annotate doc/manual.tex @ 816:26e911ee924c

Split JavaScript inp() into separate functions
author Adam Chlipala <adamc@hcoop.net>
date Thu, 21 May 2009 10:18:20 -0400
parents d18f6f0bcf60
children 4d4c62d95b9c
rev   line source
adamc@524 1 \documentclass{article}
adamc@554 2 \usepackage{fullpage,amsmath,amssymb,proof,url}
adamc@524 3
adamc@524 4 \newcommand{\cd}[1]{\texttt{#1}}
adamc@524 5 \newcommand{\mt}[1]{\mathsf{#1}}
adamc@524 6
adamc@524 7 \newcommand{\rc}{+ \hspace{-.075in} + \;}
adamc@527 8 \newcommand{\rcut}{\; \texttt{--} \;}
adamc@527 9 \newcommand{\rcutM}{\; \texttt{---} \;}
adamc@524 10
adamc@524 11 \begin{document}
adamc@524 12
adamc@524 13 \title{The Ur/Web Manual}
adamc@524 14 \author{Adam Chlipala}
adamc@524 15
adamc@524 16 \maketitle
adamc@524 17
adamc@540 18 \tableofcontents
adamc@540 19
adamc@554 20
adamc@554 21 \section{Introduction}
adamc@554 22
adamc@554 23 \emph{Ur} is a programming language designed to introduce richer type system features into functional programming in the tradition of ML and Haskell. Ur is functional, pure, statically-typed, and strict. Ur supports a powerful kind of \emph{metaprogramming} based on \emph{row types}.
adamc@554 24
adamc@554 25 \emph{Ur/Web} is Ur plus a special standard library and associated rules for parsing and optimization. Ur/Web supports construction of dynamic web applications backed by SQL databases. The signature of the standard library is such that well-typed Ur/Web programs ``don't go wrong'' in a very broad sense. Not only do they not crash during particular page generations, but they also may not:
adamc@554 26
adamc@554 27 \begin{itemize}
adamc@554 28 \item Suffer from any kinds of code-injection attacks
adamc@554 29 \item Return invalid HTML
adamc@554 30 \item Contain dead intra-application links
adamc@554 31 \item Have mismatches between HTML forms and the fields expected by their handlers
adamc@652 32 \item Include client-side code that makes incorrect assumptions about the ``AJAX''-style services that the remote web server provides
adamc@554 33 \item Attempt invalid SQL queries
adamc@652 34 \item Use improper marshaling or unmarshaling in communication with SQL databases or between browsers and web servers
adamc@554 35 \end{itemize}
adamc@554 36
adamc@554 37 This type safety is just the foundation of the Ur/Web methodology. It is also possible to use metaprogramming to build significant application pieces by analysis of type structure. For instance, the demo includes an ML-style functor for building an admin interface for an arbitrary SQL table. The type system guarantees that the admin interface sub-application that comes out will always be free of the above-listed bugs, no matter which well-typed table description is given as input.
adamc@554 38
adamc@652 39 The Ur/Web compiler also produces very efficient object code that does not use garbage collection. These compiled programs will often be even more efficient than what most programmers would bother to write in C. The compiler also generates JavaScript versions of client-side code, with no need to write those parts of applications in a different language.
adamc@554 40
adamc@554 41 \medskip
adamc@554 42
adamc@554 43 The official web site for Ur is:
adamc@554 44 \begin{center}
adamc@554 45 \url{http://www.impredicative.com/ur/}
adamc@554 46 \end{center}
adamc@554 47
adamc@555 48
adamc@555 49 \section{Installation}
adamc@555 50
adamc@555 51 If you are lucky, then the following standard command sequence will suffice for installation, in a directory to which you have unpacked the latest distribution tarball.
adamc@555 52
adamc@555 53 \begin{verbatim}
adamc@555 54 ./configure
adamc@555 55 make
adamc@555 56 sudo make install
adamc@555 57 \end{verbatim}
adamc@555 58
adamc@783 59 Some other packages must be installed for the above to work. At a minimum, you need a standard UNIX shell, with standard UNIX tools like sed and GCC in your execution path; MLton, the whole-program optimizing compiler for Standard ML; and the mhash C library. To build programs that access SQL databases, you also need libpq, the PostgreSQL client library. As of this writing, in the ``testing'' version of Debian Linux, this command will install the more uncommon of these dependencies:
adamc@555 60
adamc@555 61 \begin{verbatim}
adamc@783 62 apt-get install mlton libmhash-dev libpq-dev
adamc@555 63 \end{verbatim}
adamc@555 64
adamc@555 65 It is also possible to access the modules of the Ur/Web compiler interactively, within Standard ML of New Jersey. To install the prerequisites in Debian testing:
adamc@555 66
adamc@555 67 \begin{verbatim}
adamc@555 68 apt-get install smlnj libsmlnj-smlnj ml-yacc ml-lpt
adamc@555 69 \end{verbatim}
adamc@555 70
adamc@555 71 To begin an interactive session with the Ur compiler modules, run \texttt{make smlnj}, and then, from within an \texttt{sml} session, run \texttt{CM.make "src/urweb.cm";}. The \texttt{Compiler} module is the main entry point.
