume that you already know how to do this, if you're in the business of looking for an Emacs mode. The demo generation facility of the compiler will also call out to Emacs to syntax-highlight code, and that process depends on the \texttt{htmlize} module, which can be installed in Debian testing via:
adamc@555 80
adamc@555 81 \begin{verbatim}
adamc@555 82 apt-get install emacs-goodies-el
adamc@555 83 \end{verbatim}
adamc@555 84
adamc@555 85 Even with the right packages installed, configuration and building might fail to work. After you run \texttt{./configure}, you will see the values of some named environment variables printed. You may need to adjust these values to get proper installation for your system. To change a value, store your preferred alternative in the corresponding UNIX environment variable, before running \texttt{./configure}. For instance, here is how to change the list of extra arguments that the Ur/Web compiler will pass to GCC on every invocation.
adamc@555 86
adamc@555 87 \begin{verbatim}
adamc@555 88 GCCARGS=-fnested-functions ./configure
adamc@555 89 \end{verbatim}
adamc@555 90
adamc@555 91 Some OSX users have reported needing to use this particular GCCARGS value.
adamc@555 92
adamc@555 93 The Emacs mode can be set to autoload by adding the following to your \texttt{.emacs} file.
adamc@555 94
adamc@555 95 \begin{verbatim}
adamc@555 96 (add-to-list 'load-path "/usr/local/share/emacs/site-lisp/urweb-mode")
adamc@555 97 (load "urweb-mode-startup")
adamc@555 98 \end{verbatim}
adamc@555 99
adamc@555 100 Change the path in the first line if you chose a different Emacs installation path during configuration.
adamc@555 101
adamc@555 102
adamc@556 103 \section{Command-Line Compiler}
adamc@556 104
adamc@556 105 \subsection{Project Files}
adamc@556 106
adamc@556 107 The basic inputs to the \texttt{urweb} compiler are project files, which have the extension \texttt{.urp}. Here is a sample \texttt{.urp} file.
adamc@556 108
adamc@556 109 \begin{verbatim}
adamc@556 110 database dbname=test
adamc@556 111 sql crud1.sql
adamc@556 112
adamc@556 113 crud
adamc@556 114 crud1
adamc@556 115 \end{verbatim}
adamc@556 116
adamc@556 117 The \texttt{database} line gives the database information string to pass to libpq. In this case, the string only says to connect to a local database named \texttt{test}.
adamc@556 118
adamc@556 119 The \texttt{sql} line asks for an SQL source file to be generated, giving the commands to run to create the tables and sequences that this application expects to find. After building this \texttt{.urp} file, the following commands could be used to initialize the database, assuming that the current UNIX user exists as a Postgres user with database creation privileges:
adamc@556 120
adamc@556 121 \begin{verbatim}
adamc@556 122 createdb test
adamc@556 123 psql -f crud1.sql test
adamc@556 124 \end{verbatim}
adamc@556 125
adamc@556 126 A blank line always separates the named directives from a list of modules to include in the project; if there are no named directives, a blank line must begin the file.
adamc@556 127
adamc@556 128 For each entry \texttt{M} in the module list, the file \texttt{M.urs} is included in the project if it exists, and the file \texttt{M.ur} must exist and is always included.
adamc@556 129
adamc@556 130 A few other named directives are supported. \texttt{prefix PREFIX} sets the prefix included before every URI within the generated application; the default is \texttt{/}. \texttt{exe FILENAME} sets the filename to which to write the output executable; the default for file \texttt{P.urp} is \texttt{P.exe}. \texttt{debug} saves some intermediate C files, which is mostly useful to help in debugging the compiler itself. \texttt{profile} generates an executable that may be used with gprof.
adamc@556 131
adamc@557 132 \subsection{Building an Application}
adamc@557 133
adamc@557 134 To compile project \texttt{P.urp}, simply run
adamc@557 135 \begin{verbatim}
adamc@557 136 urweb P
adamc@557 137 \end{verbatim}
adamc@558 138 The output executable is a standalone web server. Run it with the command-line argument \texttt{-h} to see which options it takes. If the project file lists a database, the web server will attempt to connect to that database on startup.
adamc@557 139
adamc@557 140 To time how long the different compiler phases run, without generating an executable, run
adamc@557 141 \begin{verbatim}
adamc@557 142 urweb -timing P
adamc@557 143 \end{verbatim}
adamc@557 144
adamc@556 145
adamc@529 146 \section{Ur Syntax}
adamc@529 147
adamc@529 148 In this section, we describe the syntax of Ur, deferring to a later section discussion of most of the syntax specific to SQL and XML. The sole exceptions are the declaration forms for tables, sequences, and cookies.
adamc@524 149
adamc@524 150 \subsection{Lexical Conventions}
adamc@524 151
adamc@524 152 We give the Ur language definition in \LaTeX $\;$ math mode, since that is prettier than monospaced ASCII. The corresponding ASCII syntax can be read off directly. Here is the key for mapping math symbols to ASCII character sequences.
adamc@524 153
adamc@524 154 \begin{center}
adamc@524 155 \begin{tabular}{rl}
adamc@524 156 \textbf{\LaTeX} & \textbf{ASCII} \\
adamc@524 157 $\to$ & \cd{->} \\
adamc@652 158 $\longrightarrow$ & \cd{-->} \\
adamc@524 159 $\times$ & \cd{*} \\
adamc@524 160 $\lambda$ & \cd{fn} \\
adamc@524 161 $\Rightarrow$ & \cd{=>} \\
adamc@652 162 $\Longrightarrow$ & \cd{==>} \\
adamc@529 163 $\neq$ & \cd{<>} \\
adamc@529 164 $\leq$ & \cd{<=} \\
adamc@529 165 $\geq$ & \cd{>=} \\
adamc@524 166 \\
adamc@524 167 $x$ & Normal textual identifier, not beginning with an uppercase letter \\
adamc@525 168 $X$ & Normal textual identifier, beginning with an uppercase letter \\
adamc@524 169 \end{tabular}
adamc@524 170 \end{center}
adamc@524 171
adamc@525 172 We often write syntax like $e^*$ to indicate zero or more copies of $e$, $e^+$ to indicate one or more copies, and $e,^*$ and $e,^+$ to indicate multiple copies separated by commas. Another separator may be used in place of a comma. The $e$ term may be surrounded by parentheses to indicate grouping; those parentheses should not be included in the actual ASCII.
adamc@524 173
adamc@526 174 We write $\ell$ for literals of the primitive types, for the most part following C conventions. There are $\mt{int}$, $\mt{float}$, and $\mt{string}$ literals.
adamc@526 175
adamc@527 176 This version of the manual doesn't include operator precedences; see \texttt{src/urweb.grm} for that.
adamc@527 177
adamc@552 178 \subsection{\label{core}Core Syntax}
adamc@524 179
adamc@524 180 \emph{Kinds} classify types and other compile-time-only entities. Each kind in the grammar is listed with a description of the sort of data it classifies.
adamc@524 181 $$\begin{array}{rrcll}
adamc@524 182 \textrm{Kinds} & \kappa &::=& \mt{Type} & \textrm{proper types} \\
adamc@525 183 &&& \mt{Unit} & \textrm{the trivial constructor} \\
adamc@525 184 &&& \mt{Name} & \textrm{field names} \\
adamc@525 185 &&& \kappa \to \kappa & \textrm{type-level functions} \\
adamc@525 186 &&& \{\kappa\} & \textrm{type-level records} \\
adamc@525 187 &&& (\kappa\times^+) & \textrm{type-level tuples} \\
adamc@652 188 &&& X & \textrm{variable} \\
adamc@652 189 &&& X \longrightarrow k & \textrm{kind-polymorphic type-level function} \\
adamc@529 190 &&& \_\_ & \textrm{wildcard} \\
adamc@525 191 &&& (\kappa) & \textrm{explicit precedence} \\
adamc@524 192 \end{array}$$
adamc@524 193
adamc@524 194 Ur supports several different notions of functions that take types as arguments. These arguments can be either implicit, causing them to be inferred at use sites; or explicit, forcing them to be specified manually at use sites. There is a common explicitness annotation convention applied at the definitions of and in the types of such functions.
adamc@524 195 $$\begin{array}{rrcll}
adamc@524 196 \textrm{Explicitness} & ? &::=& :: & \textrm{explicit} \\
adamc@558 197 &&& ::: & \textrm{implicit}
adamc@524 198 \end{array}$$
adamc@524 199
adamc@524 200 \emph{Constructors} are the main class of compile-time-only data. They include proper types and are classified by kinds.
adamc@524 201 $$\begin{array}{rrcll}
adamc@524 202 \textrm{Constructors} & c, \tau &::=& (c) :: \kappa & \textrm{kind annotation} \\
adamc@530 203 &&& \hat{x} & \textrm{constructor variable} \\
adamc@524 204 \\
adamc@525 205 &&& \tau \to \tau & \textrm{function type} \\
adamc@525 206 &&& x \; ? \; \kappa \to \tau & \textrm{polymorphic function type} \\
adamc@652 207 &&& X \longrightarrow \tau & \textrm{kind-polymorphic function type} \\
adamc@525 208 &&& \$ c & \textrm{record type} \\
adamc@524 209 \\
adamc@525 210 &&& c \; c & \textrm{type-level function application} \\
adamc@530 211 &&& \lambda x \; :: \; \kappa \Rightarrow c & \textrm{type-level function abstraction} \\
adamc@524 212 \\
adamc@652 213 &&& X \Longrightarrow c & \textrm{type-level kind-polymorphic function abstraction} \\
adamc@652 214 \\
adamc@525 215 &&& () & \textrm{type-level unit} \\
adamc@525 216 &&& \#X & \textrm{field name} \\
adamc@524 217 \\
adamc@525 218 &&& [(c = c)^*] & \textrm{known-length type-level record} \\
adamc@525 219 &&& c \rc c & \textrm{type-level record concatenation} \\
adamc@652 220 &&& \mt{map} & \textrm{type-level record map} \\
adamc@524 221 \\
adamc@558 222 &&& (c,^+) & \textrm{type-level tuple} \\
adamc@525 223 &&& c.n & \textrm{type-level tuple projection ($n \in \mathbb N^+$)} \\
adamc@524 224 \\
adamc@652 225 &&& [c \sim c] \Rightarrow \tau & \textrm{guarded type} \\
adamc@524 226 \\
adamc@529 227 &&& \_ :: \kappa & \textrm{wildcard} \\
adamc@525 228 &&& (c) & \textrm{explicit precedence} \\
adamc@530 229 \\
adamc@530 230 \textrm{Qualified uncapitalized variables} & \hat{x} &::=& x & \textrm{not from a module} \\
adamc@530 231 &&& M.x & \textrm{projection from a module} \\
adamc@525 232 \end{array}$$
adamc@525 233
adamc@525 234 Modules of the module system are described by \emph{signatures}.
adamc@525 235 $$\begin{array}{rrcll}
adamc@525 236 \textrm{Signatures} & S &::=& \mt{sig} \; s^* \; \mt{end} & \textrm{constant} \\
adamc@525 237 &&& X & \textrm{variable} \\
adamc@525 238 &&& \mt{functor}(X : S) : S & \textrm{functor} \\
adamc@529 239 &&& S \; \mt{where} \; \mt{con} \; x = c & \textrm{concretizing an abstract constructor} \\
adamc@525 240 &&& M.X & \textrm{projection from a module} \\
adamc@525 241 \\
adamc@525 242 \textrm{Signature items} & s &::=& \mt{con} \; x :: \kappa & \textrm{abstract constructor} \\
adamc@525 243 &&& \mt{con} \; x :: \kappa = c & \textrm{concrete constructor} \\
adamc@528 244 &&& \mt{datatype} \; x \; x^* = dc\mid^+ & \textrm{algebraic datatype definition} \\
adamc@529 245 &&& \mt{datatype} \; x = \mt{datatype} \; M.x & \textrm{algebraic datatype import} \\
adamc@525 246 &&& \mt{val} \; x : \tau & \textrm{value} \\
adamc@525 247 &&& \mt{structure} \; X : S & \textrm{sub-module} \\
adamc@525 248 &&& \mt{signature} \; X = S & \textrm{sub-signature} \\
adamc@525 249 &&& \mt{include} \; S & \textrm{signature inclusion} \\
adamc@525 250 &&& \mt{constraint} \; c \sim c & \textrm{record disjointness constraint} \\
adamc@525 251 &&& \mt{class} \; x & \textrm{abstract type class} \\
adamc@525 252 &&& \mt{class} \; x = c & \textrm{concrete type class} \\
adamc@525 253 \\
adamc@525 254 \textrm{Datatype constructors} & dc &::=& X & \textrm{nullary constructor} \\
adamc@525 255 &&& X \; \mt{of} \; \tau & \textrm{unary constructor} \\
adamc@524 256 \end{array}$$
adamc@524 257
adamc@526 258 \emph{Patterns} are used to describe structural conditions on expressions, such that expressions may be tested against patterns, generating assignments to pattern variables if successful.
adamc@526 259 $$\begin{array}{rrcll}
adamc@526 260 \textrm{Patterns} & p &::=& \_ & \textrm{wildcard} \\
adamc@526 261 &&& x & \textrm{variable} \\
adamc@526 262 &&& \ell & \textrm{constant} \\
adamc@526 263 &&& \hat{X} & \textrm{nullary constructor} \\
adamc@526 264 &&& \hat{X} \; p & \textrm{unary constructor} \\
adamc@526 265 &&& \{(x = p,)^*\} & \textrm{rigid record pattern} \\
adamc@526 266 &&& \{(x = p,)^+, \ldots\} & \textrm{flexible record pattern} \\
adamc@527 267 &&& (p) & \textrm{explicit precedence} \\
adamc@526 268 \\
adamc@529 269 \textrm{Qualified capitalized variables} & \hat{X} &::=& X & \textrm{not from a module} \\
adamc@526 270 &&& M.X & \textrm{projection from a module} \\
adamc@526 271 \end{array}$$
adamc@526 272
adamc@527 273 \emph{Expressions} are the main run-time entities, corresponding to both ``expressions'' and ``statements'' in mainstream imperative languages.
adamc@527 274 $$\begin{array}{rrcll}
adamc@527 275 \textrm{Expressions} & e &::=& e : \tau & \textrm{type annotation} \\
adamc@529 276 &&& \hat{x} & \textrm{variable} \\
adamc@529 277 &&& \hat{X} & \textrm{datatype constructor} \\
adamc@527 278 &&& \ell & \textrm{constant} \\
adamc@527 279 \\
adamc@527 280 &&& e \; e & \textrm{function application} \\
adamc@527 281 &&& \lambda x : \tau \Rightarrow e & \textrm{function abstraction} \\
adamc@527 282 &&& e [c] & \textrm{polymorphic function application} \\
adamc@527 283 &&& \lambda x \; ? \; \kappa \Rightarrow e & \textrm{polymorphic function abstraction} \\
adamc@652 284 &&& X \Longrightarrow e & \textrm{kind-polymorphic function abstraction} \\
adamc@527 285 \\
adamc@527 286 &&& \{(c = e,)^*\} & \textrm{known-length record} \\
adamc@527 287 &&& e.c & \textrm{record field projection} \\
adamc@527 288 &&& e \rc e & \textrm{record concatenation} \\
adamc@527 289 &&& e \rcut c & \textrm{removal of a single record field} \\
adamc@527 290 &&& e \rcutM c & \textrm{removal of multiple record fields} \\
adamc@527 291 \\
adamc@527 292 &&& \mt{let} \; ed^* \; \mt{in} \; e \; \mt{end} & \textrm{local definitions} \\
adamc@527 293 \\
adamc@527 294 &&& \mt{case} \; e \; \mt{of} \; (p \Rightarrow e|)^+ & \textrm{pattern matching} \\
adamc@527 295 \\
adamc@527 296 &&& \lambda [c \sim c] \Rightarrow e & \textrm{guarded expression} \\
adamc@527 297 \\
adamc@527 298 &&& \_ & \textrm{wildcard} \\
adamc@527 299 &&& (e) & \textrm{explicit precedence} \\
adamc@527 300 \\
adamc@527 301 \textrm{Local declarations} & ed &::=& \cd{val} \; x : \tau = e & \textrm{non-recursive value} \\
adamc@527 302 &&& \cd{val} \; \cd{rec} \; (x : \tau = e \; \cd{and})^+ & \textrm{mutually-recursive values} \\
adamc@527 303 \end{array}$$
adamc@527 304
adamc@528 305 \emph{Declarations} primarily bring new symbols into context.
