adamc@615
|
1 (* Copyright (c) 2009, Adam Chlipala
|
adamc@615
|
2 * All rights reserved.
|
adamc@615
|
3 *
|
adamc@615
|
4 * Redistribution and use in source and binary forms, with or without
|
adamc@615
|
5 * modification, are permitted provided that the following conditions are met:
|
adamc@615
|
6 *
|
adamc@615
|
7 * - Redistributions of source code must retain the above copyright notice,
|
adamc@615
|
8 * this list of conditions and the following disclaimer.
|
adamc@615
|
9 * - Redistributions in binary form must reproduce the above copyright notice,
|
adamc@615
|
10 * this list of conditions and the following disclaimer in the documentation
|
adamc@615
|
11 * and/or other materials provided with the distribution.
|
adamc@615
|
12 * - The names of contributors may not be used to endorse or promote products
|
adamc@615
|
13 * derived from this software without specific prior written permission.
|
adamc@615
|
14 *
|
adamc@615
|
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
adamc@615
|
16 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
adamc@615
|
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
adamc@615
|
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
adamc@615
|
19 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
adamc@615
|
20 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
adamc@615
|
21 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
adamc@615
|
22 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
adamc@615
|
23 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
adamc@615
|
24 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
adamc@615
|
25 * POSSIBILITY OF SUCH DAMAGE.
|
adamc@615
|
26 *)
|
adamc@615
|
27
|
adamc@618
|
28 Require Import Eqdep.
|
adamc@618
|
29
|
adamc@616
|
30 Require Import Axioms.
|
adamc@615
|
31 Require Import Syntax.
|
adamc@615
|
32
|
adamc@615
|
33 Set Implicit Arguments.
|
adamc@615
|
34
|
adamc@615
|
35
|
adamc@617
|
36 Definition row (A : Type) : Type := name -> option A.
|
adamc@615
|
37
|
adamc@617
|
38 Definition record (r : row Set) := forall n, match r n with
|
adamc@617
|
39 | None => unit
|
adamc@617
|
40 | Some T => T
|
adamc@617
|
41 end.
|
adamc@615
|
42
|
adamc@615
|
43 Fixpoint kDen (k : kind) : Type :=
|
adamc@615
|
44 match k with
|
adamc@615
|
45 | KType => Set
|
adamc@615
|
46 | KName => name
|
adamc@615
|
47 | KArrow k1 k2 => kDen k1 -> kDen k2
|
adamc@615
|
48 | KRecord k1 => row (kDen k1)
|
adamc@615
|
49 end.
|
adamc@615
|
50
|
adamc@635
|
51 Definition disjoint T (r1 r2 : row T) :=
|
adamc@635
|
52 forall n, match r1 n, r2 n with
|
adamc@635
|
53 | Some _, Some _ => False
|
adamc@635
|
54 | _, _ => True
|
adamc@635
|
55 end.
|
adamc@620
|
56
|
adamc@615
|
57 Fixpoint cDen k (c : con kDen k) {struct c} : kDen k :=
|
adamc@615
|
58 match c in con _ k return kDen k with
|
adamc@615
|
59 | CVar _ x => x
|
adamc@615
|
60 | Arrow c1 c2 => cDen c1 -> cDen c2
|
adamc@615
|
61 | Poly _ c1 => forall x, cDen (c1 x)
|
adamc@615
|
62 | CAbs _ _ c1 => fun x => cDen (c1 x)
|
adamc@615
|
63 | CApp _ _ c1 c2 => (cDen c1) (cDen c2)
|
adamc@615
|
64 | Name n => n
|
adamc@615
|
65 | TRecord c1 => record (cDen c1)
|
adamc@617
|
66 | CEmpty _ => fun _ => None
|
adamc@617
|
67 | CSingle _ c1 c2 => fun n => if name_eq_dec n (cDen c1) then Some (cDen c2) else None
|
adamc@617
|
68 | CConcat _ c1 c2 => fun n => match (cDen c1) n with
|
adamc@617
|
69 | None => (cDen c2) n
|
adamc@617
|
70 | v => v
|
adamc@617
|
71 end
|
adamc@617
|
72 | CMap k1 k2 => fun f r n => match r n with
|
adamc@617
|
73 | None => None
|
adamc@617
|
74 | Some T => Some (f T)
|
adamc@617
|
75 end
|
adamc@635
|
76 | TGuarded _ c1 c2 t => disjoint (cDen c1) (cDen c2) -> cDen t
|
adamc@615
|
77 end.
|
adamc@616
|
78
|
adamc@616
|
79 Theorem subs_correct : forall k1 (c1 : con kDen k1) k2 (c2 : _ -> con kDen k2) c2',
|
adamc@616
|
80 subs c1 c2 c2'
|
adamc@616
|
81 -> cDen (c2 (cDen c1)) = cDen c2'.
|
adamc@616
|
82 induction 1; simpl; intuition; try (apply ext_eq_forallS || apply ext_eq);
|
adamc@616
|
83 repeat match goal with
|
adamc@616
|
84 | [ H : _ |- _ ] => rewrite H
|
adamc@616
|
85 end; intuition.
