annotate doc/manual.tex @ 1169:420e38516dc2

Normalize URLs to deal with page names that contain apostrophes
author Adam Chlipala <adamc@hcoop.net>
date Thu, 25 Feb 2010 15:08:52 -0500
parents 8679ba87cf3c
children 52c6ac6a59f1
rev   line source
adamc@524 1 \documentclass{article}
adamc@554 2 \usepackage{fullpage,amsmath,amssymb,proof,url}
adamc@524 3
adamc@524 4 \newcommand{\cd}[1]{\texttt{#1}}
adamc@524 5 \newcommand{\mt}[1]{\mathsf{#1}}
adamc@524 6
adamc@524 7 \newcommand{\rc}{+ \hspace{-.075in} + \;}
adamc@527 8 \newcommand{\rcut}{\; \texttt{--} \;}
adamc@527 9 \newcommand{\rcutM}{\; \texttt{---} \;}
adamc@524 10
adamc@524 11 \begin{document}
adamc@524 12
adamc@524 13 \title{The Ur/Web Manual}
adamc@524 14 \author{Adam Chlipala}
adamc@524 15
adamc@524 16 \maketitle
adamc@524 17
adamc@540 18 \tableofcontents
adamc@540 19
adamc@554 20
adamc@554 21 \section{Introduction}
adamc@554 22
adamc@1160 23 \emph{Ur} is a programming language designed to introduce richer type system features into functional programming in the tradition of ML and Haskell. Ur is functional, pure, statically-typed, and strict. Ur supports a powerful kind of \emph{metaprogramming} based on \emph{type-level computation with type-level records}.
adamc@554 24
adamc@554 25 \emph{Ur/Web} is Ur plus a special standard library and associated rules for parsing and optimization. Ur/Web supports construction of dynamic web applications backed by SQL databases. The signature of the standard library is such that well-typed Ur/Web programs ``don't go wrong'' in a very broad sense. Not only do they not crash during particular page generations, but they also may not:
adamc@554 26
adamc@554 27 \begin{itemize}
adamc@554 28 \item Suffer from any kinds of code-injection attacks
adamc@554 29 \item Return invalid HTML
adamc@554 30 \item Contain dead intra-application links
adamc@554 31 \item Have mismatches between HTML forms and the fields expected by their handlers
adamc@652 32 \item Include client-side code that makes incorrect assumptions about the ``AJAX''-style services that the remote web server provides
adamc@554 33 \item Attempt invalid SQL queries
adamc@652 34 \item Use improper marshaling or unmarshaling in communication with SQL databases or between browsers and web servers
adamc@554 35 \end{itemize}
adamc@554 36
adamc@554 37 This type safety is just the foundation of the Ur/Web methodology. It is also possible to use metaprogramming to build significant application pieces by analysis of type structure. For instance, the demo includes an ML-style functor for building an admin interface for an arbitrary SQL table. The type system guarantees that the admin interface sub-application that comes out will always be free of the above-listed bugs, no matter which well-typed table description is given as input.
adamc@554 38
adamc@652 39 The Ur/Web compiler also produces very efficient object code that does not use garbage collection. These compiled programs will often be even more efficient than what most programmers would bother to write in C. The compiler also generates JavaScript versions of client-side code, with no need to write those parts of applications in a different language.
adamc@554 40
adamc@554 41 \medskip
adamc@554 42
adamc@554 43 The official web site for Ur is:
adamc@554 44 \begin{center}
adamc@554 45 \url{http://www.impredicative.com/ur/}
adamc@554 46 \end{center}
adamc@554 47
adamc@555 48
adamc@555 49 \section{Installation}
adamc@555 50
adamc@555 51 If you are lucky, then the following standard command sequence will suffice for installation, in a directory to which you have unpacked the latest distribution tarball.
adamc@555 52
adamc@555 53 \begin{verbatim}
adamc@555 54 ./configure
adamc@555 55 make
adamc@555 56 sudo make install
adamc@555 57 \end{verbatim}
adamc@555 58
adamc@896 59 Some other packages must be installed for the above to work. At a minimum, you need a standard UNIX shell, with standard UNIX tools like sed and GCC in your execution path; MLton, the whole-program optimizing compiler for Standard ML; and the mhash C library. As of this writing, in the ``testing'' version of Debian Linux, this command will install the more uncommon of these dependencies:
adamc@896 60 \begin{verbatim}
adamc@896 61 apt-get install mlton libmhash-dev
adamc@896 62 \end{verbatim}
adamc@555 63
adamc@896 64 To build programs that access SQL databases, you also need one of these client libraries for supported backends.
adamc@555 65 \begin{verbatim}
adamc@896 66 apt-get install libpq-dev libmysqlclient15-dev libsqlite3-dev
adamc@555 67 \end{verbatim}
adamc@555 68
adamc@555 69 It is also possible to access the modules of the Ur/Web compiler interactively, within Standard ML of New Jersey. To install the prerequisites in Debian testing:
adamc@555 70 \begin{verbatim}
adamc@555 71 apt-get install smlnj libsmlnj-smlnj ml-yacc ml-lpt
adamc@555 72 \end{verbatim}
adamc@555 73
adamc@555 74 To begin an interactive session with the Ur compiler modules, run \texttt{make smlnj}, and then, from within an \texttt{sml} session, run \texttt{CM.make "src/urweb.cm";}. The \texttt{Compiler} module is the main entry point.
adamc@555 75
adamc@896 76 To run an SQL-backed application with a backend besides SQLite, you will probably want to install one of these servers.
adamc@555 77
adamc@555 78 \begin{verbatim}
adamc@896 79 apt-get install postgresql-8.3 mysql-server-5.0
adamc@555 80 \end{verbatim}
adamc@555 81
adamc@555 82 To use the Emacs mode, you must have a modern Emacs installed. We assume that you already know how to do this, if you're in the business of looking for an Emacs mode. The demo generation facility of the compiler will also call out to Emacs to syntax-highlight code, and that process depends on the \texttt{htmlize} module, which can be installed in Debian testing via:
adamc@555 83
adamc@555 84 \begin{verbatim}
adamc@555 85 apt-get install emacs-goodies-el
adamc@555 86 \end{verbatim}
adamc@555 87
adamc@555 88 Even with the right packages installed, configuration and building might fail to work. After you run \texttt{./configure}, you will see the values of some named environment variables printed. You may need to adjust these values to get proper installation for your system. To change a value, store your preferred alternative in the corresponding UNIX environment variable, before running \texttt{./configure}. For instance, here is how to change the list of extra arguments that the Ur/Web compiler will pass to GCC on every invocation.
adamc@555 89
adamc@555 90 \begin{verbatim}
adamc@555 91 GCCARGS=-fnested-functions ./configure
adamc@555 92 \end{verbatim}
adamc@555 93
adamc@1137 94 Some Mac OS X users have reported needing to use this particular GCCARGS value.
adamc@1137 95
adamc@1161 96 Since the author is still getting a handle on the GNU Autotools that provide the build system, you may need to do some further work to get started, especially in environments with significant differences from Linux (where most testing is done). One OS X user reported needing to run \texttt{./configure} with \texttt{CFLAGS=-I/opt/local/include}, since this directory wound up holding a header file associated with a \texttt{libmhash} package installed via DarwinPorts. Further, to get libpq to link, another user reported setting \texttt{GCCARGS="-I/opt/local/include -L/opt/local/lib/postgresql84"}, after creating a symbolic link with \texttt{ln -s /opt/local/include/postgresql84 /opt/local/include/postgresql}.
adamc@555 97
adamc@555 98 The Emacs mode can be set to autoload by adding the following to your \texttt{.emacs} file.
adamc@555 99
adamc@555 100 \begin{verbatim}
adamc@555 101 (add-to-list 'load-path "/usr/local/share/emacs/site-lisp/urweb-mode")
adamc@555 102 (load "urweb-mode-startup")
adamc@555 103 \end{verbatim}
adamc@555 104
adamc@555 105 Change the path in the first line if you chose a different Emacs installation path during configuration.
adamc@555 106
adamc@555 107
adamc@556 108 \section{Command-Line Compiler}
adamc@556 109
adamc@556 110 \subsection{Project Files}
adamc@556 111
adamc@556 112 The basic inputs to the \texttt{urweb} compiler are project files, which have the extension \texttt{.urp}. Here is a sample \texttt{.urp} file.
adamc@556 113
adamc@556 114 \begin{verbatim}
adamc@556 115 database dbname=test
adamc@556 116 sql crud1.sql
adamc@556 117
adamc@556 118 crud
adamc@556 119 crud1
adamc@556 120 \end{verbatim}
adamc@556 121
adamc@556 122 The \texttt{database} line gives the database information string to pass to libpq. In this case, the string only says to connect to a local database named \texttt{test}.
adamc@556 123
adamc@556 124 The \texttt{sql} line asks for an SQL source file to be generated, giving the commands to run to create the tables and sequences that this application expects to find. After building this \texttt{.urp} file, the following commands could be used to initialize the database, assuming that the current UNIX user exists as a Postgres user with database creation privileges:
adamc@556 125
adamc@556 126 \begin{verbatim}
adamc@556 127 createdb test
adamc@556 128 psql -f crud1.sql test
adamc@556 129 \end{verbatim}
adamc@556 130
adamc@1151 131 A blank line separates the named directives from a list of modules to include in the project.
adamc@556 132
adamc@556 133 For each entry \texttt{M} in the module list, the file \texttt{M.urs} is included in the project if it exists, and the file \texttt{M.ur} must exist and is always included.
adamc@556 134
adamc@783 135 Here is the complete list of directive forms. ``FFI'' stands for ``foreign function interface,'' Ur's facility for interaction between Ur programs and C and JavaScript libraries.
adamc@783 136 \begin{itemize}
adamc@783 137 \item \texttt{[allow|deny] [url|mime] PATTERN} registers a rule governing which URLs or MIME types are allowed in this application. The first such rule to match a URL or MIME type determines the verdict. If \texttt{PATTERN} ends in \texttt{*}, it is interpreted as a prefix rule. Otherwise, a string must match it exactly.
adamc@783 138 \item \texttt{clientOnly Module.ident} registers an FFI function or transaction that may only be run in client browsers.
adamc@783 139 \item \texttt{clientToServer Module.ident} adds FFI type \texttt{Module.ident} to the list of types that are OK to marshal from clients to servers. Values like XML trees and SQL queries are hard to marshal without introducing expensive validity checks, so it's easier to ensure that the server never trusts clients to send such values. The file \texttt{include/urweb.h} shows examples of the C support functions that are required of any type that may be marshalled. These include \texttt{attrify}, \texttt{urlify}, and \texttt{unurlify} functions.
adamc@783 140 \item \texttt{database DBSTRING} sets the string to pass to libpq to open a database connection.
adamc@783 141 \item \texttt{debug} saves some intermediate C files, which is mostly useful to help in debugging the compiler itself.
adamc@783 142 \item \texttt{effectful Module.ident} registers an FFI function or transaction as having side effects. The optimizer avoids removing, moving, or duplicating calls to such functions. Every effectful FFI function must be registered, or the optimizer may make invalid transformations.
adamc@783 143 \item \texttt{exe FILENAME} sets the filename to which to write the output executable. The default for file \texttt{P.urp} is \texttt{P.exe}.
adamc@783 144 \item \texttt{ffi FILENAME} reads the file \texttt{FILENAME.urs} to determine the interface to a new FFI module. The name of the module is calculated from \texttt{FILENAME} in the same way as for normal source files. See the files \texttt{include/urweb.h} and \texttt{src/c/urweb.c} for examples of C headers and implementations for FFI modules. In general, every type or value \texttt{Module.ident} becomes \texttt{uw\_Module\_ident} in C.
adamc@1099 145 \item \texttt{include FILENAME} adds \texttt{FILENAME} to the list of files to be \texttt{\#include}d in C sources. This is most useful for interfacing with new FFI modules.
adamc@783 146 \item \texttt{jsFunc Module.ident=name} gives the JavaScript name of an FFI value.
adamc@1089 147 \item \texttt{library FILENAME} parses \texttt{FILENAME.urp} and merges its contents with the rest of the current file's contents. If \texttt{FILENAME.urp} doesn't exist, the compiler also tries \texttt{FILENAME/lib.urp}.
adamc@783 148 \item \texttt{link FILENAME} adds \texttt{FILENAME} to the list of files to be passed to the GCC linker at the end of compilation. This is most useful for importing extra libraries needed by new FFI modules.
adamc@852 149 \item \texttt{path NAME=VALUE} creates a mapping from \texttt{NAME} to \texttt{VALUE}. This mapping may be used at the beginnings of filesystem paths given to various other configuration directives. A path like \texttt{\$NAME/rest} is expanded to \texttt{VALUE/rest}. There is an initial mapping from the empty name (for paths like \texttt{\$/list}) to the directory where the Ur/Web standard library is installed. If you accept the default \texttt{configure} options, this directory is \texttt{/usr/local/lib/urweb/ur}.
adamc@783 150 \item \texttt{prefix PREFIX} sets the prefix included before every URI within the generated application. The default is \texttt{/}.
adamc@783 151 \item \texttt{profile} generates an executable that may be used with gprof.
adamc@783 152 \item \texttt{rewrite KIND FROM TO} gives a rule for rewriting canonical module paths. For instance, the canonical path of a page may be \texttt{Mod1.Mod2.mypage}, while you would rather the page were accessed via a URL containing only \texttt{page}. The directive \texttt{rewrite url Mod1/Mod2/mypage page} would accomplish that. The possible values of \texttt{KIND} determine which kinds of objects are affected. The kind \texttt{all} matches any object, and \texttt{url} matches page URLs. The kinds \texttt{table}, \texttt{sequence}, and \texttt{view} match those sorts of SQL entities, and \texttt{relation} matches any of those three. \texttt{cookie} matches HTTP cookies, and \texttt{style} matches CSS class names. If \texttt{FROM} ends in \texttt{/*}, it is interpreted as a prefix matching rule, and rewriting occurs by replacing only the appropriate prefix of a path with \texttt{TO}. While the actual external names of relations and styles have parts separated by underscores instead of slashes, all rewrite rules must be written in terms of slashes.
adamc@783 153 \item \texttt{script URL} adds \texttt{URL} to the list of extra JavaScript files to be included at the beginning of any page that uses JavaScript. This is most useful for importing JavaScript versions of functions found in new FFI modules.
adamc@783 154 \item \texttt{serverOnly Module.ident} registers an FFI function or transaction that may only be run on the server.
adamc@1164 155 \item \texttt{sigfile PATH} sets a path where your application should look for a key to use in cryptographic signing. This is used to prevent cross-site request forgery attacks for any form handler that both reads a cookie and creates side effects. If the referenced file doesn't exist, an application will create it and read its saved data on future invocations. You can also initialize the file manually with any contents at least 16 bytes long; the first 16 bytes will be treated as the key.
adamc@783 156 \item \texttt{sql FILENAME} sets where to write an SQL file with the commands to create the expected database schema. The default is not to create such a file.
adamc@783 157 \item \texttt{timeout N} sets to \texttt{N} seconds the amount of time that the generated server will wait after the last contact from a client before determining that that client has exited the application. Clients that remain active will take the timeout setting into account in determining how often to ping the server, so it only makes sense to set a high timeout to cope with browser and network delays and failures. Higher timeouts can lead to more unnecessary client information taking up memory on the server. The timeout goes unused by any page that doesn't involve the \texttt{recv} function, since the server only needs to store per-client information for clients that receive asynchronous messages.
adamc@783 158 \end{itemize}
adamc@701 159
adamc@701 160
adamc@557 161 \subsection{Building an Application}
adamc@557 162
adamc@557 163 To compile project \texttt{P.urp}, simply run
adamc@557 164 \begin{verbatim}
adamc@557 165 urweb P
adamc@557 166 \end{verbatim}
adamc@558 167 The output executable is a standalone web server. Run it with the command-line argument \texttt{-h} to see which options it takes. If the project file lists a database, the web server will attempt to connect to that database on startup.
adamc@557 168
adamc@557 169 To time how long the different compiler phases run, without generating an executable, run
adamc@557 170 \begin{verbatim}
adamc@557 171 urweb -timing P
adamc@557 172 \end{verbatim}
adamc@557 173
adamc@1086 174 To stop the compilation process after type-checking, run
adamc@1086 175 \begin{verbatim}
adamc@1086 176 urweb -tc P
adamc@1086 177 \end{verbatim}
adamc@1086 178
adamc@896 179 Some other command-line parameters are accepted:
adamc@896 180 \begin{itemize}
adamc@896 181 \item \texttt{-db <DBSTRING>}: Set database connection information, using the format expected by Postgres's \texttt{PQconnectdb()}, which is \texttt{name1=value1 ... nameN=valueN}. The same format is also parsed and used to discover connection parameters for MySQL and SQLite. The only significant settings for MySQL are \texttt{host}, \texttt{hostaddr}, \texttt{port}, \texttt{dbname}, \texttt{user}, and \texttt{password}. The only significant setting for SQLite is \texttt{dbname}, which is interpreted as the filesystem path to the database. Additionally, when using SQLite, a database string may be just a file path.
adamc@896 182
adamc@896 183 \item \texttt{-dbms [postgres|mysql|sqlite]}: Sets the database backend to use.
adamc@896 184 \begin{itemize}
adamc@896 185 \item \texttt{postgres}: This is PostgreSQL, the default. Among the supported engines, Postgres best matches the design philosophy behind Ur, with a focus on consistent views of data, even in the face of much concurrency. Different database engines have different quirks of SQL syntax. Ur/Web tends to use Postgres idioms where there are choices to be made, though the compiler translates SQL as needed to support other backends.
adamc@896 186
adamc@896 187 A command sequence like this can initialize a Postgres database, using a file \texttt{app.sql} generated by the compiler:
adamc@896 188 \begin{verbatim}
adamc@896 189 createdb app
adamc@896 190 psql -f app.sql app
adamc@896 191 \end{verbatim}
adamc@896 192
adamc@896 193 \item \texttt{mysql}: This is MySQL, another popular relational database engine that uses persistent server processes. Ur/Web needs transactions to function properly. Many installations of MySQL use non-transactional storage engines by default. Ur/Web generates table definitions that try to use MySQL's InnoDB engine, which supports transactions. You can edit the first line of a generated \texttt{.sql} file to change this behavior, but it really is true that Ur/Web applications will exhibit bizarre behavior if you choose an engine that ignores transaction commands.
adamc@896 194
adamc@896 195 A command sequence like this can initialize a MySQL database:
adamc@896 196 \begin{verbatim}
adamc@896 197 echo "CREATE DATABASE app" | mysql
adamc@896 198 mysql -D app <app.sql
adamc@896 199 \end{verbatim}
adamc@896 200
adamc@896 201 \item \texttt{sqlite}: This is SQLite, a simple filesystem-based transactional database engine. With this backend, Ur/Web applications can run without any additional server processes. The other engines are generally preferred for large-workload performance and full admin feature sets, while SQLite is popular for its low resource footprint and ease of set-up.
adamc@896 202
adamc@896 203 A command like this can initialize an SQLite database:
adamc@896 204 \begin{verbatim}
adamc@896 205 sqlite3 path/to/database/file <app.sql
adamc@896 206 \end{verbatim}
adamc@896 207 \end{itemize}
adamc@896 208
adamc@896 209 \item \texttt{-output FILENAME}: Set where the application executable is written.
adamc@896 210
adamc@1127 211 \item \texttt{-path NAME VALUE}: Set the value of path variable \texttt{\$NAME} to \texttt{VALUE}, for use in \texttt{.urp} files.
adamc@1127 212
adamc@896 213 \item \texttt{-protocol [http|cgi|fastcgi]}: Set the protocol that the generated application speaks.
adamc@896 214 \begin{itemize}
adamc@896 215 \item \texttt{http}: This is the default. It is for building standalone web servers that can be accessed by web browsers directly.
adamc@896 216
adamc@896 217 \item \texttt{cgi}: This is the classic protocol that web servers use to generate dynamic content by spawning new processes. While Ur/Web programs may in general use message-passing with the \texttt{send} and \texttt{recv} functions, that functionality is not yet supported in CGI, since CGI needs a fresh process for each request, and message-passing needs to use persistent sockets to deliver messages.
adamc@896 218
adamc@896 219 Since Ur/Web treats paths in an unusual way, a configuration line like this one can be used to configure an application that was built with URL prefix \texttt{/Hello}:
adamc@896 220 \begin{verbatim}
adamc@896 221 ScriptAlias /Hello /path/to/hello.exe
adamc@896 222 \end{verbatim}
adamc@896 223
adamc@1163 224 A different method can be used for, e.g., a shared host, where you can only configure Apache via \texttt{.htaccess} files. Drop the generated executable into your web space and mark it as CGI somehow. For instance, if the script ends in \texttt{.exe}, you might put this in \texttt{.htaccess} in the directory containing the script:
adamc@1163 225 \begin{verbatim}
adamc@1163 226 Options +ExecCGI
adamc@1163 227 AddHandler cgi-script .exe
adamc@1163 228 \end{verbatim}
adamc@1163 229
adamc@1163 230 Additionally, make sure that Ur/Web knows the proper URI prefix for your script. For instance, if the script is accessed via \texttt{http://somewhere/dir/script.exe}, then include this line in your \texttt{.urp} file:
adamc@1163 231 \begin{verbatim}
adamc@1163 232 prefix /dir/script.exe/
adamc@1163 233 \end{verbatim}
adamc@1163 234
adamc@1163 235 To access the \texttt{foo} function in the \texttt{Bar} module, you would then hit \texttt{http://somewhere/dir/script.exe/Bar/foo}.
adamc@1163 236
adamc@1164 237 If your application contains form handlers that read cookies before causing side effects, then you will need to use the \texttt{sigfile} \texttt{.urp} directive, too.
adamc@1164 238
adamc@896 239 \item \texttt{fastcgi}: This is a newer protocol inspired by CGI, wherein web servers can start and reuse persistent external processes to generate dynamic content. Ur/Web doesn't implement the whole protocol, but Ur/Web's support has been tested to work with the \texttt{mod\_fastcgi}s of Apache and lighttpd.
adamc@896 240
adamc@896 241 To configure a FastCGI program with Apache, one could combine the above \texttt{ScriptAlias} line with a line like this:
adamc@896 242 \begin{verbatim}
adamc@896 243 FastCgiServer /path/to/hello.exe -idle-timeout 99999
adamc@896 244 \end{verbatim}
adamc@896 245 The idle timeout is only important for applications that use message-passing. Client connections may go long periods without receiving messages, and Apache tries to be helpful and garbage collect them in such cases. To prevent that behavior, we specify how long a connection must be idle to be collected.
adamc@896 246
adamc@896 247 Here is some lighttpd configuration for the same application.
adamc@896 248 \begin{verbatim}
adamc@896 249 fastcgi.server = (
adamc@896 250 "/Hello/" =>
adamc@896 251 (( "bin-path" => "/path/to/hello.exe",
adamc@896 252 "socket" => "/tmp/hello",
adamc@896 253 "check-local" => "disable",
adamc@896 254 "docroot" => "/",
adamc@896 255 "max-procs" => "1"
adamc@896 256 ))
adamc@896 257 )
adamc@896 258 \end{verbatim}
adamc@896 259 The least obvious requirement is setting \texttt{max-procs} to 1, so that lighttpd doesn't try to multiplex requests across multiple external processes. This is required for message-passing applications, where a single database of client connections is maintained within a multi-threaded server process. Multiple processes may, however, be used safely with applications that don't use message-passing.
adamc@896 260
adamc@896 261 A FastCGI process reads the environment variable \texttt{URWEB\_NUM\_THREADS} to determine how many threads to spawn for handling client requests. The default is 1.
adamc@896 262 \end{itemize}
adamc@896 263
adamc@1127 264 \item \texttt{-root Name PATH}: Trigger an alternate module convention for all source files found in directory \texttt{PATH} or any of its subdirectories. Any file \texttt{PATH/foo.ur} defines a module \texttt{Name.Foo} instead of the usual \texttt{Foo}. Any file \texttt{PATH/subdir/foo.ur} defines a module \texttt{Name.Subdir.Foo}, and so on for arbitrary nesting of subdirectories.
adamc@1127 265
adamc@1164 266 \item \texttt{-sigfile PATH}: Same as the \texttt{sigfile} directive in \texttt{.urp} files
adamc@1164 267
adamc@896 268 \item \texttt{-sql FILENAME}: Set where a database set-up SQL script is written.
adamc@1095 269
adamc@1095 270 \item \texttt{-static}: Link the runtime system statically. The default is to link against dynamic libraries.
adamc@896 271 \end{itemize}
adamc@896 272
adamc@556 273
adamc@529 274 \section{Ur Syntax}
adamc@529 275
adamc@784 276 In this section, we describe the syntax of Ur, deferring to a later section discussion of most of the syntax specific to SQL and XML. The sole exceptions are the declaration forms for relations, cookies, and styles.
adamc@524 277
adamc@524 278 \subsection{Lexical Conventions}
adamc@524 279
adamc@524 280 We give the Ur language definition in \LaTeX $\;$ math mode, since that is prettier than monospaced ASCII. The corresponding ASCII syntax can be read off directly. Here is the key for mapping math symbols to ASCII character sequences.
adamc@524 281
adamc@524 282 \begin{center}
adamc@524 283 \begin{tabular}{rl}
adamc@524 284 \textbf{\LaTeX} & \textbf{ASCII} \\
adamc@524 285 $\to$ & \cd{->} \\
adamc@652 286 $\longrightarrow$ & \cd{-->} \\
adamc@524 287 $\times$ & \cd{*} \\
adamc@524 288 $\lambda$ & \cd{fn} \\
adamc@524 289 $\Rightarrow$ & \cd{=>} \\
adamc@652 290 $\Longrightarrow$ & \cd{==>} \\
adamc@529 291 $\neq$ & \cd{<>} \\
adamc@529 292 $\leq$ & \cd{<=} \\
adamc@529 293 $\geq$ & \cd{>=} \\
adamc@524 294 \\
adamc@524 295 $x$ & Normal textual identifier, not beginning with an uppercase letter \\
adamc@525 296 $X$ & Normal textual identifier, beginning with an uppercase letter \\
adamc@524 297 \end{tabular}
adamc@524 298 \end{center}
adamc@524 299
adamc@525 300 We often write syntax like $e^*$ to indicate zero or more copies of $e$, $e^+$ to indicate one or more copies, and $e,^*$ and $e,^+$ to indicate multiple copies separated by commas. Another separator may be used in place of a comma. The $e$ term may be surrounded by parentheses to indicate grouping; those parentheses should not be included in the actual ASCII.
adamc@524 301
adamc@873 302 We write $\ell$ for literals of the primitive types, for the most part following C conventions. There are $\mt{int}$, $\mt{float}$, $\mt{char}$, and $\mt{string}$ literals. Character literals follow the SML convention instead of the C convention, written like \texttt{\#"a"} instead of \texttt{'a'}.