adamc@555 72
adamc@555 73 To run an SQL-backed application, you will probably want to install the PostgreSQL server. Version 8.3 or higher is required.
adamc@555 74
adamc@555 75 \begin{verbatim}
adamc@555 76 apt-get install postgresql-8.3
adamc@555 77 \end{verbatim}
adamc@555 78
adamc@555 79 To use the Emacs mode, you must have a modern Emacs installed. We assume that you already know how to do this, if you're in the business of looking for an Emacs mode. The demo generation facility of the compiler will also call out to Emacs to syntax-highlight code, and that process depends on the \texttt{htmlize} module, which can be installed in Debian testing via:
adamc@555 80
adamc@555 81 \begin{verbatim}
adamc@555 82 apt-get install emacs-goodies-el
adamc@555 83 \end{verbatim}
adamc@555 84
adamc@555 85 Even with the right packages installed, configuration and building might fail to work. After you run \texttt{./configure}, you will see the values of some named environment variables printed. You may need to adjust these values to get proper installation for your system. To change a value, store your preferred alternative in the corresponding UNIX environment variable, before running \texttt{./configure}. For instance, here is how to change the list of extra arguments that the Ur/Web compiler will pass to GCC on every invocation.
adamc@555 86
adamc@555 87 \begin{verbatim}
adamc@555 88 GCCARGS=-fnested-functions ./configure
adamc@555 89 \end{verbatim}
adamc@555 90
adamc@555 91 Some OSX users have reported needing to use this particular GCCARGS value.
adamc@555 92
adamc@555 93 The Emacs mode can be set to autoload by adding the following to your \texttt{.emacs} file.
adamc@555 94
adamc@555 95 \begin{verbatim}
adamc@555 96 (add-to-list 'load-path "/usr/local/share/emacs/site-lisp/urweb-mode")
adamc@555 97 (load "urweb-mode-startup")
adamc@555 98 \end{verbatim}
adamc@555 99
adamc@555 100 Change the path in the first line if you chose a different Emacs installation path during configuration.
adamc@555 101
adamc@555 102
adamc@556 103 \section{Command-Line Compiler}
adamc@556 104
adamc@556 105 \subsection{Project Files}
adamc@556 106
adamc@556 107 The basic inputs to the \texttt{urweb} compiler are project files, which have the extension \texttt{.urp}. Here is a sample \texttt{.urp} file.
adamc@556 108
adamc@556 109 \begin{verbatim}
adamc@556 110 database dbname=test
adamc@556 111 sql crud1.sql
adamc@556 112
adamc@556 113 crud
adamc@556 114 crud1
adamc@556 115 \end{verbatim}
adamc@556 116
adamc@556 117 The \texttt{database} line gives the database information string to pass to libpq. In this case, the string only says to connect to a local database named \texttt{test}.
adamc@556 118
adamc@556 119 The \texttt{sql} line asks for an SQL source file to be generated, giving the commands to run to create the tables and sequences that this application expects to find. After building this \texttt{.urp} file, the following commands could be used to initialize the database, assuming that the current UNIX user exists as a Postgres user with database creation privileges:
adamc@556 120
adamc@556 121 \begin{verbatim}
adamc@556 122 createdb test
adamc@556 123 psql -f crud1.sql test
adamc@556 124 \end{verbatim}
adamc@556 125
adamc@556 126 A blank line always separates the named directives from a list of modules to include in the project; if there are no named directives, a blank line must begin the file.
adamc@556 127
adamc@556 128 For each entry \texttt{M} in the module list, the file \texttt{M.urs} is included in the project if it exists, and the file \texttt{M.ur} must exist and is always included.
adamc@556 129
adamc@783 130 Here is the complete list of directive forms. ``FFI'' stands for ``foreign function interface,'' Ur's facility for interaction between Ur programs and C and JavaScript libraries.
adamc@783 131 \begin{itemize}
adamc@783 132 \item \texttt{[allow|deny] [url|mime] PATTERN} registers a rule governing which URLs or MIME types are allowed in this application. The first such rule to match a URL or MIME type determines the verdict. If \texttt{PATTERN} ends in \texttt{*}, it is interpreted as a prefix rule. Otherwise, a string must match it exactly.