adamc@528 306 $$\begin{array}{rrcll}
adamc@528 307 \textrm{Declarations} & d &::=& \mt{con} \; x :: \kappa = c & \textrm{constructor synonym} \\
adamc@528 308 &&& \mt{datatype} \; x \; x^* = dc\mid^+ & \textrm{algebraic datatype definition} \\
adamc@529 309 &&& \mt{datatype} \; x = \mt{datatype} \; M.x & \textrm{algebraic datatype import} \\
adamc@528 310 &&& \mt{val} \; x : \tau = e & \textrm{value} \\
adamc@528 311 &&& \mt{val} \; \cd{rec} \; (x : \tau = e \; \mt{and})^+ & \textrm{mutually-recursive values} \\
adamc@528 312 &&& \mt{structure} \; X : S = M & \textrm{module definition} \\
adamc@528 313 &&& \mt{signature} \; X = S & \textrm{signature definition} \\
adamc@528 314 &&& \mt{open} \; M & \textrm{module inclusion} \\
adamc@528 315 &&& \mt{constraint} \; c \sim c & \textrm{record disjointness constraint} \\
adamc@528 316 &&& \mt{open} \; \mt{constraints} \; M & \textrm{inclusion of just the constraints from a module} \\
adamc@528 317 &&& \mt{table} \; x : c & \textrm{SQL table} \\
adamc@528 318 &&& \mt{sequence} \; x & \textrm{SQL sequence} \\
adamc@535 319 &&& \mt{cookie} \; x : \tau & \textrm{HTTP cookie} \\
adamc@528 320 &&& \mt{class} \; x = c & \textrm{concrete type class} \\
adamc@528 321 \\
adamc@529 322 \textrm{Modules} & M &::=& \mt{struct} \; d^* \; \mt{end} & \textrm{constant} \\
adamc@529 323 &&& X & \textrm{variable} \\
adamc@529 324 &&& M.X & \textrm{projection} \\
adamc@529 325 &&& M(M) & \textrm{functor application} \\
adamc@529 326 &&& \mt{functor}(X : S) : S = M & \textrm{functor abstraction} \\
adamc@528 327 \end{array}$$
adamc@528 328
adamc@528 329 There are two kinds of Ur files. A file named $M\texttt{.ur}$ is an \emph{implementation file}, and it should contain a sequence of declarations $d^*$. A file named $M\texttt{.urs}$ is an \emph{interface file}; it must always have a matching $M\texttt{.ur}$ and should contain a sequence of signature items $s^*$. When both files are present, the overall effect is the same as a monolithic declaration $\mt{structure} \; M : \mt{sig} \; s^* \; \mt{end} = \mt{struct} \; d^* \; \mt{end}$. When no interface file is included, the overall effect is similar, with a signature for module $M$ being inferred rather than just checked against an interface.
adamc@527 330
adamc@529 331 \subsection{Shorthands}
adamc@529 332
adamc@529 333 There are a variety of derived syntactic forms that elaborate into the core syntax from the last subsection. We will present the additional forms roughly following the order in which we presented the constructs that they elaborate into.
adamc@529 334
adamc@529 335 In many contexts where record fields are expected, like in a projection $e.c$, a constant field may be written as simply $X$, rather than $\#X$.
adamc@529 336
adamc@529 337 A record type may be written $\{(c = c,)^*\}$, which elaborates to $\$[(c = c,)^*]$.
adamc@529 338
adamc@533 339 The notation $[c_1, \ldots, c_n]$ is shorthand for $[c_1 = (), \ldots, c_n = ()]$.
adamc@533 340
adamc@529 341 A tuple type $(\tau_1, \ldots, \tau_n)$ expands to a record type $\{1 = \tau_1, \ldots, n = \tau_n\}$, with natural numbers as field names. A tuple pattern $(p_1, \ldots, p_n)$ expands to a rigid record pattern $\{1 = p_1, \ldots, n = p_n\}$. Positive natural numbers may be used in most places where field names would be allowed.
adamc@529 342
adamc@529 343 In general, several adjacent $\lambda$ forms may be combined into one, and kind and type annotations may be omitted, in which case they are implicitly included as wildcards. More formally, for constructor-level abstractions, we can define a new non-terminal $b ::= x \mid (x :: \kappa) \mid [c \sim c]$ and allow composite abstractions of the form $\lambda b^+ \Rightarrow c$, elaborating into the obvious sequence of one core $\lambda$ per element of $b^+$.
adamc@529 344
adamc@529 345 For any signature item or declaration that defines some entity to be equal to $A$ with classification annotation $B$ (e.g., $\mt{val} \; x : B = A$), $B$ and the preceding colon (or similar punctuation) may be omitted, in which case it is filled in as a wildcard.
adamc@529 346
adamc@529 347 A signature item or declaration $\mt{type} \; x$ or $\mt{type} \; x = \tau$ is elaborated into $\mt{con} \; x :: \mt{Type}$ or $\mt{con} \; x :: \mt{Type} = \tau$, respectively.
adamc@529 348
adamc@529 349 A signature item or declaration $\mt{class} \; x = \lambda y :: \mt{Type} \Rightarrow c$ may be abbreviated $\mt{class} \; x \; y = c$.
adamc@529 350
adamc@529 351 Handling of implicit and explicit constructor arguments may be tweaked with some prefixes to variable references. An expression $@x$ is a version of $x$ where all implicit constructor arguments have been made explicit. An expression $@@x$ achieves the same effect, additionally halting automatic resolution of type class instances. The same syntax works for variables projected out of modules and for capitalized variables (datatype constructors).
adamc@529 352
adamc@529 353 At the expression level, an analogue is available of the composite $\lambda$ form for constructors. We define the language of binders as $b ::= x \mid (x : \tau) \mid (x \; ? \; \kappa) \mid [c \sim c]$. A lone variable $x$ as a binder stands for an expression variable of unspecified type.
adamc@529 354
adamc@529 355 A $\mt{val}$ or $\mt{val} \; \mt{rec}$ declaration may include expression binders before the equal sign, following the binder grammar from the last paragraph. Such declarations are elaborated into versions that add additional $\lambda$s to the fronts of the righthand sides, as appropriate. The keyword $\mt{fun}$ is a synonym for $\mt{val} \; \mt{rec}$.
adamc@529 356
adamc@529 357 A signature item $\mt{functor} \; X_1 \; (X_2 : S_1) : S_2$ is elaborated into $\mt{structure} \; X_1 : \mt{functor}(X_2 : S_1) : S_2$. A declaration $\mt{functor} \; X_1 \; (X_2 : S_1) : S_2 = M$ is elaborated into $\mt{structure} \; X_1 : \mt{functor}(X_2 : S_1) : S_2 = \mt{functor}(X_2 : S_1) : S_2 = M$.
adamc@529 358
adamc@529 359 A declaration $\mt{table} \; x : \{(c = c,)^*\}$ is elaborated into $\mt{table} \; x : [(c = c,)^*]$
adamc@529 360
adamc@529 361 The syntax $\mt{where} \; \mt{type}$ is an alternate form of $\mt{where} \; \mt{con}$.
adamc@529 362
adamc@529 363 The syntax $\mt{if} \; e \; \mt{then} \; e_1 \; \mt{else} \; e_2$ expands to $\mt{case} \; e \; \mt{of} \; \mt{Basis}.\mt{True} \Rightarrow e_1 \mid \mt{Basis}.\mt{False} \Rightarrow e_2$.
adamc@529 364
adamc@529 365 There are infix operator syntaxes for a number of functions defined in the $\mt{Basis}$ module. There is $=$ for $\mt{eq}$, $\neq$ for $\mt{neq}$, $-$ for $\mt{neg}$ (as a prefix operator) and $\mt{minus}$, $+$ for $\mt{plus}$, $\times$ for $\mt{times}$, $/$ for $\mt{div}$, $\%$ for $\mt{mod}$, $<$ for $\mt{lt}$, $\leq$ for $\mt{le}$, $>$ for $\mt{gt}$, and $\geq$ for $\mt{ge}$.
adamc@529 366
adamc@529 367 A signature item $\mt{table} \; x : c$ is shorthand for $\mt{val} \; x : \mt{Basis}.\mt{sql\_table} \; c$. $\mt{sequence} \; x$ is short for $\mt{val} \; x : \mt{Basis}.\mt{sql\_sequence}$, and $\mt{cookie} \; x : \tau$ is shorthand for $\mt{val} \; x : \mt{Basis}.\mt{http\_cookie} \; \tau$.
adamc@529 368
adamc@530 369
adamc@530 370 \section{Static Semantics}
adamc@530 371
adamc@530 372 In this section, we give a declarative presentation of Ur's typing rules and related judgments. Inference is the subject of the next section; here, we assume that an oracle has filled in all wildcards with concrete values.
adamc@530 373
adamc@530 374 Since there is significant mutual recursion among the judgments, we introduce them all before beginning to give rules. We use the same variety of contexts throughout this section, implicitly introducing new sorts of context entries as needed.
adamc@530 375 \begin{itemize}
adamc@530 376 \item $\Gamma \vdash c :: \kappa$ assigns a kind to a constructor in a context.
adamc@530 377 \item $\Gamma \vdash c \sim c$ proves the disjointness of two record constructors; that is, that they share no field names. We overload the judgment to apply to pairs of field names as well.
adamc@531 378 \item $\Gamma \vdash c \hookrightarrow C$ proves that record constructor $c$ decomposes into set $C$ of field names and record constructors.
adamc@530 379 \item $\Gamma \vdash c \equiv c$ proves the computational equivalence of two constructors. This is often called a \emph{definitional equality} in the world of type theory.
adamc@530 380 \item $\Gamma \vdash e : \tau$ is a standard typing judgment.
adamc@534 381 \item $\Gamma \vdash p \leadsto \Gamma; \tau$ combines typing of patterns with calculation of which new variables they bind.
adamc@537 382 \item $\Gamma \vdash d \leadsto \Gamma$ expresses how a declaration modifies a context. We overload this judgment to apply to sequences of declarations, as well as to signature items and sequences of signature items.
adamc@537 383 \item $\Gamma \vdash S \equiv S$ is the signature equivalence judgment.
adamc@536 384 \item $\Gamma \vdash S \leq S$ is the signature compatibility judgment. We write $\Gamma \vdash S$ as shorthand for $\Gamma \vdash S \leq S$.
adamc@530 385 \item $\Gamma \vdash M : S$ is the module signature checking judgment.
adamc@537 386 \item $\mt{proj}(M, \overline{s}, V)$ is a partial function for projecting a signature item from $\overline{s}$, given the module $M$ that we project from. $V$ may be $\mt{con} \; x$, $\mt{datatype} \; x$, $\mt{val} \; x$, $\mt{signature} \; X$, or $\mt{structure} \; X$. The parameter $M$ is needed because the projected signature item may refer to other items from $\overline{s}$.
adamc@539 387 \item $\mt{selfify}(M, \overline{s})$ adds information to signature items $\overline{s}$ to reflect the fact that we are concerned with the particular module $M$. This function is overloaded to work over individual signature items as well.
adamc@530 388 \end{itemize}
adamc@530 389
adamc@530 390 \subsection{Kinding}
adamc@530 391
adamc@530 392 $$\infer{\Gamma \vdash (c) :: \kappa :: \kappa}{
adamc@530 393 \Gamma \vdash c :: \kappa
adamc@530 394 }
adamc@530 395 \quad \infer{\Gamma \vdash x :: \kappa}{
adamc@530 396 x :: \kappa \in \Gamma
adamc@530 397 }
adamc@530 398 \quad \infer{\Gamma \vdash x :: \kappa}{
adamc@530 399 x :: \kappa = c \in \Gamma
adamc@530 400 }$$
adamc@530 401
adamc@530 402 $$\infer{\Gamma \vdash M.x :: \kappa}{
adamc@537 403 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 404 & \mt{proj}(M, \overline{s}, \mt{con} \; x) = \kappa
adamc@530 405 }
adamc@530 406 \quad \infer{\Gamma \vdash M.x :: \kappa}{
adamc@537 407 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 408 & \mt{proj}(M, \overline{s}, \mt{con} \; x) = (\kappa, c)
adamc@530 409 }$$
adamc@530 410
adamc@530 411 $$\infer{\Gamma \vdash \tau_1 \to \tau_2 :: \mt{Type}}{
adamc@530 412 \Gamma \vdash \tau_1 :: \mt{Type}
adamc@530 413 & \Gamma \vdash \tau_2 :: \mt{Type}
adamc@530 414 }
adamc@530 415 \quad \infer{\Gamma \vdash x \; ? \: \kappa \to \tau :: \mt{Type}}{
adamc@530 416 \Gamma, x :: \kappa \vdash \tau :: \mt{Type}
adamc@530 417 }
adamc@530 418 \quad \infer{\Gamma \vdash \$c :: \mt{Type}}{
adamc@530 419 \Gamma \vdash c :: \{\mt{Type}\}
adamc@530 420 }$$
adamc@530 421
adamc@530 422 $$\infer{\Gamma \vdash c_1 \; c_2 :: \kappa_2}{
adamc@530 423 \Gamma \vdash c_1 :: \kappa_1 \to \kappa_2
adamc@530 424 & \Gamma \vdash c_2 :: \kappa_1
adamc@530 425 }
adamc@530 426 \quad \infer{\Gamma \vdash \lambda x \; :: \; \kappa_1 \Rightarrow c :: \kappa_1 \to \kappa_2}{
adamc@530 427 \Gamma, x :: \kappa_1 \vdash c :: \kappa_2
adamc@530 428 }$$
adamc@530 429
adamc@530 430 $$\infer{\Gamma \vdash () :: \mt{Unit}}{}
adamc@530 431 \quad \infer{\Gamma \vdash \#X :: \mt{Name}}{}$$
adamc@530 432
adamc@530 433 $$\infer{\Gamma \vdash [\overline{c_i = c'_i}] :: \{\kappa\}}{
adamc@530 434 \forall i: \Gamma \vdash c_i : \mt{Name}
adamc@530 435 & \Gamma \vdash c'_i :: \kappa
adamc@530 436 & \forall i \neq j: \Gamma \vdash c_i \sim c_j
adamc@530 437 }
adamc@530 438 \quad \infer{\Gamma \vdash c_1 \rc c_2 :: \{\kappa\}}{
adamc@530 439 \Gamma \vdash c_1 :: \{\kappa\}
adamc@530 440 & \Gamma \vdash c_2 :: \{\kappa\}
adamc@530 441 & \Gamma \vdash c_1 \sim c_2
adamc@530 442 }$$
adamc@530 443
adamc@530 444 $$\infer{\Gamma \vdash \mt{fold} :: ((\mt{Name} \to \kappa_1 \to \kappa_2 \to \kappa_2) \to \kappa_2 \to \{\kappa_1\} \to \kappa_2}{}$$
adamc@530 445
adamc@573 446 $$\infer{\Gamma \vdash (\overline c) :: (\kappa_1 \times \ldots \times \kappa_n)}{
adamc@573 447 \forall i: \Gamma \vdash c_i :: \kappa_i
adamc@530 448 }
adamc@573 449 \quad \infer{\Gamma \vdash c.i :: \kappa_i}{
adamc@573 450 \Gamma \vdash c :: (\kappa_1 \times \ldots \times \kappa_n)
adamc@530 451 }$$
adamc@530 452
adamc@530 453 $$\infer{\Gamma \vdash \lambda [c_1 \sim c_2] \Rightarrow c :: \kappa}{
adamc@530 454 \Gamma \vdash c_1 :: \{\kappa'\}
adamc@530 455 & \Gamma \vdash c_2 :: \{\kappa'\}
adamc@530 456 & \Gamma, c_1 \sim c_2 \vdash c :: \kappa
adamc@530 457 }$$
adamc@530 458
adamc@531 459 \subsection{Record Disjointness}
adamc@531 460
adamc@531 461 We will use a keyword $\mt{map}$ as a shorthand, such that, for $f$ of kind $\kappa \to \kappa'$, $\mt{map} \; f$ stands for $\mt{fold} \; (\lambda (x_1 :: \mt{Name}) (x_2 :: \kappa) (x_3 :: \{\kappa'\}) \Rightarrow [x_1 = f \; x_2] \rc x_3) \; []$.
adamc@531 462
adamc@531 463 $$\infer{\Gamma \vdash c_1 \sim c_2}{
adamc@558 464 \Gamma \vdash c_1 \hookrightarrow C_1
adamc@558 465 & \Gamma \vdash c_2 \hookrightarrow C_2
adamc@558 466 & \forall c'_1 \in C_1, c'_2 \in C_2: \Gamma \vdash c'_1 \sim c'_2
adamc@531 467 }
adamc@531 468 \quad \infer{\Gamma \vdash X \sim X'}{
adamc@531 469 X \neq X'
adamc@531 470 }$$
adamc@531 471
adamc@531 472 $$\infer{\Gamma \vdash c_1 \sim c_2}{
adamc@531 473 c'_1 \sim c'_2 \in \Gamma
adamc@558 474 & \Gamma \vdash c'_1 \hookrightarrow C_1
adamc@558 475 & \Gamma \vdash c'_2 \hookrightarrow C_2
adamc@558 476 & c_1 \in C_1
adamc@558 477 & c_2 \in C_2
adamc@531 478 }$$
adamc@531 479
adamc@531 480 $$\infer{\Gamma \vdash c \hookrightarrow \{c\}}{}
adamc@531 481 \quad \infer{\Gamma \vdash [\overline{c = c'}] \hookrightarrow \{\overline{c}\}}{}
adamc@531 482 \quad \infer{\Gamma \vdash c_1 \rc c_2 \hookrightarrow C_1 \cup C_2}{
adamc@531 483 \Gamma \vdash c_1 \hookrightarrow C_1
adamc@531 484 & \Gamma \vdash c_2 \hookrightarrow C_2
adamc@531 485 }
adamc@531 486 \quad \infer{\Gamma \vdash c \hookrightarrow C}{
adamc@531 487 \Gamma \vdash c \equiv c'
adamc@531 488 & \Gamma \vdash c' \hookrightarrow C
adamc@531 489 }
adamc@531 490 \quad \infer{\Gamma \vdash \mt{map} \; f \; c \hookrightarrow C}{
adamc@531 491 \Gamma \vdash c \hookrightarrow C
adamc@531 492 }$$
adamc@531 493
adamc@541 494 \subsection{\label{definitional}Definitional Equality}
adamc@532 495
adamc@532 496 We use $\mathcal C$ to stand for a one-hole context that, when filled, yields a constructor. The notation $\mathcal C[c]$ plugs $c$ into $\mathcal C$. We omit the standard definition of one-hole contexts. We write $[x \mapsto c_1]c_2$ for capture-avoiding substitution of $c_1$ for $x$ in $c_2$.