adamc@526 303
adamc@527 304 This version of the manual doesn't include operator precedences; see \texttt{src/urweb.grm} for that.
adamc@527 305
adamc@552 306 \subsection{\label{core}Core Syntax}
adamc@524 307
adamc@524 308 \emph{Kinds} classify types and other compile-time-only entities. Each kind in the grammar is listed with a description of the sort of data it classifies.
adamc@524 309 $$\begin{array}{rrcll}
adamc@524 310 \textrm{Kinds} & \kappa &::=& \mt{Type} & \textrm{proper types} \\
adamc@525 311 &&& \mt{Unit} & \textrm{the trivial constructor} \\
adamc@525 312 &&& \mt{Name} & \textrm{field names} \\
adamc@525 313 &&& \kappa \to \kappa & \textrm{type-level functions} \\
adamc@525 314 &&& \{\kappa\} & \textrm{type-level records} \\
adamc@525 315 &&& (\kappa\times^+) & \textrm{type-level tuples} \\
adamc@652 316 &&& X & \textrm{variable} \\
adamc@652 317 &&& X \longrightarrow k & \textrm{kind-polymorphic type-level function} \\
adamc@529 318 &&& \_\_ & \textrm{wildcard} \\
adamc@525 319 &&& (\kappa) & \textrm{explicit precedence} \\
adamc@524 320 \end{array}$$
adamc@524 321
adamc@524 322 Ur supports several different notions of functions that take types as arguments. These arguments can be either implicit, causing them to be inferred at use sites; or explicit, forcing them to be specified manually at use sites. There is a common explicitness annotation convention applied at the definitions of and in the types of such functions.
adamc@524 323 $$\begin{array}{rrcll}
adamc@524 324 \textrm{Explicitness} & ? &::=& :: & \textrm{explicit} \\
adamc@558 325 &&& ::: & \textrm{implicit}
adamc@524 326 \end{array}$$
adamc@524 327
adamc@524 328 \emph{Constructors} are the main class of compile-time-only data. They include proper types and are classified by kinds.
adamc@524 329 $$\begin{array}{rrcll}
adamc@524 330 \textrm{Constructors} & c, \tau &::=& (c) :: \kappa & \textrm{kind annotation} \\
adamc@530 331 &&& \hat{x} & \textrm{constructor variable} \\
adamc@524 332 \\
adamc@525 333 &&& \tau \to \tau & \textrm{function type} \\
adamc@525 334 &&& x \; ? \; \kappa \to \tau & \textrm{polymorphic function type} \\
adamc@652 335 &&& X \longrightarrow \tau & \textrm{kind-polymorphic function type} \\
adamc@525 336 &&& \$ c & \textrm{record type} \\
adamc@524 337 \\
adamc@525 338 &&& c \; c & \textrm{type-level function application} \\
adamc@530 339 &&& \lambda x \; :: \; \kappa \Rightarrow c & \textrm{type-level function abstraction} \\
adamc@524 340 \\
adamc@652 341 &&& X \Longrightarrow c & \textrm{type-level kind-polymorphic function abstraction} \\
adamc@655 342 &&& c [\kappa] & \textrm{type-level kind-polymorphic function application} \\
adamc@652 343 \\
adamc@525 344 &&& () & \textrm{type-level unit} \\
adamc@525 345 &&& \#X & \textrm{field name} \\
adamc@524 346 \\
adamc@525 347 &&& [(c = c)^*] & \textrm{known-length type-level record} \\
adamc@525 348 &&& c \rc c & \textrm{type-level record concatenation} \\
adamc@652 349 &&& \mt{map} & \textrm{type-level record map} \\
adamc@524 350 \\
adamc@558 351 &&& (c,^+) & \textrm{type-level tuple} \\
adamc@525 352 &&& c.n & \textrm{type-level tuple projection ($n \in \mathbb N^+$)} \\
adamc@524 353 \\
adamc@652 354 &&& [c \sim c] \Rightarrow \tau & \textrm{guarded type} \\
adamc@524 355 \\
adamc@529 356 &&& \_ :: \kappa & \textrm{wildcard} \\
adamc@525 357 &&& (c) & \textrm{explicit precedence} \\
adamc@530 358 \\
adamc@530 359 \textrm{Qualified uncapitalized variables} & \hat{x} &::=& x & \textrm{not from a module} \\
adamc@530 360 &&& M.x & \textrm{projection from a module} \\
adamc@525 361 \end{array}$$
adamc@525 362
adamc@655 363 We include both abstraction and application for kind polymorphism, but applications are only inferred internally; they may not be written explicitly in source programs.
adamc@655 364
adamc@525 365 Modules of the module system are described by \emph{signatures}.
adamc@525 366 $$\begin{array}{rrcll}
adamc@525 367 \textrm{Signatures} & S &::=& \mt{sig} \; s^* \; \mt{end} & \textrm{constant} \\
adamc@525 368 &&& X & \textrm{variable} \\
adamc@525 369 &&& \mt{functor}(X : S) : S & \textrm{functor} \\
adamc@529 370 &&& S \; \mt{where} \; \mt{con} \; x = c & \textrm{concretizing an abstract constructor} \\
adamc@525 371 &&& M.X & \textrm{projection from a module} \\
adamc@525 372 \\
adamc@525 373 \textrm{Signature items} & s &::=& \mt{con} \; x :: \kappa & \textrm{abstract constructor} \\
adamc@525 374 &&& \mt{con} \; x :: \kappa = c & \textrm{concrete constructor} \\
adamc@528 375 &&& \mt{datatype} \; x \; x^* = dc\mid^+ & \textrm{algebraic datatype definition} \\
adamc@529 376 &&& \mt{datatype} \; x = \mt{datatype} \; M.x & \textrm{algebraic datatype import} \\
adamc@525 377 &&& \mt{val} \; x : \tau & \textrm{value} \\
adamc@525 378 &&& \mt{structure} \; X : S & \textrm{sub-module} \\
adamc@525 379 &&& \mt{signature} \; X = S & \textrm{sub-signature} \\
adamc@525 380 &&& \mt{include} \; S & \textrm{signature inclusion} \\
adamc@525 381 &&& \mt{constraint} \; c \sim c & \textrm{record disjointness constraint} \\
adamc@654 382 &&& \mt{class} \; x :: \kappa & \textrm{abstract constructor class} \\
adamc@654 383 &&& \mt{class} \; x :: \kappa = c & \textrm{concrete constructor class} \\
adamc@525 384 \\
adamc@525 385 \textrm{Datatype constructors} & dc &::=& X & \textrm{nullary constructor} \\
adamc@525 386 &&& X \; \mt{of} \; \tau & \textrm{unary constructor} \\
adamc@524 387 \end{array}$$
adamc@524 388
adamc@526 389 \emph{Patterns} are used to describe structural conditions on expressions, such that expressions may be tested against patterns, generating assignments to pattern variables if successful.
adamc@526 390 $$\begin{array}{rrcll}
adamc@526 391 \textrm{Patterns} & p &::=& \_ & \textrm{wildcard} \\
adamc@526 392 &&& x & \textrm{variable} \\
adamc@526 393 &&& \ell & \textrm{constant} \\
adamc@526 394 &&& \hat{X} & \textrm{nullary constructor} \\
adamc@526 395 &&& \hat{X} \; p & \textrm{unary constructor} \\
adamc@526 396 &&& \{(x = p,)^*\} & \textrm{rigid record pattern} \\
adamc@526 397 &&& \{(x = p,)^+, \ldots\} & \textrm{flexible record pattern} \\
adamc@852 398 &&& p : \tau & \textrm{type annotation} \\
adamc@527 399 &&& (p) & \textrm{explicit precedence} \\
adamc@526 400 \\
adamc@529 401 \textrm{Qualified capitalized variables} & \hat{X} &::=& X & \textrm{not from a module} \\
adamc@526 402 &&& M.X & \textrm{projection from a module} \\
adamc@526 403 \end{array}$$
adamc@526 404
adamc@527 405 \emph{Expressions} are the main run-time entities, corresponding to both ``expressions'' and ``statements'' in mainstream imperative languages.
adamc@527 406 $$\begin{array}{rrcll}
adamc@527 407 \textrm{Expressions} & e &::=& e : \tau & \textrm{type annotation} \\
adamc@529 408 &&& \hat{x} & \textrm{variable} \\
adamc@529 409 &&& \hat{X} & \textrm{datatype constructor} \\
adamc@527 410 &&& \ell & \textrm{constant} \\
adamc@527 411 \\
adamc@527 412 &&& e \; e & \textrm{function application} \\
adamc@527 413 &&& \lambda x : \tau \Rightarrow e & \textrm{function abstraction} \\
adamc@527 414 &&& e [c] & \textrm{polymorphic function application} \\
adamc@852 415 &&& \lambda [x \; ? \; \kappa] \Rightarrow e & \textrm{polymorphic function abstraction} \\
adamc@655 416 &&& e [\kappa] & \textrm{kind-polymorphic function application} \\
adamc@652 417 &&& X \Longrightarrow e & \textrm{kind-polymorphic function abstraction} \\
adamc@527 418 \\
adamc@527 419 &&& \{(c = e,)^*\} & \textrm{known-length record} \\
adamc@527 420 &&& e.c & \textrm{record field projection} \\
adamc@527 421 &&& e \rc e & \textrm{record concatenation} \\
adamc@527 422 &&& e \rcut c & \textrm{removal of a single record field} \\
adamc@527 423 &&& e \rcutM c & \textrm{removal of multiple record fields} \\
adamc@527 424 \\
adamc@527 425 &&& \mt{let} \; ed^* \; \mt{in} \; e \; \mt{end} & \textrm{local definitions} \\
adamc@527 426 \\
adamc@527 427 &&& \mt{case} \; e \; \mt{of} \; (p \Rightarrow e|)^+ & \textrm{pattern matching} \\
adamc@527 428 \\
adamc@654 429 &&& \lambda [c \sim c] \Rightarrow e & \textrm{guarded expression abstraction} \\
adamc@654 430 &&& e \; ! & \textrm{guarded expression application} \\
adamc@527 431 \\
adamc@527 432 &&& \_ & \textrm{wildcard} \\
adamc@527 433 &&& (e) & \textrm{explicit precedence} \\
adamc@527 434 \\
adamc@527 435 \textrm{Local declarations} & ed &::=& \cd{val} \; x : \tau = e & \textrm{non-recursive value} \\
adamc@527 436 &&& \cd{val} \; \cd{rec} \; (x : \tau = e \; \cd{and})^+ & \textrm{mutually-recursive values} \\
adamc@527 437 \end{array}$$
adamc@527 438
adamc@655 439 As with constructors, we include both abstraction and application for kind polymorphism, but applications are only inferred internally.
adamc@655 440
adamc@528 441 \emph{Declarations} primarily bring new symbols into context.
adamc@528 442 $$\begin{array}{rrcll}
adamc@528 443 \textrm{Declarations} & d &::=& \mt{con} \; x :: \kappa = c & \textrm{constructor synonym} \\
adamc@528 444 &&& \mt{datatype} \; x \; x^* = dc\mid^+ & \textrm{algebraic datatype definition} \\
adamc@529 445 &&& \mt{datatype} \; x = \mt{datatype} \; M.x & \textrm{algebraic datatype import} \\
adamc@528 446 &&& \mt{val} \; x : \tau = e & \textrm{value} \\
adamc@528 447 &&& \mt{val} \; \cd{rec} \; (x : \tau = e \; \mt{and})^+ & \textrm{mutually-recursive values} \\
adamc@528 448 &&& \mt{structure} \; X : S = M & \textrm{module definition} \\
adamc@528 449 &&& \mt{signature} \; X = S & \textrm{signature definition} \\
adamc@528 450 &&& \mt{open} \; M & \textrm{module inclusion} \\
adamc@528 451 &&& \mt{constraint} \; c \sim c & \textrm{record disjointness constraint} \\
adamc@528 452 &&& \mt{open} \; \mt{constraints} \; M & \textrm{inclusion of just the constraints from a module} \\
adamc@528 453 &&& \mt{table} \; x : c & \textrm{SQL table} \\
adamc@784 454 &&& \mt{view} \; x : c & \textrm{SQL view} \\
adamc@528 455 &&& \mt{sequence} \; x & \textrm{SQL sequence} \\
adamc@535 456 &&& \mt{cookie} \; x : \tau & \textrm{HTTP cookie} \\
adamc@784 457 &&& \mt{style} \; x : \tau & \textrm{CSS class} \\
adamc@654 458 &&& \mt{class} \; x :: \kappa = c & \textrm{concrete constructor class} \\
adamc@1085 459 &&& \mt{task} \; e = e & \textrm{recurring task} \\
adamc@528 460 \\
adamc@529 461 \textrm{Modules} & M &::=& \mt{struct} \; d^* \; \mt{end} & \textrm{constant} \\
adamc@529 462 &&& X & \textrm{variable} \\
adamc@529 463 &&& M.X & \textrm{projection} \\
adamc@529 464 &&& M(M) & \textrm{functor application} \\
adamc@529 465 &&& \mt{functor}(X : S) : S = M & \textrm{functor abstraction} \\
adamc@528 466 \end{array}$$
adamc@528 467
adamc@528 468 There are two kinds of Ur files. A file named $M\texttt{.ur}$ is an \emph{implementation file}, and it should contain a sequence of declarations $d^*$. A file named $M\texttt{.urs}$ is an \emph{interface file}; it must always have a matching $M\texttt{.ur}$ and should contain a sequence of signature items $s^*$. When both files are present, the overall effect is the same as a monolithic declaration $\mt{structure} \; M : \mt{sig} \; s^* \; \mt{end} = \mt{struct} \; d^* \; \mt{end}$. When no interface file is included, the overall effect is similar, with a signature for module $M$ being inferred rather than just checked against an interface.
adamc@527 469
adamc@784 470 We omit some extra possibilities in $\mt{table}$ syntax, deferring them to Section \ref{tables}.
adamc@784 471
adamc@529 472 \subsection{Shorthands}
adamc@529 473
adamc@529 474 There are a variety of derived syntactic forms that elaborate into the core syntax from the last subsection. We will present the additional forms roughly following the order in which we presented the constructs that they elaborate into.
adamc@529 475
adamc@529 476 In many contexts where record fields are expected, like in a projection $e.c$, a constant field may be written as simply $X$, rather than $\#X$.
adamc@529 477
adamc@529 478 A record type may be written $\{(c = c,)^*\}$, which elaborates to $\$[(c = c,)^*]$.
adamc@529 479
adamc@533 480 The notation $[c_1, \ldots, c_n]$ is shorthand for $[c_1 = (), \ldots, c_n = ()]$.
adamc@533 481
adamc@529 482 A tuple type $(\tau_1, \ldots, \tau_n)$ expands to a record type $\{1 = \tau_1, \ldots, n = \tau_n\}$, with natural numbers as field names. A tuple pattern $(p_1, \ldots, p_n)$ expands to a rigid record pattern $\{1 = p_1, \ldots, n = p_n\}$. Positive natural numbers may be used in most places where field names would be allowed.
adamc@529 483
adamc@852 484 In general, several adjacent $\lambda$ forms may be combined into one, and kind and type annotations may be omitted, in which case they are implicitly included as wildcards. More formally, for constructor-level abstractions, we can define a new non-terminal $b ::= x \mid (x :: \kappa) \mid X$ and allow composite abstractions of the form $\lambda b^+ \Rightarrow c$, elaborating into the obvious sequence of one core $\lambda$ per element of $b^+$.
adamc@529 485
adamc@529 486 For any signature item or declaration that defines some entity to be equal to $A$ with classification annotation $B$ (e.g., $\mt{val} \; x : B = A$), $B$ and the preceding colon (or similar punctuation) may be omitted, in which case it is filled in as a wildcard.
adamc@529 487
adamc@529 488 A signature item or declaration $\mt{type} \; x$ or $\mt{type} \; x = \tau$ is elaborated into $\mt{con} \; x :: \mt{Type}$ or $\mt{con} \; x :: \mt{Type} = \tau$, respectively.
adamc@529 489
adamc@654 490 A signature item or declaration $\mt{class} \; x = \lambda y \Rightarrow c$ may be abbreviated $\mt{class} \; x \; y = c$.
adamc@529 491
adamc@1102 492 Handling of implicit and explicit constructor arguments may be tweaked with some prefixes to variable references. An expression $@x$ is a version of $x$ where all implicit constructor arguments have been made explicit. An expression $@@x$ achieves the same effect, additionally halting automatic resolution of type class instances and automatic proving of disjointness constraints. The default is that implicit arguments are inserted automatically after any reference to a non-local variable, or after any application of a non-local variable to one or more arguments. For such an expression, implicit wildcard arguments are added for the longest prefix of the expression's type consisting only of implicit polymorphism, type class instances, and disjointness obligations. The same syntax works for variables projected out of modules and for capitalized variables (datatype constructors).
adamc@529 493
adamc@852 494 At the expression level, an analogue is available of the composite $\lambda$ form for constructors. We define the language of binders as $b ::= p \mid [x] \mid [x \; ? \; \kappa] \mid X \mid [c \sim c]$. A lone variable $[x]$ stands for an implicit constructor variable of unspecified kind. The standard value-level function binder is recovered as the type-annotated pattern form $x : \tau$. It is a compile-time error to include a pattern $p$ that does not match every value of the appropriate type.
adamc@529 495
adamc@852 496 A local $\mt{val}$ declaration may bind a pattern instead of just a plain variable. As for function arguments, only irrefutable patterns are legal.
adamc@852 497
adamc@852 498 The keyword $\mt{fun}$ is a shorthand for $\mt{val} \; \mt{rec}$ that allows arguments to be specified before the equal sign in the definition of each mutually-recursive function, as in SML. Each curried argument must follow the grammar of the $b$ non-terminal introduced two paragraphs ago. A $\mt{fun}$ declaration is elaborated into a version that adds additional $\lambda$s to the fronts of the righthand sides, as appropriate.
adamc@529 499
adamc@529 500 A signature item $\mt{functor} \; X_1 \; (X_2 : S_1) : S_2$ is elaborated into $\mt{structure} \; X_1 : \mt{functor}(X_2 : S_1) : S_2$. A declaration $\mt{functor} \; X_1 \; (X_2 : S_1) : S_2 = M$ is elaborated into $\mt{structure} \; X_1 : \mt{functor}(X_2 : S_1) : S_2 = \mt{functor}(X_2 : S_1) : S_2 = M$.
adamc@529 501
adamc@852 502 An $\mt{open} \; \mt{constraints}$ declaration is implicitly inserted for the argument of every functor at the beginning of the functor body. For every declaration of the form $\mt{structure} \; X : S = \mt{struct} \ldots \mt{end}$, an $\mt{open} \; \mt{constraints} \; X$ declaration is implicitly inserted immediately afterward.
adamc@852 503
adamc@853 504 A declaration $\mt{table} \; x : \{(c = c,)^*\}$ is elaborated into $\mt{table} \; x : [(c = c,)^*]$.
adamc@529 505
adamc@529 506 The syntax $\mt{where} \; \mt{type}$ is an alternate form of $\mt{where} \; \mt{con}$.
adamc@529 507
adamc@529 508 The syntax $\mt{if} \; e \; \mt{then} \; e_1 \; \mt{else} \; e_2$ expands to $\mt{case} \; e \; \mt{of} \; \mt{Basis}.\mt{True} \Rightarrow e_1 \mid \mt{Basis}.\mt{False} \Rightarrow e_2$.
adamc@529 509
adamc@529 510 There are infix operator syntaxes for a number of functions defined in the $\mt{Basis}$ module. There is $=$ for $\mt{eq}$, $\neq$ for $\mt{neq}$, $-$ for $\mt{neg}$ (as a prefix operator) and $\mt{minus}$, $+$ for $\mt{plus}$, $\times$ for $\mt{times}$, $/$ for $\mt{div}$, $\%$ for $\mt{mod}$, $<$ for $\mt{lt}$, $\leq$ for $\mt{le}$, $>$ for $\mt{gt}$, and $\geq$ for $\mt{ge}$.
adamc@529 511
adamc@784 512 A signature item $\mt{table} \; x : c$ is shorthand for $\mt{val} \; x : \mt{Basis}.\mt{sql\_table} \; c \; []$. $\mt{view} \; x : c$ is shorthand for $\mt{val} \; x : \mt{Basis}.\mt{sql\_view} \; c$, $\mt{sequence} \; x$ is short for $\mt{val} \; x : \mt{Basis}.\mt{sql\_sequence}$. $\mt{cookie} \; x : \tau$ is shorthand for $\mt{val} \; x : \mt{Basis}.\mt{http\_cookie} \; \tau$, and $\mt{style} \; x$ is shorthand for $\mt{val} \; x : \mt{Basis}.\mt{css\_class}$.
adamc@529 513
adamc@530 514
adamc@530 515 \section{Static Semantics}
adamc@530 516
adamc@530 517 In this section, we give a declarative presentation of Ur's typing rules and related judgments. Inference is the subject of the next section; here, we assume that an oracle has filled in all wildcards with concrete values.
adamc@530 518
adamc@530 519 Since there is significant mutual recursion among the judgments, we introduce them all before beginning to give rules. We use the same variety of contexts throughout this section, implicitly introducing new sorts of context entries as needed.
adamc@530 520 \begin{itemize}
adamc@655 521 \item $\Gamma \vdash \kappa$ expresses kind well-formedness.
adamc@530 522 \item $\Gamma \vdash c :: \kappa$ assigns a kind to a constructor in a context.
adamc@530 523 \item $\Gamma \vdash c \sim c$ proves the disjointness of two record constructors; that is, that they share no field names. We overload the judgment to apply to pairs of field names as well.
adamc@531 524 \item $\Gamma \vdash c \hookrightarrow C$ proves that record constructor $c$ decomposes into set $C$ of field names and record constructors.
adamc@530 525 \item $\Gamma \vdash c \equiv c$ proves the computational equivalence of two constructors. This is often called a \emph{definitional equality} in the world of type theory.
adamc@530 526 \item $\Gamma \vdash e : \tau$ is a standard typing judgment.
adamc@534 527 \item $\Gamma \vdash p \leadsto \Gamma; \tau$ combines typing of patterns with calculation of which new variables they bind.
adamc@537 528 \item $\Gamma \vdash d \leadsto \Gamma$ expresses how a declaration modifies a context. We overload this judgment to apply to sequences of declarations, as well as to signature items and sequences of signature items.
adamc@537 529 \item $\Gamma \vdash S \equiv S$ is the signature equivalence judgment.
adamc@536 530 \item $\Gamma \vdash S \leq S$ is the signature compatibility judgment. We write $\Gamma \vdash S$ as shorthand for $\Gamma \vdash S \leq S$.
adamc@530 531 \item $\Gamma \vdash M : S$ is the module signature checking judgment.
adamc@537 532 \item $\mt{proj}(M, \overline{s}, V)$ is a partial function for projecting a signature item from $\overline{s}$, given the module $M$ that we project from. $V$ may be $\mt{con} \; x$, $\mt{datatype} \; x$, $\mt{val} \; x$, $\mt{signature} \; X$, or $\mt{structure} \; X$. The parameter $M$ is needed because the projected signature item may refer to other items from $\overline{s}$.
adamc@539 533 \item $\mt{selfify}(M, \overline{s})$ adds information to signature items $\overline{s}$ to reflect the fact that we are concerned with the particular module $M$. This function is overloaded to work over individual signature items as well.
adamc@530 534 \end{itemize}
adamc@530 535
adamc@655 536
adamc@655 537 \subsection{Kind Well-Formedness}
adamc@655 538
adamc@655 539 $$\infer{\Gamma \vdash \mt{Type}}{}
adamc@655 540 \quad \infer{\Gamma \vdash \mt{Unit}}{}
adamc@655 541 \quad \infer{\Gamma \vdash \mt{Name}}{}
adamc@655 542 \quad \infer{\Gamma \vdash \kappa_1 \to \kappa_2}{
adamc@655 543 \Gamma \vdash \kappa_1
adamc@655 544 & \Gamma \vdash \kappa_2
adamc@655 545 }
adamc@655 546 \quad \infer{\Gamma \vdash \{\kappa\}}{
adamc@655 547 \Gamma \vdash \kappa
adamc@655 548 }
adamc@655 549 \quad \infer{\Gamma \vdash (\kappa_1 \times \ldots \times \kappa_n)}{
adamc@655 550 \forall i: \Gamma \vdash \kappa_i
adamc@655 551 }$$
adamc@655 552
adamc@655 553 $$\infer{\Gamma \vdash X}{
adamc@655 554 X \in \Gamma
adamc@655 555 }
adamc@655 556 \quad \infer{\Gamma \vdash X \longrightarrow \kappa}{
adamc@655 557 \Gamma, X \vdash \kappa
adamc@655 558 }$$
adamc@655 559
adamc@530 560 \subsection{Kinding}
adamc@530 561
adamc@655 562 We write $[X \mapsto \kappa_1]\kappa_2$ for capture-avoiding substitution of $\kappa_1$ for $X$ in $\kappa_2$.
