annotate src/coq/Syntax.v @ 976:68eda5b0636d

demo/react works with interpretation
author Adam Chlipala <adamc@hcoop.net>
date Tue, 22 Sep 2009 17:12:20 -0400
parents 75c7a69354d6
children
rev   line source
adamc@615 1 (* Copyright (c) 2009, Adam Chlipala
adamc@615 2 * All rights reserved.
adamc@615 3 *
adamc@615 4 * Redistribution and use in source and binary forms, with or without
adamc@615 5 * modification, are permitted provided that the following conditions are met:
adamc@615 6 *
adamc@615 7 * - Redistributions of source code must retain the above copyright notice,
adamc@615 8 * this list of conditions and the following disclaimer.
adamc@615 9 * - Redistributions in binary form must reproduce the above copyright notice,
adamc@615 10 * this list of conditions and the following disclaimer in the documentation
adamc@615 11 * and/or other materials provided with the distribution.
adamc@615 12 * - The names of contributors may not be used to endorse or promote products
adamc@615 13 * derived from this software without specific prior written permission.
adamc@615 14 *
adamc@615 15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
adamc@615 16 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
adamc@615 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
adamc@615 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
adamc@615 19 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
adamc@615 20 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
adamc@615 21 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
adamc@615 22 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
adamc@615 23 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
adamc@615 24 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
adamc@615 25 * POSSIBILITY OF SUCH DAMAGE.
adamc@615 26 *)
adamc@615 27
adamc@620 28 Require Import Name.
adamc@620 29 Export Name.
adamc@617 30
adamc@615 31 Set Implicit Arguments.
adamc@615 32
adamc@615 33
adamc@615 34 (** Syntax of Featherweight Ur *)
adamc@615 35
adamc@615 36 Inductive kind : Type :=
adamc@615 37 | KType : kind
adamc@615 38 | KName : kind
adamc@615 39 | KArrow : kind -> kind -> kind
adamc@615 40 | KRecord : kind -> kind.
adamc@615 41
adamc@615 42 Section vars.
adamc@615 43 Variable cvar : kind -> Type.
adamc@615 44
adamc@615 45 Inductive con : kind -> Type :=
adamc@615 46 | CVar : forall k, cvar k -> con k
adamc@615 47 | Arrow : con KType -> con KType -> con KType
adamc@615 48 | Poly : forall k, (cvar k -> con KType) -> con KType
adamc@615 49 | CAbs : forall k1 k2, (cvar k1 -> con k2) -> con (KArrow k1 k2)
adamc@615 50 | CApp : forall k1 k2, con (KArrow k1 k2) -> con k1 -> con k2
adamc@615 51 | Name : name -> con KName
adamc@615 52 | TRecord : con (KRecord KType) -> con KType
adamc@615 53 | CEmpty : forall k, con (KRecord k)
adamc@615 54 | CSingle : forall k, con KName -> con k -> con (KRecord k)
adamc@615 55 | CConcat : forall k, con (KRecord k) -> con (KRecord k) -> con (KRecord k)
adamc@617 56 | CMap : forall k1 k2, con (KArrow (KArrow k1 k2) (KArrow (KRecord k1) (KRecord k2)))
adamc@635 57 | TGuarded : forall k, con (KRecord k) -> con (KRecord k) -> con KType -> con KType.
adamc@615 58
adamc@615 59 Variable dvar : forall k, con (KRecord k) -> con (KRecord k) -> Type.
adamc@615 60
adamc@615 61 Section subs.
adamc@615 62 Variable k1 : kind.
adamc@615 63 Variable c1 : con k1.
