adam@1500
|
1 (* Chapter 1: Introduction *)
|
adam@1494
|
2
|
adam@1497
|
3 (* begin hide *)
|
adam@1497
|
4 val show_string = mkShow (fn s => "\"" ^ s ^ "\"")
|
adam@1497
|
5 (* end *)
|
adam@1495
|
6
|
adam@1497
|
7 (* This tutorial by <a href="http://adam.chlipala.net/">Adam Chlipala</a> is licensed under a <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/">Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Unported License</a>. *)
|
adam@1493
|
8
|
adam@1511
|
9 (* This is a tutorial for the <a href="http://www.impredicative.com/ur/">Ur/Web</a> programming language.<br>
|
adam@1510
|
10 <br>
|
adam@1513
|
11 Briefly, <b>Ur</b> is a programming language in the tradition of <a target="_top" href="http://en.wikipedia.org/wiki/ML_(programming_language)">ML</a> and <a target="_top" href="http://en.wikipedia.org/wiki/Haskell_(programming_language)">Haskell</a>, but featuring a significantly richer type system. Ur is <a target="_top" href="http://en.wikipedia.org/wiki/Functional_programming">functional</a>, <a target="_top" href="http://en.wikipedia.org/wiki/Purely_functional">pure</a>, <a target="_top" href="http://en.wikipedia.org/wiki/Statically-typed">statically-typed</a>, and <a target="_top" href="http://en.wikipedia.org/wiki/Strict_programming_language">strict</a>. Ur supports a powerful kind of <b><a target="_top" href="http://en.wikipedia.org/wiki/Metaprogramming">metaprogramming</a></b> based on <b><a target=_"top" href="http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.6387">row types</a></b>.<br>
|
adam@1510
|
12 <br>
|
adam@1510
|
13 <b>Ur/Web</b> is Ur plus a special standard library and associated rules for parsing and optimization. Ur/Web supports construction of dynamic web applications backed by SQL databases, with mixed server-side and client-side applications generated from source code in one language.<br>
|
adam@1510
|
14 <br>
|
adam@1511
|
15 Ur inherits its foundation from ML and Haskell, then going further to add fancier stuff. This first chapter of the tutorial reviews the key ML and Haskell features, giving their syntax in Ur. I do assume reading familiarity with ML and Haskell and won't dwell too much on explaining the imported features.<br>
|
adam@1511
|
16 <br>
|
adam@1511
|
17 For information on compiling applications (and for some full example applications), see the intro page of <a href="http://www.impredicative.com/ur/demo/">the online demo</a>, with further detail available in <a href="http://www.impredicative.com/ur/manual.pdf">the reference manual</a>. *)
|
adam@1497
|
18
|
adam@1497
|
19 (* * Basics *)
|
adam@1497
|
20
|
adam@1501
|
21 (* Let's start with features shared with both ML and Haskell. First, we have the basic numeric, string, and Boolean stuff. (In the following examples, <tt>==</tt> is used to indicate the result of evaluating an expression. It's not valid Ur syntax!) *)
|
adam@1493
|
22
|
adam@1493
|
23 (* begin eval *)
|
adam@1497
|
24 1 + 1
|
adam@1493
|
25 (* end *)
|
adam@1493
|
26
|
adam@1497
|
27 (* begin eval *)
|
adam@1497
|
28 1.2 + 3.4
|
adam@1497
|
29 (* end *)
|
adam@1496
|
30
|
adam@1497
|
31 (* begin eval *)
|
adam@1497
|
32 "Hello " ^ "world!"