adamc@655 563
adamc@530 564 $$\infer{\Gamma \vdash (c) :: \kappa :: \kappa}{
adamc@530 565 \Gamma \vdash c :: \kappa
adamc@530 566 }
adamc@530 567 \quad \infer{\Gamma \vdash x :: \kappa}{
adamc@530 568 x :: \kappa \in \Gamma
adamc@530 569 }
adamc@530 570 \quad \infer{\Gamma \vdash x :: \kappa}{
adamc@530 571 x :: \kappa = c \in \Gamma
adamc@530 572 }$$
adamc@530 573
adamc@530 574 $$\infer{\Gamma \vdash M.x :: \kappa}{
adamc@537 575 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 576 & \mt{proj}(M, \overline{s}, \mt{con} \; x) = \kappa
adamc@530 577 }
adamc@530 578 \quad \infer{\Gamma \vdash M.x :: \kappa}{
adamc@537 579 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 580 & \mt{proj}(M, \overline{s}, \mt{con} \; x) = (\kappa, c)
adamc@530 581 }$$
adamc@530 582
adamc@530 583 $$\infer{\Gamma \vdash \tau_1 \to \tau_2 :: \mt{Type}}{
adamc@530 584 \Gamma \vdash \tau_1 :: \mt{Type}
adamc@530 585 & \Gamma \vdash \tau_2 :: \mt{Type}
adamc@530 586 }
adamc@530 587 \quad \infer{\Gamma \vdash x \; ? \: \kappa \to \tau :: \mt{Type}}{
adamc@530 588 \Gamma, x :: \kappa \vdash \tau :: \mt{Type}
adamc@530 589 }
adamc@655 590 \quad \infer{\Gamma \vdash X \longrightarrow \tau :: \mt{Type}}{
adamc@655 591 \Gamma, X \vdash \tau :: \mt{Type}
adamc@655 592 }
adamc@530 593 \quad \infer{\Gamma \vdash \$c :: \mt{Type}}{
adamc@530 594 \Gamma \vdash c :: \{\mt{Type}\}
adamc@530 595 }$$
adamc@530 596
adamc@530 597 $$\infer{\Gamma \vdash c_1 \; c_2 :: \kappa_2}{
adamc@530 598 \Gamma \vdash c_1 :: \kappa_1 \to \kappa_2
adamc@530 599 & \Gamma \vdash c_2 :: \kappa_1
adamc@530 600 }
adamc@530 601 \quad \infer{\Gamma \vdash \lambda x \; :: \; \kappa_1 \Rightarrow c :: \kappa_1 \to \kappa_2}{
adamc@530 602 \Gamma, x :: \kappa_1 \vdash c :: \kappa_2
adamc@530 603 }$$
adamc@530 604
adamc@655 605 $$\infer{\Gamma \vdash c[\kappa'] :: [X \mapsto \kappa']\kappa}{
adamc@655 606 \Gamma \vdash c :: X \to \kappa
adamc@655 607 & \Gamma \vdash \kappa'
adamc@655 608 }
adamc@655 609 \quad \infer{\Gamma \vdash X \Longrightarrow c :: X \to \kappa}{
adamc@655 610 \Gamma, X \vdash c :: \kappa
adamc@655 611 }$$
adamc@655 612
adamc@530 613 $$\infer{\Gamma \vdash () :: \mt{Unit}}{}
adamc@530 614 \quad \infer{\Gamma \vdash \#X :: \mt{Name}}{}$$
adamc@530 615
adamc@530 616 $$\infer{\Gamma \vdash [\overline{c_i = c'_i}] :: \{\kappa\}}{
adamc@530 617 \forall i: \Gamma \vdash c_i : \mt{Name}
adamc@530 618 & \Gamma \vdash c'_i :: \kappa
adamc@530 619 & \forall i \neq j: \Gamma \vdash c_i \sim c_j
adamc@530 620 }
adamc@530 621 \quad \infer{\Gamma \vdash c_1 \rc c_2 :: \{\kappa\}}{
adamc@530 622 \Gamma \vdash c_1 :: \{\kappa\}
adamc@530 623 & \Gamma \vdash c_2 :: \{\kappa\}
adamc@530 624 & \Gamma \vdash c_1 \sim c_2
adamc@530 625 }$$
adamc@530 626
adamc@655 627 $$\infer{\Gamma \vdash \mt{map} :: (\kappa_1 \to \kappa_2) \to \{\kappa_1\} \to \{\kappa_2\}}{}$$
adamc@530 628
adamc@573 629 $$\infer{\Gamma \vdash (\overline c) :: (\kappa_1 \times \ldots \times \kappa_n)}{
adamc@573 630 \forall i: \Gamma \vdash c_i :: \kappa_i
adamc@530 631 }
adamc@573 632 \quad \infer{\Gamma \vdash c.i :: \kappa_i}{
adamc@573 633 \Gamma \vdash c :: (\kappa_1 \times \ldots \times \kappa_n)
adamc@530 634 }$$
adamc@530 635
adamc@655 636 $$\infer{\Gamma \vdash \lambda [c_1 \sim c_2] \Rightarrow \tau :: \mt{Type}}{
adamc@655 637 \Gamma \vdash c_1 :: \{\kappa\}
adamc@530 638 & \Gamma \vdash c_2 :: \{\kappa'\}
adamc@655 639 & \Gamma, c_1 \sim c_2 \vdash \tau :: \mt{Type}
adamc@530 640 }$$
adamc@530 641
adamc@531 642 \subsection{Record Disjointness}
adamc@531 643
adamc@531 644 $$\infer{\Gamma \vdash c_1 \sim c_2}{
adamc@558 645 \Gamma \vdash c_1 \hookrightarrow C_1
adamc@558 646 & \Gamma \vdash c_2 \hookrightarrow C_2
adamc@558 647 & \forall c'_1 \in C_1, c'_2 \in C_2: \Gamma \vdash c'_1 \sim c'_2
adamc@531 648 }
adamc@531 649 \quad \infer{\Gamma \vdash X \sim X'}{
adamc@531 650 X \neq X'
adamc@531 651 }$$
adamc@531 652
adamc@531 653 $$\infer{\Gamma \vdash c_1 \sim c_2}{
adamc@531 654 c'_1 \sim c'_2 \in \Gamma
adamc@558 655 & \Gamma \vdash c'_1 \hookrightarrow C_1
adamc@558 656 & \Gamma \vdash c'_2 \hookrightarrow C_2
adamc@558 657 & c_1 \in C_1
adamc@558 658 & c_2 \in C_2
adamc@531 659 }$$
adamc@531 660
adamc@531 661 $$\infer{\Gamma \vdash c \hookrightarrow \{c\}}{}
adamc@531 662 \quad \infer{\Gamma \vdash [\overline{c = c'}] \hookrightarrow \{\overline{c}\}}{}
adamc@531 663 \quad \infer{\Gamma \vdash c_1 \rc c_2 \hookrightarrow C_1 \cup C_2}{
adamc@531 664 \Gamma \vdash c_1 \hookrightarrow C_1
adamc@531 665 & \Gamma \vdash c_2 \hookrightarrow C_2
adamc@531 666 }
adamc@531 667 \quad \infer{\Gamma \vdash c \hookrightarrow C}{
adamc@531 668 \Gamma \vdash c \equiv c'
adamc@531 669 & \Gamma \vdash c' \hookrightarrow C
adamc@531 670 }
adamc@531 671 \quad \infer{\Gamma \vdash \mt{map} \; f \; c \hookrightarrow C}{
adamc@531 672 \Gamma \vdash c \hookrightarrow C
adamc@531 673 }$$
adamc@531 674
adamc@541 675 \subsection{\label{definitional}Definitional Equality}
adamc@532 676
adamc@655 677 We use $\mathcal C$ to stand for a one-hole context that, when filled, yields a constructor. The notation $\mathcal C[c]$ plugs $c$ into $\mathcal C$. We omit the standard definition of one-hole contexts. We write $[x \mapsto c_1]c_2$ for capture-avoiding substitution of $c_1$ for $x$ in $c_2$, with analogous notation for substituting a kind in a constructor.
adamc@532 678
adamc@532 679 $$\infer{\Gamma \vdash c \equiv c}{}
adamc@532 680 \quad \infer{\Gamma \vdash c_1 \equiv c_2}{
adamc@532 681 \Gamma \vdash c_2 \equiv c_1
adamc@532 682 }
adamc@532 683 \quad \infer{\Gamma \vdash c_1 \equiv c_3}{
adamc@532 684 \Gamma \vdash c_1 \equiv c_2
adamc@532 685 & \Gamma \vdash c_2 \equiv c_3
adamc@532 686 }
adamc@532 687 \quad \infer{\Gamma \vdash \mathcal C[c_1] \equiv \mathcal C[c_2]}{
adamc@532 688 \Gamma \vdash c_1 \equiv c_2
adamc@532 689 }$$
adamc@532 690
adamc@532 691 $$\infer{\Gamma \vdash x \equiv c}{
adamc@532 692 x :: \kappa = c \in \Gamma
adamc@532 693 }
adamc@532 694 \quad \infer{\Gamma \vdash M.x \equiv c}{
adamc@537 695 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 696 & \mt{proj}(M, \overline{s}, \mt{con} \; x) = (\kappa, c)
adamc@532 697 }
adamc@532 698 \quad \infer{\Gamma \vdash (\overline c).i \equiv c_i}{}$$
adamc@532 699
adamc@532 700 $$\infer{\Gamma \vdash (\lambda x :: \kappa \Rightarrow c) \; c' \equiv [x \mapsto c'] c}{}
adamc@655 701 \quad \infer{\Gamma \vdash (X \Longrightarrow c) [\kappa] \equiv [X \mapsto \kappa] c}{}$$
adamc@655 702
adamc@655 703 $$\infer{\Gamma \vdash c_1 \rc c_2 \equiv c_2 \rc c_1}{}
adamc@532 704 \quad \infer{\Gamma \vdash c_1 \rc (c_2 \rc c_3) \equiv (c_1 \rc c_2) \rc c_3}{}$$
adamc@532 705
adamc@532 706 $$\infer{\Gamma \vdash [] \rc c \equiv c}{}
adamc@532 707 \quad \infer{\Gamma \vdash [\overline{c_1 = c'_1}] \rc [\overline{c_2 = c'_2}] \equiv [\overline{c_1 = c'_1}, \overline{c_2 = c'_2}]}{}$$
adamc@532 708
adamc@655 709 $$\infer{\Gamma \vdash \mt{map} \; f \; [] \equiv []}{}
adamc@655 710 \quad \infer{\Gamma \vdash \mt{map} \; f \; ([c_1 = c_2] \rc c) \equiv [c_1 = f \; c_2] \rc \mt{map} \; f \; c}{}$$
adamc@532 711
adamc@532 712 $$\infer{\Gamma \vdash \mt{map} \; (\lambda x \Rightarrow x) \; c \equiv c}{}
adamc@655 713 \quad \infer{\Gamma \vdash \mt{map} \; f \; (\mt{map} \; f' \; c)
adamc@655 714 \equiv \mt{map} \; (\lambda x \Rightarrow f \; (f' \; x)) \; c}{}$$
adamc@532 715
adamc@532 716 $$\infer{\Gamma \vdash \mt{map} \; f \; (c_1 \rc c_2) \equiv \mt{map} \; f \; c_1 \rc \mt{map} \; f \; c_2}{}$$
adamc@531 717
adamc@534 718 \subsection{Expression Typing}
adamc@533 719
adamc@873 720 We assume the existence of a function $T$ assigning types to literal constants. It maps integer constants to $\mt{Basis}.\mt{int}$, float constants to $\mt{Basis}.\mt{float}$, character constants to $\mt{Basis}.\mt{char}$, and string constants to $\mt{Basis}.\mt{string}$.
adamc@533 721
adamc@533 722 We also refer to a function $\mathcal I$, such that $\mathcal I(\tau)$ ``uses an oracle'' to instantiate all constructor function arguments at the beginning of $\tau$ that are marked implicit; i.e., replace $x_1 ::: \kappa_1 \to \ldots \to x_n ::: \kappa_n \to \tau$ with $[x_1 \mapsto c_1]\ldots[x_n \mapsto c_n]\tau$, where the $c_i$s are inferred and $\tau$ does not start like $x ::: \kappa \to \tau'$.
adamc@533 723
adamc@533 724 $$\infer{\Gamma \vdash e : \tau : \tau}{
adamc@533 725 \Gamma \vdash e : \tau
adamc@533 726 }
adamc@533 727 \quad \infer{\Gamma \vdash e : \tau}{
adamc@533 728 \Gamma \vdash e : \tau'
adamc@533 729 & \Gamma \vdash \tau' \equiv \tau
adamc@533 730 }
adamc@533 731 \quad \infer{\Gamma \vdash \ell : T(\ell)}{}$$
adamc@533 732
adamc@533 733 $$\infer{\Gamma \vdash x : \mathcal I(\tau)}{
adamc@533 734 x : \tau \in \Gamma
adamc@533 735 }
adamc@533 736 \quad \infer{\Gamma \vdash M.x : \mathcal I(\tau)}{
adamc@537 737 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 738 & \mt{proj}(M, \overline{s}, \mt{val} \; x) = \tau
adamc@533 739 }
adamc@533 740 \quad \infer{\Gamma \vdash X : \mathcal I(\tau)}{
adamc@533 741 X : \tau \in \Gamma
adamc@533 742 }
adamc@533 743 \quad \infer{\Gamma \vdash M.X : \mathcal I(\tau)}{
adamc@537 744 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 745 & \mt{proj}(M, \overline{s}, \mt{val} \; X) = \tau
adamc@533 746 }$$
adamc@533 747
adamc@533 748 $$\infer{\Gamma \vdash e_1 \; e_2 : \tau_2}{
adamc@533 749 \Gamma \vdash e_1 : \tau_1 \to \tau_2
adamc@533 750 & \Gamma \vdash e_2 : \tau_1
adamc@533 751 }
adamc@533 752 \quad \infer{\Gamma \vdash \lambda x : \tau_1 \Rightarrow e : \tau_1 \to \tau_2}{
adamc@533 753 \Gamma, x : \tau_1 \vdash e : \tau_2
adamc@533 754 }$$
adamc@533 755
adamc@533 756 $$\infer{\Gamma \vdash e [c] : [x \mapsto c]\tau}{
adamc@533 757 \Gamma \vdash e : x :: \kappa \to \tau
adamc@533 758 & \Gamma \vdash c :: \kappa
adamc@533 759 }
adamc@852 760 \quad \infer{\Gamma \vdash \lambda [x \; ? \; \kappa] \Rightarrow e : x \; ? \; \kappa \to \tau}{
adamc@533 761 \Gamma, x :: \kappa \vdash e : \tau
adamc@533 762 }$$
adamc@533 763
adamc@655 764 $$\infer{\Gamma \vdash e [\kappa] : [X \mapsto \kappa]\tau}{
adamc@655 765 \Gamma \vdash e : X \longrightarrow \tau
adamc@655 766 & \Gamma \vdash \kappa
adamc@655 767 }
adamc@655 768 \quad \infer{\Gamma \vdash X \Longrightarrow e : X \longrightarrow \tau}{
adamc@655 769 \Gamma, X \vdash e : \tau
adamc@655 770 }$$
adamc@655 771
adamc@533 772 $$\infer{\Gamma \vdash \{\overline{c = e}\} : \{\overline{c : \tau}\}}{
adamc@533 773 \forall i: \Gamma \vdash c_i :: \mt{Name}
adamc@533 774 & \Gamma \vdash e_i : \tau_i
adamc@533 775 & \forall i \neq j: \Gamma \vdash c_i \sim c_j
adamc@533 776 }
adamc@533 777 \quad \infer{\Gamma \vdash e.c : \tau}{
adamc@533 778 \Gamma \vdash e : \$([c = \tau] \rc c')
adamc@533 779 }
adamc@533 780 \quad \infer{\Gamma \vdash e_1 \rc e_2 : \$(c_1 \rc c_2)}{
adamc@533 781 \Gamma \vdash e_1 : \$c_1
adamc@533 782 & \Gamma \vdash e_2 : \$c_2
adamc@573 783 & \Gamma \vdash c_1 \sim c_2
adamc@533 784 }$$
adamc@533 785
adamc@533 786 $$\infer{\Gamma \vdash e \rcut c : \$c'}{
adamc@533 787 \Gamma \vdash e : \$([c = \tau] \rc c')
adamc@533 788 }
adamc@533 789 \quad \infer{\Gamma \vdash e \rcutM c : \$c'}{
adamc@533 790 \Gamma \vdash e : \$(c \rc c')
adamc@533 791 }$$
adamc@533 792
adamc@533 793 $$\infer{\Gamma \vdash \mt{let} \; \overline{ed} \; \mt{in} \; e \; \mt{end} : \tau}{
adamc@533 794 \Gamma \vdash \overline{ed} \leadsto \Gamma'
adamc@533 795 & \Gamma' \vdash e : \tau
adamc@533 796 }
adamc@533 797 \quad \infer{\Gamma \vdash \mt{case} \; e \; \mt{of} \; \overline{p \Rightarrow e} : \tau}{
adamc@533 798 \forall i: \Gamma \vdash p_i \leadsto \Gamma_i, \tau'
adamc@533 799 & \Gamma_i \vdash e_i : \tau
adamc@533 800 }$$
adamc@533 801
adamc@573 802 $$\infer{\Gamma \vdash \lambda [c_1 \sim c_2] \Rightarrow e : \lambda [c_1 \sim c_2] \Rightarrow \tau}{
adamc@533 803 \Gamma \vdash c_1 :: \{\kappa\}
adamc@655 804 & \Gamma \vdash c_2 :: \{\kappa'\}
adamc@533 805 & \Gamma, c_1 \sim c_2 \vdash e : \tau
adamc@662 806 }
adamc@662 807 \quad \infer{\Gamma \vdash e \; ! : \tau}{
adamc@662 808 \Gamma \vdash e : [c_1 \sim c_2] \Rightarrow \tau
adamc@662 809 & \Gamma \vdash c_1 \sim c_2
adamc@533 810 }$$
adamc@533 811
adamc@534 812 \subsection{Pattern Typing}
adamc@534 813
adamc@534 814 $$\infer{\Gamma \vdash \_ \leadsto \Gamma; \tau}{}
adamc@534 815 \quad \infer{\Gamma \vdash x \leadsto \Gamma, x : \tau; \tau}{}
adamc@534 816 \quad \infer{\Gamma \vdash \ell \leadsto \Gamma; T(\ell)}{}$$
adamc@534 817
adamc@534 818 $$\infer{\Gamma \vdash X \leadsto \Gamma; \overline{[x_i \mapsto \tau'_i]}\tau}{
adamc@534 819 X : \overline{x ::: \mt{Type}} \to \tau \in \Gamma
adamc@534 820 & \textrm{$\tau$ not a function type}
adamc@534 821 }
adamc@534 822 \quad \infer{\Gamma \vdash X \; p \leadsto \Gamma'; \overline{[x_i \mapsto \tau'_i]}\tau}{
adamc@534 823 X : \overline{x ::: \mt{Type}} \to \tau'' \to \tau \in \Gamma
adamc@534 824 & \Gamma \vdash p \leadsto \Gamma'; \overline{[x_i \mapsto \tau'_i]}\tau''
adamc@534 825 }$$
adamc@534 826
adamc@534 827 $$\infer{\Gamma \vdash M.X \leadsto \Gamma; \overline{[x_i \mapsto \tau'_i]}\tau}{
adamc@537 828 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 829 & \mt{proj}(M, \overline{s}, \mt{val} \; X) = \overline{x ::: \mt{Type}} \to \tau
adamc@534 830 & \textrm{$\tau$ not a function type}
adamc@534 831 }$$
adamc@534 832
adamc@534 833 $$\infer{\Gamma \vdash M.X \; p \leadsto \Gamma'; \overline{[x_i \mapsto \tau'_i]}\tau}{
adamc@537 834 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 835 & \mt{proj}(M, \overline{s}, \mt{val} \; X) = \overline{x ::: \mt{Type}} \to \tau'' \to \tau
adamc@534 836 & \Gamma \vdash p \leadsto \Gamma'; \overline{[x_i \mapsto \tau'_i]}\tau''
adamc@534 837 }$$
adamc@534 838
adamc@534 839 $$\infer{\Gamma \vdash \{\overline{x = p}\} \leadsto \Gamma_n; \{\overline{x = \tau}\}}{
adamc@534 840 \Gamma_0 = \Gamma
adamc@534 841 & \forall i: \Gamma_i \vdash p_i \leadsto \Gamma_{i+1}; \tau_i
adamc@534 842 }
adamc@534 843 \quad \infer{\Gamma \vdash \{\overline{x = p}, \ldots\} \leadsto \Gamma_n; \$([\overline{x = \tau}] \rc c)}{
adamc@534 844 \Gamma_0 = \Gamma
adamc@534 845 & \forall i: \Gamma_i \vdash p_i \leadsto \Gamma_{i+1}; \tau_i
adamc@534 846 }$$
adamc@534 847
adamc@852 848 $$\infer{\Gamma \vdash p : \tau \leadsto \Gamma'; \tau}{
adamc@852 849 \Gamma \vdash p \leadsto \Gamma'; \tau'
adamc@852 850 & \Gamma \vdash \tau' \equiv \tau
adamc@852 851 }$$
adamc@852 852
adamc@535 853 \subsection{Declaration Typing}
adamc@535 854
adamc@535 855 We use an auxiliary judgment $\overline{y}; x; \Gamma \vdash \overline{dc} \leadsto \Gamma'$, expressing the enrichment of $\Gamma$ with the types of the datatype constructors $\overline{dc}$, when they are known to belong to datatype $x$ with type parameters $\overline{y}$.
adamc@535 856
adamc@655 857 This is the first judgment where we deal with constructor classes, for the $\mt{class}$ declaration form. We will omit their special handling in this formal specification. Section \ref{typeclasses} gives an informal description of how constructor classes influence type inference.
adamc@535 858
adamc@558 859 We presuppose the existence of a function $\mathcal O$, where $\mathcal O(M, \overline{s})$ implements the $\mt{open}$ declaration by producing a context with the appropriate entry for each available component of module $M$ with signature items $\overline{s}$. Where possible, $\mathcal O$ uses ``transparent'' entries (e.g., an abstract type $M.x$ is mapped to $x :: \mt{Type} = M.x$), so that the relationship with $M$ is maintained. A related function $\mathcal O_c$ builds a context containing the disjointness constraints found in $\overline s$.
adamc@537 860 We write $\kappa_1^n \to \kappa$ as a shorthand, where $\kappa_1^0 \to \kappa = \kappa$ and $\kappa_1^{n+1} \to \kappa_2 = \kappa_1 \to (\kappa_1^n \to \kappa_2)$. We write $\mt{len}(\overline{y})$ for the length of vector $\overline{y}$ of variables.
adamc@535 861
adamc@535 862 $$\infer{\Gamma \vdash \cdot \leadsto \Gamma}{}
adamc@535 863 \quad \infer{\Gamma \vdash d, \overline{d} \leadsto \Gamma''}{
adamc@535 864 \Gamma \vdash d \leadsto \Gamma'
adamc@535 865 & \Gamma' \vdash \overline{d} \leadsto \Gamma''
adamc@535 866 }$$
adamc@535 867
adamc@535 868 $$\infer{\Gamma \vdash \mt{con} \; x :: \kappa = c \leadsto \Gamma, x :: \kappa = c}{
adamc@535 869 \Gamma \vdash c :: \kappa
adamc@535 870 }
adamc@535 871 \quad \infer{\Gamma \vdash \mt{datatype} \; x \; \overline{y} = \overline{dc} \leadsto \Gamma'}{
adamc@535 872 \overline{y}; x; \Gamma, x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type} \vdash \overline{dc} \leadsto \Gamma'
adamc@535 873 }$$
adamc@535 874
adamc@535 875 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leadsto \Gamma'}{
adamc@537 876 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 877 & \mt{proj}(M, \overline{s}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})
adamc@535 878 & \overline{y}; x; \Gamma, x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type} = M.z \vdash \overline{dc} \leadsto \Gamma'
adamc@535 879 }$$
adamc@535 880
adamc@535 881 $$\infer{\Gamma \vdash \mt{val} \; x : \tau = e \leadsto \Gamma, x : \tau}{
adamc@535 882 \Gamma \vdash e : \tau
adamc@535 883 }$$
adamc@535 884
adamc@535 885 $$\infer{\Gamma \vdash \mt{val} \; \mt{rec} \; \overline{x : \tau = e} \leadsto \Gamma, \overline{x : \tau}}{
adamc@535 886 \forall i: \Gamma, \overline{x : \tau} \vdash e_i : \tau_i
adamc@535 887 & \textrm{$e_i$ starts with an expression $\lambda$, optionally preceded by constructor and disjointness $\lambda$s}
adamc@535 888 }$$
adamc@535 889
adamc@535 890 $$\infer{\Gamma \vdash \mt{structure} \; X : S = M \leadsto \Gamma, X : S}{
adamc@535 891 \Gamma \vdash M : S
adamc@558 892 & \textrm{ $M$ not a constant or application}
adamc@535 893 }
adamc@558 894 \quad \infer{\Gamma \vdash \mt{structure} \; X : S = M \leadsto \Gamma, X : \mt{selfify}(X, \overline{s})}{
adamc@558 895 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@539 896 }$$
adamc@539 897
adamc@539 898 $$\infer{\Gamma \vdash \mt{signature} \; X = S \leadsto \Gamma, X = S}{
adamc@535 899 \Gamma \vdash S
adamc@535 900 }$$
adamc@535 901
adamc@537 902 $$\infer{\Gamma \vdash \mt{open} \; M \leadsto \Gamma, \mathcal O(M, \overline{s})}{
adamc@537 903 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@535 904 }$$
adamc@535 905
adamc@535 906 $$\infer{\Gamma \vdash \mt{constraint} \; c_1 \sim c_2 \leadsto \Gamma}{
adamc@535 907 \Gamma \vdash c_1 :: \{\kappa\}
adamc@535 908 & \Gamma \vdash c_2 :: \{\kappa\}
adamc@535 909 & \Gamma \vdash c_1 \sim c_2
adamc@535 910 }
adamc@537 911 \quad \infer{\Gamma \vdash \mt{open} \; \mt{constraints} \; M \leadsto \Gamma, \mathcal O_c(M, \overline{s})}{
adamc@537 912 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@535 913 }$$
adamc@535 914
adamc@784 915 $$\infer{\Gamma \vdash \mt{table} \; x : c \leadsto \Gamma, x : \mt{Basis}.\mt{sql\_table} \; c \; []}{
adamc@535 916 \Gamma \vdash c :: \{\mt{Type}\}
adamc@535 917 }
adamc@784 918 \quad \infer{\Gamma \vdash \mt{view} \; x : c \leadsto \Gamma, x : \mt{Basis}.\mt{sql\_view} \; c}{
adamc@784 919 \Gamma \vdash c :: \{\mt{Type}\}
adamc@784 920 }$$
adamc@784 921
adamc@784 922 $$\infer{\Gamma \vdash \mt{sequence} \; x \leadsto \Gamma, x : \mt{Basis}.\mt{sql\_sequence}}{}$$
adamc@535 923
adamc@535 924 $$\infer{\Gamma \vdash \mt{cookie} \; x : \tau \leadsto \Gamma, x : \mt{Basis}.\mt{http\_cookie} \; \tau}{
adamc@535 925 \Gamma \vdash \tau :: \mt{Type}
adamc@784 926 }
adamc@784 927 \quad \infer{\Gamma \vdash \mt{style} \; x \leadsto \Gamma, x : \mt{Basis}.\mt{css\_class}}{}$$
adamc@535 928
adamc@1085 929 $$\infer{\Gamma \vdash \mt{task} \; e_1 = e_2 \leadsto \Gamma}{
adamc@1085 930 \Gamma \vdash e_1 :: \mt{Basis}.\mt{task\_kind}
adamc@1085 931 & \Gamma \vdash e_2 :: \mt{Basis}.\mt{transaction} \; \{\}
adamc@1085 932 }$$
adamc@1085 933
adamc@784 934 $$\infer{\Gamma \vdash \mt{class} \; x :: \kappa = c \leadsto \Gamma, x :: \kappa = c}{
adamc@784 935 \Gamma \vdash c :: \kappa
adamc@535 936 }$$
adamc@535 937
adamc@535 938 $$\infer{\overline{y}; x; \Gamma \vdash \cdot \leadsto \Gamma}{}
adamc@535 939 \quad \infer{\overline{y}; x; \Gamma \vdash X \mid \overline{dc} \leadsto \Gamma', X : \overline{y ::: \mt{Type}} \to x \; \overline{y}}{
adamc@535 940 \overline{y}; x; \Gamma \vdash \overline{dc} \leadsto \Gamma'
adamc@535 941 }
adamc@535 942 \quad \infer{\overline{y}; x; \Gamma \vdash X \; \mt{of} \; \tau \mid \overline{dc} \leadsto \Gamma', X : \overline{y ::: \mt{Type}} \to \tau \to x \; \overline{y}}{
adamc@535 943 \overline{y}; x; \Gamma \vdash \overline{dc} \leadsto \Gamma'
adamc@535 944 }$$
adamc@535 945
adamc@537 946 \subsection{Signature Item Typing}
adamc@537 947
adamc@537 948 We appeal to a signature item analogue of the $\mathcal O$ function from the last subsection.
