annotate src/explify.sml @ 124:541282b81454

Explifying (non-mutual) 'val rec'
author Adam Chlipala <adamc@hcoop.net>
date Thu, 17 Jul 2008 10:13:18 -0400
parents e3041657d653
children 7420fa18d657
rev   line source
adamc@38 1 (* Copyright (c) 2008, Adam Chlipala
adamc@38 2 * All rights reserved.
adamc@38 3 *
adamc@38 4 * Redistribution and use in source and binary forms, with or without
adamc@38 5 * modification, are permitted provided that the following conditions are met:
adamc@38 6 *
adamc@38 7 * - Redistributions of source code must retain the above copyright notice,
adamc@38 8 * this list of conditions and the following disclaimer.
adamc@38 9 * - Redistributions in binary form must reproduce the above copyright notice,
adamc@38 10 * this list of conditions and the following disclaimer in the documentation
adamc@38 11 * and/or other materials provided with the distribution.
adamc@38 12 * - The names of contributors may not be used to endorse or promote products
adamc@38 13 * derived from this software without specific prior written permission.
adamc@38 14 *
adamc@38 15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
adamc@38 16 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
adamc@38 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
adamc@38 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
adamc@38 19 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
adamc@38 20 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
adamc@38 21 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
adamc@38 22 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
adamc@38 23 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
adamc@38 24 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
adamc@38 25 * POSSIBILITY OF SUCH DAMAGE.
adamc@38 26 *)
adamc@38 27
adamc@38 28 structure Explify :> EXPLIFY = struct
adamc@38 29
adamc@38 30 structure EM = ErrorMsg
adamc@38 31 structure L = Elab
adamc@38 32 structure L' = Expl
adamc@38 33
adamc@38 34 fun explifyKind (k, loc) =
adamc@38 35 case k of
adamc@38 36 L.KType => (L'.KType, loc)
adamc@38 37 | L.KArrow (k1, k2) => (L'.KArrow (explifyKind k1, explifyKind k2), loc)
adamc@38 38 | L.KName => (L'.KName, loc)
adamc@38 39 | L.KRecord k => (L'.KRecord (explifyKind k), loc)
adamc@38 40
adamc@87 41 | L.KUnit => (L'.KUnit, loc)
adamc@82 42
adamc@38 43 | L.KError => raise Fail ("explifyKind: KError at " ^ EM.spanToString loc)
adamc@76 44 | L.KUnif (_, _, ref (SOME k)) => explifyKind k
adamc@38 45 | L.KUnif _ => raise Fail ("explifyKind: KUnif at " ^ EM.spanToString loc)
adamc@38 46
adamc@38 47 fun explifyCon (c, loc) =
adamc@38 48 case c of
adamc@38 49 L.TFun (t1, t2) => (L'.TFun (explifyCon t1, explifyCon t2), loc)
adamc@38 50 | L.TCFun (_, x, k, t) => (L'.TCFun (x, explifyKind k, explifyCon t), loc)
adamc@85 51 | L.TDisjoint (_, _, c) => explifyCon c
adamc@38 52 | L.TRecord c => (L'.TRecord (explifyCon c), loc)
adamc@38 53
adamc@38 54 | L.CRel n => (L'.CRel n, loc)
adamc@38 55 | L.CNamed n => (L'.CNamed n, loc)
adamc@38 56 | L.CModProj (m, ms, x) => (L'.CModProj (m, ms, x), loc)
adamc@38 57
adamc@38 58 | L.CApp (c1, c2) => (L'.CApp (explifyCon c1, explifyCon c2), loc)
adamc@38 59 | L.CAbs (x, k, c) => (L'.CAbs (x, explifyKind k, explifyCon c), loc)
adamc@85 60 | L.CDisjoint (_, _, c) => explifyCon c
adamc@38 61
adamc@38 62 | L.CName s => (L'.CName s, loc)
adamc@38 63
adamc@38 64 | L.CRecord (k, xcs) => (L'.CRecord (explifyKind k, map (fn (c1, c2) => (explifyCon c1, explifyCon c2)) xcs), loc)
adamc@38 65 | L.CConcat (c1, c2) => (L'.CConcat (explifyCon c1, explifyCon c2), loc)
adamc@68 66 | L.CFold (dom, ran) => (L'.CFold (explifyKind dom, explifyKind ran), loc)
adamc@38 67
adamc@87 68 | L.CUnit => (L'.CUnit, loc)
adamc@82 69
adamc@38 70 | L.CError => raise Fail ("explifyCon: CError at " ^ EM.spanToString loc)
