adamc@524
|
1 \documentclass{article}
|
adamc@524
|
2 \usepackage{fullpage,amsmath,amssymb,proof}
|
adamc@524
|
3
|
adamc@524
|
4 \newcommand{\cd}[1]{\texttt{#1}}
|
adamc@524
|
5 \newcommand{\mt}[1]{\mathsf{#1}}
|
adamc@524
|
6
|
adamc@524
|
7 \newcommand{\rc}{+ \hspace{-.075in} + \;}
|
adamc@527
|
8 \newcommand{\rcut}{\; \texttt{--} \;}
|
adamc@527
|
9 \newcommand{\rcutM}{\; \texttt{---} \;}
|
adamc@524
|
10
|
adamc@524
|
11 \begin{document}
|
adamc@524
|
12
|
adamc@524
|
13 \title{The Ur/Web Manual}
|
adamc@524
|
14 \author{Adam Chlipala}
|
adamc@524
|
15
|
adamc@524
|
16 \maketitle
|
adamc@524
|
17
|
adamc@540
|
18 \tableofcontents
|
adamc@540
|
19
|
adamc@529
|
20 \section{Ur Syntax}
|
adamc@529
|
21
|
adamc@529
|
22 In this section, we describe the syntax of Ur, deferring to a later section discussion of most of the syntax specific to SQL and XML. The sole exceptions are the declaration forms for tables, sequences, and cookies.
|
adamc@524
|
23
|
adamc@524
|
24 \subsection{Lexical Conventions}
|
adamc@524
|
25
|
adamc@524
|
26 We give the Ur language definition in \LaTeX $\;$ math mode, since that is prettier than monospaced ASCII. The corresponding ASCII syntax can be read off directly. Here is the key for mapping math symbols to ASCII character sequences.
|
adamc@524
|
27
|
adamc@524
|
28 \begin{center}
|
adamc@524
|
29 \begin{tabular}{rl}
|
adamc@524
|
30 \textbf{\LaTeX} & \textbf{ASCII} \\
|
adamc@524
|
31 $\to$ & \cd{->} \\
|
adamc@524
|
32 $\times$ & \cd{*} \\
|
adamc@524
|
33 $\lambda$ & \cd{fn} \\
|
adamc@524
|
34 $\Rightarrow$ & \cd{=>} \\
|
adamc@529
|
35 $\neq$ & \cd{<>} \\
|
adamc@529
|
36 $\leq$ & \cd{<=} \\
|
adamc@529
|
37 $\geq$ & \cd{>=} \\
|
adamc@524
|
38 \\
|
adamc@524
|
39 $x$ & Normal textual identifier, not beginning with an uppercase letter \\
|
adamc@525
|
40 $X$ & Normal textual identifier, beginning with an uppercase letter \\
|
adamc@524
|
41 \end{tabular}
|
adamc@524
|
42 \end{center}
|
adamc@524
|
43
|
adamc@525
|
44 We often write syntax like $e^*$ to indicate zero or more copies of $e$, $e^+$ to indicate one or more copies, and $e,^*$ and $e,^+$ to indicate multiple copies separated by commas. Another separator may be used in place of a comma. The $e$ term may be surrounded by parentheses to indicate grouping; those parentheses should not be included in the actual ASCII.
|
adamc@524
|
45
|
adamc@526
|
46 We write $\ell$ for literals of the primitive types, for the most part following C conventions. There are $\mt{int}$, $\mt{float}$, and $\mt{string}$ literals.
|
adamc@526
|
47
|
adamc@527
|
48 This version of the manual doesn't include operator precedences; see \texttt{src/urweb.grm} for that.
|
adamc@527
|
49
|
adamc@524
|
50 \subsection{Core Syntax}
|
adamc@524
|
51
|
adamc@524
|
52 \emph{Kinds} classify types and other compile-time-only entities. Each kind in the grammar is listed with a description of the sort of data it classifies.
|
adamc@524
|
53 $$\begin{array}{rrcll}
|
adamc@524
|
54 \textrm{Kinds} & \kappa &::=& \mt{Type} & \textrm{proper types} \\
|
adamc@525
|
55 &&& \mt{Unit} & \textrm{the trivial constructor} \\
|
adamc@525
|
56 &&& \mt{Name} & \textrm{field names} \\
|
adamc@525
|
57 &&& \kappa \to \kappa & \textrm{type-level functions} \\
|
adamc@525
|
58 &&& \{\kappa\} & \textrm{type-level records} \\
|
adamc@525
|
59 &&& (\kappa\times^+) & \textrm{type-level tuples} \\
|
adamc@529
|
60 &&& \_\_ & \textrm{wildcard} \\
|
adamc@525
|
61 &&& (\kappa) & \textrm{explicit precedence} \\
|
adamc@524
|
62 \end{array}$$
|
adamc@524
|
63
|
adamc@524
|
64 Ur supports several different notions of functions that take types as arguments. These arguments can be either implicit, causing them to be inferred at use sites; or explicit, forcing them to be specified manually at use sites. There is a common explicitness annotation convention applied at the definitions of and in the types of such functions.
|
adamc@524
|
65 $$\begin{array}{rrcll}
|
adamc@524
|
66 \textrm{Explicitness} & ? &::=& :: & \textrm{explicit} \\
|
adamc@525
|
67 &&& \; ::: & \textrm{implicit}
|
adamc@524
|
68 \end{array}$$
|
adamc@524
|
69
|
adamc@524
|
70 \emph{Constructors} are the main class of compile-time-only data. They include proper types and are classified by kinds.
|
adamc@524
|
71 $$\begin{array}{rrcll}
|
adamc@524
|
72 \textrm{Constructors} & c, \tau &::=& (c) :: \kappa & \textrm{kind annotation} \\
|
adamc@530
|
73 &&& \hat{x} & \textrm{constructor variable} \\
|
adamc@524
|
74 \\
|
adamc@525
|
75 &&& \tau \to \tau & \textrm{function type} \\
|
adamc@525
|
76 &&& x \; ? \; \kappa \to \tau & \textrm{polymorphic function type} \\
|
adamc@525
|
77 &&& \$ c & \textrm{record type} \\
|
adamc@524
|
78 \\
|
adamc@525
|
79 &&& c \; c & \textrm{type-level function application} \\
|
adamc@530
|
80 &&& \lambda x \; :: \; \kappa \Rightarrow c & \textrm{type-level function abstraction} \\
|
adamc@524
|
81 \\
|
adamc@525
|
82 &&& () & \textrm{type-level unit} \\
|
adamc@525
|
83 &&& \#X & \textrm{field name} \\
|
adamc@524
|
84 \\
|
adamc@525
|
85 &&& [(c = c)^*] & \textrm{known-length type-level record} \\
|
adamc@525
|
86 &&& c \rc c & \textrm{type-level record concatenation} \\
|
adamc@525
|
87 &&& \mt{fold} & \textrm{type-level record fold} \\
|
adamc@524
|
88 \\
|
adamc@525
|
89 &&& (c^+) & \textrm{type-level tuple} \\
|
adamc@525
|
90 &&& c.n & \textrm{type-level tuple projection ($n \in \mathbb N^+$)} \\
|
adamc@524
|
91 \\
|
adamc@525
|
92 &&& \lambda [c \sim c] \Rightarrow c & \textrm{guarded constructor} \\
|
adamc@524
|
93 \\
|
adamc@529
|
94 &&& \_ :: \kappa & \textrm{wildcard} \\
|
adamc@525
|
95 &&& (c) & \textrm{explicit precedence} \\
|
adamc@530
|
96 \\
|
adamc@530
|
97 \textrm{Qualified uncapitalized variables} & \hat{x} &::=& x & \textrm{not from a module} \\
|
adamc@530
|
98 &&& M.x & \textrm{projection from a module} \\
|
adamc@525
|
99 \end{array}$$
|
adamc@525
|
100
|
adamc@525
|
101 Modules of the module system are described by \emph{signatures}.
|
adamc@525
|
102 $$\begin{array}{rrcll}
|
adamc@525
|
103 \textrm{Signatures} & S &::=& \mt{sig} \; s^* \; \mt{end} & \textrm{constant} \\
|
adamc@525
|
104 &&& X & \textrm{variable} \\
|
adamc@525
|
105 &&& \mt{functor}(X : S) : S & \textrm{functor} \\
|
adamc@529
|
106 &&& S \; \mt{where} \; \mt{con} \; x = c & \textrm{concretizing an abstract constructor} \\
|
adamc@525
|
107 &&& M.X & \textrm{projection from a module} \\
|
adamc@525
|
108 \\
|
adamc@525
|
109 \textrm{Signature items} & s &::=& \mt{con} \; x :: \kappa & \textrm{abstract constructor} \\
|
adamc@525
|
110 &&& \mt{con} \; x :: \kappa = c & \textrm{concrete constructor} \\
|
adamc@528
|
111 &&& \mt{datatype} \; x \; x^* = dc\mid^+ & \textrm{algebraic datatype definition} \\
|
adamc@529
|
112 &&& \mt{datatype} \; x = \mt{datatype} \; M.x & \textrm{algebraic datatype import} \\
|
adamc@525
|
113 &&& \mt{val} \; x : \tau & \textrm{value} \\
|
adamc@525
|
114 &&& \mt{structure} \; X : S & \textrm{sub-module} \\
|
adamc@525
|
115 &&& \mt{signature} \; X = S & \textrm{sub-signature} \\
|
adamc@525
|
116 &&& \mt{include} \; S & \textrm{signature inclusion} \\
|
adamc@525
|
117 &&& \mt{constraint} \; c \sim c & \textrm{record disjointness constraint} \\
|
adamc@525
|
118 &&& \mt{class} \; x & \textrm{abstract type class} \\
|
adamc@525
|
119 &&& \mt{class} \; x = c & \textrm{concrete type class} \\
|
adamc@525
|
120 \\
|
adamc@525
|
121 \textrm{Datatype constructors} & dc &::=& X & \textrm{nullary constructor} \\
|
adamc@525
|
122 &&& X \; \mt{of} \; \tau & \textrm{unary constructor} \\
|
adamc@524
|
123 \end{array}$$
|
adamc@524
|
124
|
adamc@526
|
125 \emph{Patterns} are used to describe structural conditions on expressions, such that expressions may be tested against patterns, generating assignments to pattern variables if successful.
|
adamc@526
|
126 $$\begin{array}{rrcll}
|
adamc@526
|
127 \textrm{Patterns} & p &::=& \_ & \textrm{wildcard} \\
|
adamc@526
|
128 &&& x & \textrm{variable} \\
|
adamc@526
|
129 &&& \ell & \textrm{constant} \\
|
adamc@526
|
130 &&& \hat{X} & \textrm{nullary constructor} \\
|
adamc@526
|
131 &&& \hat{X} \; p & \textrm{unary constructor} \\
|
adamc@526
|
132 &&& \{(x = p,)^*\} & \textrm{rigid record pattern} \\
|
adamc@526
|
133 &&& \{(x = p,)^+, \ldots\} & \textrm{flexible record pattern} \\
|
adamc@527
|
134 &&& (p) & \textrm{explicit precedence} \\
|
adamc@526
|
135 \\
|
adamc@529
|
136 \textrm{Qualified capitalized variables} & \hat{X} &::=& X & \textrm{not from a module} \\
|
adamc@526
|
137 &&& M.X & \textrm{projection from a module} \\
|
adamc@526
|
138 \end{array}$$
|
adamc@526
|
139
|
adamc@527
|
140 \emph{Expressions} are the main run-time entities, corresponding to both ``expressions'' and ``statements'' in mainstream imperative languages.
|
adamc@527
|
141 $$\begin{array}{rrcll}
|
adamc@527
|
142 \textrm{Expressions} & e &::=& e : \tau & \textrm{type annotation} \\
|
adamc@529
|
143 &&& \hat{x} & \textrm{variable} \\
|
adamc@529
|
144 &&& \hat{X} & \textrm{datatype constructor} \\
|
adamc@527
|
145 &&& \ell & \textrm{constant} \\
|
adamc@527
|
146 \\
|
adamc@527
|
147 &&& e \; e & \textrm{function application} \\
|
adamc@527
|
148 &&& \lambda x : \tau \Rightarrow e & \textrm{function abstraction} \\
|
adamc@527
|
149 &&& e [c] & \textrm{polymorphic function application} \\
|
adamc@527
|
150 &&& \lambda x \; ? \; \kappa \Rightarrow e & \textrm{polymorphic function abstraction} \\
|
adamc@527
|
151 \\
|
adamc@527
|
152 &&& \{(c = e,)^*\} & \textrm{known-length record} \\
|
adamc@527
|
153 &&& e.c & \textrm{record field projection} \\
|
adamc@527
|
154 &&& e \rc e & \textrm{record concatenation} \\
|
adamc@527
|
155 &&& e \rcut c & \textrm{removal of a single record field} \\
|
adamc@527
|
156 &&& e \rcutM c & \textrm{removal of multiple record fields} \\
|
adamc@527
|
157 &&& \mt{fold} & \textrm{fold over fields of a type-level record} \\
|
adamc@527
|
158 \\
|
adamc@527
|
159 &&& \mt{let} \; ed^* \; \mt{in} \; e \; \mt{end} & \textrm{local definitions} \\
|
adamc@527
|
160 \\
|
adamc@527
|
161 &&& \mt{case} \; e \; \mt{of} \; (p \Rightarrow e|)^+ & \textrm{pattern matching} \\
|
adamc@527
|
162 \\
|
adamc@527
|
163 &&& \lambda [c \sim c] \Rightarrow e & \textrm{guarded expression} \\
|
adamc@527
|
164 \\
|
adamc@527
|
165 &&& \_ & \textrm{wildcard} \\
|
adamc@527
|
166 &&& (e) & \textrm{explicit precedence} \\
|
adamc@527
|
167 \\
|
adamc@527
|
168 \textrm{Local declarations} & ed &::=& \cd{val} \; x : \tau = e & \textrm{non-recursive value} \\
|
adamc@527
|
169 &&& \cd{val} \; \cd{rec} \; (x : \tau = e \; \cd{and})^+ & \textrm{mutually-recursive values} \\
|
adamc@527
|
170 \end{array}$$
|
adamc@527
|
171
|
adamc@528
|
172 \emph{Declarations} primarily bring new symbols into context.
|
adamc@528
|
173 $$\begin{array}{rrcll}
|
adamc@528
|
174 \textrm{Declarations} & d &::=& \mt{con} \; x :: \kappa = c & \textrm{constructor synonym} \\
|
adamc@528
|
175 &&& \mt{datatype} \; x \; x^* = dc\mid^+ & \textrm{algebraic datatype definition} \\
|
adamc@529
|
176 &&& \mt{datatype} \; x = \mt{datatype} \; M.x & \textrm{algebraic datatype import} \\
|
adamc@528
|
177 &&& \mt{val} \; x : \tau = e & \textrm{value} \\
|
adamc@528
|
178 &&& \mt{val} \; \cd{rec} \; (x : \tau = e \; \mt{and})^+ & \textrm{mutually-recursive values} \\
|
adamc@528
|
179 &&& \mt{structure} \; X : S = M & \textrm{module definition} \\
|
adamc@528
|
180 &&& \mt{signature} \; X = S & \textrm{signature definition} \\
|
adamc@528
|
181 &&& \mt{open} \; M & \textrm{module inclusion} \\
|
adamc@528
|
182 &&& \mt{constraint} \; c \sim c & \textrm{record disjointness constraint} \\
|
adamc@528
|
183 &&& \mt{open} \; \mt{constraints} \; M & \textrm{inclusion of just the constraints from a module} \\
|
adamc@528
|
184 &&& \mt{table} \; x : c & \textrm{SQL table} \\
|
adamc@528
|
185 &&& \mt{sequence} \; x & \textrm{SQL sequence} \\
|
adamc@535
|
186 &&& \mt{cookie} \; x : \tau & \textrm{HTTP cookie} \\
|
adamc@528
|
187 &&& \mt{class} \; x = c & \textrm{concrete type class} \\
|
adamc@528
|
188 \\
|
adamc@529
|
189 \textrm{Modules} & M &::=& \mt{struct} \; d^* \; \mt{end} & \textrm{constant} \\
|
adamc@529
|
190 &&& X & \textrm{variable} \\
|
adamc@529
|
191 &&& M.X & \textrm{projection} \\
|
adamc@529
|
192 &&& M(M) & \textrm{functor application} \\
|
adamc@529
|
193 &&& \mt{functor}(X : S) : S = M & \textrm{functor abstraction} \\
|
adamc@528
|
194 \end{array}$$
|
adamc@528
|
195
|
adamc@528
|
196 There are two kinds of Ur files. A file named $M\texttt{.ur}$ is an \emph{implementation file}, and it should contain a sequence of declarations $d^*$. A file named $M\texttt{.urs}$ is an \emph{interface file}; it must always have a matching $M\texttt{.ur}$ and should contain a sequence of signature items $s^*$. When both files are present, the overall effect is the same as a monolithic declaration $\mt{structure} \; M : \mt{sig} \; s^* \; \mt{end} = \mt{struct} \; d^* \; \mt{end}$. When no interface file is included, the overall effect is similar, with a signature for module $M$ being inferred rather than just checked against an interface.