adamc@537 949
adamc@537 950 $$\infer{\Gamma \vdash \cdot \leadsto \Gamma}{}
adamc@537 951 \quad \infer{\Gamma \vdash s, \overline{s} \leadsto \Gamma''}{
adamc@537 952 \Gamma \vdash s \leadsto \Gamma'
adamc@537 953 & \Gamma' \vdash \overline{s} \leadsto \Gamma''
adamc@537 954 }$$
adamc@537 955
adamc@537 956 $$\infer{\Gamma \vdash \mt{con} \; x :: \kappa \leadsto \Gamma, x :: \kappa}{}
adamc@537 957 \quad \infer{\Gamma \vdash \mt{con} \; x :: \kappa = c \leadsto \Gamma, x :: \kappa = c}{
adamc@537 958 \Gamma \vdash c :: \kappa
adamc@537 959 }
adamc@537 960 \quad \infer{\Gamma \vdash \mt{datatype} \; x \; \overline{y} = \overline{dc} \leadsto \Gamma'}{
adamc@537 961 \overline{y}; x; \Gamma, x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type} \vdash \overline{dc} \leadsto \Gamma'
adamc@537 962 }$$
adamc@537 963
adamc@537 964 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leadsto \Gamma'}{
adamc@537 965 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 966 & \mt{proj}(M, \overline{s}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})
adamc@537 967 & \overline{y}; x; \Gamma, x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type} = M.z \vdash \overline{dc} \leadsto \Gamma'
adamc@537 968 }$$
adamc@537 969
adamc@537 970 $$\infer{\Gamma \vdash \mt{val} \; x : \tau \leadsto \Gamma, x : \tau}{
adamc@537 971 \Gamma \vdash \tau :: \mt{Type}
adamc@537 972 }$$
adamc@537 973
adamc@537 974 $$\infer{\Gamma \vdash \mt{structure} \; X : S \leadsto \Gamma, X : S}{
adamc@537 975 \Gamma \vdash S
adamc@537 976 }
adamc@537 977 \quad \infer{\Gamma \vdash \mt{signature} \; X = S \leadsto \Gamma, X = S}{
adamc@537 978 \Gamma \vdash S
adamc@537 979 }$$
adamc@537 980
adamc@537 981 $$\infer{\Gamma \vdash \mt{include} \; S \leadsto \Gamma, \mathcal O(\overline{s})}{
adamc@537 982 \Gamma \vdash S
adamc@537 983 & \Gamma \vdash S \equiv \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 984 }$$
adamc@537 985
adamc@537 986 $$\infer{\Gamma \vdash \mt{constraint} \; c_1 \sim c_2 \leadsto \Gamma, c_1 \sim c_2}{
adamc@537 987 \Gamma \vdash c_1 :: \{\kappa\}
adamc@537 988 & \Gamma \vdash c_2 :: \{\kappa\}
adamc@537 989 }$$
adamc@537 990
adamc@784 991 $$\infer{\Gamma \vdash \mt{class} \; x :: \kappa = c \leadsto \Gamma, x :: \kappa = c}{
adamc@784 992 \Gamma \vdash c :: \kappa
adamc@537 993 }
adamc@784 994 \quad \infer{\Gamma \vdash \mt{class} \; x :: \kappa \leadsto \Gamma, x :: \kappa}{}$$
adamc@537 995
adamc@536 996 \subsection{Signature Compatibility}
adamc@536 997
adamc@558 998 To simplify the judgments in this section, we assume that all signatures are alpha-varied as necessary to avoid including multiple bindings for the same identifier. This is in addition to the usual alpha-variation of locally-bound variables.
adamc@537 999
adamc@537 1000 We rely on a judgment $\Gamma \vdash \overline{s} \leq s'$, which expresses the occurrence in signature items $\overline{s}$ of an item compatible with $s'$. We also use a judgment $\Gamma \vdash \overline{dc} \leq \overline{dc}$, which expresses compatibility of datatype definitions.
adamc@537 1001
adamc@536 1002 $$\infer{\Gamma \vdash S \equiv S}{}
adamc@536 1003 \quad \infer{\Gamma \vdash S_1 \equiv S_2}{
adamc@536 1004 \Gamma \vdash S_2 \equiv S_1
adamc@536 1005 }
adamc@536 1006 \quad \infer{\Gamma \vdash X \equiv S}{
adamc@536 1007 X = S \in \Gamma
adamc@536 1008 }
adamc@536 1009 \quad \infer{\Gamma \vdash M.X \equiv S}{
adamc@537 1010 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 1011 & \mt{proj}(M, \overline{s}, \mt{signature} \; X) = S
adamc@536 1012 }$$
adamc@536 1013
adamc@536 1014 $$\infer{\Gamma \vdash S \; \mt{where} \; \mt{con} \; x = c \equiv \mt{sig} \; \overline{s^1} \; \mt{con} \; x :: \kappa = c \; \overline{s_2} \; \mt{end}}{
adamc@536 1015 \Gamma \vdash S \equiv \mt{sig} \; \overline{s^1} \; \mt{con} \; x :: \kappa \; \overline{s_2} \; \mt{end}
adamc@536 1016 & \Gamma \vdash c :: \kappa
adamc@537 1017 }
adamc@537 1018 \quad \infer{\Gamma \vdash \mt{sig} \; \overline{s^1} \; \mt{include} \; S \; \overline{s^2} \; \mt{end} \equiv \mt{sig} \; \overline{s^1} \; \overline{s} \; \overline{s^2} \; \mt{end}}{
adamc@537 1019 \Gamma \vdash S \equiv \mt{sig} \; \overline{s} \; \mt{end}
adamc@536 1020 }$$
adamc@536 1021
adamc@536 1022 $$\infer{\Gamma \vdash S_1 \leq S_2}{
adamc@536 1023 \Gamma \vdash S_1 \equiv S_2
adamc@536 1024 }
adamc@536 1025 \quad \infer{\Gamma \vdash \mt{sig} \; \overline{s} \; \mt{end} \leq \mt{sig} \; \mt{end}}{}
adamc@537 1026 \quad \infer{\Gamma \vdash \mt{sig} \; \overline{s} \; \mt{end} \leq \mt{sig} \; s' \; \overline{s'} \; \mt{end}}{
adamc@537 1027 \Gamma \vdash \overline{s} \leq s'
adamc@537 1028 & \Gamma \vdash s' \leadsto \Gamma'
adamc@537 1029 & \Gamma' \vdash \mt{sig} \; \overline{s} \; \mt{end} \leq \mt{sig} \; \overline{s'} \; \mt{end}
adamc@537 1030 }$$
adamc@537 1031
adamc@537 1032 $$\infer{\Gamma \vdash s \; \overline{s} \leq s'}{
adamc@537 1033 \Gamma \vdash s \leq s'
adamc@537 1034 }
adamc@537 1035 \quad \infer{\Gamma \vdash s \; \overline{s} \leq s'}{
adamc@537 1036 \Gamma \vdash s \leadsto \Gamma'
adamc@537 1037 & \Gamma' \vdash \overline{s} \leq s'
adamc@536 1038 }$$
adamc@536 1039
adamc@536 1040 $$\infer{\Gamma \vdash \mt{functor} (X : S_1) : S_2 \leq \mt{functor} (X : S'_1) : S'_2}{
adamc@536 1041 \Gamma \vdash S'_1 \leq S_1
adamc@536 1042 & \Gamma, X : S'_1 \vdash S_2 \leq S'_2
adamc@536 1043 }$$
adamc@536 1044
adamc@537 1045 $$\infer{\Gamma \vdash \mt{con} \; x :: \kappa \leq \mt{con} \; x :: \kappa}{}
adamc@537 1046 \quad \infer{\Gamma \vdash \mt{con} \; x :: \kappa = c \leq \mt{con} \; x :: \kappa}{}
adamc@558 1047 \quad \infer{\Gamma \vdash \mt{datatype} \; x \; \overline{y} = \overline{dc} \leq \mt{con} \; x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type}}{}$$
adamc@537 1048
adamc@537 1049 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leq \mt{con} \; x :: \mt{Type}^{\mt{len}(y)} \to \mt{Type}}{
adamc@537 1050 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 1051 & \mt{proj}(M, \overline{s}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})
adamc@537 1052 }$$
adamc@537 1053
adamc@784 1054 $$\infer{\Gamma \vdash \mt{class} \; x :: \kappa \leq \mt{con} \; x :: \kappa}{}
adamc@784 1055 \quad \infer{\Gamma \vdash \mt{class} \; x :: \kappa = c \leq \mt{con} \; x :: \kappa}{}$$
adamc@537 1056
adamc@537 1057 $$\infer{\Gamma \vdash \mt{con} \; x :: \kappa = c_1 \leq \mt{con} \; x :: \mt{\kappa} = c_2}{
adamc@537 1058 \Gamma \vdash c_1 \equiv c_2
adamc@537 1059 }
adamc@784 1060 \quad \infer{\Gamma \vdash \mt{class} \; x :: \kappa = c_1 \leq \mt{con} \; x :: \kappa = c_2}{
adamc@537 1061 \Gamma \vdash c_1 \equiv c_2
adamc@537 1062 }$$
adamc@537 1063
adamc@537 1064 $$\infer{\Gamma \vdash \mt{datatype} \; x \; \overline{y} = \overline{dc} \leq \mt{datatype} \; x \; \overline{y} = \overline{dc'}}{
adamc@537 1065 \Gamma, \overline{y :: \mt{Type}} \vdash \overline{dc} \leq \overline{dc'}
adamc@537 1066 }$$
adamc@537 1067
adamc@537 1068 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leq \mt{datatype} \; x \; \overline{y} = \overline{dc'}}{
adamc@537 1069 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 1070 & \mt{proj}(M, \overline{s}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})
adamc@537 1071 & \Gamma, \overline{y :: \mt{Type}} \vdash \overline{dc} \leq \overline{dc'}
adamc@537 1072 }$$
adamc@537 1073
adamc@537 1074 $$\infer{\Gamma \vdash \cdot \leq \cdot}{}
adamc@537 1075 \quad \infer{\Gamma \vdash X; \overline{dc} \leq X; \overline{dc'}}{
adamc@537 1076 \Gamma \vdash \overline{dc} \leq \overline{dc'}
adamc@537 1077 }
adamc@537 1078 \quad \infer{\Gamma \vdash X \; \mt{of} \; \tau_1; \overline{dc} \leq X \; \mt{of} \; \tau_2; \overline{dc'}}{
adamc@537 1079 \Gamma \vdash \tau_1 \equiv \tau_2
adamc@537 1080 & \Gamma \vdash \overline{dc} \leq \overline{dc'}
adamc@537 1081 }$$
adamc@537 1082
adamc@537 1083 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leq \mt{datatype} \; x = \mt{datatype} \; M'.z'}{
adamc@537 1084 \Gamma \vdash M.z \equiv M'.z'
adamc@537 1085 }$$
adamc@537 1086
adamc@537 1087 $$\infer{\Gamma \vdash \mt{val} \; x : \tau_1 \leq \mt{val} \; x : \tau_2}{
adamc@537 1088 \Gamma \vdash \tau_1 \equiv \tau_2
adamc@537 1089 }
adamc@537 1090 \quad \infer{\Gamma \vdash \mt{structure} \; X : S_1 \leq \mt{structure} \; X : S_2}{
adamc@537 1091 \Gamma \vdash S_1 \leq S_2
adamc@537 1092 }
adamc@537 1093 \quad \infer{\Gamma \vdash \mt{signature} \; X = S_1 \leq \mt{signature} \; X = S_2}{
adamc@537 1094 \Gamma \vdash S_1 \leq S_2
adamc@537 1095 & \Gamma \vdash S_2 \leq S_1
adamc@537 1096 }$$
adamc@537 1097
adamc@537 1098 $$\infer{\Gamma \vdash \mt{constraint} \; c_1 \sim c_2 \leq \mt{constraint} \; c'_1 \sim c'_2}{
adamc@537 1099 \Gamma \vdash c_1 \equiv c'_1
adamc@537 1100 & \Gamma \vdash c_2 \equiv c'_2
adamc@537 1101 }$$
adamc@537 1102
adamc@655 1103 $$\infer{\Gamma \vdash \mt{class} \; x :: \kappa \leq \mt{class} \; x :: \kappa}{}
adamc@655 1104 \quad \infer{\Gamma \vdash \mt{class} \; x :: \kappa = c \leq \mt{class} \; x :: \kappa}{}
adamc@655 1105 \quad \infer{\Gamma \vdash \mt{class} \; x :: \kappa = c_1 \leq \mt{class} \; x :: \kappa = c_2}{
adamc@537 1106 \Gamma \vdash c_1 \equiv c_2
adamc@537 1107 }$$
adamc@537 1108
adamc@538 1109 \subsection{Module Typing}
adamc@538 1110
adamc@538 1111 We use a helper function $\mt{sigOf}$, which converts declarations and sequences of declarations into their principal signature items and sequences of signature items, respectively.
adamc@538 1112
adamc@538 1113 $$\infer{\Gamma \vdash M : S}{
adamc@538 1114 \Gamma \vdash M : S'
adamc@538 1115 & \Gamma \vdash S' \leq S
adamc@538 1116 }
adamc@538 1117 \quad \infer{\Gamma \vdash \mt{struct} \; \overline{d} \; \mt{end} : \mt{sig} \; \mt{sigOf}(\overline{d}) \; \mt{end}}{
adamc@538 1118 \Gamma \vdash \overline{d} \leadsto \Gamma'
adamc@538 1119 }
adamc@538 1120 \quad \infer{\Gamma \vdash X : S}{
adamc@538 1121 X : S \in \Gamma
adamc@538 1122 }$$
adamc@538 1123
adamc@538 1124 $$\infer{\Gamma \vdash M.X : S}{
adamc@538 1125 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@538 1126 & \mt{proj}(M, \overline{s}, \mt{structure} \; X) = S
adamc@538 1127 }$$
adamc@538 1128
adamc@538 1129 $$\infer{\Gamma \vdash M_1(M_2) : [X \mapsto M_2]S_2}{
adamc@538 1130 \Gamma \vdash M_1 : \mt{functor}(X : S_1) : S_2
adamc@538 1131 & \Gamma \vdash M_2 : S_1
adamc@538 1132 }
adamc@538 1133 \quad \infer{\Gamma \vdash \mt{functor} (X : S_1) : S_2 = M : \mt{functor} (X : S_1) : S_2}{
adamc@538 1134 \Gamma \vdash S_1
adamc@538 1135 & \Gamma, X : S_1 \vdash S_2
adamc@538 1136 & \Gamma, X : S_1 \vdash M : S_2
adamc@538 1137 }$$
adamc@538 1138
adamc@538 1139 \begin{eqnarray*}
adamc@538 1140 \mt{sigOf}(\cdot) &=& \cdot \\
adamc@538 1141 \mt{sigOf}(s \; \overline{s'}) &=& \mt{sigOf}(s) \; \mt{sigOf}(\overline{s'}) \\
adamc@538 1142 \\
adamc@538 1143 \mt{sigOf}(\mt{con} \; x :: \kappa = c) &=& \mt{con} \; x :: \kappa = c \\
adamc@538 1144 \mt{sigOf}(\mt{datatype} \; x \; \overline{y} = \overline{dc}) &=& \mt{datatype} \; x \; \overline{y} = \overline{dc} \\
adamc@538 1145 \mt{sigOf}(\mt{datatype} \; x = \mt{datatype} \; M.z) &=& \mt{datatype} \; x = \mt{datatype} \; M.z \\
adamc@538 1146 \mt{sigOf}(\mt{val} \; x : \tau = e) &=& \mt{val} \; x : \tau \\
adamc@538 1147 \mt{sigOf}(\mt{val} \; \mt{rec} \; \overline{x : \tau = e}) &=& \overline{\mt{val} \; x : \tau} \\
adamc@538 1148 \mt{sigOf}(\mt{structure} \; X : S = M) &=& \mt{structure} \; X : S \\
adamc@538 1149 \mt{sigOf}(\mt{signature} \; X = S) &=& \mt{signature} \; X = S \\
adamc@538 1150 \mt{sigOf}(\mt{open} \; M) &=& \mt{include} \; S \textrm{ (where $\Gamma \vdash M : S$)} \\
adamc@538 1151 \mt{sigOf}(\mt{constraint} \; c_1 \sim c_2) &=& \mt{constraint} \; c_1 \sim c_2 \\
adamc@538 1152 \mt{sigOf}(\mt{open} \; \mt{constraints} \; M) &=& \cdot \\
adamc@538 1153 \mt{sigOf}(\mt{table} \; x : c) &=& \mt{table} \; x : c \\
adamc@784 1154 \mt{sigOf}(\mt{view} \; x : c) &=& \mt{view} \; x : c \\
adamc@538 1155 \mt{sigOf}(\mt{sequence} \; x) &=& \mt{sequence} \; x \\
adamc@538 1156 \mt{sigOf}(\mt{cookie} \; x : \tau) &=& \mt{cookie} \; x : \tau \\
adamc@784 1157 \mt{sigOf}(\mt{style} \; x) &=& \mt{style} \; x \\
adamc@655 1158 \mt{sigOf}(\mt{class} \; x :: \kappa = c) &=& \mt{class} \; x :: \kappa = c \\
adamc@538 1159 \end{eqnarray*}
adamc@539 1160 \begin{eqnarray*}
adamc@539 1161 \mt{selfify}(M, \cdot) &=& \cdot \\
adamc@558 1162 \mt{selfify}(M, s \; \overline{s'}) &=& \mt{selfify}(M, s) \; \mt{selfify}(M, \overline{s'}) \\
adamc@539 1163 \\
adamc@539 1164 \mt{selfify}(M, \mt{con} \; x :: \kappa) &=& \mt{con} \; x :: \kappa = M.x \\
adamc@539 1165 \mt{selfify}(M, \mt{con} \; x :: \kappa = c) &=& \mt{con} \; x :: \kappa = c \\
adamc@539 1166 \mt{selfify}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc}) &=& \mt{datatype} \; x \; \overline{y} = \mt{datatype} \; M.x \\
adamc@539 1167 \mt{selfify}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z) &=& \mt{datatype} \; x = \mt{datatype} \; M'.z \\
adamc@539 1168 \mt{selfify}(M, \mt{val} \; x : \tau) &=& \mt{val} \; x : \tau \\
adamc@539 1169 \mt{selfify}(M, \mt{structure} \; X : S) &=& \mt{structure} \; X : \mt{selfify}(M.X, \overline{s}) \textrm{ (where $\Gamma \vdash S \equiv \mt{sig} \; \overline{s} \; \mt{end}$)} \\
adamc@539 1170 \mt{selfify}(M, \mt{signature} \; X = S) &=& \mt{signature} \; X = S \\
adamc@539 1171 \mt{selfify}(M, \mt{include} \; S) &=& \mt{include} \; S \\
adamc@539 1172 \mt{selfify}(M, \mt{constraint} \; c_1 \sim c_2) &=& \mt{constraint} \; c_1 \sim c_2 \\
adamc@655 1173 \mt{selfify}(M, \mt{class} \; x :: \kappa) &=& \mt{class} \; x :: \kappa = M.x \\
adamc@655 1174 \mt{selfify}(M, \mt{class} \; x :: \kappa = c) &=& \mt{class} \; x :: \kappa = c \\
adamc@539 1175 \end{eqnarray*}
adamc@539 1176
adamc@540 1177 \subsection{Module Projection}
adamc@540 1178
adamc@540 1179 \begin{eqnarray*}
adamc@540 1180 \mt{proj}(M, \mt{con} \; x :: \kappa \; \overline{s}, \mt{con} \; x) &=& \kappa \\
adamc@540 1181 \mt{proj}(M, \mt{con} \; x :: \kappa = c \; \overline{s}, \mt{con} \; x) &=& (\kappa, c) \\
adamc@540 1182 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, \mt{con} \; x) &=& \mt{Type}^{\mt{len}(\overline{y})} \to \mt{Type} \\
adamc@540 1183 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z \; \overline{s}, \mt{con} \; x) &=& (\mt{Type}^{\mt{len}(\overline{y})} \to \mt{Type}, M'.z) \textrm{ (where $\Gamma \vdash M' : \mt{sig} \; \overline{s'} \; \mt{end}$} \\
adamc@540 1184 && \textrm{and $\mt{proj}(M', \overline{s'}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})$)} \\
adamc@655 1185 \mt{proj}(M, \mt{class} \; x :: \kappa \; \overline{s}, \mt{con} \; x) &=& \kappa \to \mt{Type} \\
adamc@655 1186 \mt{proj}(M, \mt{class} \; x :: \kappa = c \; \overline{s}, \mt{con} \; x) &=& (\kappa \to \mt{Type}, c) \\
adamc@540 1187 \\
adamc@540 1188 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, \mt{datatype} \; x) &=& (\overline{y}, \overline{dc}) \\
adamc@540 1189 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z \; \overline{s}, \mt{con} \; x) &=& \mt{proj}(M', \overline{s'}, \mt{datatype} \; z) \textrm{ (where $\Gamma \vdash M' : \mt{sig} \; \overline{s'} \; \mt{end}$)} \\
adamc@540 1190 \\
adamc@540 1191 \mt{proj}(M, \mt{val} \; x : \tau \; \overline{s}, \mt{val} \; x) &=& \tau \\
adamc@540 1192 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, \mt{val} \; X) &=& \overline{y ::: \mt{Type}} \to M.x \; \overline y \textrm{ (where $X \in \overline{dc}$)} \\
adamc@540 1193 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, \mt{val} \; X) &=& \overline{y ::: \mt{Type}} \to \tau \to M.x \; \overline y \textrm{ (where $X \; \mt{of} \; \tau \in \overline{dc}$)} \\
adamc@540 1194 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z, \mt{val} \; X) &=& \overline{y ::: \mt{Type}} \to M.x \; \overline y \textrm{ (where $\Gamma \vdash M' : \mt{sig} \; \overline{s'} \; \mt{end}$} \\
adamc@540 1195 && \textrm{and $\mt{proj}(M', \overline{s'}, \mt{datatype} \; z = (\overline{y}, \overline{dc})$ and $X \in \overline{dc}$)} \\
adamc@540 1196 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z, \mt{val} \; X) &=& \overline{y ::: \mt{Type}} \to \tau \to M.x \; \overline y \textrm{ (where $\Gamma \vdash M' : \mt{sig} \; \overline{s'} \; \mt{end}$} \\
adamc@558 1197 && \textrm{and $\mt{proj}(M', \overline{s'}, \mt{datatype} \; z = (\overline{y}, \overline{dc})$ and $X \; \mt{of} \; \tau \in \overline{dc}$)} \\
adamc@540 1198 \\
adamc@540 1199 \mt{proj}(M, \mt{structure} \; X : S \; \overline{s}, \mt{structure} \; X) &=& S \\
adamc@540 1200 \\
adamc@540 1201 \mt{proj}(M, \mt{signature} \; X = S \; \overline{s}, \mt{signature} \; X) &=& S \\
adamc@540 1202 \\
adamc@540 1203 \mt{proj}(M, \mt{con} \; x :: \kappa \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1204 \mt{proj}(M, \mt{con} \; x :: \kappa = c \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1205 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1206 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1207 \mt{proj}(M, \mt{val} \; x : \tau \; \overline{s}, V) &=& \mt{proj}(M, \overline{s}, V) \\
adamc@540 1208 \mt{proj}(M, \mt{structure} \; X : S \; \overline{s}, V) &=& [X \mapsto M.X]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1209 \mt{proj}(M, \mt{signature} \; X = S \; \overline{s}, V) &=& [X \mapsto M.X]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1210 \mt{proj}(M, \mt{include} \; S \; \overline{s}, V) &=& \mt{proj}(M, \overline{s'} \; \overline{s}, V) \textrm{ (where $\Gamma \vdash S \equiv \mt{sig} \; \overline{s'} \; \mt{end}$)} \\
adamc@540 1211 \mt{proj}(M, \mt{constraint} \; c_1 \sim c_2 \; \overline{s}, V) &=& \mt{proj}(M, \overline{s}, V) \\
adamc@655 1212 \mt{proj}(M, \mt{class} \; x :: \kappa \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@655 1213 \mt{proj}(M, \mt{class} \; x :: \kappa = c \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1214 \end{eqnarray*}
adamc@540 1215
adamc@541 1216
adamc@541 1217 \section{Type Inference}
adamc@541 1218
adamc@541 1219 The Ur/Web compiler uses \emph{heuristic type inference}, with no claims of completeness with respect to the declarative specification of the last section. The rules in use seem to work well in practice. This section summarizes those rules, to help Ur programmers predict what will work and what won't.
adamc@541 1220
adamc@541 1221 \subsection{Basic Unification}
adamc@541 1222
adamc@560 1223 Type-checkers for languages based on the Hindley-Milner type discipline, like ML and Haskell, take advantage of \emph{principal typing} properties, making complete type inference relatively straightforward. Inference algorithms are traditionally implemented using type unification variables, at various points asserting equalities between types, in the process discovering the values of type variables. The Ur/Web compiler uses the same basic strategy, but the complexity of the type system rules out easy completeness.
adamc@541 1224
adamc@656 1225 Type-checking can require evaluating recursive functional programs, thanks to the type-level $\mt{map}$ operator. When a unification variable appears in such a type, the next step of computation can be undetermined. The value of that variable might be determined later, but this would be ``too late'' for the unification problems generated at the first occurrence. This is the essential source of incompleteness.
adamc@541 1226
adamc@541 1227 Nonetheless, the unification engine tends to do reasonably well. Unlike in ML, polymorphism is never inferred in definitions; it must be indicated explicitly by writing out constructor-level parameters. By writing these and other annotations, the programmer can generally get the type inference engine to do most of the type reconstruction work.
adamc@541 1228
adamc@541 1229 \subsection{Unifying Record Types}
adamc@541 1230
adamc@570 1231 The type inference engine tries to take advantage of the algebraic rules governing type-level records, as shown in Section \ref{definitional}. When two constructors of record kind are unified, they are reduced to normal forms, with like terms crossed off from each normal form until, hopefully, nothing remains. This cannot be complete, with the inclusion of unification variables. The type-checker can help you understand what goes wrong when the process fails, as it outputs the unmatched remainders of the two normal forms.
adamc@541 1232
adamc@656 1233 \subsection{\label{typeclasses}Constructor Classes}
adamc@541 1234
adamc@784 1235 Ur includes a constructor class facility inspired by Haskell's. The current version is experimental, with very general Prolog-like facilities that can lead to compile-time non-termination.