adamc@783 133 \item \texttt{clientOnly Module.ident} registers an FFI function or transaction that may only be run in client browsers.
adamc@783 134 \item \texttt{clientToServer Module.ident} adds FFI type \texttt{Module.ident} to the list of types that are OK to marshal from clients to servers. Values like XML trees and SQL queries are hard to marshal without introducing expensive validity checks, so it's easier to ensure that the server never trusts clients to send such values. The file \texttt{include/urweb.h} shows examples of the C support functions that are required of any type that may be marshalled. These include \texttt{attrify}, \texttt{urlify}, and \texttt{unurlify} functions.
adamc@783 135 \item \texttt{database DBSTRING} sets the string to pass to libpq to open a database connection.
adamc@783 136 \item \texttt{debug} saves some intermediate C files, which is mostly useful to help in debugging the compiler itself.
adamc@783 137 \item \texttt{effectful Module.ident} registers an FFI function or transaction as having side effects. The optimizer avoids removing, moving, or duplicating calls to such functions. Every effectful FFI function must be registered, or the optimizer may make invalid transformations.
adamc@783 138 \item \texttt{exe FILENAME} sets the filename to which to write the output executable. The default for file \texttt{P.urp} is \texttt{P.exe}.
adamc@783 139 \item \texttt{ffi FILENAME} reads the file \texttt{FILENAME.urs} to determine the interface to a new FFI module. The name of the module is calculated from \texttt{FILENAME} in the same way as for normal source files. See the files \texttt{include/urweb.h} and \texttt{src/c/urweb.c} for examples of C headers and implementations for FFI modules. In general, every type or value \texttt{Module.ident} becomes \texttt{uw\_Module\_ident} in C.
adamc@783 140 \item \texttt{jsFunc Module.ident=name} gives the JavaScript name of an FFI value.
adamc@783 141 \item \texttt{library FILENAME} parses \texttt{FILENAME.urp} and merges its contents with the rest of the current file's contents.
adamc@783 142 \item \texttt{link FILENAME} adds \texttt{FILENAME} to the list of files to be passed to the GCC linker at the end of compilation. This is most useful for importing extra libraries needed by new FFI modules.
adamc@783 143 \item \texttt{prefix PREFIX} sets the prefix included before every URI within the generated application. The default is \texttt{/}.
adamc@783 144 \item \texttt{profile} generates an executable that may be used with gprof.
adamc@783 145 \item \texttt{rewrite KIND FROM TO} gives a rule for rewriting canonical module paths. For instance, the canonical path of a page may be \texttt{Mod1.Mod2.mypage}, while you would rather the page were accessed via a URL containing only \texttt{page}. The directive \texttt{rewrite url Mod1/Mod2/mypage page} would accomplish that. The possible values of \texttt{KIND} determine which kinds of objects are affected. The kind \texttt{all} matches any object, and \texttt{url} matches page URLs. The kinds \texttt{table}, \texttt{sequence}, and \texttt{view} match those sorts of SQL entities, and \texttt{relation} matches any of those three. \texttt{cookie} matches HTTP cookies, and \texttt{style} matches CSS class names. If \texttt{FROM} ends in \texttt{/*}, it is interpreted as a prefix matching rule, and rewriting occurs by replacing only the appropriate prefix of a path with \texttt{TO}. While the actual external names of relations and styles have parts separated by underscores instead of slashes, all rewrite rules must be written in terms of slashes.
adamc@783 146 \item \texttt{script URL} adds \texttt{URL} to the list of extra JavaScript files to be included at the beginning of any page that uses JavaScript. This is most useful for importing JavaScript versions of functions found in new FFI modules.
adamc@783 147 \item \texttt{serverOnly Module.ident} registers an FFI function or transaction that may only be run on the server.
adamc@783 148 \item \texttt{sql FILENAME} sets where to write an SQL file with the commands to create the expected database schema. The default is not to create such a file.
adamc@783 149 \item \texttt{timeout N} sets to \texttt{N} seconds the amount of time that the generated server will wait after the last contact from a client before determining that that client has exited the application. Clients that remain active will take the timeout setting into account in determining how often to ping the server, so it only makes sense to set a high timeout to cope with browser and network delays and failures. Higher timeouts can lead to more unnecessary client information taking up memory on the server. The timeout goes unused by any page that doesn't involve the \texttt{recv} function, since the server only needs to store per-client information for clients that receive asynchronous messages.