|
adamc@527
|
197
|
adamc@529
|
198 \subsection{Shorthands}
|
adamc@529
|
199
|
adamc@529
|
200 There are a variety of derived syntactic forms that elaborate into the core syntax from the last subsection. We will present the additional forms roughly following the order in which we presented the constructs that they elaborate into.
|
adamc@529
|
201
|
adamc@529
|
202 In many contexts where record fields are expected, like in a projection $e.c$, a constant field may be written as simply $X$, rather than $\#X$.
|
adamc@529
|
203
|
adamc@529
|
204 A record type may be written $\{(c = c,)^*\}$, which elaborates to $\$[(c = c,)^*]$.
|
adamc@529
|
205
|
adamc@533
|
206 The notation $[c_1, \ldots, c_n]$ is shorthand for $[c_1 = (), \ldots, c_n = ()]$.
|
adamc@533
|
207
|
adamc@529
|
208 A tuple type $(\tau_1, \ldots, \tau_n)$ expands to a record type $\{1 = \tau_1, \ldots, n = \tau_n\}$, with natural numbers as field names. A tuple pattern $(p_1, \ldots, p_n)$ expands to a rigid record pattern $\{1 = p_1, \ldots, n = p_n\}$. Positive natural numbers may be used in most places where field names would be allowed.
|
adamc@529
|
209
|
adamc@529
|
210 In general, several adjacent $\lambda$ forms may be combined into one, and kind and type annotations may be omitted, in which case they are implicitly included as wildcards. More formally, for constructor-level abstractions, we can define a new non-terminal $b ::= x \mid (x :: \kappa) \mid [c \sim c]$ and allow composite abstractions of the form $\lambda b^+ \Rightarrow c$, elaborating into the obvious sequence of one core $\lambda$ per element of $b^+$.
|
adamc@529
|
211
|
adamc@529
|
212 For any signature item or declaration that defines some entity to be equal to $A$ with classification annotation $B$ (e.g., $\mt{val} \; x : B = A$), $B$ and the preceding colon (or similar punctuation) may be omitted, in which case it is filled in as a wildcard.
|
adamc@529
|
213
|
adamc@529
|
214 A signature item or declaration $\mt{type} \; x$ or $\mt{type} \; x = \tau$ is elaborated into $\mt{con} \; x :: \mt{Type}$ or $\mt{con} \; x :: \mt{Type} = \tau$, respectively.
|
adamc@529
|
215
|
adamc@529
|
216 A signature item or declaration $\mt{class} \; x = \lambda y :: \mt{Type} \Rightarrow c$ may be abbreviated $\mt{class} \; x \; y = c$.
|
adamc@529
|
217
|
adamc@529
|
218 Handling of implicit and explicit constructor arguments may be tweaked with some prefixes to variable references. An expression $@x$ is a version of $x$ where all implicit constructor arguments have been made explicit. An expression $@@x$ achieves the same effect, additionally halting automatic resolution of type class instances. The same syntax works for variables projected out of modules and for capitalized variables (datatype constructors).
|
adamc@529
|
219
|
adamc@529
|
220 At the expression level, an analogue is available of the composite $\lambda$ form for constructors. We define the language of binders as $b ::= x \mid (x : \tau) \mid (x \; ? \; \kappa) \mid [c \sim c]$. A lone variable $x$ as a binder stands for an expression variable of unspecified type.
|
adamc@529
|
221
|
adamc@529
|
222 A $\mt{val}$ or $\mt{val} \; \mt{rec}$ declaration may include expression binders before the equal sign, following the binder grammar from the last paragraph. Such declarations are elaborated into versions that add additional $\lambda$s to the fronts of the righthand sides, as appropriate. The keyword $\mt{fun}$ is a synonym for $\mt{val} \; \mt{rec}$.
|
adamc@529
|
223
|
adamc@529
|
224 A signature item $\mt{functor} \; X_1 \; (X_2 : S_1) : S_2$ is elaborated into $\mt{structure} \; X_1 : \mt{functor}(X_2 : S_1) : S_2$. A declaration $\mt{functor} \; X_1 \; (X_2 : S_1) : S_2 = M$ is elaborated into $\mt{structure} \; X_1 : \mt{functor}(X_2 : S_1) : S_2 = \mt{functor}(X_2 : S_1) : S_2 = M$.
|
adamc@529
|
225
|
adamc@529
|
226 A declaration $\mt{table} \; x : \{(c = c,)^*\}$ is elaborated into $\mt{table} \; x : [(c = c,)^*]$
|
adamc@529
|
227
|
adamc@529
|
228 The syntax $\mt{where} \; \mt{type}$ is an alternate form of $\mt{where} \; \mt{con}$.
|
adamc@529
|
229
|
adamc@529
|
230 The syntax $\mt{if} \; e \; \mt{then} \; e_1 \; \mt{else} \; e_2$ expands to $\mt{case} \; e \; \mt{of} \; \mt{Basis}.\mt{True} \Rightarrow e_1 \mid \mt{Basis}.\mt{False} \Rightarrow e_2$.
|
adamc@529
|
231
|
adamc@529
|
232 There are infix operator syntaxes for a number of functions defined in the $\mt{Basis}$ module. There is $=$ for $\mt{eq}$, $\neq$ for $\mt{neq}$, $-$ for $\mt{neg}$ (as a prefix operator) and $\mt{minus}$, $+$ for $\mt{plus}$, $\times$ for $\mt{times}$, $/$ for $\mt{div}$, $\%$ for $\mt{mod}$, $<$ for $\mt{lt}$, $\leq$ for $\mt{le}$, $>$ for $\mt{gt}$, and $\geq$ for $\mt{ge}$.
|
adamc@529
|
233
|
adamc@529
|
234 A signature item $\mt{table} \; x : c$ is shorthand for $\mt{val} \; x : \mt{Basis}.\mt{sql\_table} \; c$. $\mt{sequence} \; x$ is short for $\mt{val} \; x : \mt{Basis}.\mt{sql\_sequence}$, and $\mt{cookie} \; x : \tau$ is shorthand for $\mt{val} \; x : \mt{Basis}.\mt{http\_cookie} \; \tau$.
|
adamc@529
|
235
|
adamc@530
|
236
|
adamc@530
|
237 \section{Static Semantics}
|
adamc@530
|
238
|
adamc@530
|
239 In this section, we give a declarative presentation of Ur's typing rules and related judgments. Inference is the subject of the next section; here, we assume that an oracle has filled in all wildcards with concrete values.
|
adamc@530
|
240
|
adamc@530
|
241 Since there is significant mutual recursion among the judgments, we introduce them all before beginning to give rules. We use the same variety of contexts throughout this section, implicitly introducing new sorts of context entries as needed.
|
adamc@530
|
242 \begin{itemize}
|
adamc@530
|
243 \item $\Gamma \vdash c :: \kappa$ assigns a kind to a constructor in a context.
|
adamc@530
|
244 \item $\Gamma \vdash c \sim c$ proves the disjointness of two record constructors; that is, that they share no field names. We overload the judgment to apply to pairs of field names as well.
|
adamc@531
|
245 \item $\Gamma \vdash c \hookrightarrow C$ proves that record constructor $c$ decomposes into set $C$ of field names and record constructors.
|
adamc@530
|
246 \item $\Gamma \vdash c \equiv c$ proves the computational equivalence of two constructors. This is often called a \emph{definitional equality} in the world of type theory.
|
adamc@530
|
247 \item $\Gamma \vdash e : \tau$ is a standard typing judgment.
|
adamc@534
|
248 \item $\Gamma \vdash p \leadsto \Gamma; \tau$ combines typing of patterns with calculation of which new variables they bind.
|
adamc@537
|
249 \item $\Gamma \vdash d \leadsto \Gamma$ expresses how a declaration modifies a context. We overload this judgment to apply to sequences of declarations, as well as to signature items and sequences of signature items.
|
adamc@537
|
250 \item $\Gamma \vdash S \equiv S$ is the signature equivalence judgment.
|
adamc@536
|
251 \item $\Gamma \vdash S \leq S$ is the signature compatibility judgment. We write $\Gamma \vdash S$ as shorthand for $\Gamma \vdash S \leq S$.
|
adamc@530
|
252 \item $\Gamma \vdash M : S$ is the module signature checking judgment.
|
adamc@537
|
253 \item $\mt{proj}(M, \overline{s}, V)$ is a partial function for projecting a signature item from $\overline{s}$, given the module $M$ that we project from. $V$ may be $\mt{con} \; x$, $\mt{datatype} \; x$, $\mt{val} \; x$, $\mt{signature} \; X$, or $\mt{structure} \; X$. The parameter $M$ is needed because the projected signature item may refer to other items from $\overline{s}$.
|
adamc@539
|
254 \item $\mt{selfify}(M, \overline{s})$ adds information to signature items $\overline{s}$ to reflect the fact that we are concerned with the particular module $M$. This function is overloaded to work over individual signature items as well.
|
adamc@530
|
255 \end{itemize}
|
adamc@530
|
256
|
adamc@530
|
257 \subsection{Kinding}
|
adamc@530
|
258
|
adamc@530
|
259 $$\infer{\Gamma \vdash (c) :: \kappa :: \kappa}{
|
adamc@530
|
260 \Gamma \vdash c :: \kappa
|
adamc@530
|
261 }
|
adamc@530
|
262 \quad \infer{\Gamma \vdash x :: \kappa}{
|
adamc@530
|
263 x :: \kappa \in \Gamma
|
adamc@530
|
264 }
|
adamc@530
|
265 \quad \infer{\Gamma \vdash x :: \kappa}{
|
adamc@530
|
266 x :: \kappa = c \in \Gamma
|
adamc@530
|
267 }$$
|
adamc@530
|
268
|
adamc@530
|
269 $$\infer{\Gamma \vdash M.x :: \kappa}{
|
adamc@537
|
270 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
|
adamc@537
|
271 & \mt{proj}(M, \overline{s}, \mt{con} \; x) = \kappa
|
adamc@530
|
272 }
|
adamc@530
|
273 \quad \infer{\Gamma \vdash M.x :: \kappa}{
|
adamc@537
|
274 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
|
adamc@537
|
275 & \mt{proj}(M, \overline{s}, \mt{con} \; x) = (\kappa, c)
|
adamc@530
|
276 }$$
|
adamc@530
|
277
|
adamc@530
|
278 $$\infer{\Gamma \vdash \tau_1 \to \tau_2 :: \mt{Type}}{
|
adamc@530
|
279 \Gamma \vdash \tau_1 :: \mt{Type}
|
adamc@530
|
280 & \Gamma \vdash \tau_2 :: \mt{Type}
|
adamc@530
|
281 }
|
adamc@530
|
282 \quad \infer{\Gamma \vdash x \; ? \: \kappa \to \tau :: \mt{Type}}{
|
adamc@530
|
283 \Gamma, x :: \kappa \vdash \tau :: \mt{Type}
|
adamc@530
|
284 }
|
adamc@530
|
285 \quad \infer{\Gamma \vdash \$c :: \mt{Type}}{
|
adamc@530
|
286 \Gamma \vdash c :: \{\mt{Type}\}
|
adamc@530
|
287 }$$
|
adamc@530
|
288
|
adamc@530
|
289 $$\infer{\Gamma \vdash c_1 \; c_2 :: \kappa_2}{
|
adamc@530
|
290 \Gamma \vdash c_1 :: \kappa_1 \to \kappa_2
|
adamc@530
|
291 & \Gamma \vdash c_2 :: \kappa_1
|
adamc@530
|
292 }
|
adamc@530
|
293 \quad \infer{\Gamma \vdash \lambda x \; :: \; \kappa_1 \Rightarrow c :: \kappa_1 \to \kappa_2}{
|
adamc@530
|
294 \Gamma, x :: \kappa_1 \vdash c :: \kappa_2
|
adamc@530
|
295 }$$
|
adamc@530
|
296
|
adamc@530
|
297 $$\infer{\Gamma \vdash () :: \mt{Unit}}{}
|
adamc@530
|
298 \quad \infer{\Gamma \vdash \#X :: \mt{Name}}{}$$
|
adamc@530
|
299
|
adamc@530
|
300 $$\infer{\Gamma \vdash [\overline{c_i = c'_i}] :: \{\kappa\}}{
|
adamc@530
|
301 \forall i: \Gamma \vdash c_i : \mt{Name}
|
adamc@530
|
302 & \Gamma \vdash c'_i :: \kappa
|
adamc@530
|
303 & \forall i \neq j: \Gamma \vdash c_i \sim c_j
|
adamc@530
|
304 }
|
adamc@530
|
305 \quad \infer{\Gamma \vdash c_1 \rc c_2 :: \{\kappa\}}{
|
adamc@530
|
306 \Gamma \vdash c_1 :: \{\kappa\}
|
adamc@530
|
307 & \Gamma \vdash c_2 :: \{\kappa\}
|
adamc@530
|
308 & \Gamma \vdash c_1 \sim c_2
|
adamc@530
|
309 }$$
|
adamc@530
|
310
|
adamc@530
|
311 $$\infer{\Gamma \vdash \mt{fold} :: ((\mt{Name} \to \kappa_1 \to \kappa_2 \to \kappa_2) \to \kappa_2 \to \{\kappa_1\} \to \kappa_2}{}$$
|
adamc@530
|
312
|
adamc@530
|
313 $$\infer{\Gamma \vdash (\overline c) :: (k_1 \times \ldots \times k_n)}{
|
adamc@530
|
314 \forall i: \Gamma \vdash c_i :: k_i
|
adamc@530
|
315 }
|
adamc@530
|
316 \quad \infer{\Gamma \vdash c.i :: k_i}{
|
adamc@530
|
317 \Gamma \vdash c :: (k_1 \times \ldots \times k_n)
|
adamc@530
|
318 }$$
|
adamc@530
|
319
|
adamc@530
|
320 $$\infer{\Gamma \vdash \lambda [c_1 \sim c_2] \Rightarrow c :: \kappa}{
|
adamc@530
|
321 \Gamma \vdash c_1 :: \{\kappa'\}
|
adamc@530
|
322 & \Gamma \vdash c_2 :: \{\kappa'\}
|
adamc@530
|
323 & \Gamma, c_1 \sim c_2 \vdash c :: \kappa
|
adamc@530
|
324 }$$
|
adamc@530
|
325
|
adamc@531
|
326 \subsection{Record Disjointness}
|
adamc@531
|
327
|
adamc@531
|
328 We will use a keyword $\mt{map}$ as a shorthand, such that, for $f$ of kind $\kappa \to \kappa'$, $\mt{map} \; f$ stands for $\mt{fold} \; (\lambda (x_1 :: \mt{Name}) (x_2 :: \kappa) (x_3 :: \{\kappa'\}) \Rightarrow [x_1 = f \; x_2] \rc x_3) \; []$.
