adamc@615
|
1 (* Copyright (c) 2009, Adam Chlipala
|
adamc@615
|
2 * All rights reserved.
|
adamc@615
|
3 *
|
adamc@615
|
4 * Redistribution and use in source and binary forms, with or without
|
adamc@615
|
5 * modification, are permitted provided that the following conditions are met:
|
adamc@615
|
6 *
|
adamc@615
|
7 * - Redistributions of source code must retain the above copyright notice,
|
adamc@615
|
8 * this list of conditions and the following disclaimer.
|
adamc@615
|
9 * - Redistributions in binary form must reproduce the above copyright notice,
|
adamc@615
|
10 * this list of conditions and the following disclaimer in the documentation
|
adamc@615
|
11 * and/or other materials provided with the distribution.
|
adamc@615
|
12 * - The names of contributors may not be used to endorse or promote products
|
adamc@615
|
13 * derived from this software without specific prior written permission.
|
adamc@615
|
14 *
|
adamc@615
|
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
adamc@615
|
16 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
adamc@615
|
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
adamc@615
|
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
adamc@615
|
19 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
adamc@615
|
20 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
adamc@615
|
21 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
adamc@615
|
22 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
adamc@615
|
23 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
adamc@615
|
24 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
adamc@615
|
25 * POSSIBILITY OF SUCH DAMAGE.
|
adamc@615
|
26 *)
|
adamc@615
|
27
|
adamc@615
|
28 Set Implicit Arguments.
|
adamc@615
|
29
|
adamc@615
|
30
|
adamc@615
|
31 Definition name := nat.
|
adamc@615
|
32
|
adamc@615
|
33
|
adamc@615
|
34 (** Syntax of Featherweight Ur *)
|
adamc@615
|
35
|
adamc@615
|
36 Inductive kind : Type :=
|
adamc@615
|
37 | KType : kind
|
adamc@615
|
38 | KName : kind
|
adamc@615
|
39 | KArrow : kind -> kind -> kind
|
adamc@615
|
40 | KRecord : kind -> kind.
|
adamc@615
|
41
|
adamc@615
|
42 Section vars.
|
adamc@615
|
43 Variable cvar : kind -> Type.
|
adamc@615
|
44
|
adamc@615
|
45 Inductive con : kind -> Type :=
|
adamc@615
|
46 | CVar : forall k, cvar k -> con k
|
adamc@615
|
47 | Arrow : con KType -> con KType -> con KType
|
adamc@615
|
48 | Poly : forall k, (cvar k -> con KType) -> con KType
|
adamc@615
|
49 | CAbs : forall k1 k2, (cvar k1 -> con k2) -> con (KArrow k1 k2)
|
adamc@615
|
50 | CApp : forall k1 k2, con (KArrow k1 k2) -> con k1 -> con k2
|
adamc@615
|
51 | Name : name -> con KName
|
adamc@615
|
52 | TRecord : con (KRecord KType) -> con KType
|
adamc@615
|
53 | CEmpty : forall k, con (KRecord k)
|
adamc@615
|
54 | CSingle : forall k, con KName -> con k -> con (KRecord k)
|
adamc@615
|
55 | CConcat : forall k, con (KRecord k) -> con (KRecord k) -> con (KRecord k)
|
adamc@615
|
56 | CFold : forall k1 k2, con (KArrow (KArrow KName (KArrow k1 (KArrow k2 k2)))
|
adamc@615
|
57 (KArrow k2 (KArrow (KRecord k1) k2)))
|
adamc@615
|
58 | CGuarded : forall k1 k2, con (KRecord k1) -> con (KRecord k1) -> con k2 -> con k2.