adamc@783 150 \end{itemize}
adamc@701 151
adamc@701 152
adamc@557 153 \subsection{Building an Application}
adamc@557 154
adamc@557 155 To compile project \texttt{P.urp}, simply run
adamc@557 156 \begin{verbatim}
adamc@557 157 urweb P
adamc@557 158 \end{verbatim}
adamc@558 159 The output executable is a standalone web server. Run it with the command-line argument \texttt{-h} to see which options it takes. If the project file lists a database, the web server will attempt to connect to that database on startup.
adamc@557 160
adamc@557 161 To time how long the different compiler phases run, without generating an executable, run
adamc@557 162 \begin{verbatim}
adamc@557 163 urweb -timing P
adamc@557 164 \end{verbatim}
adamc@557 165
adamc@556 166
adamc@529 167 \section{Ur Syntax}
adamc@529 168
adamc@784 169 In this section, we describe the syntax of Ur, deferring to a later section discussion of most of the syntax specific to SQL and XML. The sole exceptions are the declaration forms for relations, cookies, and styles.
adamc@524 170
adamc@524 171 \subsection{Lexical Conventions}
adamc@524 172
adamc@524 173 We give the Ur language definition in \LaTeX $\;$ math mode, since that is prettier than monospaced ASCII. The corresponding ASCII syntax can be read off directly. Here is the key for mapping math symbols to ASCII character sequences.
adamc@524 174
adamc@524 175 \begin{center}
adamc@524 176 \begin{tabular}{rl}
adamc@524 177 \textbf{\LaTeX} & \textbf{ASCII} \\
adamc@524 178 $\to$ & \cd{->} \\
adamc@652 179 $\longrightarrow$ & \cd{-->} \\
adamc@524 180 $\times$ & \cd{*} \\
adamc@524 181 $\lambda$ & \cd{fn} \\
adamc@524 182 $\Rightarrow$ & \cd{=>} \\
adamc@652 183 $\Longrightarrow$ & \cd{==>} \\
adamc@529 184 $\neq$ & \cd{<>} \\
adamc@529 185 $\leq$ & \cd{<=} \\
adamc@529 186 $\geq$ & \cd{>=} \\
adamc@524 187 \\
adamc@524 188 $x$ & Normal textual identifier, not beginning with an uppercase letter \\
adamc@525 189 $X$ & Normal textual identifier, beginning with an uppercase letter \\
adamc@524 190 \end{tabular}
adamc@524 191 \end{center}
adamc@524 192
adamc@525 193 We often write syntax like $e^*$ to indicate zero or more copies of $e$, $e^+$ to indicate one or more copies, and $e,^*$ and $e,^+$ to indicate multiple copies separated by commas. Another separator may be used in place of a comma. The $e$ term may be surrounded by parentheses to indicate grouping; those parentheses should not be included in the actual ASCII.
adamc@524 194
adamc@526 195 We write $\ell$ for literals of the primitive types, for the most part following C conventions. There are $\mt{int}$, $\mt{float}$, and $\mt{string}$ literals.
adamc@526 196
adamc@527 197 This version of the manual doesn't include operator precedences; see \texttt{src/urweb.grm} for that.
adamc@527 198
adamc@552 199 \subsection{\label{core}Core Syntax}
adamc@524 200
adamc@524 201 \emph{Kinds} classify types and other compile-time-only entities. Each kind in the grammar is listed with a description of the sort of data it classifies.
adamc@524 202 $$\begin{array}{rrcll}
adamc@524 203 \textrm{Kinds} & \kappa &::=& \mt{Type} & \textrm{proper types} \\
adamc@525 204 &&& \mt{Unit} & \textrm{the trivial constructor} \\
adamc@525 205 &&& \mt{Name} & \textrm{field names} \\
adamc@525 206 &&& \kappa \to \kappa & \textrm{type-level functions} \\
adamc@525 207 &&& \{\kappa\} & \textrm{type-level records} \\
adamc@525 208 &&& (\kappa\times^+) & \textrm{type-level tuples} \\
adamc@652 209 &&& X & \textrm{variable} \\
adamc@652 210 &&& X \longrightarrow k & \textrm{kind-polymorphic type-level function} \\
adamc@529 211 &&& \_\_ & \textrm{wildcard} \\
adamc@525 212 &&& (\kappa) & \textrm{explicit precedence} \\
adamc@524 213 \end{array}$$
adamc@524 214
adamc@524 215 Ur supports several different notions of functions that take types as arguments. These arguments can be either implicit, causing them to be inferred at use sites; or explicit, forcing them to be specified manually at use sites. There is a common explicitness annotation convention applied at the definitions of and in the types of such functions.