|
adamc@531
|
329
|
adamc@531
|
330 $$\infer{\Gamma \vdash c_1 \sim c_2}{
|
adamc@531
|
331 \Gamma \vdash c_1 \hookrightarrow c'_1
|
adamc@531
|
332 & \Gamma \vdash c_2 \hookrightarrow c'_2
|
adamc@531
|
333 & \forall c''_1 \in c'_1, c''_2 \in c'_2: \Gamma \vdash c''_1 \sim c''_2
|
adamc@531
|
334 }
|
adamc@531
|
335 \quad \infer{\Gamma \vdash X \sim X'}{
|
adamc@531
|
336 X \neq X'
|
adamc@531
|
337 }$$
|
adamc@531
|
338
|
adamc@531
|
339 $$\infer{\Gamma \vdash c_1 \sim c_2}{
|
adamc@531
|
340 c'_1 \sim c'_2 \in \Gamma
|
adamc@531
|
341 & \Gamma \vdash c'_1 \hookrightarrow c''_1
|
adamc@531
|
342 & \Gamma \vdash c'_2 \hookrightarrow c''_2
|
adamc@531
|
343 & c_1 \in c''_1
|
adamc@531
|
344 & c_2 \in c''_2
|
adamc@531
|
345 }$$
|
adamc@531
|
346
|
adamc@531
|
347 $$\infer{\Gamma \vdash c \hookrightarrow \{c\}}{}
|
adamc@531
|
348 \quad \infer{\Gamma \vdash [\overline{c = c'}] \hookrightarrow \{\overline{c}\}}{}
|
adamc@531
|
349 \quad \infer{\Gamma \vdash c_1 \rc c_2 \hookrightarrow C_1 \cup C_2}{
|
adamc@531
|
350 \Gamma \vdash c_1 \hookrightarrow C_1
|
adamc@531
|
351 & \Gamma \vdash c_2 \hookrightarrow C_2
|
adamc@531
|
352 }
|
adamc@531
|
353 \quad \infer{\Gamma \vdash c \hookrightarrow C}{
|
adamc@531
|
354 \Gamma \vdash c \equiv c'
|
adamc@531
|
355 & \Gamma \vdash c' \hookrightarrow C
|
adamc@531
|
356 }
|
adamc@531
|
357 \quad \infer{\Gamma \vdash \mt{map} \; f \; c \hookrightarrow C}{
|
adamc@531
|
358 \Gamma \vdash c \hookrightarrow C
|
adamc@531
|
359 }$$
|
adamc@531
|
360
|
adamc@541
|
361 \subsection{\label{definitional}Definitional Equality}
|
adamc@532
|
362
|
adamc@532
|
363 We use $\mathcal C$ to stand for a one-hole context that, when filled, yields a constructor. The notation $\mathcal C[c]$ plugs $c$ into $\mathcal C$. We omit the standard definition of one-hole contexts. We write $[x \mapsto c_1]c_2$ for capture-avoiding substitution of $c_1$ for $x$ in $c_2$.
|
adamc@532
|
364
|
adamc@532
|
365 $$\infer{\Gamma \vdash c \equiv c}{}
|
adamc@532
|
366 \quad \infer{\Gamma \vdash c_1 \equiv c_2}{
|
adamc@532
|
367 \Gamma \vdash c_2 \equiv c_1
|
adamc@532
|
368 }
|
adamc@532
|
369 \quad \infer{\Gamma \vdash c_1 \equiv c_3}{
|
adamc@532
|
370 \Gamma \vdash c_1 \equiv c_2
|
adamc@532
|
371 & \Gamma \vdash c_2 \equiv c_3
|
adamc@532
|
372 }
|
adamc@532
|
373 \quad \infer{\Gamma \vdash \mathcal C[c_1] \equiv \mathcal C[c_2]}{
|
adamc@532
|
374 \Gamma \vdash c_1 \equiv c_2
|
adamc@532
|
375 }$$
|
adamc@532
|
376
|
adamc@532
|
377 $$\infer{\Gamma \vdash x \equiv c}{
|
adamc@532
|
378 x :: \kappa = c \in \Gamma
|
adamc@532
|
379 }
|
adamc@532
|
380 \quad \infer{\Gamma \vdash M.x \equiv c}{
|
adamc@537
|
381 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
|
adamc@537
|
382 & \mt{proj}(M, \overline{s}, \mt{con} \; x) = (\kappa, c)
|
adamc@532
|
383 }
|
adamc@532
|
384 \quad \infer{\Gamma \vdash (\overline c).i \equiv c_i}{}$$
|
adamc@532
|
385
|
adamc@532
|
386 $$\infer{\Gamma \vdash (\lambda x :: \kappa \Rightarrow c) \; c' \equiv [x \mapsto c'] c}{}
|
adamc@532
|
387 \quad \infer{\Gamma \vdash c_1 \rc c_2 \equiv c_2 \rc c_1}{}
|
adamc@532
|
388 \quad \infer{\Gamma \vdash c_1 \rc (c_2 \rc c_3) \equiv (c_1 \rc c_2) \rc c_3}{}$$
|
adamc@532
|
389
|
adamc@532
|
390 $$\infer{\Gamma \vdash [] \rc c \equiv c}{}
|
adamc@532
|
391 \quad \infer{\Gamma \vdash [\overline{c_1 = c'_1}] \rc [\overline{c_2 = c'_2}] \equiv [\overline{c_1 = c'_1}, \overline{c_2 = c'_2}]}{}$$
|
adamc@532
|
392
|
adamc@532
|
393 $$\infer{\Gamma \vdash \lambda [c_1 \sim c_2] \Rightarrow c \equiv c}{
|
adamc@532
|
394 \Gamma \vdash c_1 \sim c_2
|
adamc@532
|
395 }
|
adamc@532
|
396 \quad \infer{\Gamma \vdash \mt{fold} \; f \; i \; [] \equiv i}{}
|
adamc@532
|
397 \quad \infer{\Gamma \vdash \mt{fold} \; f \; i \; ([c_1 = c_2] \rc c) \equiv f \; c_1 \; c_2 \; (\mt{fold} \; f \; i \; c)}{}$$
|
adamc@532
|
398
|
adamc@532
|
399 $$\infer{\Gamma \vdash \mt{map} \; (\lambda x \Rightarrow x) \; c \equiv c}{}
|
adamc@532
|
400 \quad \infer{\Gamma \vdash \mt{fold} \; f \; i \; (\mt{map} \; f' \; c)
|
adamc@532
|
401 \equiv \mt{fold} \; (\lambda (x_1 :: \mt{Name}) (x_2 :: \kappa) \Rightarrow f \; x_1 \; (f' \; x_2)) \; i \; c}{}$$
|
adamc@532
|
402
|
adamc@532
|
403 $$\infer{\Gamma \vdash \mt{map} \; f \; (c_1 \rc c_2) \equiv \mt{map} \; f \; c_1 \rc \mt{map} \; f \; c_2}{}$$
|
adamc@531
|
404
|
adamc@534
|
405 \subsection{Expression Typing}
|
adamc@533
|
406
|
adamc@533
|
407 We assume the existence of a function $T$ assigning types to literal constants. It maps integer constants to $\mt{Basis}.\mt{int}$, float constants to $\mt{Basis}.\mt{float}$, and string constants to $\mt{Basis}.\mt{string}$.
|
adamc@533
|
408
|
adamc@533
|
409 We also refer to a function $\mathcal I$, such that $\mathcal I(\tau)$ ``uses an oracle'' to instantiate all constructor function arguments at the beginning of $\tau$ that are marked implicit; i.e., replace $x_1 ::: \kappa_1 \to \ldots \to x_n ::: \kappa_n \to \tau$ with $[x_1 \mapsto c_1]\ldots[x_n \mapsto c_n]\tau$, where the $c_i$s are inferred and $\tau$ does not start like $x ::: \kappa \to \tau'$.
|
adamc@533
|
410
|
adamc@533
|
411 $$\infer{\Gamma \vdash e : \tau : \tau}{
|
adamc@533
|
412 \Gamma \vdash e : \tau
|
adamc@533
|
413 }
|
adamc@533
|
414 \quad \infer{\Gamma \vdash e : \tau}{
|
adamc@533
|
415 \Gamma \vdash e : \tau'
|
adamc@533
|
416 & \Gamma \vdash \tau' \equiv \tau
|
adamc@533
|
417 }
|
adamc@533
|
418 \quad \infer{\Gamma \vdash \ell : T(\ell)}{}$$
|
adamc@533
|
419
|
adamc@533
|
420 $$\infer{\Gamma \vdash x : \mathcal I(\tau)}{
|
adamc@533
|
421 x : \tau \in \Gamma
|
adamc@533
|
422 }
|
adamc@533
|
423 \quad \infer{\Gamma \vdash M.x : \mathcal I(\tau)}{
|
adamc@537
|
424 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
|
adamc@537
|
425 & \mt{proj}(M, \overline{s}, \mt{val} \; x) = \tau
|
adamc@533
|
426 }
|
adamc@533
|
427 \quad \infer{\Gamma \vdash X : \mathcal I(\tau)}{
|
adamc@533
|
428 X : \tau \in \Gamma
|
adamc@533
|
429 }
|
adamc@533
|
430 \quad \infer{\Gamma \vdash M.X : \mathcal I(\tau)}{
|
adamc@537
|
431 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
|
adamc@537
|
432 & \mt{proj}(M, \overline{s}, \mt{val} \; X) = \tau
|
adamc@533
|
433 }$$
|
adamc@533
|
434
|
adamc@533
|
435 $$\infer{\Gamma \vdash e_1 \; e_2 : \tau_2}{
|
adamc@533
|
436 \Gamma \vdash e_1 : \tau_1 \to \tau_2
|
adamc@533
|
437 & \Gamma \vdash e_2 : \tau_1
|
adamc@533
|
438 }
|
adamc@533
|
439 \quad \infer{\Gamma \vdash \lambda x : \tau_1 \Rightarrow e : \tau_1 \to \tau_2}{
|
adamc@533
|
440 \Gamma, x : \tau_1 \vdash e : \tau_2
|
adamc@533
|
441 }$$
|
adamc@533
|
442
|
adamc@533
|
443 $$\infer{\Gamma \vdash e [c] : [x \mapsto c]\tau}{
|
adamc@533
|
444 \Gamma \vdash e : x :: \kappa \to \tau
|
adamc@533
|
445 & \Gamma \vdash c :: \kappa
|
adamc@533
|
446 }
|
adamc@533
|
447 \quad \infer{\Gamma \vdash \lambda x \; ? \; \kappa \Rightarrow e : x \; ? \; \kappa \to \tau}{
|
adamc@533
|
448 \Gamma, x :: \kappa \vdash e : \tau
|
adamc@533
|
449 }$$
|
adamc@533
|
450
|
adamc@533
|
451 $$\infer{\Gamma \vdash \{\overline{c = e}\} : \{\overline{c : \tau}\}}{
|
adamc@533
|
452 \forall i: \Gamma \vdash c_i :: \mt{Name}
|
adamc@533
|
453 & \Gamma \vdash e_i : \tau_i
|
adamc@533
|
454 & \forall i \neq j: \Gamma \vdash c_i \sim c_j
|
adamc@533
|
455 }
|
adamc@533
|
456 \quad \infer{\Gamma \vdash e.c : \tau}{
|
adamc@533
|
457 \Gamma \vdash e : \$([c = \tau] \rc c')
|
adamc@533
|
458 }
|
adamc@533
|
459 \quad \infer{\Gamma \vdash e_1 \rc e_2 : \$(c_1 \rc c_2)}{
|
adamc@533
|
460 \Gamma \vdash e_1 : \$c_1
|
adamc@533
|
461 & \Gamma \vdash e_2 : \$c_2
|
adamc@533
|
462 }$$
|
adamc@533
|
463
|
adamc@533
|
464 $$\infer{\Gamma \vdash e \rcut c : \$c'}{
|
adamc@533
|
465 \Gamma \vdash e : \$([c = \tau] \rc c')
|
adamc@533
|
466 }
|
adamc@533
|
467 \quad \infer{\Gamma \vdash e \rcutM c : \$c'}{
|
adamc@533
|
468 \Gamma \vdash e : \$(c \rc c')
|
adamc@533
|
469 }$$
|
adamc@533
|
470
|
adamc@533
|
471 $$\infer{\Gamma \vdash \mt{fold} : \begin{array}{c}
|
adamc@533
|
472 x_1 :: (\{\kappa\} \to \tau)
|
adamc@533
|
473 \to (x_2 :: \mt{Name} \to x_3 :: \kappa \to x_4 :: \{\kappa\} \to \lambda [[x_2] \sim x_4]
|
adamc@533
|
474 \Rightarrow x_1 \; x_4 \to x_1 \; ([x_2 = x_3] \rc x_4)) \\
|
adamc@533
|
475 \to x_1 \; [] \to x_5 :: \{\kappa\} \to x_1 \; x_5
|
adamc@533
|
476 \end{array}}{}$$
|
adamc@533
|
477
|
adamc@533
|
478 $$\infer{\Gamma \vdash \mt{let} \; \overline{ed} \; \mt{in} \; e \; \mt{end} : \tau}{
|
adamc@533
|
479 \Gamma \vdash \overline{ed} \leadsto \Gamma'
|
adamc@533
|
480 & \Gamma' \vdash e : \tau
|
adamc@533
|
481 }
|
adamc@533
|
482 \quad \infer{\Gamma \vdash \mt{case} \; e \; \mt{of} \; \overline{p \Rightarrow e} : \tau}{
|
adamc@533
|
483 \forall i: \Gamma \vdash p_i \leadsto \Gamma_i, \tau'
|
adamc@533
|
484 & \Gamma_i \vdash e_i : \tau
|
adamc@533
|
485 }$$
|
adamc@533
|
486
|
adamc@533
|
487 $$\infer{\Gamma \vdash [c_1 \sim c_2] \Rightarrow e : [c_1 \sim c_2] \Rightarrow \tau}{
|
adamc@533
|
488 \Gamma \vdash c_1 :: \{\kappa\}
|
adamc@533
|
489 & \Gamma \vdash c_2 :: \{\kappa\}
|
adamc@533
|
490 & \Gamma, c_1 \sim c_2 \vdash e : \tau
|
adamc@533
|
491 }$$
|
adamc@533
|
492
|
adamc@534
|
493 \subsection{Pattern Typing}
|
adamc@534
|
494
|
adamc@534
|
495 $$\infer{\Gamma \vdash \_ \leadsto \Gamma; \tau}{}
|
adamc@534
|
496 \quad \infer{\Gamma \vdash x \leadsto \Gamma, x : \tau; \tau}{}
|
adamc@534
|
497 \quad \infer{\Gamma \vdash \ell \leadsto \Gamma; T(\ell)}{}$$
|
adamc@534
|
498
|
adamc@534
|
499 $$\infer{\Gamma \vdash X \leadsto \Gamma; \overline{[x_i \mapsto \tau'_i]}\tau}{
|
adamc@534
|
500 X : \overline{x ::: \mt{Type}} \to \tau \in \Gamma
|
adamc@534
|
501 & \textrm{$\tau$ not a function type}
|
adamc@534
|
502 }
|
adamc@534
|
503 \quad \infer{\Gamma \vdash X \; p \leadsto \Gamma'; \overline{[x_i \mapsto \tau'_i]}\tau}{
|
adamc@534
|
504 X : \overline{x ::: \mt{Type}} \to \tau'' \to \tau \in \Gamma
|
adamc@534
|
505 & \Gamma \vdash p \leadsto \Gamma'; \overline{[x_i \mapsto \tau'_i]}\tau''
|
adamc@534
|
506 }$$
|
adamc@534
|
507
|
adamc@534
|
508 $$\infer{\Gamma \vdash M.X \leadsto \Gamma; \overline{[x_i \mapsto \tau'_i]}\tau}{
|
adamc@537
|
509 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
|
adamc@537
|
510 & \mt{proj}(M, \overline{s}, \mt{val} \; X) = \overline{x ::: \mt{Type}} \to \tau
|
adamc@534
|
511 & \textrm{$\tau$ not a function type}
|
adamc@534
|
512 }$$
|
adamc@534
|
513
|
adamc@534
|
514 $$\infer{\Gamma \vdash M.X \; p \leadsto \Gamma'; \overline{[x_i \mapsto \tau'_i]}\tau}{
|
adamc@537
|
515 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
|
adamc@537
|
516 & \mt{proj}(M, \overline{s}, \mt{val} \; X) = \overline{x ::: \mt{Type}} \to \tau'' \to \tau
|
adamc@534
|
517 & \Gamma \vdash p \leadsto \Gamma'; \overline{[x_i \mapsto \tau'_i]}\tau''
|
adamc@534
|
518 }$$
|
adamc@534
|
519
|
adamc@534
|
520 $$\infer{\Gamma \vdash \{\overline{x = p}\} \leadsto \Gamma_n; \{\overline{x = \tau}\}}{
|
adamc@534
|
521 \Gamma_0 = \Gamma
|
adamc@534
|
522 & \forall i: \Gamma_i \vdash p_i \leadsto \Gamma_{i+1}; \tau_i
|
adamc@534
|
523 }
|
adamc@534
|
524 \quad \infer{\Gamma \vdash \{\overline{x = p}, \ldots\} \leadsto \Gamma_n; \$([\overline{x = \tau}] \rc c)}{
|
adamc@534
|
525 \Gamma_0 = \Gamma
|
adamc@534
|
526 & \forall i: \Gamma_i \vdash p_i \leadsto \Gamma_{i+1}; \tau_i
|
adamc@534
|
527 }$$
|
adamc@534
|
528
|
adamc@535
|
529 \subsection{Declaration Typing}
|
adamc@535
|
530
|
adamc@535
|
531 We use an auxiliary judgment $\overline{y}; x; \Gamma \vdash \overline{dc} \leadsto \Gamma'$, expressing the enrichment of $\Gamma$ with the types of the datatype constructors $\overline{dc}$, when they are known to belong to datatype $x$ with type parameters $\overline{y}$.