|
adam@1497
|
33 (* end *)
|
adam@1497
|
34
|
adam@1497
|
35 (* begin eval *)
|
adam@1497
|
36 1 + 1 < 6
|
adam@1497
|
37 (* end *)
|
adam@1497
|
38
|
adam@1497
|
39 (* begin eval *)
|
adam@1497
|
40 0.0 < -3.2
|
adam@1497
|
41 (* end *)
|
adam@1497
|
42
|
adam@1497
|
43 (* begin eval *)
|
adam@1497
|
44 "Hello" = "Goodbye" || (1 * 2 <> 8 && True <> False)
|
adam@1497
|
45 (* end *)
|
adam@1497
|
46
|
adam@1497
|
47 (* We also have function definitions with type inference for parameter and return types. *)
|
adam@1497
|
48
|
adam@1497
|
49 fun double n = 2 * n
|
adam@1497
|
50
|
adam@1497
|
51 (* begin eval *)
|
adam@1497
|
52 double 8
|
adam@1497
|
53 (* end *)
|
adam@1497
|
54
|
adam@1497
|
55 fun fact n = if n = 0 then 1 else n * fact (n - 1)
|
adam@1497
|
56
|
adam@1497
|
57 (* begin eval *)
|
adam@1497
|
58 fact 5
|
adam@1497
|
59 (* end *)
|
adam@1497
|
60
|
adam@1502
|
61 fun isEven n = n = 0 || isOdd (n - 1)
|
adam@1502
|
62 and isOdd n = n = 1 || isEven (n - 1)
|
adam@1502
|
63
|
adam@1502
|
64 (* begin eval *)
|
adam@1502
|
65 isEven 32
|
adam@1502
|
66 (* end *)
|
adam@1502
|
67
|
adam@1502
|
68
|
adam@1497
|
69 (* Of course we have anonymous functions, too. *)
|
adam@1497
|
70
|
adam@1497
|
71 val inc = fn x => x + 1
|
adam@1497
|
72
|
adam@1497
|
73 (* begin eval *)
|
adam@1497
|
74 inc 3
|
adam@1497
|
75 (* end *)
|
adam@1497
|
76
|
adam@1497
|
77 (* Then there's parametric polymorphism. Unlike in ML and Haskell, polymorphic functions in Ur/Web often require full type annotations. That is because more advanced features (which we'll get to in the next chapter) make Ur type inference undecidable. *)
|
adam@1497
|
78
|
adam@1497
|
79 fun id [a] (x : a) : a = x
|
adam@1497
|
80
|
adam@1497
|
81 (* begin eval *)
|
adam@1497
|
82 id "hi"
|
adam@1497
|
83 (* end *)
|
adam@1497
|
84
|
adam@1497
|
85 fun compose [a] [b] [c] (f : b -> c) (g : a -> b) (x : a) : c = f (g x)
|
adam@1497
|
86
|
adam@1497
|
87 (* begin eval *)
|
adam@1497
|
88 compose inc inc 3
|
adam@1497
|
89 (* end *)
|
adam@1498
|
90
|
adam@1502
|
91 (* The <tt>option</tt> type family is like ML's <tt>option</tt> or Haskell's <tt>Maybe</tt>. We also have a <tt>case</tt> expression form lifted directly from ML. Note that, while Ur follows most syntactic conventions of ML, one key difference is that type family names appear before their arguments, as in Haskell. *)
|
adam@1498
|
92
|
adam@1498
|
93 fun predecessor (n : int) : option int = if n >= 1 then Some (n - 1) else None
|
adam@1498
|
94
|
adam@1498
|
95 (* begin hide *)
|
adam@1498
|
96 fun show_option [t] (_ : show t) : show (option t) =
|
adam@1498
|
97 mkShow (fn x => case x of
|
adam@1498
|
98 None => "None"
|
adam@1498
|
99 | Some x => "Some(" ^ show x ^ ")")
|
adam@1498
|
100 (* end *)
|
adam@1498
|
101
|
adam@1498
|
102 (* begin eval *)
|
adam@1498
|
103 predecessor 6
|
adam@1498
|
104 (* end *)
|
adam@1498
|
105
|
adam@1498
|
106 (* begin eval *)
|
adam@1498
|
107 predecessor 0
|
adam@1498
|
108 (* end *)
|
adam@1499
|
109
|
adam@1499
|
110 (* Naturally, there are lists, too! *)
|
adam@1499
|
111