adamc@76 71 | L.CUnif (_, _, _, ref (SOME c)) => explifyCon c
adamc@38 72 | L.CUnif _ => raise Fail ("explifyCon: CUnif at " ^ EM.spanToString loc)
adamc@38 73
adamc@38 74 fun explifyExp (e, loc) =
adamc@38 75 case e of
adamc@38 76 L.EPrim p => (L'.EPrim p, loc)
adamc@38 77 | L.ERel n => (L'.ERel n, loc)
adamc@38 78 | L.ENamed n => (L'.ENamed n, loc)
adamc@38 79 | L.EModProj (m, ms, x) => (L'.EModProj (m, ms, x), loc)
adamc@38 80 | L.EApp (e1, e2) => (L'.EApp (explifyExp e1, explifyExp e2), loc)
adamc@38 81 | L.EAbs (x, dom, ran, e1) => (L'.EAbs (x, explifyCon dom, explifyCon ran, explifyExp e1), loc)
adamc@38 82 | L.ECApp (e1, c) => (L'.ECApp (explifyExp e1, explifyCon c), loc)
adamc@38 83 | L.ECAbs (_, x, k, e1) => (L'.ECAbs (x, explifyKind k, explifyExp e1), loc)
adamc@38 84
adamc@38 85 | L.ERecord xes => (L'.ERecord (map (fn (c, e, t) => (explifyCon c, explifyExp e, explifyCon t)) xes), loc)
adamc@38 86 | L.EField (e1, c, {field, rest}) => (L'.EField (explifyExp e1, explifyCon c,
adamc@38 87 {field = explifyCon field, rest = explifyCon rest}), loc)
adamc@72 88 | L.EFold k => (L'.EFold (explifyKind k), loc)
adamc@38 89
adamc@38 90 | L.EError => raise Fail ("explifyExp: EError at " ^ EM.spanToString loc)
adamc@38 91
adamc@38 92 fun explifySgi (sgi, loc) =
adamc@38 93 case sgi of
adamc@88 94 L.SgiConAbs (x, n, k) => SOME (L'.SgiConAbs (x, n, explifyKind k), loc)
adamc@88 95 | L.SgiCon (x, n, k, c) => SOME (L'.SgiCon (x, n, explifyKind k, explifyCon c), loc)
adamc@88 96 | L.SgiVal (x, n, c) => SOME (L'.SgiVal (x, n, explifyCon c), loc)
adamc@88 97 | L.SgiStr (x, n, sgn) => SOME (L'.SgiStr (x, n, explifySgn sgn), loc)
adamc@88 98 | L.SgiSgn (x, n, sgn) => SOME (L'.SgiSgn (x, n, explifySgn sgn), loc)
adamc@88 99 | L.SgiConstraint _ => NONE
adamc@38 100
adamc@38 101 and explifySgn (sgn, loc) =
adamc@38 102 case sgn of
adamc@88 103 L.SgnConst sgis => (L'.SgnConst (List.mapPartial explifySgi sgis), loc)
adamc@38 104 | L.SgnVar n => (L'.SgnVar n, loc)
adamc@45 105 | L.SgnFun (m, n, dom, ran) => (L'.SgnFun (m, n, explifySgn dom, explifySgn ran), loc)
adamc@45 106 | L.SgnWhere (sgn, x, c) => (L'.SgnWhere (explifySgn sgn, x, explifyCon c), loc)
adamc@64 107 | L.SgnProj x => (L'.SgnProj x, loc)
adamc@38 108 | L.SgnError => raise Fail ("explifySgn: SgnError at " ^ EM.spanToString loc)
adamc@38 109
adamc@38 110 fun explifyDecl (d, loc : EM.span) =
adamc@38 111 case d of
adamc@88 112 L.DCon (x, n, k, c) => SOME (L'.DCon (x, n, explifyKind k, explifyCon c), loc)
adamc@88 113 | L.DVal (x, n, t, e) => SOME (L'.DVal (x, n, explifyCon t, explifyExp e), loc)
adamc@124 114 | L.DValRec vis => SOME (L'.DValRec (map (fn (x, n, t, e) => (x, n, explifyCon t, explifyExp e)) vis), loc)
adamc@38 115
adamc@88 116 | L.DSgn (x, n, sgn) => SOME (L'.DSgn (x, n, explifySgn sgn), loc)
adamc@88 117 | L.DStr (x, n, sgn, str) => SOME (L'.DStr (x, n, explifySgn sgn, explifyStr str), loc)
adamc@88 118 | L.DFfiStr (x, n, sgn) => SOME (L'.DFfiStr (x, n, explifySgn sgn), loc)
adamc@88 119 | L.DConstraint (c1, c2) => NONE
adamc@109 120 | L.DExport (en, sgn, str) => SOME (L'.DExport (en, explifySgn sgn, explifyStr str), loc)
adamc@38 121
adamc@38 122 and explifyStr (str, loc) =
adamc@38 123 case str of
adamc@88 124 L.StrConst ds => (L'.StrConst (List.mapPartial explifyDecl ds), loc)
adamc@38 125 | L.StrVar n => (L'.StrVar n, loc)
adamc@38 126 | L.StrProj (str, s) => (L'.StrProj (explifyStr str, s), loc)
adamc@45 127 | L.StrFun (m, n, dom, ran, str) => (L'.StrFun (m, n, explifySgn dom, explifySgn ran, explifyStr str), loc)
adamc@45 128 | L.StrApp (str1, str2) => (L'.StrApp (explifyStr str1, explifyStr str2), loc)
adamc@38 129 | L.StrError => raise Fail ("explifyStr: StrError at " ^ EM.spanToString loc)
adamc@38 130
adamc@88 131 val explify = List.mapPartial explifyDecl
adamc@38 132
adamc@38 133 end