|
adamc@535
|
532
|
adamc@541
|
533 This is the first judgment where we deal with type classes, for the $\mt{class}$ declaration form. We will omit their special handling in this formal specification. Section \ref{typeclasses} gives an informal description of how type classes influence type inference.
|
adamc@535
|
534
|
adamc@537
|
535 We presuppose the existence of a function $\mathcal O$, where $\mathcal(M, \overline{s})$ implements the $\mt{open}$ declaration by producing a context with the appropriate entry for each available component of module $M$ with signature items $\overline{s}$. Where possible, $\mathcal O$ uses ``transparent'' entries (e.g., an abstract type $M.x$ is mapped to $x :: \mt{Type} = M.x$), so that the relationship with $M$ is maintained. A related function $\mathcal O_c$ builds a context containing the disjointness constraints found in $S$.
|
adamc@537
|
536
|
adamc@537
|
537 We write $\kappa_1^n \to \kappa$ as a shorthand, where $\kappa_1^0 \to \kappa = \kappa$ and $\kappa_1^{n+1} \to \kappa_2 = \kappa_1 \to (\kappa_1^n \to \kappa_2)$. We write $\mt{len}(\overline{y})$ for the length of vector $\overline{y}$ of variables.
|
adamc@535
|
538
|
adamc@535
|
539 $$\infer{\Gamma \vdash \cdot \leadsto \Gamma}{}
|
adamc@535
|
540 \quad \infer{\Gamma \vdash d, \overline{d} \leadsto \Gamma''}{
|
adamc@535
|
541 \Gamma \vdash d \leadsto \Gamma'
|
adamc@535
|
542 & \Gamma' \vdash \overline{d} \leadsto \Gamma''
|
adamc@535
|
543 }$$
|
adamc@535
|
544
|
adamc@535
|
545 $$\infer{\Gamma \vdash \mt{con} \; x :: \kappa = c \leadsto \Gamma, x :: \kappa = c}{
|
adamc@535
|
546 \Gamma \vdash c :: \kappa
|
adamc@535
|
547 }
|
adamc@535
|
548 \quad \infer{\Gamma \vdash \mt{datatype} \; x \; \overline{y} = \overline{dc} \leadsto \Gamma'}{
|
adamc@535
|
549 \overline{y}; x; \Gamma, x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type} \vdash \overline{dc} \leadsto \Gamma'
|
adamc@535
|
550 }$$
|
adamc@535
|
551
|
adamc@535
|
552 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leadsto \Gamma'}{
|
adamc@537
|
553 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
|
adamc@537
|
554 & \mt{proj}(M, \overline{s}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})
|
adamc@535
|
555 & \overline{y}; x; \Gamma, x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type} = M.z \vdash \overline{dc} \leadsto \Gamma'
|
adamc@535
|
556 }$$
|
adamc@535
|
557
|
adamc@535
|
558 $$\infer{\Gamma \vdash \mt{val} \; x : \tau = e \leadsto \Gamma, x : \tau}{
|
adamc@535
|
559 \Gamma \vdash e : \tau
|
adamc@535
|
560 }$$
|
adamc@535
|
561
|
adamc@535
|
562 $$\infer{\Gamma \vdash \mt{val} \; \mt{rec} \; \overline{x : \tau = e} \leadsto \Gamma, \overline{x : \tau}}{
|
adamc@535
|
563 \forall i: \Gamma, \overline{x : \tau} \vdash e_i : \tau_i
|
adamc@535
|
564 & \textrm{$e_i$ starts with an expression $\lambda$, optionally preceded by constructor and disjointness $\lambda$s}
|
adamc@535
|
565 }$$
|
adamc@535
|
566
|
adamc@535
|
567 $$\infer{\Gamma \vdash \mt{structure} \; X : S = M \leadsto \Gamma, X : S}{
|
adamc@535
|
568 \Gamma \vdash M : S
|
adamc@539
|
569 & \textrm{ ($M$ not a $\mt{struct} \; \ldots \; \mt{end}$)}
|
adamc@535
|
570 }
|
adamc@539
|
571 \quad \infer{\Gamma \vdash \mt{structure} \; X : S = \mt{struct} \; \overline{d} \; \mt{end} \leadsto \Gamma, X : \mt{selfify}(X, \overline{s})}{
|
adamc@539
|
572 \Gamma \vdash \mt{struct} \; \overline{d} \; \mt{end} : \mt{sig} \; \overline{s} \; \mt{end}
|
adamc@539
|
573 }$$
|
adamc@539
|
574
|
adamc@539
|
575 $$\infer{\Gamma \vdash \mt{signature} \; X = S \leadsto \Gamma, X = S}{
|
adamc@535
|
576 \Gamma \vdash S
|
adamc@535
|
577 }$$
|
adamc@535
|
578
|
adamc@537
|
579 $$\infer{\Gamma \vdash \mt{open} \; M \leadsto \Gamma, \mathcal O(M, \overline{s})}{
|
adamc@537
|
580 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
|
adamc@535
|
581 }$$
|
adamc@535
|
582
|
adamc@535
|
583 $$\infer{\Gamma \vdash \mt{constraint} \; c_1 \sim c_2 \leadsto \Gamma}{
|
adamc@535
|
584 \Gamma \vdash c_1 :: \{\kappa\}
|
adamc@535
|
585 & \Gamma \vdash c_2 :: \{\kappa\}
|
adamc@535
|
586 & \Gamma \vdash c_1 \sim c_2
|
adamc@535
|
587 }
|
adamc@537
|
588 \quad \infer{\Gamma \vdash \mt{open} \; \mt{constraints} \; M \leadsto \Gamma, \mathcal O_c(M, \overline{s})}{
|
adamc@537
|
589 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
|
adamc@535
|
590 }$$
|
adamc@535
|
591
|
adamc@535
|
592 $$\infer{\Gamma \vdash \mt{table} \; x : c \leadsto \Gamma, x : \mt{Basis}.\mt{sql\_table} \; c}{
|
adamc@535
|
593 \Gamma \vdash c :: \{\mt{Type}\}
|
adamc@535
|
594 }
|
adamc@535
|
595 \quad \infer{\Gamma \vdash \mt{sequence} \; x \leadsto \Gamma, x : \mt{Basis}.\mt{sql\_sequence}}{}$$
|
adamc@535
|
596
|
adamc@535
|
597 $$\infer{\Gamma \vdash \mt{cookie} \; x : \tau \leadsto \Gamma, x : \mt{Basis}.\mt{http\_cookie} \; \tau}{
|
adamc@535
|
598 \Gamma \vdash \tau :: \mt{Type}
|
adamc@535
|
599 }$$
|
adamc@535
|
600
|
adamc@535
|
601 $$\infer{\Gamma \vdash \mt{class} \; x = c \leadsto \Gamma, x :: \mt{Type} \to \mt{Type} = c}{
|
adamc@535
|
602 \Gamma \vdash c :: \mt{Type} \to \mt{Type}
|
adamc@535
|
603 }$$
|
adamc@535
|
604
|
adamc@535
|
605 $$\infer{\overline{y}; x; \Gamma \vdash \cdot \leadsto \Gamma}{}
|
adamc@535
|
606 \quad \infer{\overline{y}; x; \Gamma \vdash X \mid \overline{dc} \leadsto \Gamma', X : \overline{y ::: \mt{Type}} \to x \; \overline{y}}{
|
adamc@535
|
607 \overline{y}; x; \Gamma \vdash \overline{dc} \leadsto \Gamma'
|
adamc@535
|
608 }
|
adamc@535
|
609 \quad \infer{\overline{y}; x; \Gamma \vdash X \; \mt{of} \; \tau \mid \overline{dc} \leadsto \Gamma', X : \overline{y ::: \mt{Type}} \to \tau \to x \; \overline{y}}{
|
adamc@535
|
610 \overline{y}; x; \Gamma \vdash \overline{dc} \leadsto \Gamma'
|
adamc@535
|
611 }$$
|
adamc@535
|
612
|
adamc@537
|
613 \subsection{Signature Item Typing}
|
adamc@537
|
614
|
adamc@537
|
615 We appeal to a signature item analogue of the $\mathcal O$ function from the last subsection.
|
adamc@537
|
616
|
adamc@537
|
617 $$\infer{\Gamma \vdash \cdot \leadsto \Gamma}{}
|
adamc@537
|
618 \quad \infer{\Gamma \vdash s, \overline{s} \leadsto \Gamma''}{
|
adamc@537
|
619 \Gamma \vdash s \leadsto \Gamma'
|
adamc@537
|
620 & \Gamma' \vdash \overline{s} \leadsto \Gamma''
|
adamc@537
|
621 }$$
|
adamc@537
|
622
|
adamc@537
|
623 $$\infer{\Gamma \vdash \mt{con} \; x :: \kappa \leadsto \Gamma, x :: \kappa}{}
|
adamc@537
|
624 \quad \infer{\Gamma \vdash \mt{con} \; x :: \kappa = c \leadsto \Gamma, x :: \kappa = c}{
|
adamc@537
|
625 \Gamma \vdash c :: \kappa
|
adamc@537
|
626 }
|
adamc@537
|
627 \quad \infer{\Gamma \vdash \mt{datatype} \; x \; \overline{y} = \overline{dc} \leadsto \Gamma'}{
|
adamc@537
|
628 \overline{y}; x; \Gamma, x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type} \vdash \overline{dc} \leadsto \Gamma'
|
adamc@537
|
629 }$$
|
adamc@537
|
630
|
adamc@537
|
631 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leadsto \Gamma'}{
|
adamc@537
|
632 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
|
adamc@537
|
633 & \mt{proj}(M, \overline{s}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})
|
adamc@537
|
634 & \overline{y}; x; \Gamma, x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type} = M.z \vdash \overline{dc} \leadsto \Gamma'
|
adamc@537
|
635 }$$
|
adamc@537
|
636
|
adamc@537
|
637 $$\infer{\Gamma \vdash \mt{val} \; x : \tau \leadsto \Gamma, x : \tau}{
|
adamc@537
|
638 \Gamma \vdash \tau :: \mt{Type}
|
adamc@537
|
639 }$$
|
adamc@537
|
640
|
adamc@537
|
641 $$\infer{\Gamma \vdash \mt{structure} \; X : S \leadsto \Gamma, X : S}{
|
adamc@537
|
642 \Gamma \vdash S
|
adamc@537
|
643 }
|
adamc@537
|
644 \quad \infer{\Gamma \vdash \mt{signature} \; X = S \leadsto \Gamma, X = S}{
|
adamc@537
|
645 \Gamma \vdash S
|
adamc@537
|
646 }$$
|
adamc@537
|
647
|
adamc@537
|
648 $$\infer{\Gamma \vdash \mt{include} \; S \leadsto \Gamma, \mathcal O(\overline{s})}{
|
adamc@537
|
649 \Gamma \vdash S
|
adamc@537
|
650 & \Gamma \vdash S \equiv \mt{sig} \; \overline{s} \; \mt{end}
|
adamc@537
|
651 }$$
|
adamc@537
|
652
|
adamc@537
|
653 $$\infer{\Gamma \vdash \mt{constraint} \; c_1 \sim c_2 \leadsto \Gamma, c_1 \sim c_2}{
|
adamc@537
|
654 \Gamma \vdash c_1 :: \{\kappa\}
|
adamc@537
|
655 & \Gamma \vdash c_2 :: \{\kappa\}
|
adamc@537
|
656 }$$
|
adamc@537
|
657
|
adamc@537
|
658 $$\infer{\Gamma \vdash \mt{class} \; x = c \leadsto \Gamma, x :: \mt{Type} \to \mt{Type} = c}{
|
adamc@537
|
659 \Gamma \vdash c :: \mt{Type} \to \mt{Type}
|
adamc@537
|
660 }
|
adamc@537
|
661 \quad \infer{\Gamma \vdash \mt{class} \; x \leadsto \Gamma, x :: \mt{Type} \to \mt{Type}}{}$$
|
adamc@537
|
662
|
adamc@536
|
663 \subsection{Signature Compatibility}
|
adamc@536
|
664
|
adamc@537
|
665 To simplify the judgments in this section, we assume that all signatures are alpha-varied as necessary to avoid including mmultiple bindings for the same identifier. This is in addition to the usual alpha-variation of locally-bound variables.
|
adamc@537
|
666
|
adamc@537
|
667 We rely on a judgment $\Gamma \vdash \overline{s} \leq s'$, which expresses the occurrence in signature items $\overline{s}$ of an item compatible with $s'$. We also use a judgment $\Gamma \vdash \overline{dc} \leq \overline{dc}$, which expresses compatibility of datatype definitions.