adamc@615 64
adamc@615 65 Inductive subs : forall k2, (cvar k1 -> con k2) -> con k2 -> Type :=
adamc@615 66 | S_Unchanged : forall k2 (c2 : con k2),
adamc@615 67 subs (fun _ => c2) c2
adamc@615 68 | S_CVar : subs (fun x => CVar x) c1
adamc@615 69 | S_Arrow : forall c2 c3 c2' c3',
adamc@615 70 subs c2 c2'
adamc@615 71 -> subs c3 c3'
adamc@615 72 -> subs (fun x => Arrow (c2 x) (c3 x)) (Arrow c2' c3')
adamc@615 73 | S_Poly : forall k (c2 : cvar k1 -> cvar k -> _) (c2' : cvar k -> _),
adamc@615 74 (forall x', subs (fun x => c2 x x') (c2' x'))
adamc@615 75 -> subs (fun x => Poly (c2 x)) (Poly c2')
adamc@615 76 | S_CAbs : forall k2 k3 (c2 : cvar k1 -> cvar k2 -> con k3) (c2' : cvar k2 -> _),
adamc@615 77 (forall x', subs (fun x => c2 x x') (c2' x'))
adamc@615 78 -> subs (fun x => CAbs (c2 x)) (CAbs c2')
adamc@615 79 | S_CApp : forall k1 k2 (c2 : _ -> con (KArrow k1 k2)) c3 c2' c3',
adamc@615 80 subs c2 c2'
adamc@615 81 -> subs c3 c3'
adamc@615 82 -> subs (fun x => CApp (c2 x) (c3 x)) (CApp c2' c3')
adamc@615 83 | S_TRecord : forall c2 c2',
adamc@615 84 subs c2 c2'
adamc@615 85 -> subs (fun x => TRecord (c2 x)) (TRecord c2')
adamc@615 86 | S_CSingle : forall k2 c2 (c3 : _ -> con k2) c2' c3',
adamc@615 87 subs c2 c2'
adamc@615 88 -> subs c3 c3'
adamc@615 89 -> subs (fun x => CSingle (c2 x) (c3 x)) (CSingle c2' c3')
adamc@615 90 | S_CConcat : forall k2 (c2 c3 : _ -> con (KRecord k2)) c2' c3',
adamc@615 91 subs c2 c2'
adamc@615 92 -> subs c3 c3'
adamc@615 93 -> subs (fun x => CConcat (c2 x) (c3 x)) (CConcat c2' c3')
adamc@635 94 | S_TGuarded : forall k2 (c2 c3 : _ -> con (KRecord k2)) c4 c2' c3' c4',
adamc@615 95 subs c2 c2'
adamc@615 96 -> subs c3 c3'
adamc@615 97 -> subs c4 c4'
adamc@635 98 -> subs (fun x => TGuarded (c2 x) (c3 x) (c4 x)) (TGuarded c2' c3' c4').
adamc@615 99 End subs.
adamc@615 100
adamc@615 101 Inductive disj : forall k, con (KRecord k) -> con (KRecord k) -> Prop :=
adamc@615 102 | DVar : forall k (c1 c2 : con (KRecord k)),
adamc@615 103 dvar c1 c2 -> disj c1 c2
adamc@615 104 | DComm : forall k (c1 c2 : con (KRecord k)),
adamc@615 105 disj c1 c2 -> disj c2 c1
adamc@615 106
adamc@615 107 | DEmpty : forall k c2,
adamc@615 108 disj (CEmpty k) c2
adamc@615 109 | DSingleKeys : forall k X1 X2 (c1 c2 : con k),
adamc@615 110 X1 <> X2
adamc@615 111 -> disj (CSingle (Name X1) c1) (CSingle (Name X2) c2)
adamc@615 112 | DSingleValues : forall k n1 n2 (c1 c2 : con k) k' (c1' c2' : con k'),
adamc@615 113 disj (CSingle n1 c1') (CSingle n2 c2')
adamc@615 114 -> disj (CSingle n1 c1) (CSingle n2 c2)
adamc@615 115
adamc@615 116 | DConcat : forall k (c1 c2 c : con (KRecord k)),
adamc@615 117 disj c1 c
adamc@615 118 -> disj c2 c
adamc@615 119 -> disj (CConcat c1 c2) c
adamc@615 120
adamc@615 121 | DEq : forall k (c1 c2 c1' : con (KRecord k)),
adamc@615 122 disj c1 c2
adamc@617 123 -> deq c1' c1
adamc@615 124 -> disj c1' c2
adamc@615 125
adamc@615 126 with deq : forall k, con k -> con k -> Prop :=
adamc@615 127 | Eq_Beta : forall k1 k2 (c1 : cvar k1 -> con k2) c2 c1',
adamc@615 128 subs c2 c1 c1'
adamc@615 129 -> deq (CApp (CAbs c1) c2) c1'
adamc@615 130 | Eq_Refl : forall k (c : con k),