adamc@541 1236
adamc@784 1237 Constructor classes are integrated with the module system. A constructor class of kind $\kappa$ is just a constructor of kind $\kappa$. By marking such a constructor $c$ as a constructor class, the programmer instructs the type inference engine to, in each scope, record all values of types $c \; c_1 \; \ldots \; c_n$ as \emph{instances}. Any function argument whose type is of such a form is treated as implicit, to be determined by examining the current instance database.
adamc@541 1238
adamc@656 1239 The ``dictionary encoding'' often used in Haskell implementations is made explicit in Ur. Constructor class instances are just properly-typed values, and they can also be considered as ``proofs'' of membership in the class. In some cases, it is useful to pass these proofs around explicitly. An underscore written where a proof is expected will also be inferred, if possible, from the current instance database.
adamc@541 1240
adamc@656 1241 Just as for constructors, constructors classes may be exported from modules, and they may be exported as concrete or abstract. Concrete constructor classes have their ``real'' definitions exposed, so that client code may add new instances freely. Abstract constructor classes are useful as ``predicates'' that can be used to enforce invariants, as we will see in some definitions of SQL syntax in the Ur/Web standard library.
adamc@541 1242
adamc@541 1243 \subsection{Reverse-Engineering Record Types}
adamc@541 1244
adamc@656 1245 It's useful to write Ur functions and functors that take record constructors as inputs, but these constructors can grow quite long, even though their values are often implied by other arguments. The compiler uses a simple heuristic to infer the values of unification variables that are mapped over, yielding known results. If the result is empty, we're done; if it's not empty, we replace a single unification variable with a new constructor formed from three new unification variables, as in $[\alpha = \beta] \rc \gamma$. This process can often be repeated to determine a unification variable fully.
adamc@541 1246
adamc@541 1247 \subsection{Implicit Arguments in Functor Applications}
adamc@541 1248
adamc@656 1249 Constructor, constraint, and constructor class witness members of structures may be omitted, when those structures are used in contexts where their assigned signatures imply how to fill in those missing members. This feature combines well with reverse-engineering to allow for uses of complicated meta-programming functors with little more code than would be necessary to invoke an untyped, ad-hoc code generator.
adamc@541 1250
adamc@541 1251
adamc@542 1252 \section{The Ur Standard Library}
adamc@542 1253
adamc@542 1254 The built-in parts of the Ur/Web standard library are described by the signature in \texttt{lib/basis.urs} in the distribution. A module $\mt{Basis}$ ascribing to that signature is available in the initial environment, and every program is implicitly prefixed by $\mt{open} \; \mt{Basis}$.
adamc@542 1255
adamc@542 1256 Additionally, other common functions that are definable within Ur are included in \texttt{lib/top.urs} and \texttt{lib/top.ur}. This $\mt{Top}$ module is also opened implicitly.
adamc@542 1257
adamc@542 1258 The idea behind Ur is to serve as the ideal host for embedded domain-specific languages. For now, however, the ``generic'' functionality is intermixed with Ur/Web-specific functionality, including in these two library modules. We hope that these generic library components have types that speak for themselves. The next section introduces the Ur/Web-specific elements. Here, we only give the type declarations from the beginning of $\mt{Basis}$.
adamc@542 1259 $$\begin{array}{l}
adamc@542 1260 \mt{type} \; \mt{int} \\
adamc@542 1261 \mt{type} \; \mt{float} \\
adamc@873 1262 \mt{type} \; \mt{char} \\
adamc@542 1263 \mt{type} \; \mt{string} \\
adamc@542 1264 \mt{type} \; \mt{time} \\
adamc@785 1265 \mt{type} \; \mt{blob} \\
adamc@542 1266 \\
adamc@542 1267 \mt{type} \; \mt{unit} = \{\} \\
adamc@542 1268 \\
adamc@542 1269 \mt{datatype} \; \mt{bool} = \mt{False} \mid \mt{True} \\
adamc@542 1270 \\
adamc@785 1271 \mt{datatype} \; \mt{option} \; \mt{t} = \mt{None} \mid \mt{Some} \; \mt{of} \; \mt{t} \\
adamc@785 1272 \\
adamc@785 1273 \mt{datatype} \; \mt{list} \; \mt{t} = \mt{Nil} \mid \mt{Cons} \; \mt{of} \; \mt{t} \times \mt{list} \; \mt{t}
adamc@542 1274 \end{array}$$
adamc@542 1275
adamc@1123 1276 The only unusual element of this list is the $\mt{blob}$ type, which stands for binary sequences. Simple blobs can be created from strings via $\mt{Basis.textBlob}$. Blobs will also be generated from HTTP file uploads.
adamc@785 1277
adamc@657 1278 Another important generic Ur element comes at the beginning of \texttt{top.urs}.
adamc@657 1279
adamc@657 1280 $$\begin{array}{l}
adamc@657 1281 \mt{con} \; \mt{folder} :: \mt{K} \longrightarrow \{\mt{K}\} \to \mt{Type} \\
adamc@657 1282 \\
adamc@657 1283 \mt{val} \; \mt{fold} : \mt{K} \longrightarrow \mt{tf} :: (\{\mt{K}\} \to \mt{Type}) \\
adamc@657 1284 \hspace{.1in} \to (\mt{nm} :: \mt{Name} \to \mt{v} :: \mt{K} \to \mt{r} :: \{\mt{K}\} \to [[\mt{nm}] \sim \mt{r}] \Rightarrow \\
adamc@657 1285 \hspace{.2in} \mt{tf} \; \mt{r} \to \mt{tf} \; ([\mt{nm} = \mt{v}] \rc \mt{r})) \\
adamc@657 1286 \hspace{.1in} \to \mt{tf} \; [] \\
adamc@657 1287 \hspace{.1in} \to \mt{r} :: \{\mt{K}\} \to \mt{folder} \; \mt{r} \to \mt{tf} \; \mt{r}
adamc@657 1288 \end{array}$$
adamc@657 1289
adamc@657 1290 For a type-level record $\mt{r}$, a $\mt{folder} \; \mt{r}$ encodes a permutation of $\mt{r}$'s elements. The $\mt{fold}$ function can be called on a $\mt{folder}$ to iterate over the elements of $\mt{r}$ in that order. $\mt{fold}$ is parameterized on a type-level function to be used to calculate the type of each intermediate result of folding. After processing a subset $\mt{r'}$ of $\mt{r}$'s entries, the type of the accumulator should be $\mt{tf} \; \mt{r'}$. The next two expression arguments to $\mt{fold}$ are the usual step function and initial accumulator, familiar from fold functions over lists. The final two arguments are the record to fold over and a $\mt{folder}$ for it.
adamc@657 1291
adamc@664 1292 The Ur compiler treats $\mt{folder}$ like a constructor class, using built-in rules to infer $\mt{folder}$s for records with known structure. The order in which field names are mentioned in source code is used as a hint about the permutation that the programmer would like.
adamc@657 1293
adamc@542 1294
adamc@542 1295 \section{The Ur/Web Standard Library}
adamc@542 1296
adamc@658 1297 \subsection{Monads}
adamc@658 1298
adamc@658 1299 The Ur Basis defines the monad constructor class from Haskell.
adamc@658 1300
adamc@658 1301 $$\begin{array}{l}
adamc@658 1302 \mt{class} \; \mt{monad} :: \mt{Type} \to \mt{Type} \\
adamc@658 1303 \mt{val} \; \mt{return} : \mt{m} ::: (\mt{Type} \to \mt{Type}) \to \mt{t} ::: \mt{Type} \\
adamc@658 1304 \hspace{.1in} \to \mt{monad} \; \mt{m} \\
adamc@658 1305 \hspace{.1in} \to \mt{t} \to \mt{m} \; \mt{t} \\
adamc@658 1306 \mt{val} \; \mt{bind} : \mt{m} ::: (\mt{Type} \to \mt{Type}) \to \mt{t1} ::: \mt{Type} \to \mt{t2} ::: \mt{Type} \\
adamc@658 1307 \hspace{.1in} \to \mt{monad} \; \mt{m} \\
adamc@658 1308 \hspace{.1in} \to \mt{m} \; \mt{t1} \to (\mt{t1} \to \mt{m} \; \mt{t2}) \\
adamc@658 1309 \hspace{.1in} \to \mt{m} \; \mt{t2}
adamc@658 1310 \end{array}$$
adamc@658 1311
adamc@542 1312 \subsection{Transactions}
adamc@542 1313
adamc@542 1314 Ur is a pure language; we use Haskell's trick to support controlled side effects. The standard library defines a monad $\mt{transaction}$, meant to stand for actions that may be undone cleanly. By design, no other kinds of actions are supported.
adamc@542 1315 $$\begin{array}{l}
adamc@542 1316 \mt{con} \; \mt{transaction} :: \mt{Type} \to \mt{Type} \\
adamc@658 1317 \mt{val} \; \mt{transaction\_monad} : \mt{monad} \; \mt{transaction}
adamc@542 1318 \end{array}$$
adamc@542 1319
adamc@1123 1320 For debugging purposes, a transactional function is provided for outputting a string on the server process' \texttt{stderr}.
adamc@1123 1321 $$\begin{array}{l}
adamc@1123 1322 \mt{val} \; \mt{debug} : \mt{string} \to \mt{transaction} \; \mt{unit}
adamc@1123 1323 \end{array}$$
adamc@1123 1324
adamc@542 1325 \subsection{HTTP}
adamc@542 1326
adamc@542 1327 There are transactions for reading an HTTP header by name and for getting and setting strongly-typed cookies. Cookies may only be created by the $\mt{cookie}$ declaration form, ensuring that they be named consistently based on module structure.
adamc@542 1328 $$\begin{array}{l}
adamc@786 1329 \mt{val} \; \mt{requestHeader} : \mt{string} \to \mt{transaction} \; (\mt{option} \; \mt{string}) \\
adamc@786 1330 \\
adamc@786 1331 \mt{con} \; \mt{http\_cookie} :: \mt{Type} \to \mt{Type} \\
adamc@786 1332 \mt{val} \; \mt{getCookie} : \mt{t} ::: \mt{Type} \to \mt{http\_cookie} \; \mt{t} \to \mt{transaction} \; (\mt{option} \; \mt{t}) \\
adamc@1050 1333 \mt{val} \; \mt{setCookie} : \mt{t} ::: \mt{Type} \to \mt{http\_cookie} \; \mt{t} \to \{\mt{Value} : \mt{t}, \mt{Expires} : \mt{option} \; \mt{time}, \mt{Secure} : \mt{bool}\} \to \mt{transaction} \; \mt{unit} \\
adamc@1050 1334 \mt{val} \; \mt{clearCookie} : \mt{t} ::: \mt{Type} \to \mt{http\_cookie} \; \mt{t} \to \mt{transaction} \; \mt{unit}
adamc@786 1335 \end{array}$$
adamc@786 1336
adamc@786 1337 There are also an abstract $\mt{url}$ type and functions for converting to it, based on the policy defined by \texttt{[allow|deny] url} directives in the project file.
adamc@786 1338 $$\begin{array}{l}
adamc@786 1339 \mt{type} \; \mt{url} \\
adamc@786 1340 \mt{val} \; \mt{bless} : \mt{string} \to \mt{url} \\
adamc@786 1341 \mt{val} \; \mt{checkUrl} : \mt{string} \to \mt{option} \; \mt{url}
adamc@786 1342 \end{array}$$
adamc@786 1343 $\mt{bless}$ raises a runtime error if the string passed to it fails the URL policy.
adamc@786 1344
adamc@1085 1345 It is possible to grab the current page's URL or to build a URL for an arbitrary transaction that would also be an acceptable value of a \texttt{link} attribute of the \texttt{a} tag.
adamc@1085 1346 $$\begin{array}{l}
adamc@1085 1347 \mt{val} \; \mt{currentUrl} : \mt{transaction} \; \mt{url} \\
adamc@1085 1348 \mt{val} \; \mt{url} : \mt{transaction} \; \mt{page} \to \mt{url}
adamc@1085 1349 \end{array}$$
adamc@1085 1350
adamc@1085 1351 Page generation may be interrupted at any time with a request to redirect to a particular URL instead.
adamc@1085 1352 $$\begin{array}{l}
adamc@1085 1353 \mt{val} \; \mt{redirect} : \mt{t} ::: \mt{Type} \to \mt{url} \to \mt{transaction} \; \mt{t}
adamc@1085 1354 \end{array}$$
adamc@1085 1355
adamc@786 1356 It's possible for pages to return files of arbitrary MIME types. A file can be input from the user using this data type, along with the $\mt{upload}$ form tag.
adamc@786 1357 $$\begin{array}{l}
adamc@786 1358 \mt{type} \; \mt{file} \\
adamc@786 1359 \mt{val} \; \mt{fileName} : \mt{file} \to \mt{option} \; \mt{string} \\
adamc@786 1360 \mt{val} \; \mt{fileMimeType} : \mt{file} \to \mt{string} \\
adamc@786 1361 \mt{val} \; \mt{fileData} : \mt{file} \to \mt{blob}
adamc@786 1362 \end{array}$$
adamc@786 1363
adamc@786 1364 A blob can be extracted from a file and returned as the page result. There are bless and check functions for MIME types analogous to those for URLs.
adamc@786 1365 $$\begin{array}{l}
adamc@786 1366 \mt{type} \; \mt{mimeType} \\
adamc@786 1367 \mt{val} \; \mt{blessMime} : \mt{string} \to \mt{mimeType} \\
adamc@786 1368 \mt{val} \; \mt{checkMime} : \mt{string} \to \mt{option} \; \mt{mimeType} \\
adamc@786 1369 \mt{val} \; \mt{returnBlob} : \mt{t} ::: \mt{Type} \to \mt{blob} \to \mt{mimeType} \to \mt{transaction} \; \mt{t}
adamc@542 1370 \end{array}$$
adamc@542 1371
adamc@543 1372 \subsection{SQL}
adamc@543 1373
adamc@543 1374 The fundamental unit of interest in the embedding of SQL is tables, described by a type family and creatable only via the $\mt{table}$ declaration form.
adamc@543 1375 $$\begin{array}{l}
adamc@785 1376 \mt{con} \; \mt{sql\_table} :: \{\mt{Type}\} \to \{\{\mt{Unit}\}\} \to \mt{Type}
adamc@785 1377 \end{array}$$
adamc@785 1378 The first argument to this constructor gives the names and types of a table's columns, and the second argument gives the set of valid keys. Keys are the only subsets of the columns that may be referenced as foreign keys. Each key has a name.
adamc@785 1379
adamc@785 1380 We also have the simpler type family of SQL views, which have no keys.
adamc@785 1381 $$\begin{array}{l}
adamc@785 1382 \mt{con} \; \mt{sql\_view} :: \{\mt{Type}\} \to \mt{Type}
adamc@543 1383 \end{array}$$
adamc@543 1384
adamc@785 1385 A multi-parameter type class is used to allow tables and views to be used interchangeably, with a way of extracting the set of columns from each.
adamc@785 1386 $$\begin{array}{l}
adamc@785 1387 \mt{class} \; \mt{fieldsOf} :: \mt{Type} \to \{\mt{Type}\} \to \mt{Type} \\
adamc@785 1388 \mt{val} \; \mt{fieldsOf\_table} : \mt{fs} ::: \{\mt{Type}\} \to \mt{keys} ::: \{\{\mt{Unit}\}\} \to \mt{fieldsOf} \; (\mt{sql\_table} \; \mt{fs} \; \mt{keys}) \; \mt{fs} \\
adamc@785 1389 \mt{val} \; \mt{fieldsOf\_view} : \mt{fs} ::: \{\mt{Type}\} \to \mt{fieldsOf} \; (\mt{sql\_view} \; \mt{fs}) \; \mt{fs}
adamc@785 1390 \end{array}$$
adamc@785 1391
adamc@785 1392 \subsubsection{Table Constraints}
adamc@785 1393
adamc@785 1394 Tables may be declared with constraints, such that database modifications that violate the constraints are blocked. A table may have at most one \texttt{PRIMARY KEY} constraint, which gives the subset of columns that will most often be used to look up individual rows in the table.
adamc@785 1395
adamc@785 1396 $$\begin{array}{l}
adamc@785 1397 \mt{con} \; \mt{primary\_key} :: \{\mt{Type}\} \to \{\{\mt{Unit}\}\} \to \mt{Type} \\
adamc@785 1398 \mt{val} \; \mt{no\_primary\_key} : \mt{fs} ::: \{\mt{Type}\} \to \mt{primary\_key} \; \mt{fs} \; [] \\
adamc@785 1399 \mt{val} \; \mt{primary\_key} : \mt{rest} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \to \mt{key1} :: \mt{Name} \to \mt{keys} :: \{\mt{Type}\} \\
adamc@785 1400 \hspace{.1in} \to [[\mt{key1}] \sim \mt{keys}] \Rightarrow [[\mt{key1} = \mt{t}] \rc \mt{keys} \sim \mt{rest}] \\
adamc@785 1401 \hspace{.1in} \Rightarrow \$([\mt{key1} = \mt{sql\_injectable\_prim} \; \mt{t}] \rc \mt{map} \; \mt{sql\_injectable\_prim} \; \mt{keys}) \\
adamc@785 1402 \hspace{.1in} \to \mt{primary\_key} \; ([\mt{key1} = \mt{t}] \rc \mt{keys} \rc \mt{rest}) \; [\mt{Pkey} = [\mt{key1}] \rc \mt{map} \; (\lambda \_ \Rightarrow ()) \; \mt{keys}]
adamc@785 1403 \end{array}$$
adamc@785 1404 The type class $\mt{sql\_injectable\_prim}$ characterizes which types are allowed in SQL and are not $\mt{option}$ types. In SQL, a \texttt{PRIMARY KEY} constraint enforces after-the-fact that a column may not contain \texttt{NULL}s, but Ur/Web forces that information to be included in table types from the beginning. Thus, the only effect of this kind of constraint in Ur/Web is to enforce uniqueness of the given key within the table.
adamc@785 1405
adamc@785 1406 A type family stands for sets of named constraints of the remaining varieties.
adamc@785 1407 $$\begin{array}{l}
adamc@785 1408 \mt{con} \; \mt{sql\_constraints} :: \{\mt{Type}\} \to \{\{\mt{Unit}\}\} \to \mt{Type}
adamc@785 1409 \end{array}$$
adamc@785 1410 The first argument gives the column types of the table being constrained, and the second argument maps constraint names to the keys that they define. Constraints that don't define keys are mapped to ``empty keys.''
adamc@785 1411
adamc@785 1412 There is a type family of individual, unnamed constraints.
adamc@785 1413 $$\begin{array}{l}
adamc@785 1414 \mt{con} \; \mt{sql\_constraint} :: \{\mt{Type}\} \to \{\mt{Unit}\} \to \mt{Type}
adamc@785 1415 \end{array}$$
adamc@785 1416 The first argument is the same as above, and the second argument gives the key columns for just this constraint.
adamc@785 1417
adamc@785 1418 We have operations for assembling constraints into constraint sets.
adamc@785 1419 $$\begin{array}{l}
adamc@785 1420 \mt{val} \; \mt{no\_constraint} : \mt{fs} ::: \{\mt{Type}\} \to \mt{sql\_constraints} \; \mt{fs} \; [] \\
adamc@785 1421 \mt{val} \; \mt{one\_constraint} : \mt{fs} ::: \{\mt{Type}\} \to \mt{unique} ::: \{\mt{Unit}\} \to \mt{name} :: \mt{Name} \\
adamc@785 1422 \hspace{.1in} \to \mt{sql\_constraint} \; \mt{fs} \; \mt{unique} \to \mt{sql\_constraints} \; \mt{fs} \; [\mt{name} = \mt{unique}] \\
adamc@785 1423 \mt{val} \; \mt{join\_constraints} : \mt{fs} ::: \{\mt{Type}\} \to \mt{uniques1} ::: \{\{\mt{Unit}\}\} \to \mt{uniques2} ::: \{\{\mt{Unit}\}\} \to [\mt{uniques1} \sim \mt{uniques2}] \\
adamc@785 1424 \hspace{.1in} \Rightarrow \mt{sql\_constraints} \; \mt{fs} \; \mt{uniques1} \to \mt{sql\_constraints} \; \mt{fs} \; \mt{uniques2} \to \mt{sql\_constraints} \; \mt{fs} \; (\mt{uniques1} \rc \mt{uniques2})
adamc@785 1425 \end{array}$$
adamc@785 1426
adamc@785 1427 A \texttt{UNIQUE} constraint forces a set of columns to be a key, which means that no combination of column values may occur more than once in the table. The $\mt{unique1}$ and $\mt{unique}$ arguments are separated out only to ensure that empty \texttt{UNIQUE} constraints are rejected.
adamc@785 1428 $$\begin{array}{l}
adamc@785 1429 \mt{val} \; \mt{unique} : \mt{rest} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \to \mt{unique1} :: \mt{Name} \to \mt{unique} :: \{\mt{Type}\} \\
adamc@785 1430 \hspace{.1in} \to [[\mt{unique1}] \sim \mt{unique}] \Rightarrow [[\mt{unique1} = \mt{t}] \rc \mt{unique} \sim \mt{rest}] \\
adamc@785 1431 \hspace{.1in} \Rightarrow \mt{sql\_constraint} \; ([\mt{unique1} = \mt{t}] \rc \mt{unique} \rc \mt{rest}) \; ([\mt{unique1}] \rc \mt{map} \; (\lambda \_ \Rightarrow ()) \; \mt{unique})
adamc@785 1432 \end{array}$$
adamc@785 1433
adamc@785 1434 A \texttt{FOREIGN KEY} constraint connects a set of local columns to a local or remote key, enforcing that the local columns always reference an existent row of the foreign key's table. A local column of type $\mt{t}$ may be linked to a foreign column of type $\mt{option} \; \mt{t}$, and vice versa. We formalize that notion with a type class.
adamc@785 1435 $$\begin{array}{l}
adamc@785 1436 \mt{class} \; \mt{linkable} :: \mt{Type} \to \mt{Type} \to \mt{Type} \\
adamc@785 1437 \mt{val} \; \mt{linkable\_same} : \mt{t} ::: \mt{Type} \to \mt{linkable} \; \mt{t} \; \mt{t} \\
adamc@785 1438 \mt{val} \; \mt{linkable\_from\_nullable} : \mt{t} ::: \mt{Type} \to \mt{linkable} \; (\mt{option} \; \mt{t}) \; \mt{t} \\
adamc@785 1439 \mt{val} \; \mt{linkable\_to\_nullable} : \mt{t} ::: \mt{Type} \to \mt{linkable} \; \mt{t} \; (\mt{option} \; \mt{t})
adamc@785 1440 \end{array}$$
adamc@785 1441
adamc@785 1442 The $\mt{matching}$ type family uses $\mt{linkable}$ to define when two keys match up type-wise.
adamc@785 1443 $$\begin{array}{l}
adamc@785 1444 \mt{con} \; \mt{matching} :: \{\mt{Type}\} \to \{\mt{Type}\} \to \mt{Type} \\
adamc@785 1445 \mt{val} \; \mt{mat\_nil} : \mt{matching} \; [] \; [] \\
adamc@785 1446 \mt{val} \; \mt{mat\_cons} : \mt{t1} ::: \mt{Type} \to \mt{rest1} ::: \{\mt{Type}\} \to \mt{t2} ::: \mt{Type} \to \mt{rest2} ::: \{\mt{Type}\} \to \mt{nm1} :: \mt{Name} \to \mt{nm2} :: \mt{Name} \\
adamc@785 1447 \hspace{.1in} \to [[\mt{nm1}] \sim \mt{rest1}] \Rightarrow [[\mt{nm2}] \sim \mt{rest2}] \Rightarrow \mt{linkable} \; \mt{t1} \; \mt{t2} \to \mt{matching} \; \mt{rest1} \; \mt{rest2} \\
adamc@785 1448 \hspace{.1in} \to \mt{matching} \; ([\mt{nm1} = \mt{t1}] \rc \mt{rest1}) \; ([\mt{nm2} = \mt{t2}] \rc \mt{rest2})
adamc@785 1449 \end{array}$$
adamc@785 1450
adamc@785 1451 SQL provides a number of different propagation modes for \texttt{FOREIGN KEY} constraints, governing what happens when a row containing a still-referenced foreign key value is deleted or modified to have a different key value. The argument of a propagation mode's type gives the local key type.
adamc@785 1452 $$\begin{array}{l}
adamc@785 1453 \mt{con} \; \mt{propagation\_mode} :: \{\mt{Type}\} \to \mt{Type} \\
adamc@785 1454 \mt{val} \; \mt{restrict} : \mt{fs} ::: \{\mt{Type}\} \to \mt{propagation\_mode} \; \mt{fs} \\
adamc@785 1455 \mt{val} \; \mt{cascade} : \mt{fs} ::: \{\mt{Type}\} \to \mt{propagation\_mode} \; \mt{fs} \\
adamc@785 1456 \mt{val} \; \mt{no\_action} : \mt{fs} ::: \{\mt{Type}\} \to \mt{propagation\_mode} \; \mt{fs} \\
adamc@785 1457 \mt{val} \; \mt{set\_null} : \mt{fs} ::: \{\mt{Type}\} \to \mt{propagation\_mode} \; (\mt{map} \; \mt{option} \; \mt{fs})
adamc@785 1458 \end{array}$$
adamc@785 1459
adamc@785 1460 Finally, we put these ingredient together to define the \texttt{FOREIGN KEY} constraint function.
adamc@785 1461 $$\begin{array}{l}
adamc@785 1462 \mt{val} \; \mt{foreign\_key} : \mt{mine1} ::: \mt{Name} \to \mt{t} ::: \mt{Type} \to \mt{mine} ::: \{\mt{Type}\} \to \mt{munused} ::: \{\mt{Type}\} \to \mt{foreign} ::: \{\mt{Type}\} \\
adamc@785 1463 \hspace{.1in} \to \mt{funused} ::: \{\mt{Type}\} \to \mt{nm} ::: \mt{Name} \to \mt{uniques} ::: \{\{\mt{Unit}\}\} \\
adamc@785 1464 \hspace{.1in} \to [[\mt{mine1}] \sim \mt{mine}] \Rightarrow [[\mt{mine1} = \mt{t}] \rc \mt{mine} \sim \mt{munused}] \Rightarrow [\mt{foreign} \sim \mt{funused}] \Rightarrow [[\mt{nm}] \sim \mt{uniques}] \\
adamc@785 1465 \hspace{.1in} \Rightarrow \mt{matching} \; ([\mt{mine1} = \mt{t}] \rc \mt{mine}) \; \mt{foreign} \\
adamc@785 1466 \hspace{.1in} \to \mt{sql\_table} \; (\mt{foreign} \rc \mt{funused}) \; ([\mt{nm} = \mt{map} \; (\lambda \_ \Rightarrow ()) \; \mt{foreign}] \rc \mt{uniques}) \\
adamc@785 1467 \hspace{.1in} \to \{\mt{OnDelete} : \mt{propagation\_mode} \; ([\mt{mine1} = \mt{t}] \rc \mt{mine}), \\
adamc@785 1468 \hspace{.2in} \mt{OnUpdate} : \mt{propagation\_mode} \; ([\mt{mine1} = \mt{t}] \rc \mt{mine})\} \\
adamc@785 1469 \hspace{.1in} \to \mt{sql\_constraint} \; ([\mt{mine1} = \mt{t}] \rc \mt{mine} \rc \mt{munused}) \; []
adamc@785 1470 \end{array}$$
adamc@785 1471
adamc@785 1472 The last kind of constraint is a \texttt{CHECK} constraint, which attaches a boolean invariant over a row's contents. It is defined using the $\mt{sql\_exp}$ type family, which we discuss in more detail below.