|
adamc@537
|
668
|
adamc@536
|
669 $$\infer{\Gamma \vdash S \equiv S}{}
|
adamc@536
|
670 \quad \infer{\Gamma \vdash S_1 \equiv S_2}{
|
adamc@536
|
671 \Gamma \vdash S_2 \equiv S_1
|
adamc@536
|
672 }
|
adamc@536
|
673 \quad \infer{\Gamma \vdash X \equiv S}{
|
adamc@536
|
674 X = S \in \Gamma
|
adamc@536
|
675 }
|
adamc@536
|
676 \quad \infer{\Gamma \vdash M.X \equiv S}{
|
adamc@537
|
677 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
|
adamc@537
|
678 & \mt{proj}(M, \overline{s}, \mt{signature} \; X) = S
|
adamc@536
|
679 }$$
|
adamc@536
|
680
|
adamc@536
|
681 $$\infer{\Gamma \vdash S \; \mt{where} \; \mt{con} \; x = c \equiv \mt{sig} \; \overline{s^1} \; \mt{con} \; x :: \kappa = c \; \overline{s_2} \; \mt{end}}{
|
adamc@536
|
682 \Gamma \vdash S \equiv \mt{sig} \; \overline{s^1} \; \mt{con} \; x :: \kappa \; \overline{s_2} \; \mt{end}
|
adamc@536
|
683 & \Gamma \vdash c :: \kappa
|
adamc@537
|
684 }
|
adamc@537
|
685 \quad \infer{\Gamma \vdash \mt{sig} \; \overline{s^1} \; \mt{include} \; S \; \overline{s^2} \; \mt{end} \equiv \mt{sig} \; \overline{s^1} \; \overline{s} \; \overline{s^2} \; \mt{end}}{
|
adamc@537
|
686 \Gamma \vdash S \equiv \mt{sig} \; \overline{s} \; \mt{end}
|
adamc@536
|
687 }$$
|
adamc@536
|
688
|
adamc@536
|
689 $$\infer{\Gamma \vdash S_1 \leq S_2}{
|
adamc@536
|
690 \Gamma \vdash S_1 \equiv S_2
|
adamc@536
|
691 }
|
adamc@536
|
692 \quad \infer{\Gamma \vdash \mt{sig} \; \overline{s} \; \mt{end} \leq \mt{sig} \; \mt{end}}{}
|
adamc@537
|
693 \quad \infer{\Gamma \vdash \mt{sig} \; \overline{s} \; \mt{end} \leq \mt{sig} \; s' \; \overline{s'} \; \mt{end}}{
|
adamc@537
|
694 \Gamma \vdash \overline{s} \leq s'
|
adamc@537
|
695 & \Gamma \vdash s' \leadsto \Gamma'
|
adamc@537
|
696 & \Gamma' \vdash \mt{sig} \; \overline{s} \; \mt{end} \leq \mt{sig} \; \overline{s'} \; \mt{end}
|
adamc@537
|
697 }$$
|
adamc@537
|
698
|
adamc@537
|
699 $$\infer{\Gamma \vdash s \; \overline{s} \leq s'}{
|
adamc@537
|
700 \Gamma \vdash s \leq s'
|
adamc@537
|
701 }
|
adamc@537
|
702 \quad \infer{\Gamma \vdash s \; \overline{s} \leq s'}{
|
adamc@537
|
703 \Gamma \vdash s \leadsto \Gamma'
|
adamc@537
|
704 & \Gamma' \vdash \overline{s} \leq s'
|
adamc@536
|
705 }$$
|
adamc@536
|
706
|
adamc@536
|
707 $$\infer{\Gamma \vdash \mt{functor} (X : S_1) : S_2 \leq \mt{functor} (X : S'_1) : S'_2}{
|
adamc@536
|
708 \Gamma \vdash S'_1 \leq S_1
|
adamc@536
|
709 & \Gamma, X : S'_1 \vdash S_2 \leq S'_2
|
adamc@536
|
710 }$$
|
adamc@536
|
711
|
adamc@537
|
712 $$\infer{\Gamma \vdash \mt{con} \; x :: \kappa \leq \mt{con} \; x :: \kappa}{}
|
adamc@537
|
713 \quad \infer{\Gamma \vdash \mt{con} \; x :: \kappa = c \leq \mt{con} \; x :: \kappa}{}
|
adamc@537
|
714 \quad \infer{\Gamma \vdash \mt{datatype} \; x \; \overline{y} = \overline{dc} \leq \mt{con} \; x :: \mt{Type}}{}$$
|
adamc@537
|
715
|
adamc@537
|
716 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leq \mt{con} \; x :: \mt{Type}^{\mt{len}(y)} \to \mt{Type}}{
|
adamc@537
|
717 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
|
adamc@537
|
718 & \mt{proj}(M, \overline{s}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})
|
adamc@537
|
719 }$$
|
adamc@537
|
720
|
adamc@537
|
721 $$\infer{\Gamma \vdash \mt{class} \; x \leq \mt{con} \; x :: \mt{Type} \to \mt{Type}}{}
|
adamc@537
|
722 \quad \infer{\Gamma \vdash \mt{class} \; x = c \leq \mt{con} \; x :: \mt{Type} \to \mt{Type}}{}$$
|
adamc@537
|
723
|
adamc@537
|
724 $$\infer{\Gamma \vdash \mt{con} \; x :: \kappa = c_1 \leq \mt{con} \; x :: \mt{\kappa} = c_2}{
|
adamc@537
|
725 \Gamma \vdash c_1 \equiv c_2
|
adamc@537
|
726 }
|
adamc@537
|
727 \quad \infer{\Gamma \vdash \mt{class} \; x = c_1 \leq \mt{con} \; x :: \mt{Type} \to \mt{Type} = c_2}{
|
adamc@537
|
728 \Gamma \vdash c_1 \equiv c_2
|
adamc@537
|
729 }$$
|
adamc@537
|
730
|
adamc@537
|
731 $$\infer{\Gamma \vdash \mt{datatype} \; x \; \overline{y} = \overline{dc} \leq \mt{datatype} \; x \; \overline{y} = \overline{dc'}}{
|
adamc@537
|
732 \Gamma, \overline{y :: \mt{Type}} \vdash \overline{dc} \leq \overline{dc'}
|
adamc@537
|
733 }$$
|
adamc@537
|
734
|
adamc@537
|
735 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leq \mt{datatype} \; x \; \overline{y} = \overline{dc'}}{
|
adamc@537
|
736 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
|
adamc@537
|
737 & \mt{proj}(M, \overline{s}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})
|
adamc@537
|
738 & \Gamma, \overline{y :: \mt{Type}} \vdash \overline{dc} \leq \overline{dc'}
|
adamc@537
|
739 }$$
|
adamc@537
|
740
|
adamc@537
|
741 $$\infer{\Gamma \vdash \cdot \leq \cdot}{}
|
adamc@537
|
742 \quad \infer{\Gamma \vdash X; \overline{dc} \leq X; \overline{dc'}}{
|
adamc@537
|
743 \Gamma \vdash \overline{dc} \leq \overline{dc'}
|
adamc@537
|
744 }
|
adamc@537
|
745 \quad \infer{\Gamma \vdash X \; \mt{of} \; \tau_1; \overline{dc} \leq X \; \mt{of} \; \tau_2; \overline{dc'}}{
|
adamc@537
|
746 \Gamma \vdash \tau_1 \equiv \tau_2
|
adamc@537
|
747 & \Gamma \vdash \overline{dc} \leq \overline{dc'}
|
adamc@537
|
748 }$$
|
adamc@537
|
749
|
adamc@537
|
750 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leq \mt{datatype} \; x = \mt{datatype} \; M'.z'}{
|
adamc@537
|
751 \Gamma \vdash M.z \equiv M'.z'
|
adamc@537
|
752 }$$
|
adamc@537
|
753
|
adamc@537
|
754 $$\infer{\Gamma \vdash \mt{val} \; x : \tau_1 \leq \mt{val} \; x : \tau_2}{
|
adamc@537
|
755 \Gamma \vdash \tau_1 \equiv \tau_2
|
adamc@537
|
756 }
|
adamc@537
|
757 \quad \infer{\Gamma \vdash \mt{structure} \; X : S_1 \leq \mt{structure} \; X : S_2}{
|
adamc@537
|
758 \Gamma \vdash S_1 \leq S_2
|
adamc@537
|
759 }
|
adamc@537
|
760 \quad \infer{\Gamma \vdash \mt{signature} \; X = S_1 \leq \mt{signature} \; X = S_2}{
|
adamc@537
|
761 \Gamma \vdash S_1 \leq S_2
|
adamc@537
|
762 & \Gamma \vdash S_2 \leq S_1
|
adamc@537
|
763 }$$
|
adamc@537
|
764
|
adamc@537
|
765 $$\infer{\Gamma \vdash \mt{constraint} \; c_1 \sim c_2 \leq \mt{constraint} \; c'_1 \sim c'_2}{
|
adamc@537
|
766 \Gamma \vdash c_1 \equiv c'_1
|
adamc@537
|
767 & \Gamma \vdash c_2 \equiv c'_2
|
adamc@537
|
768 }$$
|
adamc@537
|
769
|
adamc@537
|
770 $$\infer{\Gamma \vdash \mt{class} \; x \leq \mt{class} \; x}{}
|
adamc@537
|
771 \quad \infer{\Gamma \vdash \mt{class} \; x = c \leq \mt{class} \; x}{}
|
adamc@537
|
772 \quad \infer{\Gamma \vdash \mt{class} \; x = c_1 \leq \mt{class} \; x = c_2}{
|
adamc@537
|
773 \Gamma \vdash c_1 \equiv c_2
|
adamc@537
|
774 }$$
|
adamc@537
|
775
|
adamc@538
|
776 \subsection{Module Typing}
|
adamc@538
|
777
|
adamc@538
|
778 We use a helper function $\mt{sigOf}$, which converts declarations and sequences of declarations into their principal signature items and sequences of signature items, respectively.
|
adamc@538
|
779
|
adamc@538
|
780 $$\infer{\Gamma \vdash M : S}{
|
adamc@538
|
781 \Gamma \vdash M : S'
|
adamc@538
|
782 & \Gamma \vdash S' \leq S
|
adamc@538
|
783 }
|
adamc@538
|
784 \quad \infer{\Gamma \vdash \mt{struct} \; \overline{d} \; \mt{end} : \mt{sig} \; \mt{sigOf}(\overline{d}) \; \mt{end}}{
|
adamc@538
|
785 \Gamma \vdash \overline{d} \leadsto \Gamma'
|
adamc@538
|
786 }
|
adamc@538
|
787 \quad \infer{\Gamma \vdash X : S}{
|
adamc@538
|
788 X : S \in \Gamma
|
adamc@538
|
789 }$$
|
adamc@538
|
790
|
adamc@538
|
791 $$\infer{\Gamma \vdash M.X : S}{
|
adamc@538
|
792 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
|
adamc@538
|
793 & \mt{proj}(M, \overline{s}, \mt{structure} \; X) = S
|
adamc@538
|
794 }$$
|
adamc@538
|
795
|
adamc@538
|
796 $$\infer{\Gamma \vdash M_1(M_2) : [X \mapsto M_2]S_2}{
|
adamc@538
|
797 \Gamma \vdash M_1 : \mt{functor}(X : S_1) : S_2
|
adamc@538
|
798 & \Gamma \vdash M_2 : S_1
|
adamc@538
|
799 }
|
adamc@538
|
800 \quad \infer{\Gamma \vdash \mt{functor} (X : S_1) : S_2 = M : \mt{functor} (X : S_1) : S_2}{
|
adamc@538
|
801 \Gamma \vdash S_1
|
adamc@538
|
802 & \Gamma, X : S_1 \vdash S_2
|
adamc@538
|
803 & \Gamma, X : S_1 \vdash M : S_2
|
adamc@538
|
804 }$$
|
adamc@538
|
805
|
adamc@538
|
806 \begin{eqnarray*}
|
adamc@538
|
807 \mt{sigOf}(\cdot) &=& \cdot \\
|
adamc@538
|
808 \mt{sigOf}(s \; \overline{s'}) &=& \mt{sigOf}(s) \; \mt{sigOf}(\overline{s'}) \\
|
adamc@538
|
809 \\
|
adamc@538
|
810 \mt{sigOf}(\mt{con} \; x :: \kappa = c) &=& \mt{con} \; x :: \kappa = c \\
|
adamc@538
|
811 \mt{sigOf}(\mt{datatype} \; x \; \overline{y} = \overline{dc}) &=& \mt{datatype} \; x \; \overline{y} = \overline{dc} \\
|
adamc@538
|
812 \mt{sigOf}(\mt{datatype} \; x = \mt{datatype} \; M.z) &=& \mt{datatype} \; x = \mt{datatype} \; M.z \\
|
adamc@538
|
813 \mt{sigOf}(\mt{val} \; x : \tau = e) &=& \mt{val} \; x : \tau \\
|
adamc@538
|
814 \mt{sigOf}(\mt{val} \; \mt{rec} \; \overline{x : \tau = e}) &=& \overline{\mt{val} \; x : \tau} \\
|
adamc@538
|
815 \mt{sigOf}(\mt{structure} \; X : S = M) &=& \mt{structure} \; X : S \\
|
adamc@538
|
816 \mt{sigOf}(\mt{signature} \; X = S) &=& \mt{signature} \; X = S \\
|
adamc@538
|
817 \mt{sigOf}(\mt{open} \; M) &=& \mt{include} \; S \textrm{ (where $\Gamma \vdash M : S$)} \\
|
adamc@538
|
818 \mt{sigOf}(\mt{constraint} \; c_1 \sim c_2) &=& \mt{constraint} \; c_1 \sim c_2 \\
|
adamc@538
|
819 \mt{sigOf}(\mt{open} \; \mt{constraints} \; M) &=& \cdot \\
|
adamc@538
|
820 \mt{sigOf}(\mt{table} \; x : c) &=& \mt{table} \; x : c \\
|
adamc@538
|
821 \mt{sigOf}(\mt{sequence} \; x) &=& \mt{sequence} \; x \\
|
adamc@538
|
822 \mt{sigOf}(\mt{cookie} \; x : \tau) &=& \mt{cookie} \; x : \tau \\
|
adamc@538
|
823 \mt{sigOf}(\mt{class} \; x = c) &=& \mt{class} \; x = c \\
|
adamc@538
|
824 \end{eqnarray*}
|
adamc@538
|
825
|
adamc@539
|
826 \begin{eqnarray*}
|
adamc@539
|
827 \mt{selfify}(M, \cdot) &=& \cdot \\
|
adamc@539
|
828 \mt{selfify}(M, s \; \overline{s'}) &=& \mt{selfify}(M, \sigma, s) \; \mt{selfify}(M, \overline{s'}) \\
|
adamc@539
|
829 \\
|
adamc@539
|
830 \mt{selfify}(M, \mt{con} \; x :: \kappa) &=& \mt{con} \; x :: \kappa = M.x \\
|
adamc@539
|
831 \mt{selfify}(M, \mt{con} \; x :: \kappa = c) &=& \mt{con} \; x :: \kappa = c \\
|
adamc@539
|
832 \mt{selfify}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc}) &=& \mt{datatype} \; x \; \overline{y} = \mt{datatype} \; M.x \\
|
adamc@539
|
833 \mt{selfify}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z) &=& \mt{datatype} \; x = \mt{datatype} \; M'.z \\
|
adamc@539
|
834 \mt{selfify}(M, \mt{val} \; x : \tau) &=& \mt{val} \; x : \tau \\
|
adamc@539
|
835 \mt{selfify}(M, \mt{structure} \; X : S) &=& \mt{structure} \; X : \mt{selfify}(M.X, \overline{s}) \textrm{ (where $\Gamma \vdash S \equiv \mt{sig} \; \overline{s} \; \mt{end}$)} \\
|
adamc@539
|
836 \mt{selfify}(M, \mt{signature} \; X = S) &=& \mt{signature} \; X = S \\
|
adamc@539
|
837 \mt{selfify}(M, \mt{include} \; S) &=& \mt{include} \; S \\
|
adamc@539
|
838 \mt{selfify}(M, \mt{constraint} \; c_1 \sim c_2) &=& \mt{constraint} \; c_1 \sim c_2 \\
|
adamc@539
|
839 \mt{selfify}(M, \mt{class} \; x) &=& \mt{class} \; x = M.x \\
|
adamc@539
|
840 \mt{selfify}(M, \mt{class} \; x = c) &=& \mt{class} \; x = c \\
|
adamc@539
|
841 \end{eqnarray*}
|
adamc@539
|
842
|
adamc@540
|
843 \subsection{Module Projection}
|
adamc@540
|
844
|
adamc@540
|
845 \begin{eqnarray*}
|
adamc@540
|
846 \mt{proj}(M, \mt{con} \; x :: \kappa \; \overline{s}, \mt{con} \; x) &=& \kappa \\
|
adamc@540
|
847 \mt{proj}(M, \mt{con} \; x :: \kappa = c \; \overline{s}, \mt{con} \; x) &=& (\kappa, c) \\
|
adamc@540
|
848 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, \mt{con} \; x) &=& \mt{Type}^{\mt{len}(\overline{y})} \to \mt{Type} \\
|
adamc@540
|
849 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z \; \overline{s}, \mt{con} \; x) &=& (\mt{Type}^{\mt{len}(\overline{y})} \to \mt{Type}, M'.z) \textrm{ (where $\Gamma \vdash M' : \mt{sig} \; \overline{s'} \; \mt{end}$} \\
|
adamc@540
|
850 && \textrm{and $\mt{proj}(M', \overline{s'}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})$)} \\
|
adamc@540
|
851 \mt{proj}(M, \mt{class} \; x \; \overline{s}, \mt{con} \; x) &=& \mt{Type} \to \mt{Type} \\
|
adamc@540
|
852 \mt{proj}(M, \mt{class} \; x = c \; \overline{s}, \mt{con} \; x) &=& (\mt{Type} \to \mt{Type}, c) \\
|
adamc@540
|
853 \\
|
adamc@540
|
854 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, \mt{datatype} \; x) &=& (\overline{y}, \overline{dc}) \\
|
adamc@540
|
855 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z \; \overline{s}, \mt{con} \; x) &=& \mt{proj}(M', \overline{s'}, \mt{datatype} \; z) \textrm{ (where $\Gamma \vdash M' : \mt{sig} \; \overline{s'} \; \mt{end}$)} \\
|
adamc@540
|
856 \\
|
adamc@540
|
857 \mt{proj}(M, \mt{val} \; x : \tau \; \overline{s}, \mt{val} \; x) &=& \tau \\
|
adamc@540
|
858 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, \mt{val} \; X) &=& \overline{y ::: \mt{Type}} \to M.x \; \overline y \textrm{ (where $X \in \overline{dc}$)} \\
|
adamc@540
|
859 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, \mt{val} \; X) &=& \overline{y ::: \mt{Type}} \to \tau \to M.x \; \overline y \textrm{ (where $X \; \mt{of} \; \tau \in \overline{dc}$)} \\
|
adamc@540
|
860 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z, \mt{val} \; X) &=& \overline{y ::: \mt{Type}} \to M.x \; \overline y \textrm{ (where $\Gamma \vdash M' : \mt{sig} \; \overline{s'} \; \mt{end}$} \\
|
adamc@540
|
861 && \textrm{and $\mt{proj}(M', \overline{s'}, \mt{datatype} \; z = (\overline{y}, \overline{dc})$ and $X \in \overline{dc}$)} \\
|
adamc@540
|
862 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z, \mt{val} \; X) &=& \overline{y ::: \mt{Type}} \to \tau \to M.x \; \overline y \textrm{ (where $\Gamma \vdash M' : \mt{sig} \; \overline{s'} \; \mt{end}$} \\
|
adamc@540
|
863 && \textrm{and $\mt{proj}(M', \overline{s'}, \mt{datatype} \; z = (\overline{y}, \overline{dc})$ and $X : \tau \in \overline{dc}$)} \\
|
adamc@540
|
864 \\
|
adamc@540
|
865 \mt{proj}(M, \mt{structure} \; X : S \; \overline{s}, \mt{structure} \; X) &=& S \\
|
adamc@540
|
866 \\
|
adamc@540
|
867 \mt{proj}(M, \mt{signature} \; X = S \; \overline{s}, \mt{signature} \; X) &=& S \\
|
adamc@540
|
868 \\
|
adamc@540
|
869 \mt{proj}(M, \mt{con} \; x :: \kappa \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
|
adamc@540
|
870 \mt{proj}(M, \mt{con} \; x :: \kappa = c \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
|
adamc@540
|
871 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
|
adamc@540
|
872 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
|
adamc@540
|
873 \mt{proj}(M, \mt{val} \; x : \tau \; \overline{s}, V) &=& \mt{proj}(M, \overline{s}, V) \\
|
adamc@540
|
874 \mt{proj}(M, \mt{structure} \; X : S \; \overline{s}, V) &=& [X \mapsto M.X]\mt{proj}(M, \overline{s}, V) \\
|
adamc@540
|
875 \mt{proj}(M, \mt{signature} \; X = S \; \overline{s}, V) &=& [X \mapsto M.X]\mt{proj}(M, \overline{s}, V) \\
|
adamc@540
|
876 \mt{proj}(M, \mt{include} \; S \; \overline{s}, V) &=& \mt{proj}(M, \overline{s'} \; \overline{s}, V) \textrm{ (where $\Gamma \vdash S \equiv \mt{sig} \; \overline{s'} \; \mt{end}$)} \\
|
adamc@540
|
877 \mt{proj}(M, \mt{constraint} \; c_1 \sim c_2 \; \overline{s}, V) &=& \mt{proj}(M, \overline{s}, V) \\
|
adamc@540
|
878 \mt{proj}(M, \mt{class} \; x \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
|
adamc@540
|
879 \mt{proj}(M, \mt{class} \; x = c \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
|
adamc@540
|
880 \end{eqnarray*}
|
adamc@540
|
881
|
adamc@541
|
882
|
adamc@541
|
883 \section{Type Inference}
|
adamc@541
|
884
|
adamc@541
|
885 The Ur/Web compiler uses \emph{heuristic type inference}, with no claims of completeness with respect to the declarative specification of the last section. The rules in use seem to work well in practice. This section summarizes those rules, to help Ur programmers predict what will work and what won't.