adamc@615 131 deq c c
adamc@615 132 | Eq_Comm : forall k (c1 c2 : con k),
adamc@615 133 deq c2 c1
adamc@615 134 -> deq c1 c2
adamc@615 135 | Eq_Trans : forall k (c1 c2 c3 : con k),
adamc@615 136 deq c1 c2
adamc@615 137 -> deq c2 c3
adamc@615 138 -> deq c1 c3
adamc@615 139 | Eq_Cong : forall k1 k2 c1 c1' (c2 : cvar k1 -> con k2) c2' c2'',
adamc@615 140 deq c1 c1'
adamc@615 141 -> subs c1 c2 c2'
adamc@615 142 -> subs c1' c2 c2''
adamc@615 143 -> deq c2' c2''
adamc@615 144
adamc@615 145 | Eq_Concat_Empty : forall k c,
adamc@615 146 deq (CConcat (CEmpty k) c) c
adamc@617 147 | Eq_Concat_Comm : forall k (c1 c2 c3 : con (KRecord k)),
adamc@617 148 disj c1 c2
adamc@617 149 -> deq (CConcat c1 c2) (CConcat c2 c1)
adamc@615 150 | Eq_Concat_Assoc : forall k (c1 c2 c3 : con (KRecord k)),
adamc@615 151 deq (CConcat c1 (CConcat c2 c3)) (CConcat (CConcat c1 c2) c3)
adamc@615 152
adamc@617 153 | Eq_Map_Empty : forall k1 k2 f,
adamc@617 154 deq (CApp (CApp (CMap k1 k2) f) (CEmpty _)) (CEmpty _)
adamc@617 155 | Eq_Map_Cons : forall k1 k2 f c1 c2 c3,
adamc@616 156 disj (CSingle c1 c2) c3
adamc@617 157 -> deq (CApp (CApp (CMap k1 k2) f) (CConcat (CSingle c1 c2) c3))
adamc@617 158 (CConcat (CSingle c1 (CApp f c2)) (CApp (CApp (CMap k1 k2) f) c3))
adamc@615 159
adamc@615 160 | Eq_Map_Ident : forall k c,
adamc@617 161 deq (CApp (CApp (CMap k k) (CAbs (fun x => CVar x))) c) c
adamc@615 162 | Eq_Map_Dist : forall k1 k2 f c1 c2,
adamc@617 163 deq (CApp (CApp (CMap k1 k2) f) (CConcat c1 c2))
adamc@617 164 (CConcat (CApp (CApp (CMap k1 k2) f) c1) (CApp (CApp (CMap k1 k2) f) c2))
adamc@617 165 | Eq_Map_Fuse : forall k1 k2 k3 f f' c,
adamc@617 166 deq (CApp (CApp (CMap k2 k3) f')
adamc@617 167 (CApp (CApp (CMap k1 k2) f) c))
adamc@617 168 (CApp (CApp (CMap k1 k3) (CAbs (fun x => CApp f' (CApp f (CVar x))))) c).
adamc@618 169
adamc@618 170 Variable evar : con KType -> Type.
adamc@618 171
adamc@618 172 Inductive exp : con KType -> Type :=
adamc@618 173 | Var : forall t, evar t -> exp t
adamc@618 174 | App : forall dom ran, exp (Arrow dom ran) -> exp dom -> exp ran
adamc@618 175 | Abs : forall dom ran, (evar dom -> exp ran) -> exp (Arrow dom ran)
adamc@618 176 | ECApp : forall k (dom : con k) ran ran', exp (Poly ran) -> subs dom ran ran' -> exp ran'
adamc@618 177 | ECAbs : forall k (ran : cvar k -> _), (forall X, exp (ran X)) -> exp (Poly ran)
adamc@618 178 | Cast : forall t1 t2, deq t1 t2 -> exp t1 -> exp t2
adamc@618 179 | Empty : exp (TRecord (CEmpty _))
adamc@618 180 | Single : forall c t, exp t -> exp (TRecord (CConcat (CSingle c t) (CEmpty _)))
adamc@618 181 | Proj : forall c t c', exp (TRecord (CConcat (CSingle c t) c')) -> exp t
adamc@618 182 | Cut : forall c t c', disj (CSingle c t) c' -> exp (TRecord (CConcat (CSingle c t) c')) -> exp (TRecord c')
adamc@619 183 | Concat : forall c1 c2, exp (TRecord c1) -> exp (TRecord c2) -> exp (TRecord (CConcat c1 c2))
adamc@635 184 | Guarded : forall k (c1 c2 : con (KRecord k)) c, (dvar c1 c2 -> exp c) -> exp (TGuarded c1 c2 c)
adamc@635 185 | GuardedApp : forall k (c1 c2 : con (KRecord k)) t, exp (TGuarded c1 c2 t) -> disj c1 c2 -> exp t.
adamc@615 186 End vars.