adamc@524 216 $$\begin{array}{rrcll}
adamc@524 217 \textrm{Explicitness} & ? &::=& :: & \textrm{explicit} \\
adamc@558 218 &&& ::: & \textrm{implicit}
adamc@524 219 \end{array}$$
adamc@524 220
adamc@524 221 \emph{Constructors} are the main class of compile-time-only data. They include proper types and are classified by kinds.
adamc@524 222 $$\begin{array}{rrcll}
adamc@524 223 \textrm{Constructors} & c, \tau &::=& (c) :: \kappa & \textrm{kind annotation} \\
adamc@530 224 &&& \hat{x} & \textrm{constructor variable} \\
adamc@524 225 \\
adamc@525 226 &&& \tau \to \tau & \textrm{function type} \\
adamc@525 227 &&& x \; ? \; \kappa \to \tau & \textrm{polymorphic function type} \\
adamc@652 228 &&& X \longrightarrow \tau & \textrm{kind-polymorphic function type} \\
adamc@525 229 &&& \$ c & \textrm{record type} \\
adamc@524 230 \\
adamc@525 231 &&& c \; c & \textrm{type-level function application} \\
adamc@530 232 &&& \lambda x \; :: \; \kappa \Rightarrow c & \textrm{type-level function abstraction} \\
adamc@524 233 \\
adamc@652 234 &&& X \Longrightarrow c & \textrm{type-level kind-polymorphic function abstraction} \\
adamc@655 235 &&& c [\kappa] & \textrm{type-level kind-polymorphic function application} \\
adamc@652 236 \\
adamc@525 237 &&& () & \textrm{type-level unit} \\
adamc@525 238 &&& \#X & \textrm{field name} \\
adamc@524 239 \\
adamc@525 240 &&& [(c = c)^*] & \textrm{known-length type-level record} \\
adamc@525 241 &&& c \rc c & \textrm{type-level record concatenation} \\
adamc@652 242 &&& \mt{map} & \textrm{type-level record map} \\
adamc@524 243 \\
adamc@558 244 &&& (c,^+) & \textrm{type-level tuple} \\
adamc@525 245 &&& c.n & \textrm{type-level tuple projection ($n \in \mathbb N^+$)} \\
adamc@524 246 \\
adamc@652 247 &&& [c \sim c] \Rightarrow \tau & \textrm{guarded type} \\
adamc@524 248 \\
adamc@529 249 &&& \_ :: \kappa & \textrm{wildcard} \\
adamc@525 250 &&& (c) & \textrm{explicit precedence} \\
adamc@530 251 \\
adamc@530 252 \textrm{Qualified uncapitalized variables} & \hat{x} &::=& x & \textrm{not from a module} \\
adamc@530 253 &&& M.x & \textrm{projection from a module} \\
adamc@525 254 \end{array}$$
adamc@525 255
adamc@655 256 We include both abstraction and application for kind polymorphism, but applications are only inferred internally; they may not be written explicitly in source programs.
adamc@655 257
adamc@525 258 Modules of the module system are described by \emph{signatures}.
adamc@525 259 $$\begin{array}{rrcll}
adamc@525 260 \textrm{Signatures} & S &::=& \mt{sig} \; s^* \; \mt{end} & \textrm{constant} \\
adamc@525 261 &&& X & \textrm{variable} \\
adamc@525 262 &&& \mt{functor}(X : S) : S & \textrm{functor} \\
adamc@529 263 &&& S \; \mt{where} \; \mt{con} \; x = c & \textrm{concretizing an abstract constructor} \\
adamc@525 264 &&& M.X & \textrm{projection from a module} \\
adamc@525 265 \\
adamc@525 266 \textrm{Signature items} & s &::=& \mt{con} \; x :: \kappa & \textrm{abstract constructor} \\
adamc@525 267 &&& \mt{con} \; x :: \kappa = c & \textrm{concrete constructor} \\
adamc@528 268 &&& \mt{datatype} \; x \; x^* = dc\mid^+ & \textrm{algebraic datatype definition} \\
adamc@529 269 &&& \mt{datatype} \; x = \mt{datatype} \; M.x & \textrm{algebraic datatype import} \\
adamc@525 270 &&& \mt{val} \; x : \tau & \textrm{value} \\
adamc@525 271 &&& \mt{structure} \; X : S & \textrm{sub-module} \\
adamc@525 272 &&& \mt{signature} \; X = S & \textrm{sub-signature} \\
adamc@525 273 &&& \mt{include} \; S & \textrm{signature inclusion} \\
adamc@525 274 &&& \mt{constraint} \; c \sim c & \textrm{record disjointness constraint} \\
adamc@654 275 &&& \mt{class} \; x :: \kappa & \textrm{abstract constructor class} \\
adamc@654 276 &&& \mt{class} \; x :: \kappa = c & \textrm{concrete constructor class} \\
adamc@525 277 \\
adamc@525 278 \textrm{Datatype constructors} & dc &::=& X & \textrm{nullary constructor} \\
adamc@525 279 &&& X \; \mt{of} \; \tau & \textrm{unary constructor} \\
adamc@524 280 \end{array}$$
adamc@524 281
adamc@526 282 \emph{Patterns} are used to describe structural conditions on expressions, such that expressions may be tested against patterns, generating assignments to pattern variables if successful.