|
adamc@541
|
886
|
adamc@541
|
887 \subsection{Basic Unification}
|
adamc@541
|
888
|
adamc@541
|
889 Type-checkers for languages based on the Hindly-Milner type discipline, like ML and Haskell, take advantage of \emph{principal typing} properties, making complete type inference relatively straightforward. Inference algorithms are traditionally implemented using type unification variables, at various points asserting equalities between types, in the process discovering the values of type variables. The Ur/Web compiler uses the same basic strategy, but the complexity of the type system rules out easy completeness.
|
adamc@541
|
890
|
adamc@541
|
891 Type-checking can require evaluating recursive functional programs, thanks to the type-level $\mt{fold}$ operator. When a unification variable appears in such a type, the next step of computation can be undetermined. The value of that variable might be determined later, but this would be ``too late'' for the unification problems generated at the first occurrence. This is the essential source of incompletness.
|
adamc@541
|
892
|
adamc@541
|
893 Nonetheless, the unification engine tends to do reasonably well. Unlike in ML, polymorphism is never inferred in definitions; it must be indicated explicitly by writing out constructor-level parameters. By writing these and other annotations, the programmer can generally get the type inference engine to do most of the type reconstruction work.
|
adamc@541
|
894
|
adamc@541
|
895 \subsection{Unifying Record Types}
|
adamc@541
|
896
|
adamc@541
|
897 The type inference engine tries to take advantage of the algebraic rules governing type-level records, as shown in Section \ref{definitional}. When two constructors of record kind are unified, they are reduce to normal forms, with like terms crossed off from each normal form until, hopefully, nothing remains. This cannot be complete, with the inclusion of unification variables. The type-checker can help you understand what goes wrong when the process fails, as it outputs the unmatched remainders of the two normal forms.
|
adamc@541
|
898
|
adamc@541
|
899 \subsection{\label{typeclasses}Type Classes}
|
adamc@541
|
900
|
adamc@541
|
901 Ur includes a type class facility inspired by Haskell's. The current version is very rudimentary, only supporting instances for particular types built up from abstract types and datatypes and type-level application.
|
adamc@541
|
902
|
adamc@541
|
903 Type classes are integrated with the module system. A type class is just a constructor of kind $\mt{Type} \to \mt{Type}$. By marking such a constructor $c$ as a type class, the programmer instructs the type inference engine to, in each scope, record all values of types $c \; \tau$ as \emph{instances}. Any function argument whose type is of such a form is treated as implicit, to be determined by examining the current instance database.
|
adamc@541
|
904
|
adamc@541
|
905 The ``dictionary encoding'' often used in Haskell implementations is made explicit in Ur. Type class instances are just properly-typed values, and they can also be considered as ``proofs'' of membership in the class. In some cases, it is useful to pass these proofs around explicitly. An underscore written where a proof is expected will also be inferred, if possible, from the current instance database.
|
adamc@541
|
906
|
adamc@541
|
907 Just as for types, type classes may be exported from modules, and they may be exported as concrete or abstract. Concrete type classes have their ``real'' definitions exposed, so that client code may add new instances freely. Abstract type classes are useful as ``predicates'' that can be used to enforce invariants, as we will see in some definitions of SQL syntax in the Ur/Web standard library.
|
adamc@541
|
908
|
adamc@541
|
909 \subsection{Reverse-Engineering Record Types}
|
adamc@541
|
910
|
adamc@541
|
911 It's useful to write Ur functions and functors that take record constructors as inputs, but these constructors can grow quite long, even though their values are often implied by other arguments. The compiler uses a simple heuristic to infer the values of unification variables that are folded over, yielding known results. Often, as in the case of $\mt{map}$-like folds, the base and recursive cases of a fold produce constructors with different top-level structure. Thus, if the result of the fold is known, examining its top-level structure reveals whether the record being folded over is empty or not. If it's empty, we're done; if it's not empty, we replace a single unification variable with a new constructor formed from three new unification variables, as in $[\alpha = \beta] \rc \gamma$. This process can often be repeated to determine a unification variable fully.
|
adamc@541
|
912
|
adamc@541
|
913 \subsection{Implicit Arguments in Functor Applications}
|
adamc@541
|
914
|
adamc@541
|
915 Constructor, constraint, and type class witness members of structures may be omitted, when those structures are used in contexts where their assigned signatures imply how to fill in those missing members. This feature combines well with reverse-engineering to allow for uses of complicated meta-programming functors with little more code than would be necessary to invoke an untyped, ad-hoc code generator.
|
adamc@541
|
916
|
adamc@541
|
917
|
adamc@542
|
918 \section{The Ur Standard Library}
|
adamc@542
|
919
|
adamc@542
|
920 The built-in parts of the Ur/Web standard library are described by the signature in \texttt{lib/basis.urs} in the distribution. A module $\mt{Basis}$ ascribing to that signature is available in the initial environment, and every program is implicitly prefixed by $\mt{open} \; \mt{Basis}$.
|
adamc@542
|
921
|
adamc@542
|
922 Additionally, other common functions that are definable within Ur are included in \texttt{lib/top.urs} and \texttt{lib/top.ur}. This $\mt{Top}$ module is also opened implicitly.
|
adamc@542
|
923
|
adamc@542
|
924 The idea behind Ur is to serve as the ideal host for embedded domain-specific languages. For now, however, the ``generic'' functionality is intermixed with Ur/Web-specific functionality, including in these two library modules. We hope that these generic library components have types that speak for themselves. The next section introduces the Ur/Web-specific elements. Here, we only give the type declarations from the beginning of $\mt{Basis}$.
|
adamc@542
|
925 $$\begin{array}{l}
|
adamc@542
|
926 \mt{type} \; \mt{int} \\
|
adamc@542
|
927 \mt{type} \; \mt{float} \\
|
adamc@542
|
928 \mt{type} \; \mt{string} \\
|
adamc@542
|
929 \mt{type} \; \mt{time} \\
|
adamc@542
|
930 \\
|
adamc@542
|
931 \mt{type} \; \mt{unit} = \{\} \\
|
adamc@542
|
932 \\
|
adamc@542
|
933 \mt{datatype} \; \mt{bool} = \mt{False} \mid \mt{True} \\
|
adamc@542
|
934 \\
|
adamc@542
|
935 \mt{datatype} \; \mt{option} \; \mt{t} = \mt{None} \mid \mt{Some} \; \mt{of} \; \mt{t}
|
adamc@542
|
936 \end{array}$$
|
adamc@542
|
937
|
adamc@542
|
938
|
adamc@542
|
939 \section{The Ur/Web Standard Library}
|
adamc@542
|
940
|
adamc@542
|
941 \subsection{Transactions}
|
adamc@542
|
942
|
adamc@542
|
943 Ur is a pure language; we use Haskell's trick to support controlled side effects. The standard library defines a monad $\mt{transaction}$, meant to stand for actions that may be undone cleanly. By design, no other kinds of actions are supported.
|
adamc@542
|
944 $$\begin{array}{l}
|
adamc@542
|
945 \mt{con} \; \mt{transaction} :: \mt{Type} \to \mt{Type} \\
|
adamc@542
|
946 \\
|
adamc@542
|
947 \mt{val} \; \mt{return} : \mt{t} ::: \mt{Type} \to \mt{t} \to \mt{transaction} \; \mt{t} \\
|
adamc@542
|
948 \mt{val} \; \mt{bind} : \mt{t_1} ::: \mt{Type} \to \mt{t_2} ::: \mt{Type} \to \mt{transaction} \; \mt{t_1} \to (\mt{t_1} \to \mt{transaction} \; \mt{t_2}) \to \mt{transaction} \; \mt{t_2}
|
adamc@542
|
949 \end{array}$$
|
adamc@542
|
950
|
adamc@542
|
951 \subsection{HTTP}
|
adamc@542
|
952
|
adamc@542
|
953 There are transactions for reading an HTTP header by name and for getting and setting strongly-typed cookies. Cookies may only be created by the $\mt{cookie}$ declaration form, ensuring that they be named consistently based on module structure.
|
adamc@542
|
954 $$\begin{array}{l}
|
adamc@542
|
955 \mt{val} \; \mt{requestHeader} : \mt{string} \to \mt{transaction} \; (\mt{option} \; \mt{string}) \\
|
adamc@542
|
956 \\
|
adamc@542
|
957 \mt{con} \; \mt{http\_cookie} :: \mt{Type} \to \mt{Type} \\
|
adamc@542
|
958 \mt{val} \; \mt{getCookie} : \mt{t} ::: \mt{Type} \to \mt{http\_cookie} \; \mt{t} \to \mt{transaction} \; (\mt{option} \; \mt{t}) \\
|
adamc@542
|
959 \mt{val} \; \mt{setCookie} : \mt{t} ::: \mt{Type} \to \mt{http\_cookie} \; \mt{t} \to \mt{t} \to \mt{transaction} \; \mt{unit}
|
adamc@542
|
960 \end{array}$$
|
adamc@542
|
961
|
adamc@543
|
962 \subsection{SQL}
|
adamc@543
|
963
|
adamc@543
|
964 The fundamental unit of interest in the embedding of SQL is tables, described by a type family and creatable only via the $\mt{table}$ declaration form.
|
adamc@543
|
965 $$\begin{array}{l}
|
adamc@543
|
966 \mt{con} \; \mt{sql\_table} :: \{\mt{Type}\} \to \mt{Type}
|
adamc@543
|
967 \end{array}$$
|
adamc@543
|
968
|
adamc@543
|
969 \subsubsection{Queries}
|
adamc@543
|
970
|
adamc@543
|
971 A final query is constructed via the $\mt{sql\_query}$ function. Constructor arguments respectively specify the table fields we select (as records mapping tables to the subsets of their fields that we choose) and the (always named) extra expressions that we select.
|
adamc@543
|
972 $$\begin{array}{l}
|
adamc@543
|
973 \mt{con} \; \mt{sql\_query} :: \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \\
|
adamc@543
|
974 \mt{val} \; \mt{sql\_query} : \mt{tables} ::: \{\{\mt{Type}\}\} \\
|
adamc@543
|
975 \hspace{.1in} \to \mt{selectedFields} ::: \{\{\mt{Type}\}\} \\
|
adamc@543
|
976 \hspace{.1in} \to \mt{selectedExps} ::: \{\mt{Type}\} \\
|
adamc@543
|
977 \hspace{.1in} \to \{\mt{Rows} : \mt{sql\_query1} \; \mt{tables} \; \mt{selectedFields} \; \mt{selectedExps}, \\
|
adamc@543
|
978 \hspace{.2in} \mt{OrderBy} : \mt{sql\_order\_by} \; \mt{tables} \; \mt{selectedExps}, \\
|
adamc@543
|
979 \hspace{.2in} \mt{Limit} : \mt{sql\_limit}, \\
|
adamc@543
|
980 \hspace{.2in} \mt{Offset} : \mt{sql\_offset}\} \\
|
adamc@543
|
981 \hspace{.1in} \to \mt{sql\_query} \; \mt{selectedFields} \; \mt{selectedExps}
|
adamc@543
|
982 \end{array}$$
|
adamc@543
|
983
|
adamc@545
|
984 Queries are used by folding over their results inside transactions.
|
adamc@545
|
985 $$\begin{array}{l}
|
adamc@545
|
986 \mt{val} \; \mt{query} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \lambda [\mt{tables} \sim \mt{exps}] \Rightarrow \mt{state} ::: \mt{Type} \to \mt{sql\_query} \; \mt{tables} \; \mt{exps} \\
|
adamc@545
|
987 \hspace{.1in} \to (\$(\mt{exps} \rc \mt{fold} \; (\lambda \mt{nm} \; (\mt{fields} :: \{\mt{Type}\}) \; \mt{acc} \; [[\mt{nm}] \sim \mt{acc}] \Rightarrow [\mt{nm} = \$\mt{fields}] \rc \mt{acc}) \; [] \; \mt{tables}) \\
|
adamc@545
|
988 \hspace{.2in} \to \mt{state} \to \mt{transaction} \; \mt{state}) \\
|
adamc@545
|
989 \hspace{.1in} \to \mt{state} \to \mt{transaction} \; \mt{state}
|
adamc@545
|
990 \end{array}$$
|
adamc@545
|
991
|
adamc@543
|
992 Most of the complexity of the query encoding is in the type $\mt{sql\_query1}$, which includes simple queries and derived queries based on relational operators. Constructor arguments respectively specify the tables we select from, the subset of fields that we keep from each table for the result rows, and the extra expressions that we select.