|
adam@1499
|
112 val numbers : list int = 1 :: 2 :: 3 :: []
|
adam@1499
|
113 val strings : list string = "a" :: "bc" :: []
|
adam@1499
|
114
|
adam@1499
|
115 fun length [a] (ls : list a) : int =
|
adam@1499
|
116 case ls of
|
adam@1499
|
117 [] => 0
|
adam@1499
|
118 | _ :: ls' => 1 + length ls'
|
adam@1499
|
119
|
adam@1499
|
120 (* begin eval *)
|
adam@1499
|
121 length numbers
|
adam@1499
|
122 (* end *)
|
adam@1499
|
123
|
adam@1499
|
124 (* begin eval *)
|
adam@1499
|
125 length strings
|
adam@1499
|
126 (* end *)
|
adam@1500
|
127
|
adam@1502
|
128 (* And lists make a good setting for demonstrating higher-order functions and local functions. (This example also introduces one idiosyncrasy of Ur, which is that <tt>map</tt> is a keyword, so we name our "map" function <tt>mp</tt>.) *)
|
adam@1500
|
129
|
adam@1500
|
130 (* begin hide *)
|
adam@1500
|
131 fun show_list [t] (_ : show t) : show (list t) =
|
adam@1500
|
132 mkShow (let
|
adam@1500
|
133 fun shower (ls : list t) =
|
adam@1500
|
134 case ls of
|
adam@1500
|
135 [] => "[]"
|
adam@1500
|
136 | x :: ls' => show x ^ " :: " ^ shower ls'
|
adam@1500
|
137 in
|
adam@1500
|
138 shower
|
adam@1500
|
139 end)
|
adam@1500
|
140 (* end *)
|
adam@1500
|
141
|
adam@1500
|
142 fun mp [a] [b] (f : a -> b) : list a -> list b =
|
adam@1500
|
143 let
|
adam@1500
|
144 fun loop (ls : list a) =
|
adam@1500
|
145 case ls of
|
adam@1500
|
146 [] => []
|
adam@1500
|
147 | x :: ls' => f x :: loop ls'
|
adam@1500
|
148 in
|
adam@1500
|
149 loop
|
adam@1500
|
150 end
|
adam@1500
|
151
|
adam@1500
|
152 (* begin eval *)
|
adam@1500
|
153 mp inc numbers
|
adam@1500
|
154 (* end *)
|
adam@1500
|
155
|
adam@1500
|
156 (* begin eval *)
|
adam@1500
|
157 mp (fn s => s ^ "!") strings
|
adam@1500
|
158 (* end *)
|
adam@1500
|
159
|
adam@1500
|
160 (* We can define our own polymorphic datatypes and write higher-order functions over them. *)
|
adam@1500
|
161
|
adam@1500
|
162 datatype tree a = Leaf of a | Node of tree a * tree a
|
adam@1500
|
163
|
adam@1500
|
164 (* begin hide *)
|
adam@1500
|
165 fun show_tree [t] (_ : show t) : show (tree t) =
|
adam@1500
|
166 mkShow (let
|
adam@1500
|
167 fun shower (t : tree t) =
|
adam@1500
|
168 case t of
|
adam@1500
|
169 Leaf x => "Leaf(" ^ show x ^ ")"
|
adam@1500
|
170 | Node (t1, t2) => "Node(" ^ shower t1 ^ ", " ^ shower t2 ^ ")"
|
adam@1500
|
171 in
|
adam@1500
|
172 shower
|
adam@1500
|
173 end)
|
adam@1500
|
174 (* end *)
|
adam@1500
|
175
|
adam@1500
|
176 fun size [a] (t : tree a) : int =
|
adam@1500
|
177 case t of
|
adam@1500
|
178 Leaf _ => 1
|
adam@1500
|
179 | Node (t1, t2) => size t1 + size t2
|
adam@1500
|
180
|
adam@1500
|
181 (* begin eval *)
|
adam@1500
|
182 size (Node (Leaf 0, Leaf 1))
|
adam@1500
|
183 (* end *)
|
adam@1500
|
184
|
adam@1500
|
185 (* begin eval *)
|
adam@1500
|
186 size (Node (Leaf 1.2, Node (Leaf 3.4, Leaf 4.5)))
|
adam@1500
|
187 (* end *)
|
adam@1500
|
188
|
adam@1500
|
189 fun tmap [a] [b] (f : a -> b) : tree a -> tree b =
|
adam@1500
|
190 let
|
adam@1500
|
191 fun loop (t : tree a) : tree b =
|
adam@1500
|