adamc@785 1473 $$\begin{array}{l}
adamc@785 1474 \mt{val} \; \mt{check} : \mt{fs} ::: \{\mt{Type}\} \to \mt{sql\_exp} \; [] \; [] \; \mt{fs} \; \mt{bool} \to \mt{sql\_constraint} \; \mt{fs} \; []
adamc@785 1475 \end{array}$$
adamc@785 1476
adamc@785 1477 Section \ref{tables} shows the expanded syntax of the $\mt{table}$ declaration and signature item that includes constraints. There is no other way to use constraints with SQL in Ur/Web.
adamc@785 1478
adamc@784 1479
adamc@543 1480 \subsubsection{Queries}
adamc@543 1481
adamc@543 1482 A final query is constructed via the $\mt{sql\_query}$ function. Constructor arguments respectively specify the table fields we select (as records mapping tables to the subsets of their fields that we choose) and the (always named) extra expressions that we select.
adamc@543 1483 $$\begin{array}{l}
adamc@543 1484 \mt{con} \; \mt{sql\_query} :: \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \\
adamc@543 1485 \mt{val} \; \mt{sql\_query} : \mt{tables} ::: \{\{\mt{Type}\}\} \\
adamc@543 1486 \hspace{.1in} \to \mt{selectedFields} ::: \{\{\mt{Type}\}\} \\
adamc@543 1487 \hspace{.1in} \to \mt{selectedExps} ::: \{\mt{Type}\} \\
adamc@543 1488 \hspace{.1in} \to \{\mt{Rows} : \mt{sql\_query1} \; \mt{tables} \; \mt{selectedFields} \; \mt{selectedExps}, \\
adamc@543 1489 \hspace{.2in} \mt{OrderBy} : \mt{sql\_order\_by} \; \mt{tables} \; \mt{selectedExps}, \\
adamc@543 1490 \hspace{.2in} \mt{Limit} : \mt{sql\_limit}, \\
adamc@543 1491 \hspace{.2in} \mt{Offset} : \mt{sql\_offset}\} \\
adamc@543 1492 \hspace{.1in} \to \mt{sql\_query} \; \mt{selectedFields} \; \mt{selectedExps}
adamc@543 1493 \end{array}$$
adamc@543 1494
adamc@545 1495 Queries are used by folding over their results inside transactions.
adamc@545 1496 $$\begin{array}{l}
adamc@545 1497 \mt{val} \; \mt{query} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \lambda [\mt{tables} \sim \mt{exps}] \Rightarrow \mt{state} ::: \mt{Type} \to \mt{sql\_query} \; \mt{tables} \; \mt{exps} \\
adamc@658 1498 \hspace{.1in} \to (\$(\mt{exps} \rc \mt{map} \; (\lambda \mt{fields} :: \{\mt{Type}\} \Rightarrow \$\mt{fields}) \; \mt{tables}) \\
adamc@545 1499 \hspace{.2in} \to \mt{state} \to \mt{transaction} \; \mt{state}) \\
adamc@545 1500 \hspace{.1in} \to \mt{state} \to \mt{transaction} \; \mt{state}
adamc@545 1501 \end{array}$$
adamc@545 1502
adamc@543 1503 Most of the complexity of the query encoding is in the type $\mt{sql\_query1}$, which includes simple queries and derived queries based on relational operators. Constructor arguments respectively specify the tables we select from, the subset of fields that we keep from each table for the result rows, and the extra expressions that we select.
adamc@543 1504 $$\begin{array}{l}
adamc@543 1505 \mt{con} \; \mt{sql\_query1} :: \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \\
adamc@543 1506 \\
adamc@543 1507 \mt{type} \; \mt{sql\_relop} \\
adamc@543 1508 \mt{val} \; \mt{sql\_union} : \mt{sql\_relop} \\
adamc@543 1509 \mt{val} \; \mt{sql\_intersect} : \mt{sql\_relop} \\
adamc@543 1510 \mt{val} \; \mt{sql\_except} : \mt{sql\_relop} \\
adamc@543 1511 \mt{val} \; \mt{sql\_relop} : \mt{tables1} ::: \{\{\mt{Type}\}\} \\
adamc@543 1512 \hspace{.1in} \to \mt{tables2} ::: \{\{\mt{Type}\}\} \\
adamc@543 1513 \hspace{.1in} \to \mt{selectedFields} ::: \{\{\mt{Type}\}\} \\
adamc@543 1514 \hspace{.1in} \to \mt{selectedExps} ::: \{\mt{Type}\} \\
adamc@543 1515 \hspace{.1in} \to \mt{sql\_relop} \\
adamc@543 1516 \hspace{.1in} \to \mt{sql\_query1} \; \mt{tables1} \; \mt{selectedFields} \; \mt{selectedExps} \\
adamc@543 1517 \hspace{.1in} \to \mt{sql\_query1} \; \mt{tables2} \; \mt{selectedFields} \; \mt{selectedExps} \\
adamc@543 1518 \hspace{.1in} \to \mt{sql\_query1} \; \mt{selectedFields} \; \mt{selectedFields} \; \mt{selectedExps}
adamc@543 1519 \end{array}$$
adamc@543 1520
adamc@543 1521 $$\begin{array}{l}
adamc@543 1522 \mt{val} \; \mt{sql\_query1} : \mt{tables} ::: \{\{\mt{Type}\}\} \\
adamc@543 1523 \hspace{.1in} \to \mt{grouped} ::: \{\{\mt{Type}\}\} \\
adamc@543 1524 \hspace{.1in} \to \mt{selectedFields} ::: \{\{\mt{Type}\}\} \\
adamc@543 1525 \hspace{.1in} \to \mt{selectedExps} ::: \{\mt{Type}\} \\
adamc@1085 1526 \hspace{.1in} \to \mt{empties} :: \{\mt{Unit}\} \\
adamc@1085 1527 \hspace{.1in} \to [\mt{empties} \sim \mt{selectedFields}] \\
adamc@1085 1528 \hspace{.1in} \Rightarrow \{\mt{Distinct} : \mt{bool}, \\
adamc@994 1529 \hspace{.2in} \mt{From} : \mt{sql\_from\_items} \; \mt{tables}, \\
adamc@543 1530 \hspace{.2in} \mt{Where} : \mt{sql\_exp} \; \mt{tables} \; [] \; [] \; \mt{bool}, \\
adamc@543 1531 \hspace{.2in} \mt{GroupBy} : \mt{sql\_subset} \; \mt{tables} \; \mt{grouped}, \\
adamc@543 1532 \hspace{.2in} \mt{Having} : \mt{sql\_exp} \; \mt{grouped} \; \mt{tables} \; [] \; \mt{bool}, \\
adamc@1085 1533 \hspace{.2in} \mt{SelectFields} : \mt{sql\_subset} \; \mt{grouped} \; (\mt{map} \; (\lambda \_ \Rightarrow []) \; \mt{empties} \rc \mt{selectedFields}), \\
adamc@658 1534 \hspace{.2in} \mt {SelectExps} : \$(\mt{map} \; (\mt{sql\_exp} \; \mt{grouped} \; \mt{tables} \; []) \; \mt{selectedExps}) \} \\
adamc@543 1535 \hspace{.1in} \to \mt{sql\_query1} \; \mt{tables} \; \mt{selectedFields} \; \mt{selectedExps}
adamc@543 1536 \end{array}$$
adamc@543 1537
adamc@543 1538 To encode projection of subsets of fields in $\mt{SELECT}$ clauses, and to encode $\mt{GROUP} \; \mt{BY}$ clauses, we rely on a type family $\mt{sql\_subset}$, capturing what it means for one record of table fields to be a subset of another. The main constructor $\mt{sql\_subset}$ ``proves subset facts'' by requiring a split of a record into kept and dropped parts. The extra constructor $\mt{sql\_subset\_all}$ is a convenience for keeping all fields of a record.
adamc@543 1539 $$\begin{array}{l}
adamc@543 1540 \mt{con} \; \mt{sql\_subset} :: \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \mt{Type} \\
adamc@543 1541 \mt{val} \; \mt{sql\_subset} : \mt{keep\_drop} :: \{(\{\mt{Type}\} \times \{\mt{Type}\})\} \\
adamc@543 1542 \hspace{.1in} \to \mt{sql\_subset} \\
adamc@658 1543 \hspace{.2in} (\mt{map} \; (\lambda \mt{fields} :: (\{\mt{Type}\} \times \{\mt{Type}\}) \Rightarrow \mt{fields}.1 \rc \mt{fields}.2)\; \mt{keep\_drop}) \\
adamc@658 1544 \hspace{.2in} (\mt{map} \; (\lambda \mt{fields} :: (\{\mt{Type}\} \times \{\mt{Type}\}) \Rightarrow \mt{fields}.1) \; \mt{keep\_drop}) \\
adamc@543 1545 \mt{val} \; \mt{sql\_subset\_all} : \mt{tables} :: \{\{\mt{Type}\}\} \to \mt{sql\_subset} \; \mt{tables} \; \mt{tables}
adamc@543 1546 \end{array}$$
adamc@543 1547
adamc@560 1548 SQL expressions are used in several places, including $\mt{SELECT}$, $\mt{WHERE}$, $\mt{HAVING}$, and $\mt{ORDER} \; \mt{BY}$ clauses. They reify a fragment of the standard SQL expression language, while making it possible to inject ``native'' Ur values in some places. The arguments to the $\mt{sql\_exp}$ type family respectively give the unrestricted-availability table fields, the table fields that may only be used in arguments to aggregate functions, the available selected expressions, and the type of the expression.
adamc@543 1549 $$\begin{array}{l}
adamc@543 1550 \mt{con} \; \mt{sql\_exp} :: \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \to \mt{Type}
adamc@543 1551 \end{array}$$
adamc@543 1552
adamc@543 1553 Any field in scope may be converted to an expression.
adamc@543 1554 $$\begin{array}{l}
adamc@543 1555 \mt{val} \; \mt{sql\_field} : \mt{otherTabs} ::: \{\{\mt{Type}\}\} \to \mt{otherFields} ::: \{\mt{Type}\} \\
adamc@543 1556 \hspace{.1in} \to \mt{fieldType} ::: \mt{Type} \to \mt{agg} ::: \{\{\mt{Type}\}\} \\
adamc@543 1557 \hspace{.1in} \to \mt{exps} ::: \{\mt{Type}\} \\
adamc@543 1558 \hspace{.1in} \to \mt{tab} :: \mt{Name} \to \mt{field} :: \mt{Name} \\
adamc@543 1559 \hspace{.1in} \to \mt{sql\_exp} \; ([\mt{tab} = [\mt{field} = \mt{fieldType}] \rc \mt{otherFields}] \rc \mt{otherTabs}) \; \mt{agg} \; \mt{exps} \; \mt{fieldType}
adamc@543 1560 \end{array}$$
adamc@543 1561
adamc@544 1562 There is an analogous function for referencing named expressions.
adamc@544 1563 $$\begin{array}{l}
adamc@544 1564 \mt{val} \; \mt{sql\_exp} : \mt{tabs} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{t} ::: \mt{Type} \to \mt{rest} ::: \{\mt{Type}\} \to \mt{nm} :: \mt{Name} \\
adamc@544 1565 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tabs} \; \mt{agg} \; ([\mt{nm} = \mt{t}] \rc \mt{rest}) \; \mt{t}
adamc@544 1566 \end{array}$$
adamc@544 1567
adamc@544 1568 Ur values of appropriate types may be injected into SQL expressions.
adamc@544 1569 $$\begin{array}{l}
adamc@786 1570 \mt{class} \; \mt{sql\_injectable\_prim} \\
adamc@786 1571 \mt{val} \; \mt{sql\_bool} : \mt{sql\_injectable\_prim} \; \mt{bool} \\
adamc@786 1572 \mt{val} \; \mt{sql\_int} : \mt{sql\_injectable\_prim} \; \mt{int} \\
adamc@786 1573 \mt{val} \; \mt{sql\_float} : \mt{sql\_injectable\_prim} \; \mt{float} \\
adamc@786 1574 \mt{val} \; \mt{sql\_string} : \mt{sql\_injectable\_prim} \; \mt{string} \\
adamc@786 1575 \mt{val} \; \mt{sql\_time} : \mt{sql\_injectable\_prim} \; \mt{time} \\
adamc@786 1576 \mt{val} \; \mt{sql\_blob} : \mt{sql\_injectable\_prim} \; \mt{blob} \\
adamc@786 1577 \mt{val} \; \mt{sql\_channel} : \mt{t} ::: \mt{Type} \to \mt{sql\_injectable\_prim} \; (\mt{channel} \; \mt{t}) \\
adamc@786 1578 \mt{val} \; \mt{sql\_client} : \mt{sql\_injectable\_prim} \; \mt{client} \\
adamc@786 1579 \\
adamc@544 1580 \mt{class} \; \mt{sql\_injectable} \\
adamc@786 1581 \mt{val} \; \mt{sql\_prim} : \mt{t} ::: \mt{Type} \to \mt{sql\_injectable\_prim} \; \mt{t} \to \mt{sql\_injectable} \; \mt{t} \\
adamc@786 1582 \mt{val} \; \mt{sql\_option\_prim} : \mt{t} ::: \mt{Type} \to \mt{sql\_injectable\_prim} \; \mt{t} \to \mt{sql\_injectable} \; (\mt{option} \; \mt{t}) \\
adamc@786 1583 \\
adamc@544 1584 \mt{val} \; \mt{sql\_inject} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \to \mt{sql\_injectable} \; \mt{t} \\
adamc@544 1585 \hspace{.1in} \to \mt{t} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t}
adamc@544 1586 \end{array}$$
adamc@544 1587
adamc@1123 1588 Additionally, most function-free types may be injected safely, via the $\mt{serialized}$ type family.
adamc@1123 1589 $$\begin{array}{l}
adamc@1123 1590 \mt{con} \; \mt{serialized} :: \mt{Type} \to \mt{Type} \\
adamc@1123 1591 \mt{val} \; \mt{serialize} : \mt{t} ::: \mt{Type} \to \mt{t} \to \mt{serialized} \; \mt{t} \\
adamc@1123 1592 \mt{val} \; \mt{deserialize} : \mt{t} ::: \mt{Type} \to \mt{serialized} \; \mt{t} \to \mt{t} \\
adamc@1123 1593 \mt{val} \; \mt{sql\_serialized} : \mt{t} ::: \mt{Type} \to \mt{sql\_injectable\_prim} \; (\mt{serialized} \; \mt{t})
adamc@1123 1594 \end{array}$$
adamc@1123 1595
adamc@544 1596 We have the SQL nullness test, which is necessary because of the strange SQL semantics of equality in the presence of null values.
adamc@544 1597 $$\begin{array}{l}
adamc@544 1598 \mt{val} \; \mt{sql\_is\_null} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \\
adamc@544 1599 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; (\mt{option} \; \mt{t}) \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{bool}
adamc@544 1600 \end{array}$$
adamc@544 1601
adamc@559 1602 We have generic nullary, unary, and binary operators.
adamc@544 1603 $$\begin{array}{l}
adamc@544 1604 \mt{con} \; \mt{sql\_nfunc} :: \mt{Type} \to \mt{Type} \\
adamc@544 1605 \mt{val} \; \mt{sql\_current\_timestamp} : \mt{sql\_nfunc} \; \mt{time} \\
adamc@544 1606 \mt{val} \; \mt{sql\_nfunc} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \\
adamc@544 1607 \hspace{.1in} \to \mt{sql\_nfunc} \; \mt{t} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t} \\\end{array}$$
adamc@544 1608
adamc@544 1609 $$\begin{array}{l}
adamc@544 1610 \mt{con} \; \mt{sql\_unary} :: \mt{Type} \to \mt{Type} \to \mt{Type} \\
adamc@544 1611 \mt{val} \; \mt{sql\_not} : \mt{sql\_unary} \; \mt{bool} \; \mt{bool} \\
adamc@544 1612 \mt{val} \; \mt{sql\_unary} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{arg} ::: \mt{Type} \to \mt{res} ::: \mt{Type} \\
adamc@544 1613 \hspace{.1in} \to \mt{sql\_unary} \; \mt{arg} \; \mt{res} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{arg} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{res} \\
adamc@544 1614 \end{array}$$
adamc@544 1615
adamc@544 1616 $$\begin{array}{l}
adamc@544 1617 \mt{con} \; \mt{sql\_binary} :: \mt{Type} \to \mt{Type} \to \mt{Type} \to \mt{Type} \\
adamc@544 1618 \mt{val} \; \mt{sql\_and} : \mt{sql\_binary} \; \mt{bool} \; \mt{bool} \; \mt{bool} \\
adamc@544 1619 \mt{val} \; \mt{sql\_or} : \mt{sql\_binary} \; \mt{bool} \; \mt{bool} \; \mt{bool} \\
adamc@544 1620 \mt{val} \; \mt{sql\_binary} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{arg_1} ::: \mt{Type} \to \mt{arg_2} ::: \mt{Type} \to \mt{res} ::: \mt{Type} \\
adamc@544 1621 \hspace{.1in} \to \mt{sql\_binary} \; \mt{arg_1} \; \mt{arg_2} \; \mt{res} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{arg_1} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{arg_2} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{res}
adamc@544 1622 \end{array}$$
adamc@544 1623
adamc@544 1624 $$\begin{array}{l}
adamc@559 1625 \mt{class} \; \mt{sql\_arith} \\
adamc@559 1626 \mt{val} \; \mt{sql\_int\_arith} : \mt{sql\_arith} \; \mt{int} \\
adamc@559 1627 \mt{val} \; \mt{sql\_float\_arith} : \mt{sql\_arith} \; \mt{float} \\
adamc@559 1628 \mt{val} \; \mt{sql\_neg} : \mt{t} ::: \mt{Type} \to \mt{sql\_arith} \; \mt{t} \to \mt{sql\_unary} \; \mt{t} \; \mt{t} \\
adamc@559 1629 \mt{val} \; \mt{sql\_plus} : \mt{t} ::: \mt{Type} \to \mt{sql\_arith} \; \mt{t} \to \mt{sql\_binary} \; \mt{t} \; \mt{t} \; \mt{t} \\
adamc@559 1630 \mt{val} \; \mt{sql\_minus} : \mt{t} ::: \mt{Type} \to \mt{sql\_arith} \; \mt{t} \to \mt{sql\_binary} \; \mt{t} \; \mt{t} \; \mt{t} \\
adamc@559 1631 \mt{val} \; \mt{sql\_times} : \mt{t} ::: \mt{Type} \to \mt{sql\_arith} \; \mt{t} \to \mt{sql\_binary} \; \mt{t} \; \mt{t} \; \mt{t} \\
adamc@559 1632 \mt{val} \; \mt{sql\_div} : \mt{t} ::: \mt{Type} \to \mt{sql\_arith} \; \mt{t} \to \mt{sql\_binary} \; \mt{t} \; \mt{t} \; \mt{t} \\
adamc@559 1633 \mt{val} \; \mt{sql\_mod} : \mt{sql\_binary} \; \mt{int} \; \mt{int} \; \mt{int}
adamc@559 1634 \end{array}$$
adamc@544 1635
adamc@656 1636 Finally, we have aggregate functions. The $\mt{COUNT(\ast)}$ syntax is handled specially, since it takes no real argument. The other aggregate functions are placed into a general type family, using constructor classes to restrict usage to properly-typed arguments. The key aspect of the $\mt{sql\_aggregate}$ function's type is the shift of aggregate-function-only fields into unrestricted fields.
adamc@544 1637 $$\begin{array}{l}
adamc@544 1638 \mt{val} \; \mt{sql\_count} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{int}
adamc@544 1639 \end{array}$$
adamc@544 1640
adamc@544 1641 $$\begin{array}{l}
adamc@544 1642 \mt{con} \; \mt{sql\_aggregate} :: \mt{Type} \to \mt{Type} \\
adamc@544 1643 \mt{val} \; \mt{sql\_aggregate} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \\
adamc@544 1644 \hspace{.1in} \to \mt{sql\_aggregate} \; \mt{t} \to \mt{sql\_exp} \; \mt{agg} \; \mt{agg} \; \mt{exps} \; \mt{t} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t}
adamc@544 1645 \end{array}$$
adamc@544 1646
adamc@544 1647 $$\begin{array}{l}
adamc@544 1648 \mt{class} \; \mt{sql\_summable} \\
adamc@544 1649 \mt{val} \; \mt{sql\_summable\_int} : \mt{sql\_summable} \; \mt{int} \\
adamc@544 1650 \mt{val} \; \mt{sql\_summable\_float} : \mt{sql\_summable} \; \mt{float} \\
adamc@544 1651 \mt{val} \; \mt{sql\_avg} : \mt{t} ::: \mt{Type} \to \mt{sql\_summable} \; \mt{t} \to \mt{sql\_aggregate} \; \mt{t} \\
adamc@544 1652 \mt{val} \; \mt{sql\_sum} : \mt{t} ::: \mt{Type} \to \mt{sql\_summable} \mt{t} \to \mt{sql\_aggregate} \; \mt{t}
adamc@544 1653 \end{array}$$
adamc@544 1654
adamc@544 1655 $$\begin{array}{l}
adamc@544 1656 \mt{class} \; \mt{sql\_maxable} \\
adamc@544 1657 \mt{val} \; \mt{sql\_maxable\_int} : \mt{sql\_maxable} \; \mt{int} \\
adamc@544 1658 \mt{val} \; \mt{sql\_maxable\_float} : \mt{sql\_maxable} \; \mt{float} \\
adamc@544 1659 \mt{val} \; \mt{sql\_maxable\_string} : \mt{sql\_maxable} \; \mt{string} \\
adamc@544 1660 \mt{val} \; \mt{sql\_maxable\_time} : \mt{sql\_maxable} \; \mt{time} \\
adamc@544 1661 \mt{val} \; \mt{sql\_max} : \mt{t} ::: \mt{Type} \to \mt{sql\_maxable} \; \mt{t} \to \mt{sql\_aggregate} \; \mt{t} \\
adamc@544 1662 \mt{val} \; \mt{sql\_min} : \mt{t} ::: \mt{Type} \to \mt{sql\_maxable} \; \mt{t} \to \mt{sql\_aggregate} \; \mt{t}
adamc@544 1663 \end{array}$$
adamc@544 1664
adamc@786 1665 \texttt{FROM} clauses are specified using a type family.
adamc@786 1666 $$\begin{array}{l}
adamc@786 1667 \mt{con} \; \mt{sql\_from\_items} :: \{\{\mt{Type}\}\} \to \mt{Type} \\
adamc@786 1668 \mt{val} \; \mt{sql\_from\_table} : \mt{t} ::: \mt{Type} \to \mt{fs} ::: \{\mt{Type}\} \to \mt{fieldsOf} \; \mt{t} \; \mt{fs} \to \mt{name} :: \mt{Name} \to \mt{t} \to \mt{sql\_from\_items} \; [\mt{name} = \mt{fs}] \\
adamc@786 1669 \mt{val} \; \mt{sql\_from\_comma} : \mt{tabs1} ::: \{\{\mt{Type}\}\} \to \mt{tabs2} ::: \{\{\mt{Type}\}\} \to [\mt{tabs1} \sim \mt{tabs2}] \\
adamc@786 1670 \hspace{.1in} \Rightarrow \mt{sql\_from\_items} \; \mt{tabs1} \to \mt{sql\_from\_items} \; \mt{tabs2} \\
adamc@786 1671 \hspace{.1in} \to \mt{sql\_from\_items} \; (\mt{tabs1} \rc \mt{tabs2}) \\
adamc@786 1672 \mt{val} \; \mt{sql\_inner\_join} : \mt{tabs1} ::: \{\{\mt{Type}\}\} \to \mt{tabs2} ::: \{\{\mt{Type}\}\} \to [\mt{tabs1} \sim \mt{tabs2}] \\
adamc@786 1673 \hspace{.1in} \Rightarrow \mt{sql\_from\_items} \; \mt{tabs1} \to \mt{sql\_from\_items} \; \mt{tabs2} \\
adamc@786 1674 \hspace{.1in} \to \mt{sql\_exp} \; (\mt{tabs1} \rc \mt{tabs2}) \; [] \; [] \; \mt{bool} \\
adamc@786 1675 \hspace{.1in} \to \mt{sql\_from\_items} \; (\mt{tabs1} \rc \mt{tabs2})
adamc@786 1676 \end{array}$$
adamc@786 1677
adamc@786 1678 Besides these basic cases, outer joins are supported, which requires a type class for turning non-$\mt{option}$ columns into $\mt{option}$ columns.
adamc@786 1679 $$\begin{array}{l}
adamc@786 1680 \mt{class} \; \mt{nullify} :: \mt{Type} \to \mt{Type} \to \mt{Type} \\
adamc@786 1681 \mt{val} \; \mt{nullify\_option} : \mt{t} ::: \mt{Type} \to \mt{nullify} \; (\mt{option} \; \mt{t}) \; (\mt{option} \; \mt{t}) \\
adamc@786 1682 \mt{val} \; \mt{nullify\_prim} : \mt{t} ::: \mt{Type} \to \mt{sql\_injectable\_prim} \; \mt{t} \to \mt{nullify} \; \mt{t} \; (\mt{option} \; \mt{t})
adamc@786 1683 \end{array}$$
adamc@786 1684
adamc@786 1685 Left, right, and full outer joins can now be expressed using functions that accept records of $\mt{nullify}$ instances. Here, we give only the type for a left join as an example.