adamc@532 497
adamc@532 498 $$\infer{\Gamma \vdash c \equiv c}{}
adamc@532 499 \quad \infer{\Gamma \vdash c_1 \equiv c_2}{
adamc@532 500 \Gamma \vdash c_2 \equiv c_1
adamc@532 501 }
adamc@532 502 \quad \infer{\Gamma \vdash c_1 \equiv c_3}{
adamc@532 503 \Gamma \vdash c_1 \equiv c_2
adamc@532 504 & \Gamma \vdash c_2 \equiv c_3
adamc@532 505 }
adamc@532 506 \quad \infer{\Gamma \vdash \mathcal C[c_1] \equiv \mathcal C[c_2]}{
adamc@532 507 \Gamma \vdash c_1 \equiv c_2
adamc@532 508 }$$
adamc@532 509
adamc@532 510 $$\infer{\Gamma \vdash x \equiv c}{
adamc@532 511 x :: \kappa = c \in \Gamma
adamc@532 512 }
adamc@532 513 \quad \infer{\Gamma \vdash M.x \equiv c}{
adamc@537 514 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 515 & \mt{proj}(M, \overline{s}, \mt{con} \; x) = (\kappa, c)
adamc@532 516 }
adamc@532 517 \quad \infer{\Gamma \vdash (\overline c).i \equiv c_i}{}$$
adamc@532 518
adamc@532 519 $$\infer{\Gamma \vdash (\lambda x :: \kappa \Rightarrow c) \; c' \equiv [x \mapsto c'] c}{}
adamc@532 520 \quad \infer{\Gamma \vdash c_1 \rc c_2 \equiv c_2 \rc c_1}{}
adamc@532 521 \quad \infer{\Gamma \vdash c_1 \rc (c_2 \rc c_3) \equiv (c_1 \rc c_2) \rc c_3}{}$$
adamc@532 522
adamc@532 523 $$\infer{\Gamma \vdash [] \rc c \equiv c}{}
adamc@532 524 \quad \infer{\Gamma \vdash [\overline{c_1 = c'_1}] \rc [\overline{c_2 = c'_2}] \equiv [\overline{c_1 = c'_1}, \overline{c_2 = c'_2}]}{}$$
adamc@532 525
adamc@532 526 $$\infer{\Gamma \vdash \lambda [c_1 \sim c_2] \Rightarrow c \equiv c}{
adamc@532 527 \Gamma \vdash c_1 \sim c_2
adamc@532 528 }
adamc@532 529 \quad \infer{\Gamma \vdash \mt{fold} \; f \; i \; [] \equiv i}{}
adamc@532 530 \quad \infer{\Gamma \vdash \mt{fold} \; f \; i \; ([c_1 = c_2] \rc c) \equiv f \; c_1 \; c_2 \; (\mt{fold} \; f \; i \; c)}{}$$
adamc@532 531
adamc@532 532 $$\infer{\Gamma \vdash \mt{map} \; (\lambda x \Rightarrow x) \; c \equiv c}{}
adamc@532 533 \quad \infer{\Gamma \vdash \mt{fold} \; f \; i \; (\mt{map} \; f' \; c)
adamc@532 534 \equiv \mt{fold} \; (\lambda (x_1 :: \mt{Name}) (x_2 :: \kappa) \Rightarrow f \; x_1 \; (f' \; x_2)) \; i \; c}{}$$
adamc@532 535
adamc@532 536 $$\infer{\Gamma \vdash \mt{map} \; f \; (c_1 \rc c_2) \equiv \mt{map} \; f \; c_1 \rc \mt{map} \; f \; c_2}{}$$
adamc@531 537
adamc@534 538 \subsection{Expression Typing}
adamc@533 539
adamc@533 540 We assume the existence of a function $T$ assigning types to literal constants. It maps integer constants to $\mt{Basis}.\mt{int}$, float constants to $\mt{Basis}.\mt{float}$, and string constants to $\mt{Basis}.\mt{string}$.
adamc@533 541
adamc@533 542 We also refer to a function $\mathcal I$, such that $\mathcal I(\tau)$ ``uses an oracle'' to instantiate all constructor function arguments at the beginning of $\tau$ that are marked implicit; i.e., replace $x_1 ::: \kappa_1 \to \ldots \to x_n ::: \kappa_n \to \tau$ with $[x_1 \mapsto c_1]\ldots[x_n \mapsto c_n]\tau$, where the $c_i$s are inferred and $\tau$ does not start like $x ::: \kappa \to \tau'$.
adamc@533 543
adamc@533 544 $$\infer{\Gamma \vdash e : \tau : \tau}{
adamc@533 545 \Gamma \vdash e : \tau
adamc@533 546 }
adamc@533 547 \quad \infer{\Gamma \vdash e : \tau}{
adamc@533 548 \Gamma \vdash e : \tau'
adamc@533 549 & \Gamma \vdash \tau' \equiv \tau
adamc@533 550 }
adamc@533 551 \quad \infer{\Gamma \vdash \ell : T(\ell)}{}$$
adamc@533 552
adamc@533 553 $$\infer{\Gamma \vdash x : \mathcal I(\tau)}{
adamc@533 554 x : \tau \in \Gamma
adamc@533 555 }
adamc@533 556 \quad \infer{\Gamma \vdash M.x : \mathcal I(\tau)}{
adamc@537 557 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 558 & \mt{proj}(M, \overline{s}, \mt{val} \; x) = \tau
adamc@533 559 }
adamc@533 560 \quad \infer{\Gamma \vdash X : \mathcal I(\tau)}{
adamc@533 561 X : \tau \in \Gamma
adamc@533 562 }
adamc@533 563 \quad \infer{\Gamma \vdash M.X : \mathcal I(\tau)}{
adamc@537 564 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 565 & \mt{proj}(M, \overline{s}, \mt{val} \; X) = \tau
adamc@533 566 }$$
adamc@533 567
adamc@533 568 $$\infer{\Gamma \vdash e_1 \; e_2 : \tau_2}{
adamc@533 569 \Gamma \vdash e_1 : \tau_1 \to \tau_2
adamc@533 570 & \Gamma \vdash e_2 : \tau_1
adamc@533 571 }
adamc@533 572 \quad \infer{\Gamma \vdash \lambda x : \tau_1 \Rightarrow e : \tau_1 \to \tau_2}{
adamc@533 573 \Gamma, x : \tau_1 \vdash e : \tau_2
adamc@533 574 }$$
adamc@533 575
adamc@533 576 $$\infer{\Gamma \vdash e [c] : [x \mapsto c]\tau}{
adamc@533 577 \Gamma \vdash e : x :: \kappa \to \tau
adamc@533 578 & \Gamma \vdash c :: \kappa
adamc@533 579 }
adamc@533 580 \quad \infer{\Gamma \vdash \lambda x \; ? \; \kappa \Rightarrow e : x \; ? \; \kappa \to \tau}{
adamc@533 581 \Gamma, x :: \kappa \vdash e : \tau
adamc@533 582 }$$
adamc@533 583
adamc@533 584 $$\infer{\Gamma \vdash \{\overline{c = e}\} : \{\overline{c : \tau}\}}{
adamc@533 585 \forall i: \Gamma \vdash c_i :: \mt{Name}
adamc@533 586 & \Gamma \vdash e_i : \tau_i
adamc@533 587 & \forall i \neq j: \Gamma \vdash c_i \sim c_j
adamc@533 588 }
adamc@533 589 \quad \infer{\Gamma \vdash e.c : \tau}{
adamc@533 590 \Gamma \vdash e : \$([c = \tau] \rc c')
adamc@533 591 }
adamc@533 592 \quad \infer{\Gamma \vdash e_1 \rc e_2 : \$(c_1 \rc c_2)}{
adamc@533 593 \Gamma \vdash e_1 : \$c_1
adamc@533 594 & \Gamma \vdash e_2 : \$c_2
adamc@573 595 & \Gamma \vdash c_1 \sim c_2
adamc@533 596 }$$
adamc@533 597
adamc@533 598 $$\infer{\Gamma \vdash e \rcut c : \$c'}{
adamc@533 599 \Gamma \vdash e : \$([c = \tau] \rc c')
adamc@533 600 }
adamc@533 601 \quad \infer{\Gamma \vdash e \rcutM c : \$c'}{
adamc@533 602 \Gamma \vdash e : \$(c \rc c')
adamc@533 603 }$$
adamc@533 604
adamc@533 605 $$\infer{\Gamma \vdash \mt{fold} : \begin{array}{c}
adamc@533 606 x_1 :: (\{\kappa\} \to \tau)
adamc@533 607 \to (x_2 :: \mt{Name} \to x_3 :: \kappa \to x_4 :: \{\kappa\} \to \lambda [[x_2] \sim x_4]
adamc@533 608 \Rightarrow x_1 \; x_4 \to x_1 \; ([x_2 = x_3] \rc x_4)) \\
adamc@533 609 \to x_1 \; [] \to x_5 :: \{\kappa\} \to x_1 \; x_5
adamc@533 610 \end{array}}{}$$
adamc@533 611
adamc@533 612 $$\infer{\Gamma \vdash \mt{let} \; \overline{ed} \; \mt{in} \; e \; \mt{end} : \tau}{
adamc@533 613 \Gamma \vdash \overline{ed} \leadsto \Gamma'
adamc@533 614 & \Gamma' \vdash e : \tau
adamc@533 615 }
adamc@533 616 \quad \infer{\Gamma \vdash \mt{case} \; e \; \mt{of} \; \overline{p \Rightarrow e} : \tau}{
adamc@533 617 \forall i: \Gamma \vdash p_i \leadsto \Gamma_i, \tau'
adamc@533 618 & \Gamma_i \vdash e_i : \tau
adamc@533 619 }$$
adamc@533 620
adamc@573 621 $$\infer{\Gamma \vdash \lambda [c_1 \sim c_2] \Rightarrow e : \lambda [c_1 \sim c_2] \Rightarrow \tau}{
adamc@533 622 \Gamma \vdash c_1 :: \{\kappa\}
adamc@533 623 & \Gamma \vdash c_2 :: \{\kappa\}
adamc@533 624 & \Gamma, c_1 \sim c_2 \vdash e : \tau
adamc@533 625 }$$
adamc@533 626
adamc@534 627 \subsection{Pattern Typing}
adamc@534 628
adamc@534 629 $$\infer{\Gamma \vdash \_ \leadsto \Gamma; \tau}{}
adamc@534 630 \quad \infer{\Gamma \vdash x \leadsto \Gamma, x : \tau; \tau}{}
adamc@534 631 \quad \infer{\Gamma \vdash \ell \leadsto \Gamma; T(\ell)}{}$$
adamc@534 632
adamc@534 633 $$\infer{\Gamma \vdash X \leadsto \Gamma; \overline{[x_i \mapsto \tau'_i]}\tau}{
adamc@534 634 X : \overline{x ::: \mt{Type}} \to \tau \in \Gamma
adamc@534 635 & \textrm{$\tau$ not a function type}
adamc@534 636 }
adamc@534 637 \quad \infer{\Gamma \vdash X \; p \leadsto \Gamma'; \overline{[x_i \mapsto \tau'_i]}\tau}{
adamc@534 638 X : \overline{x ::: \mt{Type}} \to \tau'' \to \tau \in \Gamma
adamc@534 639 & \Gamma \vdash p \leadsto \Gamma'; \overline{[x_i \mapsto \tau'_i]}\tau''
adamc@534 640 }$$
adamc@534 641
adamc@534 642 $$\infer{\Gamma \vdash M.X \leadsto \Gamma; \overline{[x_i \mapsto \tau'_i]}\tau}{
adamc@537 643 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 644 & \mt{proj}(M, \overline{s}, \mt{val} \; X) = \overline{x ::: \mt{Type}} \to \tau
adamc@534 645 & \textrm{$\tau$ not a function type}
adamc@534 646 }$$
adamc@534 647
adamc@534 648 $$\infer{\Gamma \vdash M.X \; p \leadsto \Gamma'; \overline{[x_i \mapsto \tau'_i]}\tau}{
adamc@537 649 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 650 & \mt{proj}(M, \overline{s}, \mt{val} \; X) = \overline{x ::: \mt{Type}} \to \tau'' \to \tau
adamc@534 651 & \Gamma \vdash p \leadsto \Gamma'; \overline{[x_i \mapsto \tau'_i]}\tau''
adamc@534 652 }$$
adamc@534 653
adamc@534 654 $$\infer{\Gamma \vdash \{\overline{x = p}\} \leadsto \Gamma_n; \{\overline{x = \tau}\}}{
adamc@534 655 \Gamma_0 = \Gamma
adamc@534 656 & \forall i: \Gamma_i \vdash p_i \leadsto \Gamma_{i+1}; \tau_i
adamc@534 657 }
adamc@534 658 \quad \infer{\Gamma \vdash \{\overline{x = p}, \ldots\} \leadsto \Gamma_n; \$([\overline{x = \tau}] \rc c)}{
adamc@534 659 \Gamma_0 = \Gamma
adamc@534 660 & \forall i: \Gamma_i \vdash p_i \leadsto \Gamma_{i+1}; \tau_i
adamc@534 661 }$$
adamc@534 662
adamc@535 663 \subsection{Declaration Typing}
adamc@535 664
adamc@535 665 We use an auxiliary judgment $\overline{y}; x; \Gamma \vdash \overline{dc} \leadsto \Gamma'$, expressing the enrichment of $\Gamma$ with the types of the datatype constructors $\overline{dc}$, when they are known to belong to datatype $x$ with type parameters $\overline{y}$.
adamc@535 666
adamc@541 667 This is the first judgment where we deal with type classes, for the $\mt{class}$ declaration form. We will omit their special handling in this formal specification. Section \ref{typeclasses} gives an informal description of how type classes influence type inference.
adamc@535 668
adamc@558 669 We presuppose the existence of a function $\mathcal O$, where $\mathcal O(M, \overline{s})$ implements the $\mt{open}$ declaration by producing a context with the appropriate entry for each available component of module $M$ with signature items $\overline{s}$. Where possible, $\mathcal O$ uses ``transparent'' entries (e.g., an abstract type $M.x$ is mapped to $x :: \mt{Type} = M.x$), so that the relationship with $M$ is maintained. A related function $\mathcal O_c$ builds a context containing the disjointness constraints found in $\overline s$.
adamc@537 670 We write $\kappa_1^n \to \kappa$ as a shorthand, where $\kappa_1^0 \to \kappa = \kappa$ and $\kappa_1^{n+1} \to \kappa_2 = \kappa_1 \to (\kappa_1^n \to \kappa_2)$. We write $\mt{len}(\overline{y})$ for the length of vector $\overline{y}$ of variables.