192 case t of
|
adam@1500
|
193 Leaf x => Leaf (f x)
|
adam@1500
|
194 | Node (t1, t2) => Node (loop t1, loop t2)
|
adam@1500
|
195 in
|
adam@1500
|
196 loop
|
adam@1500
|
197 end
|
adam@1500
|
198
|
adam@1500
|
199 (* begin eval *)
|
adam@1500
|
200 tmap inc (Node (Leaf 0, Leaf 1))
|
adam@1500
|
201 (* end *)
|
adam@1500
|
202
|
adam@1501
|
203 (* We also have anonymous record types, as in Standard ML. The next chapter will show that there is quite a lot more going on here with records than in SML or OCaml, but we'll stick to the basics in this chapter. We will add one tantalizing hint of what's to come by demonstrating the record concatention operator <tt>++</tt> and the record field removal operator <tt>--</tt>. *)
|
adam@1500
|
204
|
adam@1500
|
205 val x = { A = 0, B = 1.2, C = "hi", D = True }
|
adam@1500
|
206
|
adam@1500
|
207 (* begin eval *)
|
adam@1500
|
208 x.A
|
adam@1500
|
209 (* end *)
|
adam@1500
|
210
|
adam@1500
|
211 (* begin eval *)
|
adam@1500
|
212 x.C
|
adam@1500
|
213 (* end *)
|
adam@1500
|
214
|
adam@1500
|
215 type myRecord = { A : int, B : float, C : string, D : bool }
|
adam@1500
|
216
|
adam@1500
|
217 fun getA (r : myRecord) = r.A
|
adam@1500
|
218
|
adam@1500
|
219 (* begin eval *)
|
adam@1500
|
220 getA x
|
adam@1500
|
221 (* end *)
|
adam@1500
|
222
|
adam@1500
|
223 (* begin eval *)
|
adam@1500
|
224 getA (x -- #A ++ {A = 4})
|
adam@1500
|
225 (* end *)
|
adam@1500
|
226
|
adam@1500
|
227 val y = { A = "uhoh", B = 2.3, C = "bye", D = False }
|
adam@1500
|
228
|
adam@1500
|
229 (* begin eval *)
|
adam@1500
|
230 getA (y -- #A ++ {A = 5})
|
adam@1500
|
231 (* end *)
|
adam@1501
|
232
|
adam@1501
|
233
|
adam@1501
|
234 (* * Borrowed from ML *)
|
adam@1501
|
235
|
adam@1502
|
236 (* Ur includes an ML-style <b>module system</b>. The most basic use case involves packaging abstract types with their "methods." *)
|
adam@1501
|
237
|
adam@1501
|
238 signature COUNTER = sig
|
adam@1501
|
239 type t
|
adam@1501
|
240 val zero : t
|
adam@1501
|
241 val increment : t -> t
|
adam@1501
|
242 val toInt : t -> int
|
adam@1501
|
243 end
|
adam@1501
|
244
|
adam@1501
|
245 structure Counter : COUNTER = struct
|
adam@1501
|
246 type t = int
|
adam@1502
|
247 val zero = 0
|
adam@1501
|
248 val increment = plus 1
|
adam@1501
|
249 fun toInt x = x
|
adam@1501
|
250 end
|
adam@1501
|
251
|
adam@1501
|
252 (* begin eval *)
|
adam@1501
|
253 Counter.toInt (Counter.increment Counter.zero)
|
adam@1501
|
254 (* end *)
|
adam@1501
|
255
|
adam@1502
|
256 (* We may package not just abstract types, but also abstract type families. Here we see our first use of the <tt>con</tt> keyword, which stands for <b>constructor</b>. Constructors are a generalization of types to include other "compile-time things"; for instance, basic type families, which are assigned the <b>kind</b> <tt>Type -> Type</tt>. Kinds are to constructors as types are to normal values. We also see how to write the type of a polymorphic function, using the <tt>:::</tt> syntax for type variable binding. This <tt>:::</tt> differs from the <tt>::</tt> used with the <tt>con</tt> keyword because it marks a type parameter as implicit, so that it need not be supplied explicitly at call sites. Such an option is the only one available in ML and Haskell, but, in the next chapter, we'll meet cases where it is appropriate to use explicit constructor parameters. *)