adamc@526 283 $$\begin{array}{rrcll}
adamc@526 284 \textrm{Patterns} & p &::=& \_ & \textrm{wildcard} \\
adamc@526 285 &&& x & \textrm{variable} \\
adamc@526 286 &&& \ell & \textrm{constant} \\
adamc@526 287 &&& \hat{X} & \textrm{nullary constructor} \\
adamc@526 288 &&& \hat{X} \; p & \textrm{unary constructor} \\
adamc@526 289 &&& \{(x = p,)^*\} & \textrm{rigid record pattern} \\
adamc@526 290 &&& \{(x = p,)^+, \ldots\} & \textrm{flexible record pattern} \\
adamc@527 291 &&& (p) & \textrm{explicit precedence} \\
adamc@526 292 \\
adamc@529 293 \textrm{Qualified capitalized variables} & \hat{X} &::=& X & \textrm{not from a module} \\
adamc@526 294 &&& M.X & \textrm{projection from a module} \\
adamc@526 295 \end{array}$$
adamc@526 296
adamc@527 297 \emph{Expressions} are the main run-time entities, corresponding to both ``expressions'' and ``statements'' in mainstream imperative languages.
adamc@527 298 $$\begin{array}{rrcll}
adamc@527 299 \textrm{Expressions} & e &::=& e : \tau & \textrm{type annotation} \\
adamc@529 300 &&& \hat{x} & \textrm{variable} \\
adamc@529 301 &&& \hat{X} & \textrm{datatype constructor} \\
adamc@527 302 &&& \ell & \textrm{constant} \\
adamc@527 303 \\
adamc@527 304 &&& e \; e & \textrm{function application} \\
adamc@527 305 &&& \lambda x : \tau \Rightarrow e & \textrm{function abstraction} \\
adamc@527 306 &&& e [c] & \textrm{polymorphic function application} \\
adamc@527 307 &&& \lambda x \; ? \; \kappa \Rightarrow e & \textrm{polymorphic function abstraction} \\
adamc@655 308 &&& e [\kappa] & \textrm{kind-polymorphic function application} \\
adamc@652 309 &&& X \Longrightarrow e & \textrm{kind-polymorphic function abstraction} \\
adamc@527 310 \\
adamc@527 311 &&& \{(c = e,)^*\} & \textrm{known-length record} \\
adamc@527 312 &&& e.c & \textrm{record field projection} \\
adamc@527 313 &&& e \rc e & \textrm{record concatenation} \\
adamc@527 314 &&& e \rcut c & \textrm{removal of a single record field} \\
adamc@527 315 &&& e \rcutM c & \textrm{removal of multiple record fields} \\
adamc@527 316 \\
adamc@527 317 &&& \mt{let} \; ed^* \; \mt{in} \; e \; \mt{end} & \textrm{local definitions} \\
adamc@527 318 \\
adamc@527 319 &&& \mt{case} \; e \; \mt{of} \; (p \Rightarrow e|)^+ & \textrm{pattern matching} \\
adamc@527 320 \\
adamc@654 321 &&& \lambda [c \sim c] \Rightarrow e & \textrm{guarded expression abstraction} \\
adamc@654 322 &&& e \; ! & \textrm{guarded expression application} \\
adamc@527 323 \\
adamc@527 324 &&& \_ & \textrm{wildcard} \\
adamc@527 325 &&& (e) & \textrm{explicit precedence} \\
adamc@527 326 \\
adamc@527 327 \textrm{Local declarations} & ed &::=& \cd{val} \; x : \tau = e & \textrm{non-recursive value} \\
adamc@527 328 &&& \cd{val} \; \cd{rec} \; (x : \tau = e \; \cd{and})^+ & \textrm{mutually-recursive values} \\
adamc@527 329 \end{array}$$
adamc@527 330
adamc@655 331 As with constructors, we include both abstraction and application for kind polymorphism, but applications are only inferred internally.
adamc@655 332
adamc@528 333 \emph{Declarations} primarily bring new symbols into context.