adamc@535 671
adamc@535 672 $$\infer{\Gamma \vdash \cdot \leadsto \Gamma}{}
adamc@535 673 \quad \infer{\Gamma \vdash d, \overline{d} \leadsto \Gamma''}{
adamc@535 674 \Gamma \vdash d \leadsto \Gamma'
adamc@535 675 & \Gamma' \vdash \overline{d} \leadsto \Gamma''
adamc@535 676 }$$
adamc@535 677
adamc@535 678 $$\infer{\Gamma \vdash \mt{con} \; x :: \kappa = c \leadsto \Gamma, x :: \kappa = c}{
adamc@535 679 \Gamma \vdash c :: \kappa
adamc@535 680 }
adamc@535 681 \quad \infer{\Gamma \vdash \mt{datatype} \; x \; \overline{y} = \overline{dc} \leadsto \Gamma'}{
adamc@535 682 \overline{y}; x; \Gamma, x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type} \vdash \overline{dc} \leadsto \Gamma'
adamc@535 683 }$$
adamc@535 684
adamc@535 685 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leadsto \Gamma'}{
adamc@537 686 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 687 & \mt{proj}(M, \overline{s}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})
adamc@535 688 & \overline{y}; x; \Gamma, x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type} = M.z \vdash \overline{dc} \leadsto \Gamma'
adamc@535 689 }$$
adamc@535 690
adamc@535 691 $$\infer{\Gamma \vdash \mt{val} \; x : \tau = e \leadsto \Gamma, x : \tau}{
adamc@535 692 \Gamma \vdash e : \tau
adamc@535 693 }$$
adamc@535 694
adamc@535 695 $$\infer{\Gamma \vdash \mt{val} \; \mt{rec} \; \overline{x : \tau = e} \leadsto \Gamma, \overline{x : \tau}}{
adamc@535 696 \forall i: \Gamma, \overline{x : \tau} \vdash e_i : \tau_i
adamc@535 697 & \textrm{$e_i$ starts with an expression $\lambda$, optionally preceded by constructor and disjointness $\lambda$s}
adamc@535 698 }$$
adamc@535 699
adamc@535 700 $$\infer{\Gamma \vdash \mt{structure} \; X : S = M \leadsto \Gamma, X : S}{
adamc@535 701 \Gamma \vdash M : S
adamc@558 702 & \textrm{ $M$ not a constant or application}
adamc@535 703 }
adamc@558 704 \quad \infer{\Gamma \vdash \mt{structure} \; X : S = M \leadsto \Gamma, X : \mt{selfify}(X, \overline{s})}{
adamc@558 705 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@539 706 }$$
adamc@539 707
adamc@539 708 $$\infer{\Gamma \vdash \mt{signature} \; X = S \leadsto \Gamma, X = S}{
adamc@535 709 \Gamma \vdash S
adamc@535 710 }$$
adamc@535 711
adamc@537 712 $$\infer{\Gamma \vdash \mt{open} \; M \leadsto \Gamma, \mathcal O(M, \overline{s})}{
adamc@537 713 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@535 714 }$$
adamc@535 715
adamc@535 716 $$\infer{\Gamma \vdash \mt{constraint} \; c_1 \sim c_2 \leadsto \Gamma}{
adamc@535 717 \Gamma \vdash c_1 :: \{\kappa\}
adamc@535 718 & \Gamma \vdash c_2 :: \{\kappa\}
adamc@535 719 & \Gamma \vdash c_1 \sim c_2
adamc@535 720 }
adamc@537 721 \quad \infer{\Gamma \vdash \mt{open} \; \mt{constraints} \; M \leadsto \Gamma, \mathcal O_c(M, \overline{s})}{
adamc@537 722 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@535 723 }$$
adamc@535 724
adamc@535 725 $$\infer{\Gamma \vdash \mt{table} \; x : c \leadsto \Gamma, x : \mt{Basis}.\mt{sql\_table} \; c}{
adamc@535 726 \Gamma \vdash c :: \{\mt{Type}\}
adamc@535 727 }
adamc@535 728 \quad \infer{\Gamma \vdash \mt{sequence} \; x \leadsto \Gamma, x : \mt{Basis}.\mt{sql\_sequence}}{}$$
adamc@535 729
adamc@535 730 $$\infer{\Gamma \vdash \mt{cookie} \; x : \tau \leadsto \Gamma, x : \mt{Basis}.\mt{http\_cookie} \; \tau}{
adamc@535 731 \Gamma \vdash \tau :: \mt{Type}
adamc@535 732 }$$
adamc@535 733
adamc@535 734 $$\infer{\Gamma \vdash \mt{class} \; x = c \leadsto \Gamma, x :: \mt{Type} \to \mt{Type} = c}{
adamc@535 735 \Gamma \vdash c :: \mt{Type} \to \mt{Type}
adamc@535 736 }$$
adamc@535 737
adamc@535 738 $$\infer{\overline{y}; x; \Gamma \vdash \cdot \leadsto \Gamma}{}
adamc@535 739 \quad \infer{\overline{y}; x; \Gamma \vdash X \mid \overline{dc} \leadsto \Gamma', X : \overline{y ::: \mt{Type}} \to x \; \overline{y}}{
adamc@535 740 \overline{y}; x; \Gamma \vdash \overline{dc} \leadsto \Gamma'
adamc@535 741 }
adamc@535 742 \quad \infer{\overline{y}; x; \Gamma \vdash X \; \mt{of} \; \tau \mid \overline{dc} \leadsto \Gamma', X : \overline{y ::: \mt{Type}} \to \tau \to x \; \overline{y}}{
adamc@535 743 \overline{y}; x; \Gamma \vdash \overline{dc} \leadsto \Gamma'
adamc@535 744 }$$
adamc@535 745
adamc@537 746 \subsection{Signature Item Typing}
adamc@537 747
adamc@537 748 We appeal to a signature item analogue of the $\mathcal O$ function from the last subsection.
adamc@537 749
adamc@537 750 $$\infer{\Gamma \vdash \cdot \leadsto \Gamma}{}
adamc@537 751 \quad \infer{\Gamma \vdash s, \overline{s} \leadsto \Gamma''}{
adamc@537 752 \Gamma \vdash s \leadsto \Gamma'
adamc@537 753 & \Gamma' \vdash \overline{s} \leadsto \Gamma''
adamc@537 754 }$$
adamc@537 755
adamc@537 756 $$\infer{\Gamma \vdash \mt{con} \; x :: \kappa \leadsto \Gamma, x :: \kappa}{}
adamc@537 757 \quad \infer{\Gamma \vdash \mt{con} \; x :: \kappa = c \leadsto \Gamma, x :: \kappa = c}{
adamc@537 758 \Gamma \vdash c :: \kappa
adamc@537 759 }
adamc@537 760 \quad \infer{\Gamma \vdash \mt{datatype} \; x \; \overline{y} = \overline{dc} \leadsto \Gamma'}{
adamc@537 761 \overline{y}; x; \Gamma, x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type} \vdash \overline{dc} \leadsto \Gamma'
adamc@537 762 }$$
adamc@537 763
adamc@537 764 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leadsto \Gamma'}{
adamc@537 765 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 766 & \mt{proj}(M, \overline{s}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})
adamc@537 767 & \overline{y}; x; \Gamma, x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type} = M.z \vdash \overline{dc} \leadsto \Gamma'
adamc@537 768 }$$
adamc@537 769
adamc@537 770 $$\infer{\Gamma \vdash \mt{val} \; x : \tau \leadsto \Gamma, x : \tau}{
adamc@537 771 \Gamma \vdash \tau :: \mt{Type}
adamc@537 772 }$$
adamc@537 773
adamc@537 774 $$\infer{\Gamma \vdash \mt{structure} \; X : S \leadsto \Gamma, X : S}{
adamc@537 775 \Gamma \vdash S
adamc@537 776 }
adamc@537 777 \quad \infer{\Gamma \vdash \mt{signature} \; X = S \leadsto \Gamma, X = S}{
adamc@537 778 \Gamma \vdash S
adamc@537 779 }$$
adamc@537 780
adamc@537 781 $$\infer{\Gamma \vdash \mt{include} \; S \leadsto \Gamma, \mathcal O(\overline{s})}{
adamc@537 782 \Gamma \vdash S
adamc@537 783 & \Gamma \vdash S \equiv \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 784 }$$
adamc@537 785
adamc@537 786 $$\infer{\Gamma \vdash \mt{constraint} \; c_1 \sim c_2 \leadsto \Gamma, c_1 \sim c_2}{
adamc@537 787 \Gamma \vdash c_1 :: \{\kappa\}
adamc@537 788 & \Gamma \vdash c_2 :: \{\kappa\}
adamc@537 789 }$$
adamc@537 790
adamc@537 791 $$\infer{\Gamma \vdash \mt{class} \; x = c \leadsto \Gamma, x :: \mt{Type} \to \mt{Type} = c}{
adamc@537 792 \Gamma \vdash c :: \mt{Type} \to \mt{Type}
adamc@537 793 }
adamc@537 794 \quad \infer{\Gamma \vdash \mt{class} \; x \leadsto \Gamma, x :: \mt{Type} \to \mt{Type}}{}$$
adamc@537 795
adamc@536 796 \subsection{Signature Compatibility}
adamc@536 797
adamc@558 798 To simplify the judgments in this section, we assume that all signatures are alpha-varied as necessary to avoid including multiple bindings for the same identifier. This is in addition to the usual alpha-variation of locally-bound variables.
adamc@537 799
adamc@537 800 We rely on a judgment $\Gamma \vdash \overline{s} \leq s'$, which expresses the occurrence in signature items $\overline{s}$ of an item compatible with $s'$. We also use a judgment $\Gamma \vdash \overline{dc} \leq \overline{dc}$, which expresses compatibility of datatype definitions.
adamc@537 801
adamc@536 802 $$\infer{\Gamma \vdash S \equiv S}{}
adamc@536 803 \quad \infer{\Gamma \vdash S_1 \equiv S_2}{
adamc@536 804 \Gamma \vdash S_2 \equiv S_1
adamc@536 805 }
adamc@536 806 \quad \infer{\Gamma \vdash X \equiv S}{
adamc@536 807 X = S \in \Gamma
adamc@536 808 }
adamc@536 809 \quad \infer{\Gamma \vdash M.X \equiv S}{
adamc@537 810 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 811 & \mt{proj}(M, \overline{s}, \mt{signature} \; X) = S
adamc@536 812 }$$
adamc@536 813
adamc@536 814 $$\infer{\Gamma \vdash S \; \mt{where} \; \mt{con} \; x = c \equiv \mt{sig} \; \overline{s^1} \; \mt{con} \; x :: \kappa = c \; \overline{s_2} \; \mt{end}}{
adamc@536 815 \Gamma \vdash S \equiv \mt{sig} \; \overline{s^1} \; \mt{con} \; x :: \kappa \; \overline{s_2} \; \mt{end}
adamc@536 816 & \Gamma \vdash c :: \kappa
adamc@537 817 }
adamc@537 818 \quad \infer{\Gamma \vdash \mt{sig} \; \overline{s^1} \; \mt{include} \; S \; \overline{s^2} \; \mt{end} \equiv \mt{sig} \; \overline{s^1} \; \overline{s} \; \overline{s^2} \; \mt{end}}{
adamc@537 819 \Gamma \vdash S \equiv \mt{sig} \; \overline{s} \; \mt{end}
adamc@536 820 }$$
adamc@536 821
adamc@536 822 $$\infer{\Gamma \vdash S_1 \leq S_2}{
adamc@536 823 \Gamma \vdash S_1 \equiv S_2
adamc@536 824 }
adamc@536 825 \quad \infer{\Gamma \vdash \mt{sig} \; \overline{s} \; \mt{end} \leq \mt{sig} \; \mt{end}}{}
adamc@537 826 \quad \infer{\Gamma \vdash \mt{sig} \; \overline{s} \; \mt{end} \leq \mt{sig} \; s' \; \overline{s'} \; \mt{end}}{
adamc@537 827 \Gamma \vdash \overline{s} \leq s'
adamc@537 828 & \Gamma \vdash s' \leadsto \Gamma'
adamc@537 829 & \Gamma' \vdash \mt{sig} \; \overline{s} \; \mt{end} \leq \mt{sig} \; \overline{s'} \; \mt{end}
adamc@537 830 }$$
adamc@537 831
adamc@537 832 $$\infer{\Gamma \vdash s \; \overline{s} \leq s'}{
adamc@537 833 \Gamma \vdash s \leq s'
adamc@537 834 }
adamc@537 835 \quad \infer{\Gamma \vdash s \; \overline{s} \leq s'}{
adamc@537 836 \Gamma \vdash s \leadsto \Gamma'
adamc@537 837 & \Gamma' \vdash \overline{s} \leq s'
adamc@536 838 }$$
adamc@536 839
adamc@536 840 $$\infer{\Gamma \vdash \mt{functor} (X : S_1) : S_2 \leq \mt{functor} (X : S'_1) : S'_2}{
adamc@536 841 \Gamma \vdash S'_1 \leq S_1
adamc@536 842 & \Gamma, X : S'_1 \vdash S_2 \leq S'_2
adamc@536 843 }$$
adamc@536 844
adamc@537 845 $$\infer{\Gamma \vdash \mt{con} \; x :: \kappa \leq \mt{con} \; x :: \kappa}{}
adamc@537 846 \quad \infer{\Gamma \vdash \mt{con} \; x :: \kappa = c \leq \mt{con} \; x :: \kappa}{}
adamc@558 847 \quad \infer{\Gamma \vdash \mt{datatype} \; x \; \overline{y} = \overline{dc} \leq \mt{con} \; x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type}}{}$$
adamc@537 848
adamc@537 849 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leq \mt{con} \; x :: \mt{Type}^{\mt{len}(y)} \to \mt{Type}}{
adamc@537 850 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 851 & \mt{proj}(M, \overline{s}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})
adamc@537 852 }$$
adamc@537 853
adamc@537 854 $$\infer{\Gamma \vdash \mt{class} \; x \leq \mt{con} \; x :: \mt{Type} \to \mt{Type}}{}
adamc@537 855 \quad \infer{\Gamma \vdash \mt{class} \; x = c \leq \mt{con} \; x :: \mt{Type} \to \mt{Type}}{}$$
adamc@537 856
adamc@537 857 $$\infer{\Gamma \vdash \mt{con} \; x :: \kappa = c_1 \leq \mt{con} \; x :: \mt{\kappa} = c_2}{
adamc@537 858 \Gamma \vdash c_1 \equiv c_2
adamc@537 859 }
adamc@537 860 \quad \infer{\Gamma \vdash \mt{class} \; x = c_1 \leq \mt{con} \; x :: \mt{Type} \to \mt{Type} = c_2}{
adamc@537 861 \Gamma \vdash c_1 \equiv c_2
adamc@537 862 }$$
adamc@537 863
adamc@537 864 $$\infer{\Gamma \vdash \mt{datatype} \; x \; \overline{y} = \overline{dc} \leq \mt{datatype} \; x \; \overline{y} = \overline{dc'}}{
adamc@537 865 \Gamma, \overline{y :: \mt{Type}} \vdash \overline{dc} \leq \overline{dc'}
adamc@537 866 }$$
adamc@537 867
adamc@537 868 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leq \mt{datatype} \; x \; \overline{y} = \overline{dc'}}{
adamc@537 869 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 870 & \mt{proj}(M, \overline{s}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})
adamc@537 871 & \Gamma, \overline{y :: \mt{Type}} \vdash \overline{dc} \leq \overline{dc'}
adamc@537 872 }$$
adamc@537 873
adamc@537 874 $$\infer{\Gamma \vdash \cdot \leq \cdot}{}
adamc@537 875 \quad \infer{\Gamma \vdash X; \overline{dc} \leq X; \overline{dc'}}{
adamc@537 876 \Gamma \vdash \overline{dc} \leq \overline{dc'}
adamc@537 877 }
adamc@537 878 \quad \infer{\Gamma \vdash X \; \mt{of} \; \tau_1; \overline{dc} \leq X \; \mt{of} \; \tau_2; \overline{dc'}}{
adamc@537 879 \Gamma \vdash \tau_1 \equiv \tau_2
adamc@537 880 & \Gamma \vdash \overline{dc} \leq \overline{dc'}
adamc@537 881 }$$
adamc@537 882
adamc@537 883 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leq \mt{datatype} \; x = \mt{datatype} \; M'.z'}{
adamc@537 884 \Gamma \vdash M.z \equiv M'.z'
adamc@537 885 }$$
adamc@537 886
adamc@537 887 $$\infer{\Gamma \vdash \mt{val} \; x : \tau_1 \leq \mt{val} \; x : \tau_2}{
adamc@537 888 \Gamma \vdash \tau_1 \equiv \tau_2
adamc@537 889 }
adamc@537 890 \quad \infer{\Gamma \vdash \mt{structure} \; X : S_1 \leq \mt{structure} \; X : S_2}{
adamc@537 891 \Gamma \vdash S_1 \leq S_2
adamc@537 892 }
adamc@537 893 \quad \infer{\Gamma \vdash \mt{signature} \; X = S_1 \leq \mt{signature} \; X = S_2}{
adamc@537 894 \Gamma \vdash S_1 \leq S_2
adamc@537 895 & \Gamma \vdash S_2 \leq S_1
adamc@537 896 }$$
adamc@537 897
adamc@537 898 $$\infer{\Gamma \vdash \mt{constraint} \; c_1 \sim c_2 \leq \mt{constraint} \; c'_1 \sim c'_2}{
adamc@537 899 \Gamma \vdash c_1 \equiv c'_1
adamc@537 900 & \Gamma \vdash c_2 \equiv c'_2
adamc@537 901 }$$
adamc@537 902
adamc@537 903 $$\infer{\Gamma \vdash \mt{class} \; x \leq \mt{class} \; x}{}
adamc@537 904 \quad \infer{\Gamma \vdash \mt{class} \; x = c \leq \mt{class} \; x}{}
adamc@537 905 \quad \infer{\Gamma \vdash \mt{class} \; x = c_1 \leq \mt{class} \; x = c_2}{
adamc@537 906 \Gamma \vdash c_1 \equiv c_2
adamc@537 907 }$$
adamc@537 908
adamc@538 909 \subsection{Module Typing}
adamc@538 910
adamc@538 911 We use a helper function $\mt{sigOf}$, which converts declarations and sequences of declarations into their principal signature items and sequences of signature items, respectively.