|
adam@1501
|
257
|
adam@1501
|
258 signature STACK = sig
|
adam@1501
|
259 con t :: Type -> Type
|
adam@1501
|
260 val empty : a ::: Type -> t a
|
adam@1501
|
261 val push : a ::: Type -> t a -> a -> t a
|
adam@1501
|
262 val pop : a ::: Type -> t a -> option a
|
adam@1501
|
263 end
|
adam@1501
|
264
|
adam@1501
|
265 structure Stack : STACK = struct
|
adam@1501
|
266 con t = list
|
adam@1501
|
267 val empty [a] = []
|
adam@1501
|
268 fun push [a] (t : t a) (x : a) = x :: t
|
adam@1501
|
269 fun pop [a] (t : t a) = case t of
|
adam@1501
|
270 [] => None
|
adam@1501
|
271 | x :: _ => Some x
|
adam@1501
|
272 end
|
adam@1501
|
273
|
adam@1501
|
274 (* begin eval *)
|
adam@1501
|
275 Stack.pop (Stack.push (Stack.push Stack.empty "A") "B")
|
adam@1501
|
276 (* end *)
|
adam@1501
|
277
|
adam@1501
|
278 (* Ur also inherits the ML concept of <b>functors</b>, which are functions from modules to modules. *)
|
adam@1501
|
279
|
adam@1501
|
280 datatype order = Less | Equal | Greater
|
adam@1501
|
281
|
adam@1501
|
282 signature COMPARABLE = sig
|
adam@1501
|
283 type t
|
adam@1501
|
284 val compare : t -> t -> order
|
adam@1501
|
285 end
|
adam@1501
|
286
|
adam@1501
|
287 signature DICTIONARY = sig
|
adam@1501
|
288 type key
|
adam@1501
|
289 con t :: Type -> Type
|
adam@1501
|
290 val empty : a ::: Type -> t a
|
adam@1501
|
291 val insert : a ::: Type -> t a -> key -> a -> t a
|
adam@1501
|
292 val lookup : a ::: Type -> t a -> key -> option a
|
adam@1501
|
293 end
|
adam@1501
|
294
|
adam@1501
|
295 functor BinarySearchTree(M : COMPARABLE) : DICTIONARY where type key = M.t = struct
|
adam@1501
|
296 type key = M.t
|
adam@1501
|
297 datatype t a = Leaf | Node of t a * key * a * t a
|
adam@1501
|
298
|
adam@1501
|
299 val empty [a] = Leaf
|
adam@1501
|
300
|
adam@1501
|
301 fun insert [a] (t : t a) (k : key) (v : a) : t a =
|
adam@1501
|
302 case t of
|
adam@1501
|
303 Leaf => Node (Leaf, k, v, Leaf)
|
adam@1501
|
304 | Node (left, k', v', right) =>
|
adam@1502
|
305 case M.compare k k' of
|
adam@1501
|
306 Equal => Node (left, k, v, right)
|
adam@1501
|
307 | Less => Node (insert left k v, k', v', right)
|
adam@1501
|
308 | Greater => Node (left, k', v', insert right k v)
|
adam@1501
|
309
|
adam@1501
|
310 fun lookup [a] (t : t a) (k : key) : option a =
|
adam@1501
|
311 case t of
|
adam@1501
|
312 Leaf => None
|
adam@1501
|
313 | Node (left, k', v, right) =>
|
adam@1502
|
314 case M.compare k k' of
|
adam@1501
|
315 Equal => Some v
|
adam@1501
|
316 | Less => lookup left k
|
adam@1501
|
317 | Greater => lookup right k
|
adam@1501
|
318 end
|
adam@1501
|
319
|
adam@1501
|
320 structure IntTree = BinarySearchTree(struct
|
adam@1501
|
321 type t = int
|
adam@1501
|
322 fun compare n1 n2 =
|
adam@1501
|
323 if n1 = n2 then
|
adam@1501
|
324 Equal