|
adamc@616
|
86 Qed.
|
adamc@616
|
87
|
adamc@616
|
88 Definition dvar k (c1 c2 : con kDen (KRecord k)) :=
|
adamc@616
|
89 disjoint (cDen c1) (cDen c2).
|
adamc@616
|
90
|
adamc@616
|
91 Scheme deq_mut := Minimality for deq Sort Prop
|
adamc@616
|
92 with disj_mut := Minimality for disj Sort Prop.
|
adamc@616
|
93
|
adamc@618
|
94 Ltac deq_disj_correct scm :=
|
adamc@635
|
95 let t := repeat progress (simpl; intuition; subst) in
|
adamc@617
|
96
|
adamc@618
|
97 let rec use_disjoint' notDone E :=
|
adamc@617
|
98 match goal with
|
adamc@617
|
99 | [ H : disjoint _ _ |- _ ] =>
|
adamc@617
|
100 notDone H; generalize (H E); use_disjoint'
|
adamc@617
|
101 ltac:(fun H' =>
|
adamc@617
|
102 match H' with
|
adamc@617
|
103 | H => fail 1
|
adamc@617
|
104 | _ => notDone H'
|
adamc@617
|
105 end) E
|
adamc@617
|
106 | _ => idtac
|
adamc@618
|
107 end in
|
adamc@618
|
108 let use_disjoint := use_disjoint' ltac:(fun _ => idtac) in
|
adamc@616
|
109
|
adamc@618
|
110 apply (scm _ dvar
|
adamc@616
|
111 (fun k (c1 c2 : con kDen k) =>
|
adamc@616
|
112 cDen c1 = cDen c2)
|
adamc@616
|
113 (fun k (c1 c2 : con kDen (KRecord k)) =>
|
adamc@617
|
114 disjoint (cDen c1) (cDen c2))); t;
|
adamc@617
|
115 repeat ((unfold row; apply ext_eq)
|
adamc@617
|
116 || (match goal with
|
adamc@620
|
117 | [ H : _ |- _ ] => rewrite H; []
|
adamc@617
|
118 | [ H : subs _ _ _ |- _ ] => rewrite <- (subs_correct H)
|
adamc@617
|
119 end); t);
|
adamc@617
|
120 unfold disjoint; t;
|
adamc@616
|
121 repeat (match goal with
|
adamc@617
|
122 | [ |- context[match cDen ?C ?E with Some _ => _ | None => _ end] ] =>
|
adamc@617
|
123 use_disjoint E; destruct (cDen C E)
|
adamc@617
|
124 | [ |- context[if name_eq_dec ?N1 ?N2 then _ else _] ] =>
|
adamc@617
|
125 use_disjoint N1; use_disjoint N2; destruct (name_eq_dec N1 N2)
|
adamc@617
|
126 | [ _ : context[match cDen ?C ?E with Some _ => _ | None => _ end] |- _ ] =>
|
adamc@617
|
127 use_disjoint E; destruct (cDen C E)
|
adamc@620
|
128 | [ |- context[if ?E then _ else _] ] => destruct E
|
adamc@617
|
129 end; t).
|
adamc@618
|
130
|
adamc@620
|
131 Hint Unfold dvar.
|
adamc@620
|
132
|
adamc@618
|
133 Theorem deq_correct : forall k (c1 c2 : con kDen k),
|
adamc@618
|
134 deq dvar c1 c2
|
adamc@618
|
135 -> cDen c1 = cDen c2.
|
adamc@618
|
136 deq_disj_correct deq_mut.
|
adamc@616
|
137 Qed.
|
adamc@618
|
138
|
adamc@618
|
139 Theorem disj_correct : forall k (c1 c2 : con kDen (KRecord k)),
|
adamc@618
|
140 disj dvar c1 c2
|
adamc@618
|
141 -> disjoint (cDen c1) (cDen c2).
|
adamc@618
|
142 deq_disj_correct disj_mut.
|
adamc@618
|
143 Qed.
|
adamc@618
|
144
|
adamc@618
|
145 Definition tDen (t : con kDen KType) : Set := cDen t.
|
adamc@618
|
146
|
adamc@618
|
147 Theorem name_eq_dec_refl : forall n, name_eq_dec n n = left _ (refl_equal n).
|
adamc@618
|
148 intros; destruct (name_eq_dec n n); intuition; [
|
adamc@618
|
149 match goal with
|
adamc@618
|
150 | [ e : _ = _ |- _ ] => rewrite (UIP_refl _ _ e); reflexivity
|
adamc@618
|
151 end
|
adamc@618
|
152 | elimtype False; tauto
|
adamc@618
|
153 ].
|
adamc@618
|
154 Qed.
|
adamc@618
|
155
|
adamc@618
|
156 Theorem cut_disjoint : forall n1 v r,
|
adamc@618
|
157 disjoint (fun n => if name_eq_dec n n1 then Some v else None) r
|
adamc@618
|
158 -> unit = match r n1 with
|
adamc@618
|
159 | Some T => T
|
adamc@618
|
160 | None => unit
|
adamc@618
|
161 end.