adamc@538 912
adamc@538 913 $$\infer{\Gamma \vdash M : S}{
adamc@538 914 \Gamma \vdash M : S'
adamc@538 915 & \Gamma \vdash S' \leq S
adamc@538 916 }
adamc@538 917 \quad \infer{\Gamma \vdash \mt{struct} \; \overline{d} \; \mt{end} : \mt{sig} \; \mt{sigOf}(\overline{d}) \; \mt{end}}{
adamc@538 918 \Gamma \vdash \overline{d} \leadsto \Gamma'
adamc@538 919 }
adamc@538 920 \quad \infer{\Gamma \vdash X : S}{
adamc@538 921 X : S \in \Gamma
adamc@538 922 }$$
adamc@538 923
adamc@538 924 $$\infer{\Gamma \vdash M.X : S}{
adamc@538 925 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@538 926 & \mt{proj}(M, \overline{s}, \mt{structure} \; X) = S
adamc@538 927 }$$
adamc@538 928
adamc@538 929 $$\infer{\Gamma \vdash M_1(M_2) : [X \mapsto M_2]S_2}{
adamc@538 930 \Gamma \vdash M_1 : \mt{functor}(X : S_1) : S_2
adamc@538 931 & \Gamma \vdash M_2 : S_1
adamc@538 932 }
adamc@538 933 \quad \infer{\Gamma \vdash \mt{functor} (X : S_1) : S_2 = M : \mt{functor} (X : S_1) : S_2}{
adamc@538 934 \Gamma \vdash S_1
adamc@538 935 & \Gamma, X : S_1 \vdash S_2
adamc@538 936 & \Gamma, X : S_1 \vdash M : S_2
adamc@538 937 }$$
adamc@538 938
adamc@538 939 \begin{eqnarray*}
adamc@538 940 \mt{sigOf}(\cdot) &=& \cdot \\
adamc@538 941 \mt{sigOf}(s \; \overline{s'}) &=& \mt{sigOf}(s) \; \mt{sigOf}(\overline{s'}) \\
adamc@538 942 \\
adamc@538 943 \mt{sigOf}(\mt{con} \; x :: \kappa = c) &=& \mt{con} \; x :: \kappa = c \\
adamc@538 944 \mt{sigOf}(\mt{datatype} \; x \; \overline{y} = \overline{dc}) &=& \mt{datatype} \; x \; \overline{y} = \overline{dc} \\
adamc@538 945 \mt{sigOf}(\mt{datatype} \; x = \mt{datatype} \; M.z) &=& \mt{datatype} \; x = \mt{datatype} \; M.z \\
adamc@538 946 \mt{sigOf}(\mt{val} \; x : \tau = e) &=& \mt{val} \; x : \tau \\
adamc@538 947 \mt{sigOf}(\mt{val} \; \mt{rec} \; \overline{x : \tau = e}) &=& \overline{\mt{val} \; x : \tau} \\
adamc@538 948 \mt{sigOf}(\mt{structure} \; X : S = M) &=& \mt{structure} \; X : S \\
adamc@538 949 \mt{sigOf}(\mt{signature} \; X = S) &=& \mt{signature} \; X = S \\
adamc@538 950 \mt{sigOf}(\mt{open} \; M) &=& \mt{include} \; S \textrm{ (where $\Gamma \vdash M : S$)} \\
adamc@538 951 \mt{sigOf}(\mt{constraint} \; c_1 \sim c_2) &=& \mt{constraint} \; c_1 \sim c_2 \\
adamc@538 952 \mt{sigOf}(\mt{open} \; \mt{constraints} \; M) &=& \cdot \\
adamc@538 953 \mt{sigOf}(\mt{table} \; x : c) &=& \mt{table} \; x : c \\
adamc@538 954 \mt{sigOf}(\mt{sequence} \; x) &=& \mt{sequence} \; x \\
adamc@538 955 \mt{sigOf}(\mt{cookie} \; x : \tau) &=& \mt{cookie} \; x : \tau \\
adamc@538 956 \mt{sigOf}(\mt{class} \; x = c) &=& \mt{class} \; x = c \\
adamc@538 957 \end{eqnarray*}
adamc@539 958 \begin{eqnarray*}
adamc@539 959 \mt{selfify}(M, \cdot) &=& \cdot \\
adamc@558 960 \mt{selfify}(M, s \; \overline{s'}) &=& \mt{selfify}(M, s) \; \mt{selfify}(M, \overline{s'}) \\
adamc@539 961 \\
adamc@539 962 \mt{selfify}(M, \mt{con} \; x :: \kappa) &=& \mt{con} \; x :: \kappa = M.x \\
adamc@539 963 \mt{selfify}(M, \mt{con} \; x :: \kappa = c) &=& \mt{con} \; x :: \kappa = c \\
adamc@539 964 \mt{selfify}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc}) &=& \mt{datatype} \; x \; \overline{y} = \mt{datatype} \; M.x \\
adamc@539 965 \mt{selfify}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z) &=& \mt{datatype} \; x = \mt{datatype} \; M'.z \\
adamc@539 966 \mt{selfify}(M, \mt{val} \; x : \tau) &=& \mt{val} \; x : \tau \\
adamc@539 967 \mt{selfify}(M, \mt{structure} \; X : S) &=& \mt{structure} \; X : \mt{selfify}(M.X, \overline{s}) \textrm{ (where $\Gamma \vdash S \equiv \mt{sig} \; \overline{s} \; \mt{end}$)} \\
adamc@539 968 \mt{selfify}(M, \mt{signature} \; X = S) &=& \mt{signature} \; X = S \\
adamc@539 969 \mt{selfify}(M, \mt{include} \; S) &=& \mt{include} \; S \\
adamc@539 970 \mt{selfify}(M, \mt{constraint} \; c_1 \sim c_2) &=& \mt{constraint} \; c_1 \sim c_2 \\
adamc@539 971 \mt{selfify}(M, \mt{class} \; x) &=& \mt{class} \; x = M.x \\
adamc@539 972 \mt{selfify}(M, \mt{class} \; x = c) &=& \mt{class} \; x = c \\
adamc@539 973 \end{eqnarray*}
adamc@539 974
adamc@540 975 \subsection{Module Projection}
adamc@540 976
adamc@540 977 \begin{eqnarray*}
adamc@540 978 \mt{proj}(M, \mt{con} \; x :: \kappa \; \overline{s}, \mt{con} \; x) &=& \kappa \\
adamc@540 979 \mt{proj}(M, \mt{con} \; x :: \kappa = c \; \overline{s}, \mt{con} \; x) &=& (\kappa, c) \\
adamc@540 980 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, \mt{con} \; x) &=& \mt{Type}^{\mt{len}(\overline{y})} \to \mt{Type} \\
adamc@540 981 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z \; \overline{s}, \mt{con} \; x) &=& (\mt{Type}^{\mt{len}(\overline{y})} \to \mt{Type}, M'.z) \textrm{ (where $\Gamma \vdash M' : \mt{sig} \; \overline{s'} \; \mt{end}$} \\
adamc@540 982 && \textrm{and $\mt{proj}(M', \overline{s'}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})$)} \\
adamc@540 983 \mt{proj}(M, \mt{class} \; x \; \overline{s}, \mt{con} \; x) &=& \mt{Type} \to \mt{Type} \\
adamc@540 984 \mt{proj}(M, \mt{class} \; x = c \; \overline{s}, \mt{con} \; x) &=& (\mt{Type} \to \mt{Type}, c) \\
adamc@540 985 \\
adamc@540 986 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, \mt{datatype} \; x) &=& (\overline{y}, \overline{dc}) \\
adamc@540 987 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z \; \overline{s}, \mt{con} \; x) &=& \mt{proj}(M', \overline{s'}, \mt{datatype} \; z) \textrm{ (where $\Gamma \vdash M' : \mt{sig} \; \overline{s'} \; \mt{end}$)} \\
adamc@540 988 \\
adamc@540 989 \mt{proj}(M, \mt{val} \; x : \tau \; \overline{s}, \mt{val} \; x) &=& \tau \\
adamc@540 990 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, \mt{val} \; X) &=& \overline{y ::: \mt{Type}} \to M.x \; \overline y \textrm{ (where $X \in \overline{dc}$)} \\
adamc@540 991 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, \mt{val} \; X) &=& \overline{y ::: \mt{Type}} \to \tau \to M.x \; \overline y \textrm{ (where $X \; \mt{of} \; \tau \in \overline{dc}$)} \\
adamc@540 992 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z, \mt{val} \; X) &=& \overline{y ::: \mt{Type}} \to M.x \; \overline y \textrm{ (where $\Gamma \vdash M' : \mt{sig} \; \overline{s'} \; \mt{end}$} \\
adamc@540 993 && \textrm{and $\mt{proj}(M', \overline{s'}, \mt{datatype} \; z = (\overline{y}, \overline{dc})$ and $X \in \overline{dc}$)} \\
adamc@540 994 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z, \mt{val} \; X) &=& \overline{y ::: \mt{Type}} \to \tau \to M.x \; \overline y \textrm{ (where $\Gamma \vdash M' : \mt{sig} \; \overline{s'} \; \mt{end}$} \\
adamc@558 995 && \textrm{and $\mt{proj}(M', \overline{s'}, \mt{datatype} \; z = (\overline{y}, \overline{dc})$ and $X \; \mt{of} \; \tau \in \overline{dc}$)} \\
adamc@540 996 \\
adamc@540 997 \mt{proj}(M, \mt{structure} \; X : S \; \overline{s}, \mt{structure} \; X) &=& S \\
adamc@540 998 \\
adamc@540 999 \mt{proj}(M, \mt{signature} \; X = S \; \overline{s}, \mt{signature} \; X) &=& S \\
adamc@540 1000 \\
adamc@540 1001 \mt{proj}(M, \mt{con} \; x :: \kappa \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1002 \mt{proj}(M, \mt{con} \; x :: \kappa = c \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1003 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1004 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1005 \mt{proj}(M, \mt{val} \; x : \tau \; \overline{s}, V) &=& \mt{proj}(M, \overline{s}, V) \\
adamc@540 1006 \mt{proj}(M, \mt{structure} \; X : S \; \overline{s}, V) &=& [X \mapsto M.X]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1007 \mt{proj}(M, \mt{signature} \; X = S \; \overline{s}, V) &=& [X \mapsto M.X]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1008 \mt{proj}(M, \mt{include} \; S \; \overline{s}, V) &=& \mt{proj}(M, \overline{s'} \; \overline{s}, V) \textrm{ (where $\Gamma \vdash S \equiv \mt{sig} \; \overline{s'} \; \mt{end}$)} \\
adamc@540 1009 \mt{proj}(M, \mt{constraint} \; c_1 \sim c_2 \; \overline{s}, V) &=& \mt{proj}(M, \overline{s}, V) \\
adamc@540 1010 \mt{proj}(M, \mt{class} \; x \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1011 \mt{proj}(M, \mt{class} \; x = c \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1012 \end{eqnarray*}
adamc@540 1013
adamc@541 1014
adamc@541 1015 \section{Type Inference}
adamc@541 1016
adamc@541 1017 The Ur/Web compiler uses \emph{heuristic type inference}, with no claims of completeness with respect to the declarative specification of the last section. The rules in use seem to work well in practice. This section summarizes those rules, to help Ur programmers predict what will work and what won't.
adamc@541 1018
adamc@541 1019 \subsection{Basic Unification}
adamc@541 1020
adamc@560 1021 Type-checkers for languages based on the Hindley-Milner type discipline, like ML and Haskell, take advantage of \emph{principal typing} properties, making complete type inference relatively straightforward. Inference algorithms are traditionally implemented using type unification variables, at various points asserting equalities between types, in the process discovering the values of type variables. The Ur/Web compiler uses the same basic strategy, but the complexity of the type system rules out easy completeness.
adamc@541 1022
adamc@560 1023 Type-checking can require evaluating recursive functional programs, thanks to the type-level $\mt{fold}$ operator. When a unification variable appears in such a type, the next step of computation can be undetermined. The value of that variable might be determined later, but this would be ``too late'' for the unification problems generated at the first occurrence. This is the essential source of incompleteness.
adamc@541 1024
adamc@541 1025 Nonetheless, the unification engine tends to do reasonably well. Unlike in ML, polymorphism is never inferred in definitions; it must be indicated explicitly by writing out constructor-level parameters. By writing these and other annotations, the programmer can generally get the type inference engine to do most of the type reconstruction work.
adamc@541 1026
adamc@541 1027 \subsection{Unifying Record Types}
adamc@541 1028
adamc@570 1029 The type inference engine tries to take advantage of the algebraic rules governing type-level records, as shown in Section \ref{definitional}. When two constructors of record kind are unified, they are reduced to normal forms, with like terms crossed off from each normal form until, hopefully, nothing remains. This cannot be complete, with the inclusion of unification variables. The type-checker can help you understand what goes wrong when the process fails, as it outputs the unmatched remainders of the two normal forms.
adamc@541 1030
adamc@541 1031 \subsection{\label{typeclasses}Type Classes}
adamc@541 1032
adamc@541 1033 Ur includes a type class facility inspired by Haskell's. The current version is very rudimentary, only supporting instances for particular types built up from abstract types and datatypes and type-level application.
adamc@541 1034
adamc@541 1035 Type classes are integrated with the module system. A type class is just a constructor of kind $\mt{Type} \to \mt{Type}$. By marking such a constructor $c$ as a type class, the programmer instructs the type inference engine to, in each scope, record all values of types $c \; \tau$ as \emph{instances}. Any function argument whose type is of such a form is treated as implicit, to be determined by examining the current instance database.
adamc@541 1036
adamc@541 1037 The ``dictionary encoding'' often used in Haskell implementations is made explicit in Ur. Type class instances are just properly-typed values, and they can also be considered as ``proofs'' of membership in the class. In some cases, it is useful to pass these proofs around explicitly. An underscore written where a proof is expected will also be inferred, if possible, from the current instance database.
adamc@541 1038
adamc@541 1039 Just as for types, type classes may be exported from modules, and they may be exported as concrete or abstract. Concrete type classes have their ``real'' definitions exposed, so that client code may add new instances freely. Abstract type classes are useful as ``predicates'' that can be used to enforce invariants, as we will see in some definitions of SQL syntax in the Ur/Web standard library.
adamc@541 1040
adamc@541 1041 \subsection{Reverse-Engineering Record Types}
adamc@541 1042
adamc@541 1043 It's useful to write Ur functions and functors that take record constructors as inputs, but these constructors can grow quite long, even though their values are often implied by other arguments. The compiler uses a simple heuristic to infer the values of unification variables that are folded over, yielding known results. Often, as in the case of $\mt{map}$-like folds, the base and recursive cases of a fold produce constructors with different top-level structure. Thus, if the result of the fold is known, examining its top-level structure reveals whether the record being folded over is empty or not. If it's empty, we're done; if it's not empty, we replace a single unification variable with a new constructor formed from three new unification variables, as in $[\alpha = \beta] \rc \gamma$. This process can often be repeated to determine a unification variable fully.
adamc@541 1044
adamc@541 1045 \subsection{Implicit Arguments in Functor Applications}
adamc@541 1046
adamc@541 1047 Constructor, constraint, and type class witness members of structures may be omitted, when those structures are used in contexts where their assigned signatures imply how to fill in those missing members. This feature combines well with reverse-engineering to allow for uses of complicated meta-programming functors with little more code than would be necessary to invoke an untyped, ad-hoc code generator.
adamc@541 1048
adamc@541 1049
adamc@542 1050 \section{The Ur Standard Library}
adamc@542 1051
adamc@542 1052 The built-in parts of the Ur/Web standard library are described by the signature in \texttt{lib/basis.urs} in the distribution. A module $\mt{Basis}$ ascribing to that signature is available in the initial environment, and every program is implicitly prefixed by $\mt{open} \; \mt{Basis}$.
adamc@542 1053
adamc@542 1054 Additionally, other common functions that are definable within Ur are included in \texttt{lib/top.urs} and \texttt{lib/top.ur}. This $\mt{Top}$ module is also opened implicitly.
adamc@542 1055
adamc@542 1056 The idea behind Ur is to serve as the ideal host for embedded domain-specific languages. For now, however, the ``generic'' functionality is intermixed with Ur/Web-specific functionality, including in these two library modules. We hope that these generic library components have types that speak for themselves. The next section introduces the Ur/Web-specific elements. Here, we only give the type declarations from the beginning of $\mt{Basis}$.
adamc@542 1057 $$\begin{array}{l}
adamc@542 1058 \mt{type} \; \mt{int} \\
adamc@542 1059 \mt{type} \; \mt{float} \\
adamc@542 1060 \mt{type} \; \mt{string} \\
adamc@542 1061 \mt{type} \; \mt{time} \\
adamc@542 1062 \\
adamc@542 1063 \mt{type} \; \mt{unit} = \{\} \\
adamc@542 1064 \\
adamc@542 1065 \mt{datatype} \; \mt{bool} = \mt{False} \mid \mt{True} \\
adamc@542 1066 \\
adamc@542 1067 \mt{datatype} \; \mt{option} \; \mt{t} = \mt{None} \mid \mt{Some} \; \mt{of} \; \mt{t}
adamc@542 1068 \end{array}$$
adamc@542 1069
adamc@542 1070
adamc@542 1071 \section{The Ur/Web Standard Library}
adamc@542 1072
adamc@542 1073 \subsection{Transactions}
adamc@542 1074
adamc@542 1075 Ur is a pure language; we use Haskell's trick to support controlled side effects. The standard library defines a monad $\mt{transaction}$, meant to stand for actions that may be undone cleanly. By design, no other kinds of actions are supported.