adamc@528 334 $$\begin{array}{rrcll}
adamc@528 335 \textrm{Declarations} & d &::=& \mt{con} \; x :: \kappa = c & \textrm{constructor synonym} \\
adamc@528 336 &&& \mt{datatype} \; x \; x^* = dc\mid^+ & \textrm{algebraic datatype definition} \\
adamc@529 337 &&& \mt{datatype} \; x = \mt{datatype} \; M.x & \textrm{algebraic datatype import} \\
adamc@528 338 &&& \mt{val} \; x : \tau = e & \textrm{value} \\
adamc@528 339 &&& \mt{val} \; \cd{rec} \; (x : \tau = e \; \mt{and})^+ & \textrm{mutually-recursive values} \\
adamc@528 340 &&& \mt{structure} \; X : S = M & \textrm{module definition} \\
adamc@528 341 &&& \mt{signature} \; X = S & \textrm{signature definition} \\
adamc@528 342 &&& \mt{open} \; M & \textrm{module inclusion} \\
adamc@528 343 &&& \mt{constraint} \; c \sim c & \textrm{record disjointness constraint} \\
adamc@528 344 &&& \mt{open} \; \mt{constraints} \; M & \textrm{inclusion of just the constraints from a module} \\
adamc@528 345 &&& \mt{table} \; x : c & \textrm{SQL table} \\
adamc@784 346 &&& \mt{view} \; x : c & \textrm{SQL view} \\
adamc@528 347 &&& \mt{sequence} \; x & \textrm{SQL sequence} \\
adamc@535 348 &&& \mt{cookie} \; x : \tau & \textrm{HTTP cookie} \\
adamc@784 349 &&& \mt{style} \; x : \tau & \textrm{CSS class} \\
adamc@654 350 &&& \mt{class} \; x :: \kappa = c & \textrm{concrete constructor class} \\
adamc@528 351 \\
adamc@529 352 \textrm{Modules} & M &::=& \mt{struct} \; d^* \; \mt{end} & \textrm{constant} \\
adamc@529 353 &&& X & \textrm{variable} \\
adamc@529 354 &&& M.X & \textrm{projection} \\
adamc@529 355 &&& M(M) & \textrm{functor application} \\
adamc@529 356 &&& \mt{functor}(X : S) : S = M & \textrm{functor abstraction} \\
adamc@528 357 \end{array}$$
adamc@528 358
adamc@528 359 There are two kinds of Ur files. A file named $M\texttt{.ur}$ is an \emph{implementation file}, and it should contain a sequence of declarations $d^*$. A file named $M\texttt{.urs}$ is an \emph{interface file}; it must always have a matching $M\texttt{.ur}$ and should contain a sequence of signature items $s^*$. When both files are present, the overall effect is the same as a monolithic declaration $\mt{structure} \; M : \mt{sig} \; s^* \; \mt{end} = \mt{struct} \; d^* \; \mt{end}$. When no interface file is included, the overall effect is similar, with a signature for module $M$ being inferred rather than just checked against an interface.
adamc@527 360
adamc@784 361 We omit some extra possibilities in $\mt{table}$ syntax, deferring them to Section \ref{tables}.
adamc@784 362
adamc@529 363 \subsection{Shorthands}
adamc@529 364
adamc@529 365 There are a variety of derived syntactic forms that elaborate into the core syntax from the last subsection. We will present the additional forms roughly following the order in which we presented the constructs that they elaborate into.
adamc@529 366
adamc@529 367 In many contexts where record fields are expected, like in a projection $e.c$, a constant field may be written as simply $X$, rather than $\#X$.
adamc@529 368
adamc@529 369 A record type may be written $\{(c = c,)^*\}$, which elaborates to $\$[(c = c,)^*]$.
adamc@529 370
adamc@533 371 The notation $[c_1, \ldots, c_n]$ is shorthand for $[c_1 = (), \ldots, c_n = ()]$.
adamc@533 372
adamc@529 373 A tuple type $(\tau_1, \ldots, \tau_n)$ expands to a record type $\{1 = \tau_1, \ldots, n = \tau_n\}$, with natural numbers as field names. A tuple pattern $(p_1, \ldots, p_n)$ expands to a rigid record pattern $\{1 = p_1, \ldots, n = p_n\}$. Positive natural numbers may be used in most places where field names would be allowed.
adamc@529 374
adamc@654 375 In general, several adjacent $\lambda$ forms may be combined into one, and kind and type annotations may be omitted, in which case they are implicitly included as wildcards. More formally, for constructor-level abstractions, we can define a new non-terminal $b ::= x \mid (x :: \kappa) \mid X$ and allow composite abstractions of the form $\lambda b^+ \Rightarrow c$, elaborating into the obvious sequence of one core $\lambda$ per element of $b^+$.