|
adamc@615
|
59
|
adamc@615
|
60 Variable dvar : forall k, con (KRecord k) -> con (KRecord k) -> Type.
|
adamc@615
|
61
|
adamc@615
|
62 Section subs.
|
adamc@615
|
63 Variable k1 : kind.
|
adamc@615
|
64 Variable c1 : con k1.
|
adamc@615
|
65
|
adamc@615
|
66 Inductive subs : forall k2, (cvar k1 -> con k2) -> con k2 -> Type :=
|
adamc@615
|
67 | S_Unchanged : forall k2 (c2 : con k2),
|
adamc@615
|
68 subs (fun _ => c2) c2
|
adamc@615
|
69 | S_CVar : subs (fun x => CVar x) c1
|
adamc@615
|
70 | S_Arrow : forall c2 c3 c2' c3',
|
adamc@615
|
71 subs c2 c2'
|
adamc@615
|
72 -> subs c3 c3'
|
adamc@615
|
73 -> subs (fun x => Arrow (c2 x) (c3 x)) (Arrow c2' c3')
|
adamc@615
|
74 | S_Poly : forall k (c2 : cvar k1 -> cvar k -> _) (c2' : cvar k -> _),
|
adamc@615
|
75 (forall x', subs (fun x => c2 x x') (c2' x'))
|
adamc@615
|
76 -> subs (fun x => Poly (c2 x)) (Poly c2')
|
adamc@615
|
77 | S_CAbs : forall k2 k3 (c2 : cvar k1 -> cvar k2 -> con k3) (c2' : cvar k2 -> _),
|
adamc@615
|
78 (forall x', subs (fun x => c2 x x') (c2' x'))
|
adamc@615
|
79 -> subs (fun x => CAbs (c2 x)) (CAbs c2')
|
adamc@615
|
80 | S_CApp : forall k1 k2 (c2 : _ -> con (KArrow k1 k2)) c3 c2' c3',
|
adamc@615
|
81 subs c2 c2'
|
adamc@615
|
82 -> subs c3 c3'
|
adamc@615
|
83 -> subs (fun x => CApp (c2 x) (c3 x)) (CApp c2' c3')
|
adamc@615
|
84 | S_TRecord : forall c2 c2',
|
adamc@615
|
85 subs c2 c2'
|
adamc@615
|
86 -> subs (fun x => TRecord (c2 x)) (TRecord c2')
|
adamc@615
|
87 | S_CSingle : forall k2 c2 (c3 : _ -> con k2) c2' c3',
|
adamc@615
|
88 subs c2 c2'
|
adamc@615
|
89 -> subs c3 c3'
|
adamc@615
|
90 -> subs (fun x => CSingle (c2 x) (c3 x)) (CSingle c2' c3')
|
adamc@615
|
91 | S_CConcat : forall k2 (c2 c3 : _ -> con (KRecord k2)) c2' c3',
|
adamc@615
|
92 subs c2 c2'
|
adamc@615
|
93 -> subs c3 c3'
|
adamc@615
|
94 -> subs (fun x => CConcat (c2 x) (c3 x)) (CConcat c2' c3')
|
adamc@615
|
95 | S_CGuarded : forall k2 k3 (c2 c3 : _ -> con (KRecord k2)) (c4 : _ -> con k3) c2' c3' c4',
|
adamc@615
|
96 subs c2 c2'
|
adamc@615
|
97 -> subs c3 c3'
|
adamc@615
|
98 -> subs c4 c4'
|
adamc@615
|
99 -> subs (fun x => CGuarded (c2 x) (c3 x) (c4 x)) (CGuarded c2' c3' c4').