adamc@542 1076 $$\begin{array}{l}
adamc@542 1077 \mt{con} \; \mt{transaction} :: \mt{Type} \to \mt{Type} \\
adamc@542 1078 \\
adamc@542 1079 \mt{val} \; \mt{return} : \mt{t} ::: \mt{Type} \to \mt{t} \to \mt{transaction} \; \mt{t} \\
adamc@542 1080 \mt{val} \; \mt{bind} : \mt{t_1} ::: \mt{Type} \to \mt{t_2} ::: \mt{Type} \to \mt{transaction} \; \mt{t_1} \to (\mt{t_1} \to \mt{transaction} \; \mt{t_2}) \to \mt{transaction} \; \mt{t_2}
adamc@542 1081 \end{array}$$
adamc@542 1082
adamc@542 1083 \subsection{HTTP}
adamc@542 1084
adamc@542 1085 There are transactions for reading an HTTP header by name and for getting and setting strongly-typed cookies. Cookies may only be created by the $\mt{cookie}$ declaration form, ensuring that they be named consistently based on module structure.
adamc@542 1086 $$\begin{array}{l}
adamc@542 1087 \mt{val} \; \mt{requestHeader} : \mt{string} \to \mt{transaction} \; (\mt{option} \; \mt{string}) \\
adamc@542 1088 \\
adamc@542 1089 \mt{con} \; \mt{http\_cookie} :: \mt{Type} \to \mt{Type} \\
adamc@542 1090 \mt{val} \; \mt{getCookie} : \mt{t} ::: \mt{Type} \to \mt{http\_cookie} \; \mt{t} \to \mt{transaction} \; (\mt{option} \; \mt{t}) \\
adamc@542 1091 \mt{val} \; \mt{setCookie} : \mt{t} ::: \mt{Type} \to \mt{http\_cookie} \; \mt{t} \to \mt{t} \to \mt{transaction} \; \mt{unit}
adamc@542 1092 \end{array}$$
adamc@542 1093
adamc@543 1094 \subsection{SQL}
adamc@543 1095
adamc@543 1096 The fundamental unit of interest in the embedding of SQL is tables, described by a type family and creatable only via the $\mt{table}$ declaration form.
adamc@543 1097 $$\begin{array}{l}
adamc@543 1098 \mt{con} \; \mt{sql\_table} :: \{\mt{Type}\} \to \mt{Type}
adamc@543 1099 \end{array}$$
adamc@543 1100
adamc@543 1101 \subsubsection{Queries}
adamc@543 1102
adamc@543 1103 A final query is constructed via the $\mt{sql\_query}$ function. Constructor arguments respectively specify the table fields we select (as records mapping tables to the subsets of their fields that we choose) and the (always named) extra expressions that we select.
adamc@543 1104 $$\begin{array}{l}
adamc@543 1105 \mt{con} \; \mt{sql\_query} :: \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \\
adamc@543 1106 \mt{val} \; \mt{sql\_query} : \mt{tables} ::: \{\{\mt{Type}\}\} \\
adamc@543 1107 \hspace{.1in} \to \mt{selectedFields} ::: \{\{\mt{Type}\}\} \\
adamc@543 1108 \hspace{.1in} \to \mt{selectedExps} ::: \{\mt{Type}\} \\
adamc@543 1109 \hspace{.1in} \to \{\mt{Rows} : \mt{sql\_query1} \; \mt{tables} \; \mt{selectedFields} \; \mt{selectedExps}, \\
adamc@543 1110 \hspace{.2in} \mt{OrderBy} : \mt{sql\_order\_by} \; \mt{tables} \; \mt{selectedExps}, \\
adamc@543 1111 \hspace{.2in} \mt{Limit} : \mt{sql\_limit}, \\
adamc@543 1112 \hspace{.2in} \mt{Offset} : \mt{sql\_offset}\} \\
adamc@543 1113 \hspace{.1in} \to \mt{sql\_query} \; \mt{selectedFields} \; \mt{selectedExps}
adamc@543 1114 \end{array}$$
adamc@543 1115
adamc@545 1116 Queries are used by folding over their results inside transactions.
adamc@545 1117 $$\begin{array}{l}
adamc@545 1118 \mt{val} \; \mt{query} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \lambda [\mt{tables} \sim \mt{exps}] \Rightarrow \mt{state} ::: \mt{Type} \to \mt{sql\_query} \; \mt{tables} \; \mt{exps} \\
adamc@545 1119 \hspace{.1in} \to (\$(\mt{exps} \rc \mt{fold} \; (\lambda \mt{nm} \; (\mt{fields} :: \{\mt{Type}\}) \; \mt{acc} \; [[\mt{nm}] \sim \mt{acc}] \Rightarrow [\mt{nm} = \$\mt{fields}] \rc \mt{acc}) \; [] \; \mt{tables}) \\
adamc@545 1120 \hspace{.2in} \to \mt{state} \to \mt{transaction} \; \mt{state}) \\
adamc@545 1121 \hspace{.1in} \to \mt{state} \to \mt{transaction} \; \mt{state}
adamc@545 1122 \end{array}$$
adamc@545 1123
adamc@543 1124 Most of the complexity of the query encoding is in the type $\mt{sql\_query1}$, which includes simple queries and derived queries based on relational operators. Constructor arguments respectively specify the tables we select from, the subset of fields that we keep from each table for the result rows, and the extra expressions that we select.
adamc@543 1125 $$\begin{array}{l}
adamc@543 1126 \mt{con} \; \mt{sql\_query1} :: \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \\
adamc@543 1127 \\
adamc@543 1128 \mt{type} \; \mt{sql\_relop} \\
adamc@543 1129 \mt{val} \; \mt{sql\_union} : \mt{sql\_relop} \\
adamc@543 1130 \mt{val} \; \mt{sql\_intersect} : \mt{sql\_relop} \\
adamc@543 1131 \mt{val} \; \mt{sql\_except} : \mt{sql\_relop} \\
adamc@543 1132 \mt{val} \; \mt{sql\_relop} : \mt{tables1} ::: \{\{\mt{Type}\}\} \\
adamc@543 1133 \hspace{.1in} \to \mt{tables2} ::: \{\{\mt{Type}\}\} \\
adamc@543 1134 \hspace{.1in} \to \mt{selectedFields} ::: \{\{\mt{Type}\}\} \\
adamc@543 1135 \hspace{.1in} \to \mt{selectedExps} ::: \{\mt{Type}\} \\
adamc@543 1136 \hspace{.1in} \to \mt{sql\_relop} \\
adamc@543 1137 \hspace{.1in} \to \mt{sql\_query1} \; \mt{tables1} \; \mt{selectedFields} \; \mt{selectedExps} \\
adamc@543 1138 \hspace{.1in} \to \mt{sql\_query1} \; \mt{tables2} \; \mt{selectedFields} \; \mt{selectedExps} \\
adamc@543 1139 \hspace{.1in} \to \mt{sql\_query1} \; \mt{selectedFields} \; \mt{selectedFields} \; \mt{selectedExps}
adamc@543 1140 \end{array}$$
adamc@543 1141
adamc@543 1142 $$\begin{array}{l}
adamc@543 1143 \mt{val} \; \mt{sql\_query1} : \mt{tables} ::: \{\{\mt{Type}\}\} \\
adamc@543 1144 \hspace{.1in} \to \mt{grouped} ::: \{\{\mt{Type}\}\} \\
adamc@543 1145 \hspace{.1in} \to \mt{selectedFields} ::: \{\{\mt{Type}\}\} \\
adamc@543 1146 \hspace{.1in} \to \mt{selectedExps} ::: \{\mt{Type}\} \\
adamc@543 1147 \hspace{.1in} \to \{\mt{From} : \$(\mt{fold} \; (\lambda \mt{nm} \; (\mt{fields} :: \{\mt{Type}\}) \; \mt{acc} \; [[\mt{nm}] \sim \mt{acc}] \Rightarrow [\mt{nm} = \mt{sql\_table} \; \mt{fields}] \rc \mt{acc}) \; [] \; \mt{tables}), \\
adamc@543 1148 \hspace{.2in} \mt{Where} : \mt{sql\_exp} \; \mt{tables} \; [] \; [] \; \mt{bool}, \\
adamc@543 1149 \hspace{.2in} \mt{GroupBy} : \mt{sql\_subset} \; \mt{tables} \; \mt{grouped}, \\
adamc@543 1150 \hspace{.2in} \mt{Having} : \mt{sql\_exp} \; \mt{grouped} \; \mt{tables} \; [] \; \mt{bool}, \\
adamc@543 1151 \hspace{.2in} \mt{SelectFields} : \mt{sql\_subset} \; \mt{grouped} \; \mt{selectedFields}, \\
adamc@543 1152 \hspace{.2in} \mt {SelectExps} : \$(\mt{fold} \; (\lambda \mt{nm} \; (\mt{t} :: \mt{Type}) \; \mt{acc} \; [[\mt{nm}] \sim \mt{acc}] \Rightarrow [\mt{nm} = \mt{sql\_exp} \; \mt{grouped} \; \mt{tables} \; [] \; \mt{t}] \rc \mt{acc}) \; [] \; \mt{selectedExps}) \} \\
adamc@543 1153 \hspace{.1in} \to \mt{sql\_query1} \; \mt{tables} \; \mt{selectedFields} \; \mt{selectedExps}
adamc@543 1154 \end{array}$$
adamc@543 1155
adamc@543 1156 To encode projection of subsets of fields in $\mt{SELECT}$ clauses, and to encode $\mt{GROUP} \; \mt{BY}$ clauses, we rely on a type family $\mt{sql\_subset}$, capturing what it means for one record of table fields to be a subset of another. The main constructor $\mt{sql\_subset}$ ``proves subset facts'' by requiring a split of a record into kept and dropped parts. The extra constructor $\mt{sql\_subset\_all}$ is a convenience for keeping all fields of a record.
adamc@543 1157 $$\begin{array}{l}
adamc@543 1158 \mt{con} \; \mt{sql\_subset} :: \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \mt{Type} \\
adamc@543 1159 \mt{val} \; \mt{sql\_subset} : \mt{keep\_drop} :: \{(\{\mt{Type}\} \times \{\mt{Type}\})\} \\
adamc@543 1160 \hspace{.1in} \to \mt{sql\_subset} \\
adamc@543 1161 \hspace{.2in} (\mt{fold} \; (\lambda \mt{nm} \; (\mt{fields} :: (\{\mt{Type}\} \times \{\mt{Type}\})) \; \mt{acc} \; [[\mt{nm}] \sim \mt{acc}] \; [\mt{fields}.1 \sim \mt{fields}.2] \Rightarrow \\
adamc@543 1162 \hspace{.3in} [\mt{nm} = \mt{fields}.1 \rc \mt{fields}.2] \rc \mt{acc}) \; [] \; \mt{keep\_drop}) \\
adamc@543 1163 \hspace{.2in} (\mt{fold} \; (\lambda \mt{nm} \; (\mt{fields} :: (\{\mt{Type}\} \times \{\mt{Type}\})) \; \mt{acc} \; [[\mt{nm}] \sim \mt{acc}] \Rightarrow [\mt{nm} = \mt{fields}.1] \rc \mt{acc}) \; [] \; \mt{keep\_drop}) \\
adamc@543 1164 \mt{val} \; \mt{sql\_subset\_all} : \mt{tables} :: \{\{\mt{Type}\}\} \to \mt{sql\_subset} \; \mt{tables} \; \mt{tables}
adamc@543 1165 \end{array}$$
adamc@543 1166
adamc@560 1167 SQL expressions are used in several places, including $\mt{SELECT}$, $\mt{WHERE}$, $\mt{HAVING}$, and $\mt{ORDER} \; \mt{BY}$ clauses. They reify a fragment of the standard SQL expression language, while making it possible to inject ``native'' Ur values in some places. The arguments to the $\mt{sql\_exp}$ type family respectively give the unrestricted-availability table fields, the table fields that may only be used in arguments to aggregate functions, the available selected expressions, and the type of the expression.
adamc@543 1168 $$\begin{array}{l}
adamc@543 1169 \mt{con} \; \mt{sql\_exp} :: \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \to \mt{Type}
adamc@543 1170 \end{array}$$
adamc@543 1171
adamc@543 1172 Any field in scope may be converted to an expression.
adamc@543 1173 $$\begin{array}{l}
adamc@543 1174 \mt{val} \; \mt{sql\_field} : \mt{otherTabs} ::: \{\{\mt{Type}\}\} \to \mt{otherFields} ::: \{\mt{Type}\} \\
adamc@543 1175 \hspace{.1in} \to \mt{fieldType} ::: \mt{Type} \to \mt{agg} ::: \{\{\mt{Type}\}\} \\
adamc@543 1176 \hspace{.1in} \to \mt{exps} ::: \{\mt{Type}\} \\
adamc@543 1177 \hspace{.1in} \to \mt{tab} :: \mt{Name} \to \mt{field} :: \mt{Name} \\
adamc@543 1178 \hspace{.1in} \to \mt{sql\_exp} \; ([\mt{tab} = [\mt{field} = \mt{fieldType}] \rc \mt{otherFields}] \rc \mt{otherTabs}) \; \mt{agg} \; \mt{exps} \; \mt{fieldType}
adamc@543 1179 \end{array}$$
adamc@543 1180
adamc@544 1181 There is an analogous function for referencing named expressions.
adamc@544 1182 $$\begin{array}{l}
adamc@544 1183 \mt{val} \; \mt{sql\_exp} : \mt{tabs} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{t} ::: \mt{Type} \to \mt{rest} ::: \{\mt{Type}\} \to \mt{nm} :: \mt{Name} \\
adamc@544 1184 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tabs} \; \mt{agg} \; ([\mt{nm} = \mt{t}] \rc \mt{rest}) \; \mt{t}
adamc@544 1185 \end{array}$$
adamc@544 1186
adamc@544 1187 Ur values of appropriate types may be injected into SQL expressions.
adamc@544 1188 $$\begin{array}{l}
adamc@544 1189 \mt{class} \; \mt{sql\_injectable} \\
adamc@544 1190 \mt{val} \; \mt{sql\_bool} : \mt{sql\_injectable} \; \mt{bool} \\
adamc@544 1191 \mt{val} \; \mt{sql\_int} : \mt{sql\_injectable} \; \mt{int} \\
adamc@544 1192 \mt{val} \; \mt{sql\_float} : \mt{sql\_injectable} \; \mt{float} \\
adamc@544 1193 \mt{val} \; \mt{sql\_string} : \mt{sql\_injectable} \; \mt{string} \\
adamc@544 1194 \mt{val} \; \mt{sql\_time} : \mt{sql\_injectable} \; \mt{time} \\
adamc@544 1195 \mt{val} \; \mt{sql\_option\_bool} : \mt{sql\_injectable} \; (\mt{option} \; \mt{bool}) \\
adamc@544 1196 \mt{val} \; \mt{sql\_option\_int} : \mt{sql\_injectable} \; (\mt{option} \; \mt{int}) \\
adamc@544 1197 \mt{val} \; \mt{sql\_option\_float} : \mt{sql\_injectable} \; (\mt{option} \; \mt{float}) \\
adamc@544 1198 \mt{val} \; \mt{sql\_option\_string} : \mt{sql\_injectable} \; (\mt{option} \; \mt{string}) \\
adamc@544 1199 \mt{val} \; \mt{sql\_option\_time} : \mt{sql\_injectable} \; (\mt{option} \; \mt{time}) \\
adamc@544 1200 \mt{val} \; \mt{sql\_inject} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \to \mt{sql\_injectable} \; \mt{t} \\
adamc@544 1201 \hspace{.1in} \to \mt{t} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t}
adamc@544 1202 \end{array}$$
adamc@544 1203
adamc@544 1204 We have the SQL nullness test, which is necessary because of the strange SQL semantics of equality in the presence of null values.
adamc@544 1205 $$\begin{array}{l}
adamc@544 1206 \mt{val} \; \mt{sql\_is\_null} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \\
adamc@544 1207 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; (\mt{option} \; \mt{t}) \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{bool}
adamc@544 1208 \end{array}$$
adamc@544 1209
adamc@559 1210 We have generic nullary, unary, and binary operators.