|
adamc@618
|
162 intros;
|
adamc@618
|
163 match goal with
|
adamc@618
|
164 | [ H : disjoint _ _ |- _ ] => generalize (H n1)
|
adamc@618
|
165 end; rewrite name_eq_dec_refl;
|
adamc@618
|
166 destruct (r n1); intuition.
|
adamc@618
|
167 Qed.
|
adamc@618
|
168
|
adamc@618
|
169 Implicit Arguments cut_disjoint [v r].
|
adamc@618
|
170
|
adamc@618
|
171 Fixpoint eDen t (e : exp dvar tDen t) {struct e} : tDen t :=
|
adamc@618
|
172 match e in exp _ _ t return tDen t with
|
adamc@618
|
173 | Var _ x => x
|
adamc@618
|
174 | App _ _ e1 e2 => (eDen e1) (eDen e2)
|
adamc@618
|
175 | Abs _ _ e1 => fun x => eDen (e1 x)
|
adamc@618
|
176 | ECApp _ c _ _ e1 Hsub => match subs_correct Hsub in _ = T return T with
|
adamc@618
|
177 | refl_equal => (eDen e1) (cDen c)
|
adamc@618
|
178 end
|
adamc@618
|
179 | ECAbs _ _ e1 => fun X => eDen (e1 X)
|
adamc@618
|
180 | Cast _ _ Heq e1 => match deq_correct Heq in _ = T return T with
|
adamc@618
|
181 | refl_equal => eDen e1
|
adamc@618
|
182 end
|
adamc@618
|
183 | Empty => fun _ => tt
|
adamc@618
|
184 | Single c _ e1 => fun n => if name_eq_dec n (cDen c) as B
|
adamc@618
|
185 return (match (match (if B then _ else _) with Some _ => if B then _ else _ | None => _ end)
|
adamc@618
|
186 with Some _ => _ | None => unit end)
|
adamc@618
|
187 then eDen e1 else tt
|
adamc@618
|
188 | Proj c _ _ e1 =>
|
adamc@618
|
189 match name_eq_dec_refl (cDen c) in _ = B
|
adamc@618
|
190 return (match (match (if B then _ else _) with
|
adamc@618
|
191 | Some _ => if B then _ else _
|
adamc@618
|
192 | None => _ end)
|
adamc@618
|
193 return Set
|
adamc@618
|
194 with Some _ => _ | None => _ end) with
|
adamc@618
|
195 | refl_equal => (eDen e1) (cDen c)
|
adamc@618
|
196 end
|
adamc@618
|
197 | Cut c _ c' Hdisj e1 => fun n =>
|
adamc@618
|
198 match name_eq_dec n (cDen c) as B return (match (match (if B then Some _ else None) with Some _ => if B then _ else _ | None => (cDen c') n end)
|
adamc@618
|
199 with Some T => T | None => unit end
|
adamc@618
|
200 -> match (cDen c') n with
|
adamc@618
|
201 | None => unit
|
adamc@618
|
202 | Some T => T
|
adamc@618
|
203 end) with
|
adamc@618
|
204 | left Heq => fun _ =>
|
adamc@618
|
205 match sym_eq Heq in _ = n' return match cDen c' n' return Set with Some _ => _ | None => _ end with
|
adamc@618
|
206 | refl_equal =>
|
adamc@618
|
207 match cut_disjoint _ (disj_correct Hdisj) in _ = T return T with
|
adamc@618
|
208 | refl_equal => tt
|
adamc@618
|
209 end
|
adamc@618
|
210 end
|
adamc@618
|
211 | right _ => fun x => x
|
adamc@618
|
212 end ((eDen e1) n)
|
adamc@618
|
213
|
adamc@619
|
214 | Concat c1 c2 e1 e2 => fun n =>
|
adamc@619
|
215 match (cDen c1) n as D return match D with
|
adamc@619
|
216 | None => unit
|
adamc@619
|
217 | Some T => T
|
adamc@619
|
218 end
|
adamc@619
|
219 -> match (match D with
|
adamc@619
|
220 | None => (cDen c2) n
|
adamc@619
|
221 | v => v
|
adamc@619
|
222 end) with
|
adamc@619
|
223 | None => unit
|
adamc@619
|
224 | Some T => T
|
adamc@619
|
225 end with
|
adamc@619
|
226 | None => fun _ => (eDen e2) n
|
adamc@619
|
227 | _ => fun x => x
|
adamc@619
|
228 end ((eDen e1) n)
|
adamc@619
|
229
|
adamc@635
|
230 | Guarded _ _ _ _ e1 => fun pf => eDen (e1 pf)
|
adamc@635
|
231 | GuardedApp _ _ _ _ e1 Hdisj => (eDen e1) (disj_correct Hdisj)
|
adamc@618
|
232 end.
|