|
adamc@615
|
100 End subs.
|
adamc@615
|
101
|
adamc@615
|
102 Inductive disj : forall k, con (KRecord k) -> con (KRecord k) -> Prop :=
|
adamc@615
|
103 | DVar : forall k (c1 c2 : con (KRecord k)),
|
adamc@615
|
104 dvar c1 c2 -> disj c1 c2
|
adamc@615
|
105 | DComm : forall k (c1 c2 : con (KRecord k)),
|
adamc@615
|
106 disj c1 c2 -> disj c2 c1
|
adamc@615
|
107
|
adamc@615
|
108 | DEmpty : forall k c2,
|
adamc@615
|
109 disj (CEmpty k) c2
|
adamc@615
|
110 | DSingleKeys : forall k X1 X2 (c1 c2 : con k),
|
adamc@615
|
111 X1 <> X2
|
adamc@615
|
112 -> disj (CSingle (Name X1) c1) (CSingle (Name X2) c2)
|
adamc@615
|
113 | DSingleValues : forall k n1 n2 (c1 c2 : con k) k' (c1' c2' : con k'),
|
adamc@615
|
114 disj (CSingle n1 c1') (CSingle n2 c2')
|
adamc@615
|
115 -> disj (CSingle n1 c1) (CSingle n2 c2)
|
adamc@615
|
116
|
adamc@615
|
117 | DConcat : forall k (c1 c2 c : con (KRecord k)),
|
adamc@615
|
118 disj c1 c
|
adamc@615
|
119 -> disj c2 c
|
adamc@615
|
120 -> disj (CConcat c1 c2) c
|
adamc@615
|
121
|
adamc@615
|
122 | DEq : forall k (c1 c2 c1' : con (KRecord k)),
|
adamc@615
|
123 disj c1 c2
|
adamc@615
|
124 -> deq c1 c1'
|
adamc@615
|
125 -> disj c1' c2
|
adamc@615
|
126
|
adamc@615
|
127 with deq : forall k, con k -> con k -> Prop :=
|
adamc@615
|
128 | Eq_Beta : forall k1 k2 (c1 : cvar k1 -> con k2) c2 c1',
|
adamc@615
|
129 subs c2 c1 c1'
|
adamc@615
|
130 -> deq (CApp (CAbs c1) c2) c1'
|
adamc@615
|
131 | Eq_Refl : forall k (c : con k),
|
adamc@615
|
132 deq c c
|
adamc@615
|
133 | Eq_Comm : forall k (c1 c2 : con k),
|
adamc@615
|
134 deq c2 c1
|
adamc@615
|
135 -> deq c1 c2
|
adamc@615
|
136 | Eq_Trans : forall k (c1 c2 c3 : con k),
|
adamc@615
|
137 deq c1 c2
|
adamc@615
|
138 -> deq c2 c3
|
adamc@615
|
139 -> deq c1 c3
|
adamc@615
|
140 | Eq_Cong : forall k1 k2 c1 c1' (c2 : cvar k1 -> con k2) c2' c2'',
|
adamc@615
|
141 deq c1 c1'
|
adamc@615
|
142 -> subs c1 c2 c2'
|
adamc@615
|
143 -> subs c1' c2 c2''
|
adamc@615
|
144 -> deq c2' c2''
|
adamc@615
|
145
|
adamc@615
|
146 | Eq_Concat_Empty : forall k c,
|
adamc@615
|
147 deq (CConcat (CEmpty k) c) c
|
adamc@615
|
148 | Eq_Concat_Comm : forall k (c1 c2 : con (KRecord k)),
|
adamc@615
|
149 deq (CConcat c1 c2) (CConcat c2 c1)
|
adamc@615
|
150 | Eq_Concat_Assoc : forall k (c1 c2 c3 : con (KRecord k)),
|
adamc@615
|
151 deq (CConcat c1 (CConcat c2 c3)) (CConcat (CConcat c1 c2) c3)
|
adamc@615
|
152
|
adamc@615
|
153 | Eq_Fold_Empty : forall k1 k2 f i,
|
adamc@615
|
154 deq (CApp (CApp (CApp (CFold k1 k2) f) i) (CEmpty _)) i
|
adamc@615
|
155 | Eq_Fold_Cons : forall k1 k2 f i c1 c2 c3,
|
adamc@615
|
156 deq (CApp (CApp (CApp (CFold k1 k2) f) i) (CConcat (CSingle c1 c2) c3))
|
adamc@615
|
157 (CApp (CApp (CApp f c1) c2) (CApp (CApp (CApp (CFold k1 k2) f) i) c3))
|
adamc@615
|
158
|
adamc@615
|
159 | Eq_Guarded : forall k1 k2 (c1 c2 : con (KRecord k1)) (c : con k2),
|
adamc@615
|
160 disj c1 c2
|
adamc@615
|
161 -> deq (CGuarded c1 c2 c) c
|
adamc@615