adamc@786 1686
adamc@786 1687 $$\begin{array}{l}
adamc@786 1688 \mt{val} \; \mt{sql\_left\_join} : \mt{tabs1} ::: \{\{\mt{Type}\}\} \to \mt{tabs2} ::: \{\{(\mt{Type} \times \mt{Type})\}\} \to [\mt{tabs1} \sim \mt{tabs2}] \\
adamc@786 1689 \hspace{.1in} \Rightarrow \$(\mt{map} \; (\lambda \mt{r} \Rightarrow \$(\mt{map} \; (\lambda \mt{p} :: (\mt{Type} \times \mt{Type}) \Rightarrow \mt{nullify} \; \mt{p}.1 \; \mt{p}.2) \; \mt{r})) \; \mt{tabs2}) \\
adamc@786 1690 \hspace{.1in} \to \mt{sql\_from\_items} \; \mt{tabs1} \to \mt{sql\_from\_items} \; (\mt{map} \; (\mt{map} \; (\lambda \mt{p} :: (\mt{Type} \times \mt{Type}) \Rightarrow \mt{p}.1)) \; \mt{tabs2}) \\
adamc@786 1691 \hspace{.1in} \to \mt{sql\_exp} \; (\mt{tabs1} \rc \mt{map} \; (\mt{map} \; (\lambda \mt{p} :: (\mt{Type} \times \mt{Type}) \Rightarrow \mt{p}.1)) \; \mt{tabs2}) \; [] \; [] \; \mt{bool} \\
adamc@786 1692 \hspace{.1in} \to \mt{sql\_from\_items} \; (\mt{tabs1} \rc \mt{map} \; (\mt{map} \; (\lambda \mt{p} :: (\mt{Type} \times \mt{Type}) \Rightarrow \mt{p}.2)) \; \mt{tabs2})
adamc@786 1693 \end{array}$$
adamc@786 1694
adamc@544 1695 We wrap up the definition of query syntax with the types used in representing $\mt{ORDER} \; \mt{BY}$, $\mt{LIMIT}$, and $\mt{OFFSET}$ clauses.
adamc@544 1696 $$\begin{array}{l}
adamc@544 1697 \mt{type} \; \mt{sql\_direction} \\
adamc@544 1698 \mt{val} \; \mt{sql\_asc} : \mt{sql\_direction} \\
adamc@544 1699 \mt{val} \; \mt{sql\_desc} : \mt{sql\_direction} \\
adamc@544 1700 \\
adamc@544 1701 \mt{con} \; \mt{sql\_order\_by} :: \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \\
adamc@544 1702 \mt{val} \; \mt{sql\_order\_by\_Nil} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{exps} :: \{\mt{Type}\} \to \mt{sql\_order\_by} \; \mt{tables} \; \mt{exps} \\
adamc@544 1703 \mt{val} \; \mt{sql\_order\_by\_Cons} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \\
adamc@544 1704 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tables} \; [] \; \mt{exps} \; \mt{t} \to \mt{sql\_direction} \to \mt{sql\_order\_by} \; \mt{tables} \; \mt{exps} \to \mt{sql\_order\_by} \; \mt{tables} \; \mt{exps} \\
adamc@544 1705 \\
adamc@544 1706 \mt{type} \; \mt{sql\_limit} \\
adamc@544 1707 \mt{val} \; \mt{sql\_no\_limit} : \mt{sql\_limit} \\
adamc@544 1708 \mt{val} \; \mt{sql\_limit} : \mt{int} \to \mt{sql\_limit} \\
adamc@544 1709 \\
adamc@544 1710 \mt{type} \; \mt{sql\_offset} \\
adamc@544 1711 \mt{val} \; \mt{sql\_no\_offset} : \mt{sql\_offset} \\
adamc@544 1712 \mt{val} \; \mt{sql\_offset} : \mt{int} \to \mt{sql\_offset}
adamc@544 1713 \end{array}$$
adamc@544 1714
adamc@545 1715
adamc@545 1716 \subsubsection{DML}
adamc@545 1717
adamc@545 1718 The Ur/Web library also includes an embedding of a fragment of SQL's DML, the Data Manipulation Language, for modifying database tables. Any piece of DML may be executed in a transaction.
adamc@545 1719
adamc@545 1720 $$\begin{array}{l}
adamc@545 1721 \mt{type} \; \mt{dml} \\
adamc@545 1722 \mt{val} \; \mt{dml} : \mt{dml} \to \mt{transaction} \; \mt{unit}
adamc@545 1723 \end{array}$$
adamc@545 1724
adamc@545 1725 Properly-typed records may be used to form $\mt{INSERT}$ commands.
adamc@545 1726 $$\begin{array}{l}
adamc@545 1727 \mt{val} \; \mt{insert} : \mt{fields} ::: \{\mt{Type}\} \to \mt{sql\_table} \; \mt{fields} \\
adamc@658 1728 \hspace{.1in} \to \$(\mt{map} \; (\mt{sql\_exp} \; [] \; [] \; []) \; \mt{fields}) \to \mt{dml}
adamc@545 1729 \end{array}$$
adamc@545 1730
adamc@545 1731 An $\mt{UPDATE}$ command is formed from a choice of which table fields to leave alone and which to change, along with an expression to use to compute the new value of each changed field and a $\mt{WHERE}$ clause.
adamc@545 1732 $$\begin{array}{l}
adamc@545 1733 \mt{val} \; \mt{update} : \mt{unchanged} ::: \{\mt{Type}\} \to \mt{changed} :: \{\mt{Type}\} \to \lambda [\mt{changed} \sim \mt{unchanged}] \\
adamc@658 1734 \hspace{.1in} \Rightarrow \$(\mt{map} \; (\mt{sql\_exp} \; [\mt{T} = \mt{changed} \rc \mt{unchanged}] \; [] \; []) \; \mt{changed}) \\
adamc@545 1735 \hspace{.1in} \to \mt{sql\_table} \; (\mt{changed} \rc \mt{unchanged}) \to \mt{sql\_exp} \; [\mt{T} = \mt{changed} \rc \mt{unchanged}] \; [] \; [] \; \mt{bool} \to \mt{dml}
adamc@545 1736 \end{array}$$
adamc@545 1737
adamc@545 1738 A $\mt{DELETE}$ command is formed from a table and a $\mt{WHERE}$ clause.
adamc@545 1739 $$\begin{array}{l}
adamc@545 1740 \mt{val} \; \mt{delete} : \mt{fields} ::: \{\mt{Type}\} \to \mt{sql\_table} \; \mt{fields} \to \mt{sql\_exp} \; [\mt{T} = \mt{fields}] \; [] \; [] \; \mt{bool} \to \mt{dml}
adamc@545 1741 \end{array}$$
adamc@545 1742
adamc@546 1743 \subsubsection{Sequences}
adamc@546 1744
adamc@546 1745 SQL sequences are counters with concurrency control, often used to assign unique IDs. Ur/Web supports them via a simple interface. The only way to create a sequence is with the $\mt{sequence}$ declaration form.
adamc@546 1746
adamc@546 1747 $$\begin{array}{l}
adamc@546 1748 \mt{type} \; \mt{sql\_sequence} \\
adamc@1085 1749 \mt{val} \; \mt{nextval} : \mt{sql\_sequence} \to \mt{transaction} \; \mt{int} \\
adamc@1085 1750 \mt{val} \; \mt{setval} : \mt{sql\_sequence} \to \mt{int} \to \mt{transaction} \; \mt{unit}
adamc@546 1751 \end{array}$$
adamc@546 1752
adamc@546 1753
adamc@547 1754 \subsection{XML}
adamc@547 1755
adamc@547 1756 Ur/Web's library contains an encoding of XML syntax and semantic constraints. We make no effort to follow the standards governing XML schemas. Rather, XML fragments are viewed more as values of ML datatypes, and we only track which tags are allowed inside which other tags.
adamc@547 1757
adamc@547 1758 The basic XML type family has arguments respectively indicating the \emph{context} of a fragment, the fields that the fragment expects to be bound on entry (and their types), and the fields that the fragment will bind (and their types). Contexts are a record-based ``poor man's subtyping'' encoding, with each possible set of valid tags corresponding to a different context record. The arguments dealing with field binding are only relevant to HTML forms.
adamc@547 1759 $$\begin{array}{l}
adamc@547 1760 \mt{con} \; \mt{xml} :: \{\mt{Unit}\} \to \{\mt{Type}\} \to \{\mt{Type}\} \to \mt{Type}
adamc@547 1761 \end{array}$$
adamc@547 1762
adamc@547 1763 We also have a type family of XML tags, indexed respectively by the record of optional attributes accepted by the tag, the context in which the tag may be placed, the context required of children of the tag, which form fields the tag uses, and which fields the tag defines.
adamc@547 1764 $$\begin{array}{l}
adamc@547 1765 \mt{con} \; \mt{tag} :: \{\mt{Type}\} \to \{\mt{Unit}\} \to \{\mt{Unit}\} \to \{\mt{Type}\} \to \{\mt{Type}\} \to \mt{Type}
adamc@547 1766 \end{array}$$
adamc@547 1767
adamc@547 1768 Literal text may be injected into XML as ``CDATA.''
adamc@547 1769 $$\begin{array}{l}
adamc@547 1770 \mt{val} \; \mt{cdata} : \mt{ctx} ::: \{\mt{Unit}\} \to \mt{use} ::: \{\mt{Type}\} \to \mt{string} \to \mt{xml} \; \mt{ctx} \; \mt{use} \; []
adamc@547 1771 \end{array}$$
adamc@547 1772
adamc@547 1773 There is a function for producing an XML tree with a particular tag at its root.
adamc@547 1774 $$\begin{array}{l}
adamc@547 1775 \mt{val} \; \mt{tag} : \mt{attrsGiven} ::: \{\mt{Type}\} \to \mt{attrsAbsent} ::: \{\mt{Type}\} \to \mt{ctxOuter} ::: \{\mt{Unit}\} \to \mt{ctxInner} ::: \{\mt{Unit}\} \\
adamc@547 1776 \hspace{.1in} \to \mt{useOuter} ::: \{\mt{Type}\} \to \mt{useInner} ::: \{\mt{Type}\} \to \mt{bindOuter} ::: \{\mt{Type}\} \to \mt{bindInner} ::: \{\mt{Type}\} \\
adamc@787 1777 \hspace{.1in} \to \lambda [\mt{attrsGiven} \sim \mt{attrsAbsent}] \; [\mt{useOuter} \sim \mt{useInner}] \; [\mt{bindOuter} \sim \mt{bindInner}] \\
adamc@787 1778 \hspace{.1in} \Rightarrow \mt{option} \; \mt{css\_class} \\
adamc@787 1779 \hspace{.1in} \to \$\mt{attrsGiven} \\
adamc@547 1780 \hspace{.1in} \to \mt{tag} \; (\mt{attrsGiven} \rc \mt{attrsAbsent}) \; \mt{ctxOuter} \; \mt{ctxInner} \; \mt{useOuter} \; \mt{bindOuter} \\
adamc@547 1781 \hspace{.1in} \to \mt{xml} \; \mt{ctxInner} \; \mt{useInner} \; \mt{bindInner} \to \mt{xml} \; \mt{ctxOuter} \; (\mt{useOuter} \rc \mt{useInner}) \; (\mt{bindOuter} \rc \mt{bindInner})
adamc@547 1782 \end{array}$$
adamc@787 1783 Note that any tag may be assigned a CSS class. This is the sole way of making use of the values produced by $\mt{style}$ declarations. Ur/Web itself doesn't deal with the syntax or semantics of style sheets; they can be linked via URLs with \texttt{link} tags. However, Ur/Web does make it easy to calculate upper bounds on usage of CSS classes through program analysis.
adamc@547 1784
adamc@547 1785 Two XML fragments may be concatenated.
adamc@547 1786 $$\begin{array}{l}
adamc@547 1787 \mt{val} \; \mt{join} : \mt{ctx} ::: \{\mt{Unit}\} \to \mt{use_1} ::: \{\mt{Type}\} \to \mt{bind_1} ::: \{\mt{Type}\} \to \mt{bind_2} ::: \{\mt{Type}\} \\
adamc@547 1788 \hspace{.1in} \to \lambda [\mt{use_1} \sim \mt{bind_1}] \; [\mt{bind_1} \sim \mt{bind_2}] \\
adamc@547 1789 \hspace{.1in} \Rightarrow \mt{xml} \; \mt{ctx} \; \mt{use_1} \; \mt{bind_1} \to \mt{xml} \; \mt{ctx} \; (\mt{use_1} \rc \mt{bind_1}) \; \mt{bind_2} \to \mt{xml} \; \mt{ctx} \; \mt{use_1} \; (\mt{bind_1} \rc \mt{bind_2})
adamc@547 1790 \end{array}$$
adamc@547 1791
adamc@547 1792 Finally, any XML fragment may be updated to ``claim'' to use more form fields than it does.
adamc@547 1793 $$\begin{array}{l}
adamc@547 1794 \mt{val} \; \mt{useMore} : \mt{ctx} ::: \{\mt{Unit}\} \to \mt{use_1} ::: \{\mt{Type}\} \to \mt{use_2} ::: \{\mt{Type}\} \to \mt{bind} ::: \{\mt{Type}\} \to \lambda [\mt{use_1} \sim \mt{use_2}] \\
adamc@547 1795 \hspace{.1in} \Rightarrow \mt{xml} \; \mt{ctx} \; \mt{use_1} \; \mt{bind} \to \mt{xml} \; \mt{ctx} \; (\mt{use_1} \rc \mt{use_2}) \; \mt{bind}
adamc@547 1796 \end{array}$$
adamc@547 1797
adamc@547 1798 We will not list here the different HTML tags and related functions from the standard library. They should be easy enough to understand from the code in \texttt{basis.urs}. The set of tags in the library is not yet claimed to be complete for HTML standards.
adamc@547 1799
adamc@547 1800 One last useful function is for aborting any page generation, returning some XML as an error message. This function takes the place of some uses of a general exception mechanism.
adamc@547 1801 $$\begin{array}{l}
adamc@547 1802 \mt{val} \; \mt{error} : \mt{t} ::: \mt{Type} \to \mt{xml} \; [\mt{Body}] \; [] \; [] \to \mt{t}
adamc@547 1803 \end{array}$$
adamc@547 1804
adamc@549 1805
adamc@701 1806 \subsection{Client-Side Programming}
adamc@659 1807
adamc@701 1808 Ur/Web supports running code on web browsers, via automatic compilation to JavaScript.
adamc@701 1809
adamc@701 1810 \subsubsection{The Basics}
adamc@701 1811
adamc@701 1812 Clients can open alert dialog boxes, in the usual annoying JavaScript way.
adamc@701 1813 $$\begin{array}{l}
adamc@701 1814 \mt{val} \; \mt{alert} : \mt{string} \to \mt{transaction} \; \mt{unit}
adamc@701 1815 \end{array}$$
adamc@701 1816
adamc@701 1817 Any transaction may be run in a new thread with the $\mt{spawn}$ function.
adamc@701 1818 $$\begin{array}{l}
adamc@701 1819 \mt{val} \; \mt{spawn} : \mt{transaction} \; \mt{unit} \to \mt{transaction} \; \mt{unit}
adamc@701 1820 \end{array}$$
adamc@701 1821
adamc@701 1822 The current thread can be paused for at least a specified number of milliseconds.
adamc@701 1823 $$\begin{array}{l}
adamc@701 1824 \mt{val} \; \mt{sleep} : \mt{int} \to \mt{transaction} \; \mt{unit}
adamc@701 1825 \end{array}$$
adamc@701 1826
adamc@787 1827 A few functions are available to registers callbacks for particular error events. Respectively, they are triggered on calls to $\mt{error}$, uncaught JavaScript exceptions, failure of remote procedure calls, the severance of the connection serving asynchronous messages, or the occurrence of some other error with that connection. If no handlers are registered for a kind of error, then occurrences of that error are ignored silently.
adamc@787 1828 $$\begin{array}{l}
adamc@787 1829 \mt{val} \; \mt{onError} : (\mt{xbody} \to \mt{transaction} \; \mt{unit}) \to \mt{transaction} \; \mt{unit} \\
adamc@787 1830 \mt{val} \; \mt{onFail} : (\mt{string} \to \mt{transaction} \; \mt{unit}) \to \mt{transaction} \; \mt{unit} \\
adamc@787 1831 \mt{val} \; \mt{onConnectFail} : \mt{transaction} \; \mt{unit} \to \mt{transaction} \; \mt{unit} \\
adamc@787 1832 \mt{val} \; \mt{onDisconnect} : \mt{transaction} \; \mt{unit} \to \mt{transaction} \; \mt{unit} \\
adamc@787 1833 \mt{val} \; \mt{onServerError} : (\mt{string} \to \mt{transaction} \; \mt{unit}) \to \mt{transaction} \; \mt{unit}
adamc@787 1834 \end{array}$$
adamc@787 1835
adamc@701 1836 \subsubsection{Functional-Reactive Page Generation}
adamc@701 1837
adamc@701 1838 Most approaches to ``AJAX''-style coding involve imperative manipulation of the DOM tree representing an HTML document's structure. Ur/Web follows the \emph{functional-reactive} approach instead. Programs may allocate mutable \emph{sources} of arbitrary types, and an HTML page is effectively a pure function over the latest values of the sources. The page is not mutated directly, but rather it changes automatically as the sources are mutated.
adamc@659 1839
adamc@659 1840 $$\begin{array}{l}
adamc@659 1841 \mt{con} \; \mt{source} :: \mt{Type} \to \mt{Type} \\
adamc@659 1842 \mt{val} \; \mt{source} : \mt{t} ::: \mt{Type} \to \mt{t} \to \mt{transaction} \; (\mt{source} \; \mt{t}) \\
adamc@659 1843 \mt{val} \; \mt{set} : \mt{t} ::: \mt{Type} \to \mt{source} \; \mt{t} \to \mt{t} \to \mt{transaction} \; \mt{unit} \\
adamc@659 1844 \mt{val} \; \mt{get} : \mt{t} ::: \mt{Type} \to \mt{source} \; \mt{t} \to \mt{transaction} \; \mt{t}
adamc@659 1845 \end{array}$$
adamc@659 1846
adamc@659 1847 Pure functions over sources are represented in a monad of \emph{signals}.
adamc@659 1848
adamc@659 1849 $$\begin{array}{l}
adamc@659 1850 \mt{con} \; \mt{signal} :: \mt{Type} \to \mt{Type} \\
adamc@659 1851 \mt{val} \; \mt{signal\_monad} : \mt{monad} \; \mt{signal} \\
adamc@659 1852 \mt{val} \; \mt{signal} : \mt{t} ::: \mt{Type} \to \mt{source} \; \mt{t} \to \mt{signal} \; \mt{t}
adamc@659 1853 \end{array}$$
adamc@659 1854
adamc@659 1855 A reactive portion of an HTML page is injected with a $\mt{dyn}$ tag, which has a signal-valued attribute $\mt{Signal}$.
adamc@659 1856
adamc@659 1857 $$\begin{array}{l}
adamc@701 1858 \mt{val} \; \mt{dyn} : \mt{use} ::: \{\mt{Type}\} \to \mt{bind} ::: \{\mt{Type}\} \to \mt{unit} \\
adamc@701 1859 \hspace{.1in} \to \mt{tag} \; [\mt{Signal} = \mt{signal} \; (\mt{xml} \; \mt{body} \; \mt{use} \; \mt{bind})] \; \mt{body} \; [] \; \mt{use} \; \mt{bind}
adamc@659 1860 \end{array}$$
adamc@659 1861
adamc@701 1862 Transactions can be run on the client by including them in attributes like the $\mt{Onclick}$ attribute of $\mt{button}$, and GUI widgets like $\mt{ctextbox}$ have $\mt{Source}$ attributes that can be used to connect them to sources, so that their values can be read by code running because of, e.g., an $\mt{Onclick}$ event.
adamc@701 1863
adamc@914 1864 \subsubsection{Remote Procedure Calls}
adamc@914 1865
adamc@914 1866 Any function call may be made a client-to-server ``remote procedure call'' if the function being called needs no features that are only available to client code. To make a function call an RPC, pass that function call as the argument to $\mt{Basis.rpc}$:
adamc@914 1867
adamc@914 1868 $$\begin{array}{l}
adamc@914 1869 \mt{val} \; \mt{rpc} : \mt{t} ::: \mt{Type} \to \mt{transaction} \; \mt{t} \to \mt{transaction} \; \mt{t}
adamc@914 1870 \end{array}$$
adamc@914 1871
adamc@701 1872 \subsubsection{Asynchronous Message-Passing}
adamc@701 1873
adamc@701 1874 To support asynchronous, ``server push'' delivery of messages to clients, any client that might need to receive an asynchronous message is assigned a unique ID. These IDs may be retrieved both on the client and on the server, during execution of code related to a client.
adamc@701 1875
adamc@701 1876 $$\begin{array}{l}
adamc@701 1877 \mt{type} \; \mt{client} \\
adamc@701 1878 \mt{val} \; \mt{self} : \mt{transaction} \; \mt{client}
adamc@701 1879 \end{array}$$
adamc@701 1880
adamc@701 1881 \emph{Channels} are the means of message-passing. Each channel is created in the context of a client and belongs to that client; no other client may receive the channel's messages. Each channel type includes the type of values that may be sent over the channel. Sending and receiving are asynchronous, in the sense that a client need not be ready to receive a message right away. Rather, sent messages may queue up, waiting to be processed.
adamc@701 1882
adamc@701 1883 $$\begin{array}{l}
adamc@701 1884 \mt{con} \; \mt{channel} :: \mt{Type} \to \mt{Type} \\
adamc@701 1885 \mt{val} \; \mt{channel} : \mt{t} ::: \mt{Type} \to \mt{transaction} \; (\mt{channel} \; \mt{t}) \\
adamc@701 1886 \mt{val} \; \mt{send} : \mt{t} ::: \mt{Type} \to \mt{channel} \; \mt{t} \to \mt{t} \to \mt{transaction} \; \mt{unit} \\
adamc@701 1887 \mt{val} \; \mt{recv} : \mt{t} ::: \mt{Type} \to \mt{channel} \; \mt{t} \to \mt{transaction} \; \mt{t}
adamc@701 1888 \end{array}$$
adamc@701 1889
adamc@701 1890 The $\mt{channel}$ and $\mt{send}$ operations may only be executed on the server, and $\mt{recv}$ may only be executed on a client. Neither clients nor channels may be passed as arguments from clients to server-side functions, so persistent channels can only be maintained by storing them in the database and looking them up using the current client ID or some application-specific value as a key.
adamc@701 1891
adamc@701 1892 Clients and channels live only as long as the web browser page views that they are associated with. When a user surfs away, his client and its channels will be garbage-collected, after that user is not heard from for the timeout period. Garbage collection deletes any database row that contains a client or channel directly. Any reference to one of these types inside an $\mt{option}$ is set to $\mt{None}$ instead. Both kinds of handling have the flavor of weak pointers, and that is a useful way to think about clients and channels in the database.
adamc@701 1893
adamc@659 1894
adamc@549 1895 \section{Ur/Web Syntax Extensions}
adamc@549 1896
adamc@549 1897 Ur/Web features some syntactic shorthands for building values using the functions from the last section. This section sketches the grammar of those extensions. We write spans of syntax inside brackets to indicate that they are optional.
adamc@549 1898
adamc@549 1899 \subsection{SQL}
adamc@549 1900
adamc@786 1901 \subsubsection{\label{tables}Table Declarations}
adamc@786 1902
adamc@788 1903 $\mt{table}$ declarations may include constraints, via these grammar rules.
adamc@788 1904 $$\begin{array}{rrcll}
adamc@788 1905 \textrm{Declarations} & d &::=& \mt{table} \; x : c \; [pk[,]] \; cts \\
adamc@788 1906 \textrm{Primary key constraints} & pk &::=& \mt{PRIMARY} \; \mt{KEY} \; K \\
adamc@788 1907 \textrm{Keys} & K &::=& f \mid (f, (f,)^+) \\
adamc@788 1908 \textrm{Constraint sets} & cts &::=& \mt{CONSTRAINT} f \; ct \mid cts, cts \mid \{\{e\}\} \\
adamc@788 1909 \textrm{Constraints} & ct &::=& \mt{UNIQUE} \; K \mid \mt{CHECK} \; E \\
adamc@788 1910 &&& \mid \mt{FOREIGN} \; \mt{KEY} \; K \; \mt{REFERENCES} \; F \; (K) \; [\mt{ON} \; \mt{DELETE} \; pr] \; [\mt{ON} \; \mt{UPDATE} \; pr] \\
adamc@788 1911 \textrm{Foreign tables} & F &::=& x \mid \{\{e\}\} \\
adamc@788 1912 \textrm{Propagation modes} & pr &::=& \mt{NO} \; \mt{ACTION} \mid \mt{RESTRICT} \mid \mt{CASCADE} \mid \mt{SET} \; \mt{NULL}
adamc@788 1913 \end{array}$$
adamc@788 1914
adamc@788 1915 A signature item $\mt{table} \; \mt{x} : \mt{c}$ is actually elaborated into two signature items: $\mt{con} \; \mt{x\_hidden\_constraints} :: \{\{\mt{Unit}\}\}$ and $\mt{val} \; \mt{x} : \mt{sql\_table} \; \mt{c} \; \mt{x\_hidden\_constraints}$. This is appropriate for common cases where client code doesn't care which keys a table has. It's also possible to include constraints after a $\mt{table}$ signature item, with the same syntax as for $\mt{table}$ declarations. This may look like dependent typing, but it's just a convenience. The constraints are type-checked to determine a constructor $u$ to include in $\mt{val} \; \mt{x} : \mt{sql\_table} \; \mt{c} \; (u \rc \mt{x\_hidden\_constraints})$, and then the expressions are thrown away. Nonetheless, it can be useful for documentation purposes to include table constraint details in signatures. Note that the automatic generation of $\mt{x\_hidden\_constraints}$ leads to a kind of free subtyping with respect to which constraints are defined.
adamc@788 1916
adamc@788 1917
adamc@549 1918 \subsubsection{Queries}
adamc@549 1919
adamc@550 1920 Queries $Q$ are added to the rules for expressions $e$.