|
adamc@543
|
993 $$\begin{array}{l}
|
adamc@543
|
994 \mt{con} \; \mt{sql\_query1} :: \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \\
|
adamc@543
|
995 \\
|
adamc@543
|
996 \mt{type} \; \mt{sql\_relop} \\
|
adamc@543
|
997 \mt{val} \; \mt{sql\_union} : \mt{sql\_relop} \\
|
adamc@543
|
998 \mt{val} \; \mt{sql\_intersect} : \mt{sql\_relop} \\
|
adamc@543
|
999 \mt{val} \; \mt{sql\_except} : \mt{sql\_relop} \\
|
adamc@543
|
1000 \mt{val} \; \mt{sql\_relop} : \mt{tables1} ::: \{\{\mt{Type}\}\} \\
|
adamc@543
|
1001 \hspace{.1in} \to \mt{tables2} ::: \{\{\mt{Type}\}\} \\
|
adamc@543
|
1002 \hspace{.1in} \to \mt{selectedFields} ::: \{\{\mt{Type}\}\} \\
|
adamc@543
|
1003 \hspace{.1in} \to \mt{selectedExps} ::: \{\mt{Type}\} \\
|
adamc@543
|
1004 \hspace{.1in} \to \mt{sql\_relop} \\
|
adamc@543
|
1005 \hspace{.1in} \to \mt{sql\_query1} \; \mt{tables1} \; \mt{selectedFields} \; \mt{selectedExps} \\
|
adamc@543
|
1006 \hspace{.1in} \to \mt{sql\_query1} \; \mt{tables2} \; \mt{selectedFields} \; \mt{selectedExps} \\
|
adamc@543
|
1007 \hspace{.1in} \to \mt{sql\_query1} \; \mt{selectedFields} \; \mt{selectedFields} \; \mt{selectedExps}
|
adamc@543
|
1008 \end{array}$$
|
adamc@543
|
1009
|
adamc@543
|
1010 $$\begin{array}{l}
|
adamc@543
|
1011 \mt{val} \; \mt{sql\_query1} : \mt{tables} ::: \{\{\mt{Type}\}\} \\
|
adamc@543
|
1012 \hspace{.1in} \to \mt{grouped} ::: \{\{\mt{Type}\}\} \\
|
adamc@543
|
1013 \hspace{.1in} \to \mt{selectedFields} ::: \{\{\mt{Type}\}\} \\
|
adamc@543
|
1014 \hspace{.1in} \to \mt{selectedExps} ::: \{\mt{Type}\} \\
|
adamc@543
|
1015 \hspace{.1in} \to \{\mt{From} : \$(\mt{fold} \; (\lambda \mt{nm} \; (\mt{fields} :: \{\mt{Type}\}) \; \mt{acc} \; [[\mt{nm}] \sim \mt{acc}] \Rightarrow [\mt{nm} = \mt{sql\_table} \; \mt{fields}] \rc \mt{acc}) \; [] \; \mt{tables}), \\
|
adamc@543
|
1016 \hspace{.2in} \mt{Where} : \mt{sql\_exp} \; \mt{tables} \; [] \; [] \; \mt{bool}, \\
|
adamc@543
|
1017 \hspace{.2in} \mt{GroupBy} : \mt{sql\_subset} \; \mt{tables} \; \mt{grouped}, \\
|
adamc@543
|
1018 \hspace{.2in} \mt{Having} : \mt{sql\_exp} \; \mt{grouped} \; \mt{tables} \; [] \; \mt{bool}, \\
|
adamc@543
|
1019 \hspace{.2in} \mt{SelectFields} : \mt{sql\_subset} \; \mt{grouped} \; \mt{selectedFields}, \\
|
adamc@543
|
1020 \hspace{.2in} \mt {SelectExps} : \$(\mt{fold} \; (\lambda \mt{nm} \; (\mt{t} :: \mt{Type}) \; \mt{acc} \; [[\mt{nm}] \sim \mt{acc}] \Rightarrow [\mt{nm} = \mt{sql\_exp} \; \mt{grouped} \; \mt{tables} \; [] \; \mt{t}] \rc \mt{acc}) \; [] \; \mt{selectedExps}) \} \\
|
adamc@543
|
1021 \hspace{.1in} \to \mt{sql\_query1} \; \mt{tables} \; \mt{selectedFields} \; \mt{selectedExps}
|
adamc@543
|
1022 \end{array}$$
|
adamc@543
|
1023
|
adamc@543
|
1024 To encode projection of subsets of fields in $\mt{SELECT}$ clauses, and to encode $\mt{GROUP} \; \mt{BY}$ clauses, we rely on a type family $\mt{sql\_subset}$, capturing what it means for one record of table fields to be a subset of another. The main constructor $\mt{sql\_subset}$ ``proves subset facts'' by requiring a split of a record into kept and dropped parts. The extra constructor $\mt{sql\_subset\_all}$ is a convenience for keeping all fields of a record.
|
adamc@543
|
1025 $$\begin{array}{l}
|
adamc@543
|
1026 \mt{con} \; \mt{sql\_subset} :: \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \mt{Type} \\
|
adamc@543
|
1027 \mt{val} \; \mt{sql\_subset} : \mt{keep\_drop} :: \{(\{\mt{Type}\} \times \{\mt{Type}\})\} \\
|
adamc@543
|
1028 \hspace{.1in} \to \mt{sql\_subset} \\
|
adamc@543
|
1029 \hspace{.2in} (\mt{fold} \; (\lambda \mt{nm} \; (\mt{fields} :: (\{\mt{Type}\} \times \{\mt{Type}\})) \; \mt{acc} \; [[\mt{nm}] \sim \mt{acc}] \; [\mt{fields}.1 \sim \mt{fields}.2] \Rightarrow \\
|
adamc@543
|
1030 \hspace{.3in} [\mt{nm} = \mt{fields}.1 \rc \mt{fields}.2] \rc \mt{acc}) \; [] \; \mt{keep\_drop}) \\
|
adamc@543
|
1031 \hspace{.2in} (\mt{fold} \; (\lambda \mt{nm} \; (\mt{fields} :: (\{\mt{Type}\} \times \{\mt{Type}\})) \; \mt{acc} \; [[\mt{nm}] \sim \mt{acc}] \Rightarrow [\mt{nm} = \mt{fields}.1] \rc \mt{acc}) \; [] \; \mt{keep\_drop}) \\
|
adamc@543
|
1032 \mt{val} \; \mt{sql\_subset\_all} : \mt{tables} :: \{\{\mt{Type}\}\} \to \mt{sql\_subset} \; \mt{tables} \; \mt{tables}
|
adamc@543
|
1033 \end{array}$$
|
adamc@543
|
1034
|
adamc@543
|
1035 SQL expressions are used in several places, including $\mt{SELECT}$, $\mt{WHERE}$, $\mt{HAVING}$, and $\mt{ORDER} \; \mt{BY}$ clauses. They reify a fragment of the standard SQL expression language, while making it possible to inject ``native'' Ur values in some places. The arguments to the $\mt{sql\_exp}$ type family respectively give the unrestricted-availablity table fields, the table fields that may only be used in arguments to aggregate functions, the available selected expressions, and the type of the expression.
|
adamc@543
|
1036 $$\begin{array}{l}
|
adamc@543
|
1037 \mt{con} \; \mt{sql\_exp} :: \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \to \mt{Type}
|
adamc@543
|
1038 \end{array}$$
|
adamc@543
|
1039
|
adamc@543
|
1040 Any field in scope may be converted to an expression.
|
adamc@543
|
1041 $$\begin{array}{l}
|
adamc@543
|
1042 \mt{val} \; \mt{sql\_field} : \mt{otherTabs} ::: \{\{\mt{Type}\}\} \to \mt{otherFields} ::: \{\mt{Type}\} \\
|
adamc@543
|
1043 \hspace{.1in} \to \mt{fieldType} ::: \mt{Type} \to \mt{agg} ::: \{\{\mt{Type}\}\} \\
|
adamc@543
|
1044 \hspace{.1in} \to \mt{exps} ::: \{\mt{Type}\} \\
|
adamc@543
|
1045 \hspace{.1in} \to \mt{tab} :: \mt{Name} \to \mt{field} :: \mt{Name} \\
|
adamc@543
|
1046 \hspace{.1in} \to \mt{sql\_exp} \; ([\mt{tab} = [\mt{field} = \mt{fieldType}] \rc \mt{otherFields}] \rc \mt{otherTabs}) \; \mt{agg} \; \mt{exps} \; \mt{fieldType}
|
adamc@543
|
1047 \end{array}$$
|
adamc@543
|
1048
|
adamc@544
|
1049 There is an analogous function for referencing named expressions.
|
adamc@544
|
1050 $$\begin{array}{l}
|
adamc@544
|
1051 \mt{val} \; \mt{sql\_exp} : \mt{tabs} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{t} ::: \mt{Type} \to \mt{rest} ::: \{\mt{Type}\} \to \mt{nm} :: \mt{Name} \\
|
adamc@544
|
1052 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tabs} \; \mt{agg} \; ([\mt{nm} = \mt{t}] \rc \mt{rest}) \; \mt{t}
|
adamc@544
|
1053 \end{array}$$
|
adamc@544
|
1054
|
adamc@544
|
1055 Ur values of appropriate types may be injected into SQL expressions.
|
adamc@544
|
1056 $$\begin{array}{l}
|
adamc@544
|
1057 \mt{class} \; \mt{sql\_injectable} \\
|
adamc@544
|
1058 \mt{val} \; \mt{sql\_bool} : \mt{sql\_injectable} \; \mt{bool} \\
|
adamc@544
|
1059 \mt{val} \; \mt{sql\_int} : \mt{sql\_injectable} \; \mt{int} \\
|
adamc@544
|
1060 \mt{val} \; \mt{sql\_float} : \mt{sql\_injectable} \; \mt{float} \\
|
adamc@544
|
1061 \mt{val} \; \mt{sql\_string} : \mt{sql\_injectable} \; \mt{string} \\
|
adamc@544
|
1062 \mt{val} \; \mt{sql\_time} : \mt{sql\_injectable} \; \mt{time} \\
|
adamc@544
|
1063 \mt{val} \; \mt{sql\_option\_bool} : \mt{sql\_injectable} \; (\mt{option} \; \mt{bool}) \\
|
adamc@544
|
1064 \mt{val} \; \mt{sql\_option\_int} : \mt{sql\_injectable} \; (\mt{option} \; \mt{int}) \\
|
adamc@544
|
1065 \mt{val} \; \mt{sql\_option\_float} : \mt{sql\_injectable} \; (\mt{option} \; \mt{float}) \\
|
adamc@544
|
1066 \mt{val} \; \mt{sql\_option\_string} : \mt{sql\_injectable} \; (\mt{option} \; \mt{string}) \\
|
adamc@544
|
1067 \mt{val} \; \mt{sql\_option\_time} : \mt{sql\_injectable} \; (\mt{option} \; \mt{time}) \\
|
adamc@544
|
1068 \mt{val} \; \mt{sql\_inject} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \to \mt{sql\_injectable} \; \mt{t} \\
|
adamc@544
|
1069 \hspace{.1in} \to \mt{t} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t}
|
adamc@544
|
1070 \end{array}$$
|
adamc@544
|
1071
|
adamc@544
|
1072 We have the SQL nullness test, which is necessary because of the strange SQL semantics of equality in the presence of null values.
|
adamc@544
|
1073 $$\begin{array}{l}
|
adamc@544
|
1074 \mt{val} \; \mt{sql\_is\_null} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \\
|
adamc@544
|
1075 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; (\mt{option} \; \mt{t}) \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{bool}
|
adamc@544
|
1076 \end{array}$$
|
adamc@544
|
1077
|
adamc@544
|
1078 We have generic nullary, unary, and binary operators, as well as comparison operators.
|
adamc@544
|
1079 $$\begin{array}{l}
|
adamc@544
|
1080 \mt{con} \; \mt{sql\_nfunc} :: \mt{Type} \to \mt{Type} \\
|
adamc@544
|
1081 \mt{val} \; \mt{sql\_current\_timestamp} : \mt{sql\_nfunc} \; \mt{time} \\
|
adamc@544
|
1082 \mt{val} \; \mt{sql\_nfunc} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \\
|
adamc@544
|
1083 \hspace{.1in} \to \mt{sql\_nfunc} \; \mt{t} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t} \\\end{array}$$
|
adamc@544
|
1084
|
adamc@544
|
1085 $$\begin{array}{l}
|
adamc@544
|
1086 \mt{con} \; \mt{sql\_unary} :: \mt{Type} \to \mt{Type} \to \mt{Type} \\
|
adamc@544
|
1087 \mt{val} \; \mt{sql\_not} : \mt{sql\_unary} \; \mt{bool} \; \mt{bool} \\
|
adamc@544
|
1088 \mt{val} \; \mt{sql\_unary} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{arg} ::: \mt{Type} \to \mt{res} ::: \mt{Type} \\
|
adamc@544
|
1089 \hspace{.1in} \to \mt{sql\_unary} \; \mt{arg} \; \mt{res} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{arg} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{res} \\
|
adamc@544
|
1090 \end{array}$$
|
adamc@544
|
1091
|
adamc@544
|
1092 $$\begin{array}{l}
|
adamc@544
|
1093 \mt{con} \; \mt{sql\_binary} :: \mt{Type} \to \mt{Type} \to \mt{Type} \to \mt{Type} \\
|
adamc@544
|
1094 \mt{val} \; \mt{sql\_and} : \mt{sql\_binary} \; \mt{bool} \; \mt{bool} \; \mt{bool} \\
|
adamc@544
|
1095 \mt{val} \; \mt{sql\_or} : \mt{sql\_binary} \; \mt{bool} \; \mt{bool} \; \mt{bool} \\
|
adamc@544
|
1096 \mt{val} \; \mt{sql\_binary} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{arg_1} ::: \mt{Type} \to \mt{arg_2} ::: \mt{Type} \to \mt{res} ::: \mt{Type} \\
|
adamc@544
|
1097 \hspace{.1in} \to \mt{sql\_binary} \; \mt{arg_1} \; \mt{arg_2} \; \mt{res} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{arg_1} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{arg_2} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{res}
|
adamc@544
|
1098 \end{array}$$
|
adamc@544
|
1099
|
adamc@544
|
1100 $$\begin{array}{l}
|
adamc@544
|
1101 \mt{type} \; \mt{sql\_comparison} \\
|
adamc@544
|
1102 \mt{val} \; \mt{sql\_eq} : \mt{sql\_comparison} \\
|
adamc@544
|
1103 \mt{val} \; \mt{sql\_ne} : \mt{sql\_comparison} \\
|
adamc@544
|
1104 \mt{val} \; \mt{sql\_lt} : \mt{sql\_comparison} \\
|
adamc@544
|
1105 \mt{val} \; \mt{sql\_le} : \mt{sql\_comparison} \\
|
adamc@544
|
1106 \mt{val} \; \mt{sql\_gt} : \mt{sql\_comparison} \\
|
adamc@544
|
1107 \mt{val} \; \mt{sql\_ge} : \mt{sql\_comparison} \\
|
adamc@544
|
1108 \mt{val} \; \mt{sql\_comparison} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \\
|
adamc@544
|
1109 \hspace{.1in} \to \mt{sql\_comparison} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{bool}
|
adamc@544
|
1110 \end{array}$$
|
adamc@544
|
1111
|
adamc@544
|
1112 Finally, we have aggregate functions. The $\mt{COUNT(\ast)}$ syntax is handled specially, since it takes no real argument. The other aggregate functions are placed into a general type family, using type classes to restrict usage to properly-typed arguments. The key aspect of the $\mt{sql\_aggregate}$ function's type is the shift of aggregate-function-only fields into unrestricted fields.