|
adam@1501
|
325 else if n1 < n2 then
|
adam@1501
|
326 Less
|
adam@1501
|
327 else
|
adam@1501
|
328 Greater
|
adam@1501
|
329 end)
|
adam@1501
|
330
|
adam@1501
|
331 (* begin eval *)
|
adam@1501
|
332 IntTree.lookup (IntTree.insert (IntTree.insert IntTree.empty 0 "A") 1 "B") 1
|
adam@1501
|
333 (* end *)
|
adam@1501
|
334
|
adam@1501
|
335 (* It is sometimes handy to rebind modules to shorter names. *)
|
adam@1501
|
336
|
adam@1501
|
337 structure IT = IntTree
|
adam@1501
|
338
|
adam@1501
|
339 (* begin eval *)
|
adam@1501
|
340 IT.lookup (IT.insert (IT.insert IT.empty 0 "A") 1 "B") 0
|
adam@1501
|
341 (* end *)
|
adam@1501
|
342
|
adam@1501
|
343 (* One can even use the <tt>open</tt> command to import a module's namespace wholesale, though this can make it harder for someone reading code to tell which identifiers come from which modules. *)
|
adam@1501
|
344
|
adam@1501
|
345 open IT
|
adam@1501
|
346
|
adam@1501
|
347 (* begin eval *)
|
adam@1501
|
348 lookup (insert (insert empty 0 "A") 1 "B") 2
|
adam@1501
|
349 (* end *)
|
adam@1502
|
350
|
adam@1502
|
351 (* Ur adopts OCaml's approach to splitting projects across source files. When a project contains files <tt>foo.ur</tt> and <tt>foo.urs</tt>, these are taken as defining a module named <tt>Foo</tt> whose signature is drawn from <tt>foo.urs</tt> and whose implementation is drawn from <tt>foo.ur</tt>. If <tt>foo.ur</tt> exists without <tt>foo.urs</tt>, then module <tt>Foo</tt> is defined without an explicit signature, so that it is assigned its <b>principal signature</b>, which exposes all typing details without abstraction. *)
|
adam@1502
|
352
|
adam@1502
|
353
|
adam@1502
|
354 (* * Borrowed from Haskell *)
|
adam@1502
|
355
|
adam@1502
|
356 (* Ur includes a take on <b>type classes</b>. For instance, here is a generic "max" function that relies on a type class <tt>ord</tt>. Notice that the type class membership witness is treated like an ordinary function parameter, though we don't assign it a name here, because type inference figures out where it should be used. The more advanced examples of the next chapter will include cases where we manipulate type class witnesses explicitly. *)
|
adam@1502
|
357
|
adam@1502
|
358 fun max [a] (_ : ord a) (x : a) (y : a) : a =
|
adam@1502
|
359 if x < y then
|
adam@1502
|
360 y
|
adam@1502
|
361 else
|
adam@1502
|
362 x
|
adam@1502
|
363
|
adam@1502
|
364 (* begin eval *)
|
adam@1502
|
365 max 1 2
|
adam@1502
|
366 (* end *)
|
adam@1502
|
367
|
adam@1502
|
368 (* begin eval *)
|
adam@1502
|
369 max "ABC" "ABA"
|
adam@1502
|
370 (* end *)
|
adam@1502
|
371
|
adam@1502
|
372 (* The idiomatic way to define a new type class is to stash it inside a module, like in this example: *)
|
adam@1502
|
373
|
adam@1502
|
374 signature DOUBLE = sig
|
adam@1502
|
375 class double
|
adam@1502
|
376 val double : a ::: Type -> double a -> a -> a
|
adam@1502
|
377 val mkDouble : a ::: Type -> (a -> a) -> double a
|
adam@1502
|
378
|
adam@1502
|
379 val double_int : double int
|
adam@1502
|
380 val double_string : double string
|
adam@1502
|
381 end