adamc@550 1921
adamc@549 1922 $$\begin{array}{rrcll}
adamc@550 1923 \textrm{Queries} & Q &::=& (q \; [\mt{ORDER} \; \mt{BY} \; (E \; [o],)^+] \; [\mt{LIMIT} \; N] \; [\mt{OFFSET} \; N]) \\
adamc@1085 1924 \textrm{Pre-queries} & q &::=& \mt{SELECT} \; [\mt{DISTINCT}] \; P \; \mt{FROM} \; F,^+ \; [\mt{WHERE} \; E] \; [\mt{GROUP} \; \mt{BY} \; p,^+] \; [\mt{HAVING} \; E] \\
adamc@1085 1925 &&& \mid q \; R \; q \mid \{\{\{e\}\}\} \\
adamc@549 1926 \textrm{Relational operators} & R &::=& \mt{UNION} \mid \mt{INTERSECT} \mid \mt{EXCEPT}
adamc@549 1927 \end{array}$$
adamc@549 1928
adamc@549 1929 $$\begin{array}{rrcll}
adamc@549 1930 \textrm{Projections} & P &::=& \ast & \textrm{all columns} \\
adamc@549 1931 &&& p,^+ & \textrm{particular columns} \\
adamc@549 1932 \textrm{Pre-projections} & p &::=& t.f & \textrm{one column from a table} \\
adamc@558 1933 &&& t.\{\{c\}\} & \textrm{a record of columns from a table (of kind $\{\mt{Type}\}$)} \\
adamc@549 1934 \textrm{Table names} & t &::=& x & \textrm{constant table name (automatically capitalized)} \\
adamc@549 1935 &&& X & \textrm{constant table name} \\
adamc@549 1936 &&& \{\{c\}\} & \textrm{computed table name (of kind $\mt{Name}$)} \\
adamc@549 1937 \textrm{Column names} & f &::=& X & \textrm{constant column name} \\
adamc@549 1938 &&& \{c\} & \textrm{computed column name (of kind $\mt{Name}$)} \\
adamc@549 1939 \textrm{Tables} & T &::=& x & \textrm{table variable, named locally by its own capitalization} \\
adamc@549 1940 &&& x \; \mt{AS} \; t & \textrm{table variable, with local name} \\
adamc@549 1941 &&& \{\{e\}\} \; \mt{AS} \; t & \textrm{computed table expression, with local name} \\
adamc@1085 1942 \textrm{$\mt{FROM}$ items} & F &::=& T \mid \{\{e\}\} \mid F \; J \; \mt{JOIN} \; F \; \mt{ON} \; E \\
adamc@1085 1943 &&& \mid F \; \mt{CROSS} \; \mt{JOIN} \ F \\
adamc@1085 1944 \textrm{Joins} & J &::=& [\mt{INNER}] \\
adamc@1085 1945 &&& \mid [\mt{LEFT} \mid \mt{RIGHT} \mid \mt{FULL}] \; [\mt{OUTER}] \\
adamc@549 1946 \textrm{SQL expressions} & E &::=& p & \textrm{column references} \\
adamc@549 1947 &&& X & \textrm{named expression references} \\
adamc@549 1948 &&& \{\{e\}\} & \textrm{injected native Ur expressions} \\
adamc@549 1949 &&& \{e\} & \textrm{computed expressions, probably using $\mt{sql\_exp}$ directly} \\
adamc@549 1950 &&& \mt{TRUE} \mid \mt{FALSE} & \textrm{boolean constants} \\
adamc@549 1951 &&& \ell & \textrm{primitive type literals} \\
adamc@549 1952 &&& \mt{NULL} & \textrm{null value (injection of $\mt{None}$)} \\
adamc@549 1953 &&& E \; \mt{IS} \; \mt{NULL} & \textrm{nullness test} \\
adamc@549 1954 &&& n & \textrm{nullary operators} \\
adamc@549 1955 &&& u \; E & \textrm{unary operators} \\
adamc@549 1956 &&& E \; b \; E & \textrm{binary operators} \\
adamc@549 1957 &&& \mt{COUNT}(\ast) & \textrm{count number of rows} \\
adamc@549 1958 &&& a(E) & \textrm{other aggregate function} \\
adamc@549 1959 &&& (E) & \textrm{explicit precedence} \\
adamc@549 1960 \textrm{Nullary operators} & n &::=& \mt{CURRENT\_TIMESTAMP} \\
adamc@549 1961 \textrm{Unary operators} & u &::=& \mt{NOT} \\
adamc@549 1962 \textrm{Binary operators} & b &::=& \mt{AND} \mid \mt{OR} \mid \neq \mid < \mid \leq \mid > \mid \geq \\
adamc@549 1963 \textrm{Aggregate functions} & a &::=& \mt{AVG} \mid \mt{SUM} \mid \mt{MIN} \mid \mt{MAX} \\
adamc@550 1964 \textrm{Directions} & o &::=& \mt{ASC} \mid \mt{DESC} \\
adamc@549 1965 \textrm{SQL integer} & N &::=& n \mid \{e\} \\
adamc@549 1966 \end{array}$$
adamc@549 1967
adamc@1085 1968 Additionally, an SQL expression may be inserted into normal Ur code with the syntax $(\mt{SQL} \; E)$ or $(\mt{WHERE} \; E)$. Similar shorthands exist for other nonterminals, with the prefix $\mt{FROM}$ for $\mt{FROM}$ items and $\mt{SELECT1}$ for pre-queries.
adamc@549 1969
adamc@550 1970 \subsubsection{DML}
adamc@550 1971
adamc@550 1972 DML commands $D$ are added to the rules for expressions $e$.
adamc@550 1973
adamc@550 1974 $$\begin{array}{rrcll}
adamc@550 1975 \textrm{Commands} & D &::=& (\mt{INSERT} \; \mt{INTO} \; T^E \; (f,^+) \; \mt{VALUES} \; (E,^+)) \\
adamc@550 1976 &&& (\mt{UPDATE} \; T^E \; \mt{SET} \; (f = E,)^+ \; \mt{WHERE} \; E) \\
adamc@550 1977 &&& (\mt{DELETE} \; \mt{FROM} \; T^E \; \mt{WHERE} \; E) \\
adamc@550 1978 \textrm{Table expressions} & T^E &::=& x \mid \{\{e\}\}
adamc@550 1979 \end{array}$$
adamc@550 1980
adamc@550 1981 Inside $\mt{UPDATE}$ and $\mt{DELETE}$ commands, lone variables $X$ are interpreted as references to columns of the implicit table $\mt{T}$, rather than to named expressions.
adamc@549 1982
adamc@551 1983 \subsection{XML}
adamc@551 1984
adamc@551 1985 XML fragments $L$ are added to the rules for expressions $e$.
adamc@551 1986
adamc@551 1987 $$\begin{array}{rrcll}
adamc@551 1988 \textrm{XML fragments} & L &::=& \texttt{<xml/>} \mid \texttt{<xml>}l^*\texttt{</xml>} \\
adamc@551 1989 \textrm{XML pieces} & l &::=& \textrm{text} & \textrm{cdata} \\
adamc@551 1990 &&& \texttt{<}g\texttt{/>} & \textrm{tag with no children} \\
adamc@551 1991 &&& \texttt{<}g\texttt{>}l^*\texttt{</}x\texttt{>} & \textrm{tag with children} \\
adamc@559 1992 &&& \{e\} & \textrm{computed XML fragment} \\
adamc@559 1993 &&& \{[e]\} & \textrm{injection of an Ur expression, via the $\mt{Top}.\mt{txt}$ function} \\
adamc@551 1994 \textrm{Tag} & g &::=& h \; (x = v)^* \\
adamc@551 1995 \textrm{Tag head} & h &::=& x & \textrm{tag name} \\
adamc@551 1996 &&& h\{c\} & \textrm{constructor parameter} \\
adamc@551 1997 \textrm{Attribute value} & v &::=& \ell & \textrm{literal value} \\
adamc@551 1998 &&& \{e\} & \textrm{computed value} \\
adamc@551 1999 \end{array}$$
adamc@551 2000
adamc@552 2001
adamc@553 2002 \section{The Structure of Web Applications}
adamc@553 2003
adamc@1127 2004 A web application is built from a series of modules, with one module, the last one appearing in the \texttt{.urp} file, designated as the main module. The signature of the main module determines the URL entry points to the application. Such an entry point should have type $\mt{t1} \to \ldots \to \mt{tn} \to \mt{transaction} \; \mt{page}$, for any integer $n \geq 0$, where $\mt{page}$ is a type synonym for top-level HTML pages, defined in $\mt{Basis}$. If such a function is at the top level of main module $M$, with $n = 0$, it will be accessible at URI \texttt{/M/f}, and so on for more deeply-nested functions, as described in Section \ref{tag} below. Arguments to an entry-point function are deserialized from the part of the URI following \texttt{f}.
adamc@553 2005
adamc@553 2006 When the standalone web server receives a request for a known page, it calls the function for that page, ``running'' the resulting transaction to produce the page to return to the client. Pages link to other pages with the \texttt{link} attribute of the \texttt{a} HTML tag. A link has type $\mt{transaction} \; \mt{page}$, and the semantics of a link are that this transaction should be run to compute the result page, when the link is followed. Link targets are assigned URL names in the same way as top-level entry points.
adamc@553 2007
adamc@553 2008 HTML forms are handled in a similar way. The $\mt{action}$ attribute of a $\mt{submit}$ form tag takes a value of type $\$\mt{use} \to \mt{transaction} \; \mt{page}$, where $\mt{use}$ is a kind-$\{\mt{Type}\}$ record of the form fields used by this action handler. Action handlers are assigned URL patterns in the same way as above.
adamc@553 2009
adamc@558 2010 For both links and actions, direct arguments and local variables mentioned implicitly via closures are automatically included in serialized form in URLs, in the order in which they appear in the source code.
adamc@553 2011
adamc@660 2012 Ur/Web programs generally mix server- and client-side code in a fairly transparent way. The one important restriction is that mixed client-server code must encapsulate all server-side pieces within named functions. This is because execution of such pieces will be implemented by explicit calls to the remote web server, and it is useful to get the programmer's help in designing the interface to be used. For example, this makes it easier to allow a client running an old version of an application to continue interacting with a server that has been upgraded to a new version, if the programmer took care to keep the interfaces of all of the old remote calls the same. The functions implementing these services are assigned names in the same way as normal web entry points, by using module structure.
adamc@660 2013
adamc@789 2014 \medskip
adamc@789 2015
adamc@789 2016 The HTTP standard suggests that GET requests only be used in ways that generate no side effects. Side effecting operations should use POST requests instead. The Ur/Web compiler enforces this rule strictly, via a simple conservative program analysis. Any page that may have a side effect must be accessed through a form, all of which use POST requests. A page is judged to have a side effect if its code depends syntactically on any of the side-effecting, server-side FFI functions. Links, forms, and most client-side event handlers are not followed during this syntactic traversal, but \texttt{<body onload=\{...\}>} handlers \emph{are} examined, since they run right away and could just as well be considered parts of main page handlers.
adamc@789 2017
adamc@789 2018 Ur/Web includes a kind of automatic protection against cross site request forgery attacks. Whenever any page execution can have side effects and can also read at least one cookie value, all cookie values must be signed cryptographically, to ensure that the user has come to the current page by submitting a form on a real page generated by the proper server. Signing and signature checking are inserted automatically by the compiler. This prevents attacks like phishing schemes where users are directed to counterfeit pages with forms that submit to your application, where a user's cookies might be submitted without his knowledge, causing some undesired side effect.
adamc@789 2019
adamc@553 2020
adamc@897 2021 \section{The Foreign Function Interface}
adamc@897 2022
adamc@897 2023 It is possible to call your own C and JavaScript code from Ur/Web applications, via the foreign function interface (FFI). The starting point for a new binding is a \texttt{.urs} signature file that presents your external library as a single Ur/Web module (with no nested modules). Compilation conventions map the types and values that you use into C and/or JavaScript types and values.
adamc@897 2024
adamc@897 2025 It is most convenient to encapsulate an FFI binding with a new \texttt{.urp} file, which applications can include with the \texttt{library} directive in their own \texttt{.urp} files. A number of directives are likely to show up in the library's project file.
adamc@897 2026
adamc@897 2027 \begin{itemize}
adamc@897 2028 \item \texttt{clientOnly Module.ident} registers a value as being allowed only in client-side code.
adamc@897 2029 \item \texttt{clientToServer Module.ident} declares a type as OK to marshal between clients and servers. By default, abstract FFI types are not allowed to be marshalled, since your library might be maintaining invariants that the simple serialization code doesn't check.
adamc@897 2030 \item \texttt{effectful Module.ident} registers a function that can have side effects. It is important to remember to use this directive for each such function, or else the optimizer might change program semantics.
adamc@897 2031 \item \texttt{ffi FILE.urs} names the file giving your library's signature. You can include multiple such files in a single \texttt{.urp} file, and each file \texttt{mod.urp} defines an FFI module \texttt{Mod}.
adamc@1099 2032 \item \texttt{include FILE} requests inclusion of a C header file.
adamc@897 2033 \item \texttt{jsFunc Module.ident=name} gives a mapping from an Ur name for a value to a JavaScript name.
adamc@897 2034 \item \texttt{link FILE} requests that \texttt{FILE} be linked into applications. It should be a C object or library archive file, and you are responsible for generating it with your own build process.
adamc@897 2035 \item \texttt{script URL} requests inclusion of a JavaScript source file within application HTML.
adamc@897 2036 \item \texttt{serverOnly Module.ident} registers a value as being allowed only in server-side code.
adamc@897 2037 \end{itemize}
adamc@897 2038
adamc@897 2039 \subsection{Writing C FFI Code}
adamc@897 2040
adamc@897 2041 A server-side FFI type or value \texttt{Module.ident} must have a corresponding type or value definition \texttt{uw\_Module\_ident} in C code. With the current Ur/Web version, it's not generally possible to work with Ur records or complex datatypes in C code, but most other kinds of types are fair game.
adamc@897 2042
adamc@897 2043 \begin{itemize}
adamc@897 2044 \item Primitive types defined in \texttt{Basis} are themselves using the standard FFI interface, so you may refer to them like \texttt{uw\_Basis\_t}. See \texttt{include/types.h} for their definitions.
adamc@897 2045 \item Enumeration datatypes, which have only constructors that take no arguments, should be defined using C \texttt{enum}s. The type is named as for any other type identifier, and each constructor \texttt{c} gets an enumeration constant named \texttt{uw\_Module\_c}.
adamc@897 2046 \item A datatype \texttt{dt} (such as \texttt{Basis.option}) that has one non-value-carrying constructor \texttt{NC} and one value-carrying constructor \texttt{C} gets special treatment. Where \texttt{T} is the type of \texttt{C}'s argument, and where we represent \texttt{T} as \texttt{t} in C, we represent \texttt{NC} with \texttt{NULL}. The representation of \texttt{C} depends on whether we're sure that we don't need to use \texttt{NULL} to represent \texttt{t} values; this condition holds only for strings and complex datatypes. For such types, \texttt{C v} is represented with the C encoding of \texttt{v}, such that the translation of \texttt{dt} is \texttt{t}. For other types, \texttt{C v} is represented with a pointer to the C encoding of v, such that the translation of \texttt{dt} is \texttt{t*}.
adamc@897 2047 \end{itemize}
adamc@897 2048
adamc@897 2049 The C FFI version of a Ur function with type \texttt{T1 -> ... -> TN -> R} or \texttt{T1 -> ... -> TN -> transaction R} has a C prototype like \texttt{R uw\_Module\_ident(uw\_context, T1, ..., TN)}. Only functions with types of the second form may have side effects. \texttt{uw\_context} is the type of state that persists across handling a client request. Many functions that operate on contexts are prototyped in \texttt{include/urweb.h}. Most should only be used internally by the compiler. A few are useful in general FFI implementation:
adamc@897 2050 \begin{itemize}
adamc@897 2051 \item \begin{verbatim}
adamc@897 2052 void uw_error(uw_context, failure_kind, const char *fmt, ...);
adamc@897 2053 \end{verbatim}
adamc@897 2054 Abort the current request processing, giving a \texttt{printf}-style format string and arguments for generating an error message. The \texttt{failure\_kind} argument can be \texttt{FATAL}, to abort the whole execution; \texttt{BOUNDED\_RETRY}, to try processing the request again from the beginning, but failing if this happens too many times; or \texttt{UNLIMITED\_RETRY}, to repeat processing, with no cap on how many times this can recur.
adamc@897 2055
adamc@897 2056 \item \begin{verbatim}
adamc@897 2057 void uw_push_cleanup(uw_context, void (*func)(void *), void *arg);
adamc@897 2058 void uw_pop_cleanup(uw_context);
adamc@897 2059 \end{verbatim}
adamc@897 2060 Manipulate a stack of actions that should be taken if any kind of error condition arises. Calling the ``pop'' function both removes an action from the stack and executes it.
adamc@897 2061
adamc@897 2062 \item \begin{verbatim}
adamc@897 2063 void *uw_malloc(uw_context, size_t);
adamc@897 2064 \end{verbatim}
adamc@897 2065 A version of \texttt{malloc()} that allocates memory inside a context's heap, which is managed with region allocation. Thus, there is no \texttt{uw\_free()}, but you need to be careful not to keep ad-hoc C pointers to this area of memory.
adamc@897 2066
adamc@897 2067 For performance and correctness reasons, it is usually preferable to use \texttt{uw\_malloc()} instead of \texttt{malloc()}. The former manipulates a local heap that can be kept allocated across page requests, while the latter uses global data structures that may face contention during concurrent execution.
adamc@897 2068
adamc@897 2069 \item \begin{verbatim}
adamc@897 2070 typedef void (*uw_callback)(void *);
adamc@897 2071 void uw_register_transactional(uw_context, void *data, uw_callback commit,
adamc@897 2072 uw_callback rollback, uw_callback free);
adamc@897 2073 \end{verbatim}
adamc@897 2074 All side effects in Ur/Web programs need to be compatible with transactions, such that any set of actions can be undone at any time. Thus, you should not perform actions with non-local side effects directly; instead, register handlers to be called when the current transaction is committed or rolled back. The arguments here give an arbitary piece of data to be passed to callbacks, a function to call on commit, a function to call on rollback, and a function to call afterward in either case to clean up any allocated resources. A rollback handler may be called after the associated commit handler has already been called, if some later part of the commit process fails.
adamc@897 2075
adamc@1085 2076 Any of the callbacks may be \texttt{NULL}. To accommodate some stubbornly non-transactional real-world actions like sending an e-mail message, Ur/Web treats \texttt{NULL} \texttt{rollback} callbacks specially. When a transaction commits, all \texttt{commit} actions that have non-\texttt{NULL} rollback actions are tried before any \texttt{commit} actions that have \texttt{NULL} rollback actions. Thus, if a single execution uses only one non-transactional action, and if that action never fails partway through its execution while still causing an observable side effect, then Ur/Web can maintain the transactional abstraction.
adamc@1085 2077
adamc@1085 2078 \item \begin{verbatim}
adamc@1085 2079 void *uw_get_global(uw_context, char *name);
adamc@1085 2080 void uw_set_global(uw_context, char *name, void *data, uw_callback free);
adamc@1085 2081 \end{verbatim}
adamc@1085 2082 Different FFI-based extensions may want to associate their own pieces of data with contexts. The global interface provides a way of doing that, where each extension must come up with its own unique key. The \texttt{free} argument to \texttt{uw\_set\_global()} explains how to deallocate the saved data.
adamc@1085 2083
adamc@897 2084 \end{itemize}
adamc@897 2085
adamc@897 2086 \subsection{Writing JavaScript FFI Code}
adamc@897 2087
adamc@897 2088 JavaScript is dynamically typed, so Ur/Web type definitions imply no JavaScript code. The JavaScript identifier for each FFI function is set with the \texttt{jsFunc} directive. Each identifier can be defined in any JavaScript file that you ask to include with the \texttt{script} directive.
adamc@897 2089
adamc@897 2090 In contrast to C FFI code, JavaScript FFI functions take no extra context argument. Their argument lists are as you would expect from their Ur types. Only functions whose ranges take the form \texttt{transaction T} should have side effects; the JavaScript ``return type'' of such a function is \texttt{T}. Here are the conventions for representing Ur values in JavaScript.
adamc@897 2091
adamc@897 2092 \begin{itemize}
adamc@897 2093 \item Integers, floats, strings, characters, and booleans are represented in the usual JavaScript way.
adamc@985 2094 \item Ur functions are represented in an unspecified way. This means that you should not rely on any details of function representation. Named FFI functions are represented as JavaScript functions with as many arguments as their Ur types specify. To call a non-FFI function \texttt{f} on argument \texttt{x}, run \texttt{execF(f, x)}.
adamc@897 2095 \item An Ur record is represented with a JavaScript record, where Ur field name \texttt{N} translates to JavaScript field name \texttt{\_N}. An exception to this rule is that the empty record is encoded as \texttt{null}.
adamc@897 2096 \item \texttt{option}-like types receive special handling similar to their handling in C. The ``\texttt{None}'' constructor is \texttt{null}, and a use of the ``\texttt{Some}'' constructor on a value \texttt{v} is either \texttt{v}, if the underlying type doesn't need to use \texttt{null}; or \texttt{\{v:v\}} otherwise.
adamc@985 2097 \item Any other datatypes represent a non-value-carrying constructor \texttt{C} as \texttt{"C"} and an application of a constructor \texttt{C} to value \texttt{v} as \texttt{\{n:"C", v:v\}}. This rule only applies to datatypes defined in FFI module signatures; the compiler is free to optimize the representations of other, non-\texttt{option}-like datatypes in arbitrary ways.
adamc@897 2098 \end{itemize}
adamc@897 2099
adamc@897 2100 It is possible to write JavaScript FFI code that interacts with the functional-reactive structure of a document, but this version of the manual doesn't cover the details.
adamc@897 2101
adamc@897 2102
adamc@552 2103 \section{Compiler Phases}
adamc@552 2104
adamc@552 2105 The Ur/Web compiler is unconventional in that it relies on a kind of \emph{heuristic compilation}. Not all valid programs will compile successfully. Informally, programs fail to compile when they are ``too higher order.'' Compiler phases do their best to eliminate different kinds of higher order-ness, but some programs just won't compile. This is a trade-off for producing very efficient executables. Compiled Ur/Web programs use native C representations and require no garbage collection.
adamc@552 2106
adamc@552 2107 In this section, we step through the main phases of compilation, noting what consequences each phase has for effective programming.
adamc@552 2108
adamc@552 2109 \subsection{Parse}
adamc@552 2110
adamc@552 2111 The compiler reads a \texttt{.urp} file, figures out which \texttt{.urs} and \texttt{.ur} files it references, and combines them all into what is conceptually a single sequence of declarations in the core language of Section \ref{core}.
adamc@552 2112
adamc@552 2113 \subsection{Elaborate}
adamc@552 2114
adamc@552 2115 This is where type inference takes place, translating programs into an explicit form with no more wildcards. This phase is the most likely source of compiler error messages.
adamc@552 2116
adamc@552 2117 \subsection{Unnest}
adamc@552 2118
adamc@552 2119 Named local function definitions are moved to the top level, to avoid the need to generate closures.
adamc@552 2120
adamc@552 2121 \subsection{Corify}
adamc@552 2122
adamc@552 2123 Module system features are compiled away, through inlining of functor definitions at application sites. Afterward, most abstraction boundaries are broken, facilitating optimization.
adamc@552 2124
adamc@552 2125 \subsection{Especialize}
adamc@552 2126
adamc@552 2127 Functions are specialized to particular argument patterns. This is an important trick for avoiding the need to maintain any closures at runtime.
adamc@552 2128
adamc@552 2129 \subsection{Untangle}
adamc@552 2130
adamc@552 2131 Remove unnecessary mutual recursion, splitting recursive groups into strongly-connected components.
adamc@552 2132
adamc@552 2133 \subsection{Shake}
adamc@552 2134
adamc@552 2135 Remove all definitions not needed to run the page handlers that are visible in the signature of the last module listed in the \texttt{.urp} file.
adamc@552 2136
adamc@661 2137 \subsection{Rpcify}
adamc@661 2138
adamc@661 2139 Pieces of code are determined to be client-side, server-side, neither, or both, by figuring out which standard library functions might be needed to execute them. Calls to server-side functions (e.g., $\mt{query}$) within mixed client-server code are identified and replaced with explicit remote calls. Some mixed functions may be converted to continuation-passing style to facilitate this transformation.
adamc@661 2140
adamc@661 2141 \subsection{Untangle, Shake}
adamc@661 2142
adamc@661 2143 Repeat these simplifications.
adamc@661 2144
adamc@553 2145 \subsection{\label{tag}Tag}
adamc@552 2146
adamc@552 2147 Assign a URL name to each link and form action. It is important that these links and actions are written as applications of named functions, because such names are used to generate URL patterns. A URL pattern has a name built from the full module path of the named function, followed by the function name, with all pieces separated by slashes. The path of a functor application is based on the name given to the result, rather than the path of the functor itself.
adamc@552 2148
adamc@552 2149 \subsection{Reduce}
adamc@552 2150
adamc@552 2151 Apply definitional equality rules to simplify the program as much as possible. This effectively includes inlining of every non-recursive definition.
adamc@552 2152
adamc@552 2153 \subsection{Unpoly}
adamc@552 2154
adamc@552 2155 This phase specializes polymorphic functions to the specific arguments passed to them in the program. If the program contains real polymorphic recursion, Unpoly will be insufficient to avoid later error messages about too much polymorphism.
adamc@552 2156
adamc@552 2157 \subsection{Specialize}
adamc@552 2158
adamc@558 2159 Replace uses of parameterized datatypes with versions specialized to specific parameters. As for Unpoly, this phase will not be effective enough in the presence of polymorphic recursion or other fancy uses of impredicative polymorphism.
adamc@552 2160
adamc@552 2161 \subsection{Shake}
adamc@552 2162
adamc@558 2163 Here the compiler repeats the earlier Shake phase.
adamc@552 2164
adamc@552 2165 \subsection{Monoize}
adamc@552 2166
adamc@552 2167 Programs are translated to a new intermediate language without polymorphism or non-$\mt{Type}$ constructors. Error messages may pop up here if earlier phases failed to remove such features.
adamc@552 2168
adamc@552 2169 This is the stage at which concrete names are generated for cookies, tables, and sequences. They are named following the same convention as for links and actions, based on module path information saved from earlier stages. Table and sequence names separate path elements with underscores instead of slashes, and they are prefixed by \texttt{uw\_}.
adamc@664 2170
adamc@552 2171 \subsection{MonoOpt}
adamc@552 2172
adamc@552 2173 Simple algebraic laws are applied to simplify the program, focusing especially on efficient imperative generation of HTML pages.
adamc@552 2174
adamc@552 2175 \subsection{MonoUntangle}
adamc@552 2176
adamc@552 2177 Unnecessary mutual recursion is broken up again.
adamc@552 2178
adamc@552 2179 \subsection{MonoReduce}
adamc@552 2180
adamc@552 2181 Equivalents of the definitional equality rules are applied to simplify programs, with inlining again playing a major role.
adamc@552 2182
adamc@552 2183 \subsection{MonoShake, MonoOpt}
adamc@552 2184
adamc@552 2185 Unneeded declarations are removed, and basic optimizations are repeated.
adamc@552 2186
adamc@552 2187 \subsection{Fuse}
adamc@552 2188
adamc@552 2189 The compiler tries to simplify calls to recursive functions whose results are immediately written as page output. The write action is pushed inside the function definitions to avoid allocation of intermediate results.
adamc@552 2190
adamc@552 2191 \subsection{MonoUntangle, MonoShake}
adamc@552 2192
adamc@552 2193 Fuse often creates more opportunities to remove spurious mutual recursion.
adamc@552 2194
adamc@552 2195 \subsection{Pathcheck}
adamc@552 2196
adamc@552 2197 The compiler checks that no link or action name has been used more than once.
adamc@552 2198
adamc@552 2199 \subsection{Cjrize}
adamc@552 2200
adamc@552 2201 The program is translated to what is more or less a subset of C. If any use of functions as data remains at this point, the compiler will complain.
adamc@552 2202
adamc@552 2203 \subsection{C Compilation and Linking}
adamc@552 2204
adamc@552 2205 The output of the last phase is pretty-printed as C source code and passed to GCC.
adamc@552 2206
adamc@552 2207
adamc@524 2208 \end{document}