|
adamc@544
|
1113
|
adamc@544
|
1114 $$\begin{array}{l}
|
adamc@544
|
1115 \mt{val} \; \mt{sql\_count} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{int}
|
adamc@544
|
1116 \end{array}$$
|
adamc@544
|
1117
|
adamc@544
|
1118 $$\begin{array}{l}
|
adamc@544
|
1119 \mt{con} \; \mt{sql\_aggregate} :: \mt{Type} \to \mt{Type} \\
|
adamc@544
|
1120 \mt{val} \; \mt{sql\_aggregate} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \\
|
adamc@544
|
1121 \hspace{.1in} \to \mt{sql\_aggregate} \; \mt{t} \to \mt{sql\_exp} \; \mt{agg} \; \mt{agg} \; \mt{exps} \; \mt{t} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t}
|
adamc@544
|
1122 \end{array}$$
|
adamc@544
|
1123
|
adamc@544
|
1124 $$\begin{array}{l}
|
adamc@544
|
1125 \mt{class} \; \mt{sql\_summable} \\
|
adamc@544
|
1126 \mt{val} \; \mt{sql\_summable\_int} : \mt{sql\_summable} \; \mt{int} \\
|
adamc@544
|
1127 \mt{val} \; \mt{sql\_summable\_float} : \mt{sql\_summable} \; \mt{float} \\
|
adamc@544
|
1128 \mt{val} \; \mt{sql\_avg} : \mt{t} ::: \mt{Type} \to \mt{sql\_summable} \; \mt{t} \to \mt{sql\_aggregate} \; \mt{t} \\
|
adamc@544
|
1129 \mt{val} \; \mt{sql\_sum} : \mt{t} ::: \mt{Type} \to \mt{sql\_summable} \mt{t} \to \mt{sql\_aggregate} \; \mt{t}
|
adamc@544
|
1130 \end{array}$$
|
adamc@544
|
1131
|
adamc@544
|
1132 $$\begin{array}{l}
|
adamc@544
|
1133 \mt{class} \; \mt{sql\_maxable} \\
|
adamc@544
|
1134 \mt{val} \; \mt{sql\_maxable\_int} : \mt{sql\_maxable} \; \mt{int} \\
|
adamc@544
|
1135 \mt{val} \; \mt{sql\_maxable\_float} : \mt{sql\_maxable} \; \mt{float} \\
|
adamc@544
|
1136 \mt{val} \; \mt{sql\_maxable\_string} : \mt{sql\_maxable} \; \mt{string} \\
|
adamc@544
|
1137 \mt{val} \; \mt{sql\_maxable\_time} : \mt{sql\_maxable} \; \mt{time} \\
|
adamc@544
|
1138 \mt{val} \; \mt{sql\_max} : \mt{t} ::: \mt{Type} \to \mt{sql\_maxable} \; \mt{t} \to \mt{sql\_aggregate} \; \mt{t} \\
|
adamc@544
|
1139 \mt{val} \; \mt{sql\_min} : \mt{t} ::: \mt{Type} \to \mt{sql\_maxable} \; \mt{t} \to \mt{sql\_aggregate} \; \mt{t}
|
adamc@544
|
1140 \end{array}$$
|
adamc@544
|
1141
|
adamc@544
|
1142 We wrap up the definition of query syntax with the types used in representing $\mt{ORDER} \; \mt{BY}$, $\mt{LIMIT}$, and $\mt{OFFSET}$ clauses.
|
adamc@544
|
1143 $$\begin{array}{l}
|
adamc@544
|
1144 \mt{type} \; \mt{sql\_direction} \\
|
adamc@544
|
1145 \mt{val} \; \mt{sql\_asc} : \mt{sql\_direction} \\
|
adamc@544
|
1146 \mt{val} \; \mt{sql\_desc} : \mt{sql\_direction} \\
|
adamc@544
|
1147 \\
|
adamc@544
|
1148 \mt{con} \; \mt{sql\_order\_by} :: \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \\
|
adamc@544
|
1149 \mt{val} \; \mt{sql\_order\_by\_Nil} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{exps} :: \{\mt{Type}\} \to \mt{sql\_order\_by} \; \mt{tables} \; \mt{exps} \\
|
adamc@544
|
1150 \mt{val} \; \mt{sql\_order\_by\_Cons} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \\
|
adamc@544
|
1151 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tables} \; [] \; \mt{exps} \; \mt{t} \to \mt{sql\_direction} \to \mt{sql\_order\_by} \; \mt{tables} \; \mt{exps} \to \mt{sql\_order\_by} \; \mt{tables} \; \mt{exps} \\
|
adamc@544
|
1152 \\
|
adamc@544
|
1153 \mt{type} \; \mt{sql\_limit} \\
|
adamc@544
|
1154 \mt{val} \; \mt{sql\_no\_limit} : \mt{sql\_limit} \\
|
adamc@544
|
1155 \mt{val} \; \mt{sql\_limit} : \mt{int} \to \mt{sql\_limit} \\
|
adamc@544
|
1156 \\
|
adamc@544
|
1157 \mt{type} \; \mt{sql\_offset} \\
|
adamc@544
|
1158 \mt{val} \; \mt{sql\_no\_offset} : \mt{sql\_offset} \\
|
adamc@544
|
1159 \mt{val} \; \mt{sql\_offset} : \mt{int} \to \mt{sql\_offset}
|
adamc@544
|
1160 \end{array}$$
|
adamc@544
|
1161
|
adamc@545
|
1162
|
adamc@545
|
1163 \subsubsection{DML}
|
adamc@545
|
1164
|
adamc@545
|
1165 The Ur/Web library also includes an embedding of a fragment of SQL's DML, the Data Manipulation Language, for modifying database tables. Any piece of DML may be executed in a transaction.
|
adamc@545
|
1166
|
adamc@545
|
1167 $$\begin{array}{l}
|
adamc@545
|
1168 \mt{type} \; \mt{dml} \\
|
adamc@545
|
1169 \mt{val} \; \mt{dml} : \mt{dml} \to \mt{transaction} \; \mt{unit}
|
adamc@545
|
1170 \end{array}$$
|
adamc@545
|
1171
|
adamc@545
|
1172 Properly-typed records may be used to form $\mt{INSERT}$ commands.
|
adamc@545
|
1173 $$\begin{array}{l}
|
adamc@545
|
1174 \mt{val} \; \mt{insert} : \mt{fields} ::: \{\mt{Type}\} \to \mt{sql\_table} \; \mt{fields} \\
|
adamc@545
|
1175 \hspace{.1in} \to \$(\mt{fold} \; (\lambda \mt{nm} \; (\mt{t} :: \mt{Type}) \; \mt{acc} \; [[\mt{nm}] \sim \mt{acc}] \Rightarrow [\mt{nm} = \mt{sql\_exp} \; [] \; [] \; [] \; \mt{t}] \rc \mt{acc}) \; [] \; \mt{fields}) \to \mt{dml}
|
adamc@545
|
1176 \end{array}$$
|
adamc@545
|
1177
|
adamc@545
|
1178 An $\mt{UPDATE}$ command is formed from a choice of which table fields to leave alone and which to change, along with an expression to use to compute the new value of each changed field and a $\mt{WHERE}$ clause.
|
adamc@545
|
1179 $$\begin{array}{l}
|
adamc@545
|
1180 \mt{val} \; \mt{update} : \mt{unchanged} ::: \{\mt{Type}\} \to \mt{changed} :: \{\mt{Type}\} \to \lambda [\mt{changed} \sim \mt{unchanged}] \\
|
adamc@545
|
1181 \hspace{.1in} \Rightarrow \$(\mt{fold} \; (\lambda \mt{nm} \; (\mt{t} :: \mt{Type}) \; \mt{acc} \; [[\mt{nm}] \sim \mt{acc}] \Rightarrow [\mt{nm} = \mt{sql\_exp} \; [\mt{T} = \mt{changed} \rc \mt{unchanged}] \; [] \; [] \; \mt{t}] \rc \mt{acc}) \; [] \; \mt{changed}) \\
|
adamc@545
|
1182 \hspace{.1in} \to \mt{sql\_table} \; (\mt{changed} \rc \mt{unchanged}) \to \mt{sql\_exp} \; [\mt{T} = \mt{changed} \rc \mt{unchanged}] \; [] \; [] \; \mt{bool} \to \mt{dml}
|
adamc@545
|
1183 \end{array}$$
|
adamc@545
|
1184
|
adamc@545
|
1185 A $\mt{DELETE}$ command is formed from a table and a $\mt{WHERE}$ clause.
|
adamc@545
|
1186 $$\begin{array}{l}
|
adamc@545
|
1187 \mt{val} \; \mt{delete} : \mt{fields} ::: \{\mt{Type}\} \to \mt{sql\_table} \; \mt{fields} \to \mt{sql\_exp} \; [\mt{T} = \mt{fields}] \; [] \; [] \; \mt{bool} \to \mt{dml}
|
adamc@545
|
1188 \end{array}$$
|
adamc@545
|
1189
|
adamc@546
|
1190 \subsubsection{Sequences}
|
adamc@546
|
1191
|
adamc@546
|
1192 SQL sequences are counters with concurrency control, often used to assign unique IDs. Ur/Web supports them via a simple interface. The only way to create a sequence is with the $\mt{sequence}$ declaration form.
|
adamc@546
|
1193
|
adamc@546
|
1194 $$\begin{array}{l}
|
adamc@546
|
1195 \mt{type} \; \mt{sql\_sequence} \\
|
adamc@546
|
1196 \mt{val} \; \mt{nextval} : \mt{sql\_sequence} \to \mt{transaction} \; \mt{int}
|
adamc@546
|
1197 \end{array}$$
|
adamc@546
|
1198
|
adamc@546
|
1199
|
adamc@547
|
1200 \subsection{XML}
|
adamc@547
|
1201
|
adamc@547
|
1202 Ur/Web's library contains an encoding of XML syntax and semantic constraints. We make no effort to follow the standards governing XML schemas. Rather, XML fragments are viewed more as values of ML datatypes, and we only track which tags are allowed inside which other tags.
|
adamc@547
|
1203
|
adamc@547
|
1204 The basic XML type family has arguments respectively indicating the \emph{context} of a fragment, the fields that the fragment expects to be bound on entry (and their types), and the fields that the fragment will bind (and their types). Contexts are a record-based ``poor man's subtyping'' encoding, with each possible set of valid tags corresponding to a different context record. The arguments dealing with field binding are only relevant to HTML forms.
|
adamc@547
|
1205 $$\begin{array}{l}
|
adamc@547
|
1206 \mt{con} \; \mt{xml} :: \{\mt{Unit}\} \to \{\mt{Type}\} \to \{\mt{Type}\} \to \mt{Type}
|
adamc@547
|
1207 \end{array}$$
|
adamc@547
|
1208
|
adamc@547
|
1209 We also have a type family of XML tags, indexed respectively by the record of optional attributes accepted by the tag, the context in which the tag may be placed, the context required of children of the tag, which form fields the tag uses, and which fields the tag defines.
|
adamc@547
|
1210 $$\begin{array}{l}
|
adamc@547
|
1211 \mt{con} \; \mt{tag} :: \{\mt{Type}\} \to \{\mt{Unit}\} \to \{\mt{Unit}\} \to \{\mt{Type}\} \to \{\mt{Type}\} \to \mt{Type}
|
adamc@547
|
1212 \end{array}$$
|
adamc@547
|
1213
|
adamc@547
|
1214 Literal text may be injected into XML as ``CDATA.''
|
adamc@547
|
1215 $$\begin{array}{l}
|
adamc@547
|
1216 \mt{val} \; \mt{cdata} : \mt{ctx} ::: \{\mt{Unit}\} \to \mt{use} ::: \{\mt{Type}\} \to \mt{string} \to \mt{xml} \; \mt{ctx} \; \mt{use} \; []
|
adamc@547
|
1217 \end{array}$$
|
adamc@547
|
1218
|
adamc@547
|
1219 There is a function for producing an XML tree with a particular tag at its root.
|
adamc@547
|
1220 $$\begin{array}{l}
|
adamc@547
|
1221 \mt{val} \; \mt{tag} : \mt{attrsGiven} ::: \{\mt{Type}\} \to \mt{attrsAbsent} ::: \{\mt{Type}\} \to \mt{ctxOuter} ::: \{\mt{Unit}\} \to \mt{ctxInner} ::: \{\mt{Unit}\} \\
|
adamc@547
|
1222 \hspace{.1in} \to \mt{useOuter} ::: \{\mt{Type}\} \to \mt{useInner} ::: \{\mt{Type}\} \to \mt{bindOuter} ::: \{\mt{Type}\} \to \mt{bindInner} ::: \{\mt{Type}\} \\
|
adamc@547
|
1223 \hspace{.1in} \to \lambda [\mt{attrsGiven} \sim \mt{attrsAbsent}] \; [\mt{useOuter} \sim \mt{useInner}] \; [\mt{bindOuter} \sim \mt{bindInner}] \Rightarrow \$\mt{attrsGiven} \\
|
adamc@547
|
1224 \hspace{.1in} \to \mt{tag} \; (\mt{attrsGiven} \rc \mt{attrsAbsent}) \; \mt{ctxOuter} \; \mt{ctxInner} \; \mt{useOuter} \; \mt{bindOuter} \\
|
adamc@547
|
1225 \hspace{.1in} \to \mt{xml} \; \mt{ctxInner} \; \mt{useInner} \; \mt{bindInner} \to \mt{xml} \; \mt{ctxOuter} \; (\mt{useOuter} \rc \mt{useInner}) \; (\mt{bindOuter} \rc \mt{bindInner})
|
adamc@547
|
1226 \end{array}$$
|
adamc@547
|
1227
|
adamc@547
|
1228 Two XML fragments may be concatenated.
|
adamc@547
|
1229 $$\begin{array}{l}
|
adamc@547
|
1230 \mt{val} \; \mt{join} : \mt{ctx} ::: \{\mt{Unit}\} \to \mt{use_1} ::: \{\mt{Type}\} \to \mt{bind_1} ::: \{\mt{Type}\} \to \mt{bind_2} ::: \{\mt{Type}\} \\
|
adamc@547
|
1231 \hspace{.1in} \to \lambda [\mt{use_1} \sim \mt{bind_1}] \; [\mt{bind_1} \sim \mt{bind_2}] \\
|
adamc@547
|
1232 \hspace{.1in} \Rightarrow \mt{xml} \; \mt{ctx} \; \mt{use_1} \; \mt{bind_1} \to \mt{xml} \; \mt{ctx} \; (\mt{use_1} \rc \mt{bind_1}) \; \mt{bind_2} \to \mt{xml} \; \mt{ctx} \; \mt{use_1} \; (\mt{bind_1} \rc \mt{bind_2})
|
adamc@547
|
1233 \end{array}$$
|
adamc@547
|
1234
|
adamc@547
|
1235 Finally, any XML fragment may be updated to ``claim'' to use more form fields than it does.
|
adamc@547
|
1236 $$\begin{array}{l}
|
adamc@547
|
1237 \mt{val} \; \mt{useMore} : \mt{ctx} ::: \{\mt{Unit}\} \to \mt{use_1} ::: \{\mt{Type}\} \to \mt{use_2} ::: \{\mt{Type}\} \to \mt{bind} ::: \{\mt{Type}\} \to \lambda [\mt{use_1} \sim \mt{use_2}] \\
|
adamc@547
|
1238 \hspace{.1in} \Rightarrow \mt{xml} \; \mt{ctx} \; \mt{use_1} \; \mt{bind} \to \mt{xml} \; \mt{ctx} \; (\mt{use_1} \rc \mt{use_2}) \; \mt{bind}
|
adamc@547
|
1239 \end{array}$$
|
adamc@547
|
1240
|
adamc@547
|
1241 We will not list here the different HTML tags and related functions from the standard library. They should be easy enough to understand from the code in \texttt{basis.urs}. The set of tags in the library is not yet claimed to be complete for HTML standards.
|
adamc@547
|
1242
|
adamc@547
|
1243 One last useful function is for aborting any page generation, returning some XML as an error message. This function takes the place of some uses of a general exception mechanism.
|
adamc@547
|
1244 $$\begin{array}{l}
|
adamc@547
|
1245 \mt{val} \; \mt{error} : \mt{t} ::: \mt{Type} \to \mt{xml} \; [\mt{Body}] \; [] \; [] \to \mt{t}
|
adamc@547
|
1246 \end{array}$$
|
adamc@547
|
1247
|
adamc@524
|
1248 \end{document} |