|
adam@1502
|
382
|
adam@1502
|
383 structure Double : DOUBLE = struct
|
adam@1502
|
384 class double a = a -> a
|
adam@1502
|
385
|
adam@1502
|
386 fun double [a] (f : double a) (x : a) : a = f x
|
adam@1502
|
387 fun mkDouble [a] (f : a -> a) : double a = f
|
adam@1502
|
388
|
adam@1502
|
389 val double_int = mkDouble (times 2)
|
adam@1502
|
390 val double_string = mkDouble (fn s => s ^ s)
|
adam@1502
|
391 end
|
adam@1502
|
392
|
adam@1502
|
393 open Double
|
adam@1502
|
394
|
adam@1502
|
395 (* begin eval *)
|
adam@1502
|
396 double 13
|
adam@1502
|
397 (* end *)
|
adam@1502
|
398
|
adam@1502
|
399 (* begin eval *)
|
adam@1502
|
400 double "ho"
|
adam@1502
|
401 (* end *)
|
adam@1502
|
402
|
adam@1502
|
403 val double_float = mkDouble (times 2.0)
|
adam@1502
|
404
|
adam@1502
|
405 (* begin eval *)
|
adam@1502
|
406 double 2.3
|
adam@1502
|
407 (* end *)
|
adam@1502
|
408
|
adam@1502
|
409 (* That example had a mix of instances defined with a class and instances defined outside its module. Its possible to create <b>closed type classes</b> simply by omitting from the module an instance creation function like <tt>mkDouble</tt>. This way, only the instances you decide on may be allowed, which enables you to enforce program-wide invariants over instances. *)
|
adam@1502
|
410
|
adam@1502
|
411 signature OK_TYPE = sig
|
adam@1502
|
412 class ok
|
adam@1502
|
413 val importantOperation : a ::: Type -> ok a -> a -> string
|
adam@1502
|
414 val ok_int : ok int
|
adam@1502
|
415 val ok_float : ok float
|
adam@1502
|
416 end
|
adam@1502
|
417
|
adam@1502
|
418 structure OkType : OK_TYPE = struct
|
adam@1502
|
419 class ok a = unit
|
adam@1502
|
420 fun importantOperation [a] (_ : ok a) (_ : a) = "You found an OK value!"
|
adam@1502
|
421 val ok_int = ()
|
adam@1502
|
422 val ok_float = ()
|
adam@1502
|
423 end
|
adam@1502
|
424
|
adam@1502
|
425 open OkType
|
adam@1502
|
426
|
adam@1502
|
427 (* begin eval *)
|
adam@1502
|
428 importantOperation 13
|
adam@1502
|
429 (* end *)
|
adam@1502
|
430
|
adam@1502
|
431 (* Like Haskell, Ur supports the more general notion of <b>constructor classes</b>, whose instances may be parameterized over constructors with kinds beside <tt>Type</tt>. Also like in Haskell, the flagship constructor class is <tt>monad</tt>. Ur/Web's counterpart of Haskell's <tt>IO</tt> monad is <tt>transaction</tt>, which indicates the tight coupling with transactional execution in server-side code. Just as in Haskell, <tt>transaction</tt> must be used to create side-effecting actions, since Ur is purely functional (but has eager evaluation). Here is a quick example transaction, showcasing Ur's variation on Haskell <tt>do</tt> notation. *)
|
adam@1502
|
432
|
adam@1502
|
433 val readBack : transaction int =
|
adam@1502
|
434 src <- source 0;
|
adam@1502
|
435 set src 1;
|
adam@1502
|
436 n <- get src;
|
adam@1502
|
437 return (n + 1)
|
adam@1502
|
438
|
adam@1502
|
439 (* We get ahead of ourselves a bit here, as this example uses functions associated with client-side code to create and manipulate a mutable data source. *)
|