|
162
|
adamc@615
|
163 | Eq_Map_Ident : forall k c,
|
adamc@615
|
164 deq (CApp (CApp (CApp (CFold k (KRecord k))
|
adamc@615
|
165 (CAbs (fun x1 => CAbs (fun x2 => CAbs (fun x3 => CConcat (CSingle (CVar x1) (CVar x2)) (CVar x3))))))
|
adamc@615
|
166 (CEmpty _)) c) c
|
adamc@615
|
167 | Eq_Map_Dist : forall k1 k2 f c1 c2,
|
adamc@615
|
168 deq (CApp (CApp (CApp (CFold k1 (KRecord k2))
|
adamc@615
|
169 (CAbs (fun x1 => CAbs (fun x2 => CAbs (fun x3 => CConcat (CSingle (CVar x1) (CApp f (CVar x2))) (CVar x3))))))
|
adamc@615
|
170 (CEmpty _)) (CConcat c1 c2))
|
adamc@615
|
171 (CConcat
|
adamc@615
|
172 (CApp (CApp (CApp (CFold k1 (KRecord k2))
|
adamc@615
|
173 (CAbs (fun x1 => CAbs (fun x2 => CAbs (fun x3 => CConcat (CSingle (CVar x1) (CApp f (CVar x2))) (CVar x3))))))
|
adamc@615
|
174 (CEmpty _)) c1)
|
adamc@615
|
175 (CApp (CApp (CApp (CFold k1 (KRecord k2))
|
adamc@615
|
176 (CAbs (fun x1 => CAbs (fun x2 => CAbs (fun x3 => CConcat (CSingle (CVar x1) (CApp f (CVar x2))) (CVar x3))))))
|
adamc@615
|
177 (CEmpty _)) c2))
|
adamc@615
|
178
|
adamc@615
|
179 | Eq_Fold_Fuse : forall k1 k2 k3 f i f' c,
|
adamc@615
|
180 deq (CApp (CApp (CApp (CFold k1 k2) f) i)
|
adamc@615
|
181 (CApp (CApp (CApp (CFold k3 (KRecord k1))
|
adamc@615
|
182 (CAbs (fun x1 => CAbs (fun x2 => CAbs (fun x3 => CConcat (CSingle (CVar x1) (CApp f' (CVar x2))) (CVar x3))))))
|
adamc@615
|
183 (CEmpty _)) c))
|
adamc@615
|
184 (CApp (CApp (CApp (CFold k3 k2)
|
adamc@615
|
185 (CAbs (fun x1 => CAbs (fun x2 => CApp (CApp f (CVar x1)) (CApp f' (CVar x2))))))
|
adamc@615
|
186 i) c).
|
adamc@615
|
187
|
adamc@615
|
188 Inductive wf : forall k, con k -> Type :=
|
adamc@615
|
189 | HK_CVar : forall k (x : cvar k),
|
adamc@615
|
190 wf (CVar x)
|
adamc@615
|
191 | HK_Arrow : forall c1 c2,
|
adamc@615
|
192 wf c1 -> wf c2 -> wf (Arrow c1 c2)
|
adamc@615
|
193 | HK_Poly : forall k (c1 : cvar k -> _),
|
adamc@615
|
194 (forall x, wf (c1 x)) -> wf (Poly c1)
|
adamc@615
|
195 | HK_CAbs : forall k1 k2 (c1 : cvar k1 -> con k2),
|
adamc@615
|
196 (forall x, wf (c1 x)) -> wf (CAbs c1)
|
adamc@615
|
197 | HK_CApp : forall k1 k2 (c1 : con (KArrow k1 k2)) c2,
|
adamc@615
|
198 wf c1 -> wf c2 -> wf (CApp c1 c2)
|
adamc@615
|
199 | HK_Name : forall X,
|
adamc@615
|
200 wf (Name X)
|
adamc@615
|
201 | HK_TRecord : forall c,
|
adamc@615
|
202 wf c -> wf (TRecord c)
|
adamc@615
|
203 | HK_CEmpty : forall k,
|
adamc@615
|
204 wf (CEmpty k)
|
adamc@615
|
205 | HK_CSingle : forall k c1 (c2 : con k),
|
adamc@615
|
206 wf c1 -> wf c2 -> wf (CSingle c1 c2)
|
adamc@615
|
207 | HK_CConcat : forall k (c1 c2 : con (KRecord k)),
|
adamc@615
|
208 wf c2 -> wf c2 -> disj c1 c2 -> wf (CConcat c1 c2)
|
adamc@615
|
209 | HK_CFold : forall k1 k2,
|
adamc@615
|
210 wf (CFold k1 k2)
|
adamc@615
|
211 | HK_CGuarded : forall k1 k2 (c1 c2 : con (KRecord k1)) (c : con k2),
|
adamc@615
|
212 wf c1 -> wf c2 -> (disj c1 c2 -> wf c) -> wf (CGuarded c1 c2 c).
|
adamc@615
|
213 End vars.
|