adamc@544 1211 $$\begin{array}{l}
adamc@544 1212 \mt{con} \; \mt{sql\_nfunc} :: \mt{Type} \to \mt{Type} \\
adamc@544 1213 \mt{val} \; \mt{sql\_current\_timestamp} : \mt{sql\_nfunc} \; \mt{time} \\
adamc@544 1214 \mt{val} \; \mt{sql\_nfunc} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \\
adamc@544 1215 \hspace{.1in} \to \mt{sql\_nfunc} \; \mt{t} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t} \\\end{array}$$
adamc@544 1216
adamc@544 1217 $$\begin{array}{l}
adamc@544 1218 \mt{con} \; \mt{sql\_unary} :: \mt{Type} \to \mt{Type} \to \mt{Type} \\
adamc@544 1219 \mt{val} \; \mt{sql\_not} : \mt{sql\_unary} \; \mt{bool} \; \mt{bool} \\
adamc@544 1220 \mt{val} \; \mt{sql\_unary} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{arg} ::: \mt{Type} \to \mt{res} ::: \mt{Type} \\
adamc@544 1221 \hspace{.1in} \to \mt{sql\_unary} \; \mt{arg} \; \mt{res} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{arg} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{res} \\
adamc@544 1222 \end{array}$$
adamc@544 1223
adamc@544 1224 $$\begin{array}{l}
adamc@544 1225 \mt{con} \; \mt{sql\_binary} :: \mt{Type} \to \mt{Type} \to \mt{Type} \to \mt{Type} \\
adamc@544 1226 \mt{val} \; \mt{sql\_and} : \mt{sql\_binary} \; \mt{bool} \; \mt{bool} \; \mt{bool} \\
adamc@544 1227 \mt{val} \; \mt{sql\_or} : \mt{sql\_binary} \; \mt{bool} \; \mt{bool} \; \mt{bool} \\
adamc@544 1228 \mt{val} \; \mt{sql\_binary} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{arg_1} ::: \mt{Type} \to \mt{arg_2} ::: \mt{Type} \to \mt{res} ::: \mt{Type} \\
adamc@544 1229 \hspace{.1in} \to \mt{sql\_binary} \; \mt{arg_1} \; \mt{arg_2} \; \mt{res} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{arg_1} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{arg_2} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{res}
adamc@544 1230 \end{array}$$
adamc@544 1231
adamc@544 1232 $$\begin{array}{l}
adamc@559 1233 \mt{class} \; \mt{sql\_arith} \\
adamc@559 1234 \mt{val} \; \mt{sql\_int\_arith} : \mt{sql\_arith} \; \mt{int} \\
adamc@559 1235 \mt{val} \; \mt{sql\_float\_arith} : \mt{sql\_arith} \; \mt{float} \\
adamc@559 1236 \mt{val} \; \mt{sql\_neg} : \mt{t} ::: \mt{Type} \to \mt{sql\_arith} \; \mt{t} \to \mt{sql\_unary} \; \mt{t} \; \mt{t} \\
adamc@559 1237 \mt{val} \; \mt{sql\_plus} : \mt{t} ::: \mt{Type} \to \mt{sql\_arith} \; \mt{t} \to \mt{sql\_binary} \; \mt{t} \; \mt{t} \; \mt{t} \\
adamc@559 1238 \mt{val} \; \mt{sql\_minus} : \mt{t} ::: \mt{Type} \to \mt{sql\_arith} \; \mt{t} \to \mt{sql\_binary} \; \mt{t} \; \mt{t} \; \mt{t} \\
adamc@559 1239 \mt{val} \; \mt{sql\_times} : \mt{t} ::: \mt{Type} \to \mt{sql\_arith} \; \mt{t} \to \mt{sql\_binary} \; \mt{t} \; \mt{t} \; \mt{t} \\
adamc@559 1240 \mt{val} \; \mt{sql\_div} : \mt{t} ::: \mt{Type} \to \mt{sql\_arith} \; \mt{t} \to \mt{sql\_binary} \; \mt{t} \; \mt{t} \; \mt{t} \\
adamc@559 1241 \mt{val} \; \mt{sql\_mod} : \mt{sql\_binary} \; \mt{int} \; \mt{int} \; \mt{int}
adamc@559 1242 \end{array}$$
adamc@544 1243
adamc@544 1244 Finally, we have aggregate functions. The $\mt{COUNT(\ast)}$ syntax is handled specially, since it takes no real argument. The other aggregate functions are placed into a general type family, using type classes to restrict usage to properly-typed arguments. The key aspect of the $\mt{sql\_aggregate}$ function's type is the shift of aggregate-function-only fields into unrestricted fields.
adamc@544 1245
adamc@544 1246 $$\begin{array}{l}
adamc@544 1247 \mt{val} \; \mt{sql\_count} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{int}
adamc@544 1248 \end{array}$$
adamc@544 1249
adamc@544 1250 $$\begin{array}{l}
adamc@544 1251 \mt{con} \; \mt{sql\_aggregate} :: \mt{Type} \to \mt{Type} \\
adamc@544 1252 \mt{val} \; \mt{sql\_aggregate} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \\
adamc@544 1253 \hspace{.1in} \to \mt{sql\_aggregate} \; \mt{t} \to \mt{sql\_exp} \; \mt{agg} \; \mt{agg} \; \mt{exps} \; \mt{t} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t}
adamc@544 1254 \end{array}$$
adamc@544 1255
adamc@544 1256 $$\begin{array}{l}
adamc@544 1257 \mt{class} \; \mt{sql\_summable} \\
adamc@544 1258 \mt{val} \; \mt{sql\_summable\_int} : \mt{sql\_summable} \; \mt{int} \\
adamc@544 1259 \mt{val} \; \mt{sql\_summable\_float} : \mt{sql\_summable} \; \mt{float} \\
adamc@544 1260 \mt{val} \; \mt{sql\_avg} : \mt{t} ::: \mt{Type} \to \mt{sql\_summable} \; \mt{t} \to \mt{sql\_aggregate} \; \mt{t} \\
adamc@544 1261 \mt{val} \; \mt{sql\_sum} : \mt{t} ::: \mt{Type} \to \mt{sql\_summable} \mt{t} \to \mt{sql\_aggregate} \; \mt{t}
adamc@544 1262 \end{array}$$
adamc@544 1263
adamc@544 1264 $$\begin{array}{l}
adamc@544 1265 \mt{class} \; \mt{sql\_maxable} \\
adamc@544 1266 \mt{val} \; \mt{sql\_maxable\_int} : \mt{sql\_maxable} \; \mt{int} \\
adamc@544 1267 \mt{val} \; \mt{sql\_maxable\_float} : \mt{sql\_maxable} \; \mt{float} \\
adamc@544 1268 \mt{val} \; \mt{sql\_maxable\_string} : \mt{sql\_maxable} \; \mt{string} \\
adamc@544 1269 \mt{val} \; \mt{sql\_maxable\_time} : \mt{sql\_maxable} \; \mt{time} \\
adamc@544 1270 \mt{val} \; \mt{sql\_max} : \mt{t} ::: \mt{Type} \to \mt{sql\_maxable} \; \mt{t} \to \mt{sql\_aggregate} \; \mt{t} \\
adamc@544 1271 \mt{val} \; \mt{sql\_min} : \mt{t} ::: \mt{Type} \to \mt{sql\_maxable} \; \mt{t} \to \mt{sql\_aggregate} \; \mt{t}
adamc@544 1272 \end{array}$$
adamc@544 1273
adamc@544 1274 We wrap up the definition of query syntax with the types used in representing $\mt{ORDER} \; \mt{BY}$, $\mt{LIMIT}$, and $\mt{OFFSET}$ clauses.
adamc@544 1275 $$\begin{array}{l}
adamc@544 1276 \mt{type} \; \mt{sql\_direction} \\
adamc@544 1277 \mt{val} \; \mt{sql\_asc} : \mt{sql\_direction} \\
adamc@544 1278 \mt{val} \; \mt{sql\_desc} : \mt{sql\_direction} \\
adamc@544 1279 \\
adamc@544 1280 \mt{con} \; \mt{sql\_order\_by} :: \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \\
adamc@544 1281 \mt{val} \; \mt{sql\_order\_by\_Nil} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{exps} :: \{\mt{Type}\} \to \mt{sql\_order\_by} \; \mt{tables} \; \mt{exps} \\
adamc@544 1282 \mt{val} \; \mt{sql\_order\_by\_Cons} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \\
adamc@544 1283 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tables} \; [] \; \mt{exps} \; \mt{t} \to \mt{sql\_direction} \to \mt{sql\_order\_by} \; \mt{tables} \; \mt{exps} \to \mt{sql\_order\_by} \; \mt{tables} \; \mt{exps} \\
adamc@544 1284 \\
adamc@544 1285 \mt{type} \; \mt{sql\_limit} \\
adamc@544 1286 \mt{val} \; \mt{sql\_no\_limit} : \mt{sql\_limit} \\
adamc@544 1287 \mt{val} \; \mt{sql\_limit} : \mt{int} \to \mt{sql\_limit} \\
adamc@544 1288 \\
adamc@544 1289 \mt{type} \; \mt{sql\_offset} \\
adamc@544 1290 \mt{val} \; \mt{sql\_no\_offset} : \mt{sql\_offset} \\
adamc@544 1291 \mt{val} \; \mt{sql\_offset} : \mt{int} \to \mt{sql\_offset}
adamc@544 1292 \end{array}$$
adamc@544 1293
adamc@545 1294
adamc@545 1295 \subsubsection{DML}
adamc@545 1296
adamc@545 1297 The Ur/Web library also includes an embedding of a fragment of SQL's DML, the Data Manipulation Language, for modifying database tables. Any piece of DML may be executed in a transaction.
adamc@545 1298
adamc@545 1299 $$\begin{array}{l}
adamc@545 1300 \mt{type} \; \mt{dml} \\
adamc@545 1301 \mt{val} \; \mt{dml} : \mt{dml} \to \mt{transaction} \; \mt{unit}
adamc@545 1302 \end{array}$$
adamc@545 1303
adamc@545 1304 Properly-typed records may be used to form $\mt{INSERT}$ commands.
adamc@545 1305 $$\begin{array}{l}
adamc@545 1306 \mt{val} \; \mt{insert} : \mt{fields} ::: \{\mt{Type}\} \to \mt{sql\_table} \; \mt{fields} \\
adamc@545 1307 \hspace{.1in} \to \$(\mt{fold} \; (\lambda \mt{nm} \; (\mt{t} :: \mt{Type}) \; \mt{acc} \; [[\mt{nm}] \sim \mt{acc}] \Rightarrow [\mt{nm} = \mt{sql\_exp} \; [] \; [] \; [] \; \mt{t}] \rc \mt{acc}) \; [] \; \mt{fields}) \to \mt{dml}
adamc@545 1308 \end{array}$$
adamc@545 1309
adamc@545 1310 An $\mt{UPDATE}$ command is formed from a choice of which table fields to leave alone and which to change, along with an expression to use to compute the new value of each changed field and a $\mt{WHERE}$ clause.
adamc@545 1311 $$\begin{array}{l}
adamc@545 1312 \mt{val} \; \mt{update} : \mt{unchanged} ::: \{\mt{Type}\} \to \mt{changed} :: \{\mt{Type}\} \to \lambda [\mt{changed} \sim \mt{unchanged}] \\
adamc@545 1313 \hspace{.1in} \Rightarrow \$(\mt{fold} \; (\lambda \mt{nm} \; (\mt{t} :: \mt{Type}) \; \mt{acc} \; [[\mt{nm}] \sim \mt{acc}] \Rightarrow [\mt{nm} = \mt{sql\_exp} \; [\mt{T} = \mt{changed} \rc \mt{unchanged}] \; [] \; [] \; \mt{t}] \rc \mt{acc}) \; [] \; \mt{changed}) \\
adamc@545 1314 \hspace{.1in} \to \mt{sql\_table} \; (\mt{changed} \rc \mt{unchanged}) \to \mt{sql\_exp} \; [\mt{T} = \mt{changed} \rc \mt{unchanged}] \; [] \; [] \; \mt{bool} \to \mt{dml}
adamc@545 1315 \end{array}$$
adamc@545 1316
adamc@545 1317 A $\mt{DELETE}$ command is formed from a table and a $\mt{WHERE}$ clause.
adamc@545 1318 $$\begin{array}{l}
adamc@545 1319 \mt{val} \; \mt{delete} : \mt{fields} ::: \{\mt{Type}\} \to \mt{sql\_table} \; \mt{fields} \to \mt{sql\_exp} \; [\mt{T} = \mt{fields}] \; [] \; [] \; \mt{bool} \to \mt{dml}
adamc@545 1320 \end{array}$$
adamc@545 1321
adamc@546 1322 \subsubsection{Sequences}
adamc@546 1323
adamc@546 1324 SQL sequences are counters with concurrency control, often used to assign unique IDs. Ur/Web supports them via a simple interface. The only way to create a sequence is with the $\mt{sequence}$ declaration form.
adamc@546 1325
adamc@546 1326 $$\begin{array}{l}
adamc@546 1327 \mt{type} \; \mt{sql\_sequence} \\
adamc@546 1328 \mt{val} \; \mt{nextval} : \mt{sql\_sequence} \to \mt{transaction} \; \mt{int}
adamc@546 1329 \end{array}$$
adamc@546 1330
adamc@546 1331
adamc@547 1332 \subsection{XML}
adamc@547 1333
adamc@547 1334 Ur/Web's library contains an encoding of XML syntax and semantic constraints. We make no effort to follow the standards governing XML schemas. Rather, XML fragments are viewed more as values of ML datatypes, and we only track which tags are allowed inside which other tags.
adamc@547 1335
adamc@547 1336 The basic XML type family has arguments respectively indicating the \emph{context} of a fragment, the fields that the fragment expects to be bound on entry (and their types), and the fields that the fragment will bind (and their types). Contexts are a record-based ``poor man's subtyping'' encoding, with each possible set of valid tags corresponding to a different context record. The arguments dealing with field binding are only relevant to HTML forms.
adamc@547 1337 $$\begin{array}{l}
adamc@547 1338 \mt{con} \; \mt{xml} :: \{\mt{Unit}\} \to \{\mt{Type}\} \to \{\mt{Type}\} \to \mt{Type}
adamc@547 1339 \end{array}$$
adamc@547 1340
adamc@547 1341 We also have a type family of XML tags, indexed respectively by the record of optional attributes accepted by the tag, the context in which the tag may be placed, the context required of children of the tag, which form fields the tag uses, and which fields the tag defines.
adamc@547 1342 $$\begin{array}{l}
adamc@547 1343 \mt{con} \; \mt{tag} :: \{\mt{Type}\} \to \{\mt{Unit}\} \to \{\mt{Unit}\} \to \{\mt{Type}\} \to \{\mt{Type}\} \to \mt{Type}
adamc@547 1344 \end{array}$$
adamc@547 1345
adamc@547 1346 Literal text may be injected into XML as ``CDATA.''
adamc@547 1347 $$\begin{array}{l}
adamc@547 1348 \mt{val} \; \mt{cdata} : \mt{ctx} ::: \{\mt{Unit}\} \to \mt{use} ::: \{\mt{Type}\} \to \mt{string} \to \mt{xml} \; \mt{ctx} \; \mt{use} \; []
adamc@547 1349 \end{array}$$
adamc@547 1350
adamc@547 1351 There is a function for producing an XML tree with a particular tag at its root.
adamc@547 1352 $$\begin{array}{l}
adamc@547 1353 \mt{val} \; \mt{tag} : \mt{attrsGiven} ::: \{\mt{Type}\} \to \mt{attrsAbsent} ::: \{\mt{Type}\} \to \mt{ctxOuter} ::: \{\mt{Unit}\} \to \mt{ctxInner} ::: \{\mt{Unit}\} \\
adamc@547 1354 \hspace{.1in} \to \mt{useOuter} ::: \{\mt{Type}\} \to \mt{useInner} ::: \{\mt{Type}\} \to \mt{bindOuter} ::: \{\mt{Type}\} \to \mt{bindInner} ::: \{\mt{Type}\} \\
adamc@547 1355 \hspace{.1in} \to \lambda [\mt{attrsGiven} \sim \mt{attrsAbsent}] \; [\mt{useOuter} \sim \mt{useInner}] \; [\mt{bindOuter} \sim \mt{bindInner}] \Rightarrow \$\mt{attrsGiven} \\
adamc@547 1356 \hspace{.1in} \to \mt{tag} \; (\mt{attrsGiven} \rc \mt{attrsAbsent}) \; \mt{ctxOuter} \; \mt{ctxInner} \; \mt{useOuter} \; \mt{bindOuter} \\
adamc@547 1357 \hspace{.1in} \to \mt{xml} \; \mt{ctxInner} \; \mt{useInner} \; \mt{bindInner} \to \mt{xml} \; \mt{ctxOuter} \; (\mt{useOuter} \rc \mt{useInner}) \; (\mt{bindOuter} \rc \mt{bindInner})
adamc@547 1358 \end{array}$$
adamc@547 1359
adamc@547 1360 Two XML fragments may be concatenated.
adamc@547 1361 $$\begin{array}{l}
adamc@547 1362 \mt{val} \; \mt{join} : \mt{ctx} ::: \{\mt{Unit}\} \to \mt{use_1} ::: \{\mt{Type}\} \to \mt{bind_1} ::: \{\mt{Type}\} \to \mt{bind_2} ::: \{\mt{Type}\} \\
adamc@547 1363 \hspace{.1in} \to \lambda [\mt{use_1} \sim \mt{bind_1}] \; [\mt{bind_1} \sim \mt{bind_2}] \\
adamc@547 1364 \hspace{.1in} \Rightarrow \mt{xml} \; \mt{ctx} \; \mt{use_1} \; \mt{bind_1} \to \mt{xml} \; \mt{ctx} \; (\mt{use_1} \rc \mt{bind_1}) \; \mt{bind_2} \to \mt{xml} \; \mt{ctx} \; \mt{use_1} \; (\mt{bind_1} \rc \mt{bind_2})
adamc@547 1365 \end{array}$$
adamc@547 1366
adamc@547 1367 Finally, any XML fragment may be updated to ``claim'' to use more form fields than it does.
adamc@547 1368 $$\begin{array}{l}
adamc@547 1369 \mt{val} \; \mt{useMore} : \mt{ctx} ::: \{\mt{Unit}\} \to \mt{use_1} ::: \{\mt{Type}\} \to \mt{use_2} ::: \{\mt{Type}\} \to \mt{bind} ::: \{\mt{Type}\} \to \lambda [\mt{use_1} \sim \mt{use_2}] \\
adamc@547 1370 \hspace{.1in} \Rightarrow \mt{xml} \; \mt{ctx} \; \mt{use_1} \; \mt{bind} \to \mt{xml} \; \mt{ctx} \; (\mt{use_1} \rc \mt{use_2}) \; \mt{bind}
adamc@547 1371 \end{array}$$
adamc@547 1372
adamc@547 1373 We will not list here the different HTML tags and related functions from the standard library. They should be easy enough to understand from the code in \texttt{basis.urs}. The set of tags in the library is not yet claimed to be complete for HTML standards.
adamc@547 1374
adamc@547 1375 One last useful function is for aborting any page generation, returning some XML as an error message. This function takes the place of some uses of a general exception mechanism.
adamc@547 1376 $$\begin{array}{l}
adamc@547 1377 \mt{val} \; \mt{error} : \mt{t} ::: \mt{Type} \to \mt{xml} \; [\mt{Body}] \; [] \; [] \to \mt{t}
adamc@547 1378 \end{array}$$
adamc@547 1379
adamc@549 1380
adamc@549 1381 \section{Ur/Web Syntax Extensions}
adamc@549 1382
adamc@549 1383 Ur/Web features some syntactic shorthands for building values using the functions from the last section. This section sketches the grammar of those extensions. We write spans of syntax inside brackets to indicate that they are optional.
adamc@549 1384
adamc@549 1385 \subsection{SQL}
adamc@549 1386
adamc@549 1387 \subsubsection{Queries}
adamc@549 1388
adamc@550 1389 Queries $Q$ are added to the rules for expressions $e$.
adamc@550 1390
adamc@549 1391 $$\begin{array}{rrcll}
adamc@550 1392 \textrm{Queries} & Q &::=& (q \; [\mt{ORDER} \; \mt{BY} \; (E \; [o],)^+] \; [\mt{LIMIT} \; N] \; [\mt{OFFSET} \; N]) \\
adamc@549 1393 \textrm{Pre-queries} & q &::=& \mt{SELECT} \; P \; \mt{FROM} \; T,^+ \; [\mt{WHERE} \; E] \; [\mt{GROUP} \; \mt{BY} \; p,^+] \; [\mt{HAVING} \; E] \\
adamc@549 1394 &&& \mid q \; R \; q \\
adamc@549 1395 \textrm{Relational operators} & R &::=& \mt{UNION} \mid \mt{INTERSECT} \mid \mt{EXCEPT}
adamc@549 1396 \end{array}$$
adamc@549 1397
adamc@549 1398 $$\begin{array}{rrcll}
adamc@549 1399 \textrm{Projections} & P &::=& \ast & \textrm{all columns} \\
adamc@549 1400 &&& p,^+ & \textrm{particular columns} \\
adamc@549 1401 \textrm{Pre-projections} & p &::=& t.f & \textrm{one column from a table} \\
adamc@558 1402 &&& t.\{\{c\}\} & \textrm{a record of columns from a table (of kind $\{\mt{Type}\}$)} \\
adamc@549 1403 \textrm{Table names} & t &::=& x & \textrm{constant table name (automatically capitalized)} \\
adamc@549 1404 &&& X & \textrm{constant table name} \\
adamc@549 1405 &&& \{\{c\}\} & \textrm{computed table name (of kind $\mt{Name}$)} \\
adamc@549 1406 \textrm{Column names} & f &::=& X & \textrm{constant column name} \\
adamc@549 1407 &&& \{c\} & \textrm{computed column name (of kind $\mt{Name}$)} \\
adamc@549 1408 \textrm{Tables} & T &::=& x & \textrm{table variable, named locally by its own capitalization} \\
adamc@549 1409 &&& x \; \mt{AS} \; t & \textrm{table variable, with local name} \\
adamc@549 1410 &&& \{\{e\}\} \; \mt{AS} \; t & \textrm{computed table expression, with local name} \\
adamc@549 1411 \textrm{SQL expressions} & E &::=& p & \textrm{column references} \\
adamc@549 1412 &&& X & \textrm{named expression references} \\
adamc@549 1413 &&& \{\{e\}\} & \textrm{injected native Ur expressions} \\
adamc@549 1414 &&& \{e\} & \textrm{computed expressions, probably using $\mt{sql\_exp}$ directly} \\
adamc@549 1415 &&& \mt{TRUE} \mid \mt{FALSE} & \textrm{boolean constants} \\
adamc@549 1416 &&& \ell & \textrm{primitive type literals} \\
adamc@549 1417 &&& \mt{NULL} & \textrm{null value (injection of $\mt{None}$)} \\
adamc@549 1418 &&& E \; \mt{IS} \; \mt{NULL} & \textrm{nullness test} \\
adamc@549 1419 &&& n & \textrm{nullary operators} \\
adamc@549 1420 &&& u \; E & \textrm{unary operators} \\
adamc@549 1421 &&& E \; b \; E & \textrm{binary operators} \\
adamc@549 1422 &&& \mt{COUNT}(\ast) & \textrm{count number of rows} \\
adamc@549 1423 &&& a(E) & \textrm{other aggregate function} \\
adamc@549 1424 &&& (E) & \textrm{explicit precedence} \\
adamc@549 1425 \textrm{Nullary operators} & n &::=& \mt{CURRENT\_TIMESTAMP} \\
adamc@549 1426 \textrm{Unary operators} & u &::=& \mt{NOT} \\
adamc@549 1427 \textrm{Binary operators} & b &::=& \mt{AND} \mid \mt{OR} \mid \neq \mid < \mid \leq \mid > \mid \geq \\
adamc@549 1428 \textrm{Aggregate functions} & a &::=& \mt{AVG} \mid \mt{SUM} \mid \mt{MIN} \mid \mt{MAX} \\
adamc@550 1429 \textrm{Directions} & o &::=& \mt{ASC} \mid \mt{DESC} \\
adamc@549 1430 \textrm{SQL integer} & N &::=& n \mid \{e\} \\
adamc@549 1431 \end{array}$$
adamc@549 1432
adamc@549 1433 Additionally, an SQL expression may be inserted into normal Ur code with the syntax $(\mt{SQL} \; E)$ or $(\mt{WHERE} \; E)$.
adamc@549 1434
adamc@550 1435 \subsubsection{DML}
adamc@550 1436
adamc@550 1437 DML commands $D$ are added to the rules for expressions $e$.
adamc@550 1438
adamc@550 1439 $$\begin{array}{rrcll}
adamc@550 1440 \textrm{Commands} & D &::=& (\mt{INSERT} \; \mt{INTO} \; T^E \; (f,^+) \; \mt{VALUES} \; (E,^+)) \\
adamc@550 1441 &&& (\mt{UPDATE} \; T^E \; \mt{SET} \; (f = E,)^+ \; \mt{WHERE} \; E) \\
adamc@550 1442 &&& (\mt{DELETE} \; \mt{FROM} \; T^E \; \mt{WHERE} \; E) \\
adamc@550 1443 \textrm{Table expressions} & T^E &::=& x \mid \{\{e\}\}
adamc@550 1444 \end{array}$$
adamc@550 1445
adamc@550 1446 Inside $\mt{UPDATE}$ and $\mt{DELETE}$ commands, lone variables $X$ are interpreted as references to columns of the implicit table $\mt{T}$, rather than to named expressions.
adamc@549 1447
adamc@551 1448 \subsection{XML}
adamc@551 1449
adamc@551 1450 XML fragments $L$ are added to the rules for expressions $e$.
adamc@551 1451
adamc@551 1452 $$\begin{array}{rrcll}
adamc@551 1453 \textrm{XML fragments} & L &::=& \texttt{<xml/>} \mid \texttt{<xml>}l^*\texttt{</xml>} \\
adamc@551 1454 \textrm{XML pieces} & l &::=& \textrm{text} & \textrm{cdata} \\
adamc@551 1455 &&& \texttt{<}g\texttt{/>} & \textrm{tag with no children} \\
adamc@551 1456 &&& \texttt{<}g\texttt{>}l^*\texttt{</}x\texttt{>} & \textrm{tag with children} \\
adamc@559 1457 &&& \{e\} & \textrm{computed XML fragment} \\
adamc@559 1458 &&& \{[e]\} & \textrm{injection of an Ur expression, via the $\mt{Top}.\mt{txt}$ function} \\
adamc@551 1459 \textrm{Tag} & g &::=& h \; (x = v)^* \\
adamc@551 1460 \textrm{Tag head} & h &::=& x & \textrm{tag name} \\
adamc@551 1461 &&& h\{c\} & \textrm{constructor parameter} \\
adamc@551 1462 \textrm{Attribute value} & v &::=& \ell & \textrm{literal value} \\
adamc@551 1463 &&& \{e\} & \textrm{computed value} \\
adamc@551 1464 \end{array}$$
adamc@551 1465
adamc@552 1466
adamc@553 1467 \section{The Structure of Web Applications}
adamc@553 1468
adamc@553 1469 A web application is built from a series of modules, with one module, the last one appearing in the \texttt{.urp} file, designated as the main module. The signature of the main module determines the URL entry points to the application. Such an entry point should have type $\mt{unit} \to \mt{transaction} \; \mt{page}$, where $\mt{page}$ is a type synonym for top-level HTML pages, defined in $\mt{Basis}$. If such a function is at the top level of main module $M$, it will be accessible at URI \texttt{/M/f}, and so on for more deeply-nested functions, as described in Section \ref{tag} below.
adamc@553 1470
adamc@553 1471 When the standalone web server receives a request for a known page, it calls the function for that page, ``running'' the resulting transaction to produce the page to return to the client. Pages link to other pages with the \texttt{link} attribute of the \texttt{a} HTML tag. A link has type $\mt{transaction} \; \mt{page}$, and the semantics of a link are that this transaction should be run to compute the result page, when the link is followed. Link targets are assigned URL names in the same way as top-level entry points.
adamc@553 1472
adamc@553 1473 HTML forms are handled in a similar way. The $\mt{action}$ attribute of a $\mt{submit}$ form tag takes a value of type $\$\mt{use} \to \mt{transaction} \; \mt{page}$, where $\mt{use}$ is a kind-$\{\mt{Type}\}$ record of the form fields used by this action handler. Action handlers are assigned URL patterns in the same way as above.
adamc@553 1474
adamc@558 1475 For both links and actions, direct arguments and local variables mentioned implicitly via closures are automatically included in serialized form in URLs, in the order in which they appear in the source code.
adamc@553 1476
adamc@553 1477
adamc@552 1478 \section{Compiler Phases}
adamc@552 1479
adamc@552 1480 The Ur/Web compiler is unconventional in that it relies on a kind of \emph{heuristic compilation}. Not all valid programs will compile successfully. Informally, programs fail to compile when they are ``too higher order.'' Compiler phases do their best to eliminate different kinds of higher order-ness, but some programs just won't compile. This is a trade-off for producing very efficient executables. Compiled Ur/Web programs use native C representations and require no garbage collection.
adamc@552 1481
adamc@552 1482 In this section, we step through the main phases of compilation, noting what consequences each phase has for effective programming.
adamc@552 1483
adamc@552 1484 \subsection{Parse}
adamc@552 1485
adamc@552 1486 The compiler reads a \texttt{.urp} file, figures out which \texttt{.urs} and \texttt{.ur} files it references, and combines them all into what is conceptually a single sequence of declarations in the core language of Section \ref{core}.
adamc@552 1487
adamc@552 1488 \subsection{Elaborate}
adamc@552 1489
adamc@552 1490 This is where type inference takes place, translating programs into an explicit form with no more wildcards. This phase is the most likely source of compiler error messages.
adamc@552 1491
adamc@552 1492 \subsection{Unnest}
adamc@552 1493
adamc@552 1494 Named local function definitions are moved to the top level, to avoid the need to generate closures.
adamc@552 1495
adamc@552 1496 \subsection{Corify}
adamc@552 1497
adamc@552 1498 Module system features are compiled away, through inlining of functor definitions at application sites. Afterward, most abstraction boundaries are broken, facilitating optimization.
adamc@552 1499
adamc@552 1500 \subsection{Especialize}
adamc@552 1501
adamc@552 1502 Functions are specialized to particular argument patterns. This is an important trick for avoiding the need to maintain any closures at runtime.
adamc@552 1503
adamc@552 1504 \subsection{Untangle}
adamc@552 1505
adamc@552 1506 Remove unnecessary mutual recursion, splitting recursive groups into strongly-connected components.
adamc@552 1507
adamc@552 1508 \subsection{Shake}
adamc@552 1509
adamc@552 1510 Remove all definitions not needed to run the page handlers that are visible in the signature of the last module listed in the \texttt{.urp} file.
adamc@552 1511
adamc@553 1512 \subsection{\label{tag}Tag}
adamc@552 1513
adamc@552 1514 Assign a URL name to each link and form action. It is important that these links and actions are written as applications of named functions, because such names are used to generate URL patterns. A URL pattern has a name built from the full module path of the named function, followed by the function name, with all pieces separated by slashes. The path of a functor application is based on the name given to the result, rather than the path of the functor itself.
adamc@552 1515
adamc@552 1516 \subsection{Reduce}
adamc@552 1517
adamc@552 1518 Apply definitional equality rules to simplify the program as much as possible. This effectively includes inlining of every non-recursive definition.
adamc@552 1519
adamc@552 1520 \subsection{Unpoly}
adamc@552 1521
adamc@552 1522 This phase specializes polymorphic functions to the specific arguments passed to them in the program. If the program contains real polymorphic recursion, Unpoly will be insufficient to avoid later error messages about too much polymorphism.
adamc@552 1523
adamc@552 1524 \subsection{Specialize}
adamc@552 1525
adamc@558 1526 Replace uses of parameterized datatypes with versions specialized to specific parameters. As for Unpoly, this phase will not be effective enough in the presence of polymorphic recursion or other fancy uses of impredicative polymorphism.
adamc@552 1527
adamc@552 1528 \subsection{Shake}
adamc@552 1529
adamc@558 1530 Here the compiler repeats the earlier Shake phase.
adamc@552 1531
adamc@552 1532 \subsection{Monoize}
adamc@552 1533
adamc@552 1534 Programs are translated to a new intermediate language without polymorphism or non-$\mt{Type}$ constructors. Error messages may pop up here if earlier phases failed to remove such features.
adamc@552 1535
adamc@552 1536 This is the stage at which concrete names are generated for cookies, tables, and sequences. They are named following the same convention as for links and actions, based on module path information saved from earlier stages. Table and sequence names separate path elements with underscores instead of slashes, and they are prefixed by \texttt{uw\_}.
adamc@552 1537 \subsection{MonoOpt}
adamc@552 1538
adamc@552 1539 Simple algebraic laws are applied to simplify the program, focusing especially on efficient imperative generation of HTML pages.
adamc@552 1540
adamc@552 1541 \subsection{MonoUntangle}
adamc@552 1542
adamc@552 1543 Unnecessary mutual recursion is broken up again.
adamc@552 1544
adamc@552 1545 \subsection{MonoReduce}
adamc@552 1546
adamc@552 1547 Equivalents of the definitional equality rules are applied to simplify programs, with inlining again playing a major role.
adamc@552 1548
adamc@552 1549 \subsection{MonoShake, MonoOpt}
adamc@552 1550
adamc@552 1551 Unneeded declarations are removed, and basic optimizations are repeated.
adamc@552 1552
adamc@552 1553 \subsection{Fuse}
adamc@552 1554
adamc@552 1555 The compiler tries to simplify calls to recursive functions whose results are immediately written as page output. The write action is pushed inside the function definitions to avoid allocation of intermediate results.
adamc@552 1556
adamc@552 1557 \subsection{MonoUntangle, MonoShake}
adamc@552 1558
adamc@552 1559 Fuse often creates more opportunities to remove spurious mutual recursion.
adamc@552 1560
adamc@552 1561 \subsection{Pathcheck}
adamc@552 1562
adamc@552 1563 The compiler checks that no link or action name has been used more than once.
adamc@552 1564
adamc@552 1565 \subsection{Cjrize}
adamc@552 1566
adamc@552 1567 The program is translated to what is more or less a subset of C. If any use of functions as data remains at this point, the compiler will complain.
adamc@552 1568
adamc@552 1569 \subsection{C Compilation and Linking}
adamc@552 1570
adamc@552 1571 The output of the last phase is pretty-printed as C source code and passed to GCC.
adamc@552 1572
adamc@552 1573
adamc@524 1574 \end{document}