adamc@529 376
adamc@529 377 For any signature item or declaration that defines some entity to be equal to $A$ with classification annotation $B$ (e.g., $\mt{val} \; x : B = A$), $B$ and the preceding colon (or similar punctuation) may be omitted, in which case it is filled in as a wildcard.
adamc@529 378
adamc@529 379 A signature item or declaration $\mt{type} \; x$ or $\mt{type} \; x = \tau$ is elaborated into $\mt{con} \; x :: \mt{Type}$ or $\mt{con} \; x :: \mt{Type} = \tau$, respectively.
adamc@529 380
adamc@654 381 A signature item or declaration $\mt{class} \; x = \lambda y \Rightarrow c$ may be abbreviated $\mt{class} \; x \; y = c$.
adamc@529 382
adamc@654 383 Handling of implicit and explicit constructor arguments may be tweaked with some prefixes to variable references. An expression $@x$ is a version of $x$ where all implicit constructor arguments have been made explicit. An expression $@@x$ achieves the same effect, additionally halting automatic resolution of type class instances and automatic proving of disjointness constraints. The default is that any prefix of a variable's type consisting only of implicit polymorphism, type class instances, and disjointness obligations is resolved automatically, with the variable treated as having the type that starts after the last implicit element, with suitable unification variables substituted. The same syntax works for variables projected out of modules and for capitalized variables (datatype constructors).
adamc@529 384
adamc@654 385 At the expression level, an analogue is available of the composite $\lambda$ form for constructors. We define the language of binders as $b ::= x \mid (x : \tau) \mid (x \; ? \; \kappa) \mid X \mid [c \sim c]$. A lone variable $x$ as a binder stands for an expression variable of unspecified type.
adamc@529 386
adamc@529 387 A $\mt{val}$ or $\mt{val} \; \mt{rec}$ declaration may include expression binders before the equal sign, following the binder grammar from the last paragraph. Such declarations are elaborated into versions that add additional $\lambda$s to the fronts of the righthand sides, as appropriate. The keyword $\mt{fun}$ is a synonym for $\mt{val} \; \mt{rec}$.
adamc@529 388
adamc@529 389 A signature item $\mt{functor} \; X_1 \; (X_2 : S_1) : S_2$ is elaborated into $\mt{structure} \; X_1 : \mt{functor}(X_2 : S_1) : S_2$. A declaration $\mt{functor} \; X_1 \; (X_2 : S_1) : S_2 = M$ is elaborated into $\mt{structure} \; X_1 : \mt{functor}(X_2 : S_1) : S_2 = \mt{functor}(X_2 : S_1) : S_2 = M$.
adamc@529 390
adamc@529 391 A declaration $\mt{table} \; x : \{(c = c,)^*\}$ is elaborated into $\mt{table} \; x : [(c = c,)^*]$
adamc@529 392
adamc@529 393 The syntax $\mt{where} \; \mt{type}$ is an alternate form of $\mt{where} \; \mt{con}$.
adamc@529 394
adamc@529 395 The syntax $\mt{if} \; e \; \mt{then} \; e_1 \; \mt{else} \; e_2$ expands to $\mt{case} \; e \; \mt{of} \; \mt{Basis}.\mt{True} \Rightarrow e_1 \mid \mt{Basis}.\mt{False} \Rightarrow e_2$.
adamc@529 396
adamc@529 397 There are infix operator syntaxes for a number of functions defined in the $\mt{Basis}$ module. There is $=$ for $\mt{eq}$, $\neq$ for $\mt{neq}$, $-$ for $\mt{neg}$ (as a prefix operator) and $\mt{minus}$, $+$ for $\mt{plus}$, $\times$ for $\mt{times}$, $/$ for $\mt{div}$, $\%$ for $\mt{mod}$, $<$ for $\mt{lt}$, $\leq$ for $\mt{le}$, $>$ for $\mt{gt}$, and $\geq$ for $\mt{ge}$.
adamc@529 398
adamc@784 399 A signature item $\mt{table} \; x : c$ is shorthand for $\mt{val} \; x : \mt{Basis}.\mt{sql\_table} \; c \; []$. $\mt{view} \; x : c$ is shorthand for $\mt{val} \; x : \mt{Basis}.\mt{sql\_view} \; c$, $\mt{sequence} \; x$ is short for $\mt{val} \; x : \mt{Basis}.\mt{sql\_sequence}$. $\mt{cookie} \; x : \tau$ is shorthand for $\mt{val} \; x : \mt{Basis}.\mt{http\_cookie} \; \tau$, and $\mt{style} \; x$ is shorthand for $\mt{val} \; x : \mt{Basis}.\mt{css\_class}$.
adamc@529 400
adamc@530 401
adamc@530 402 \section{Static Semantics}
adamc@530 403
adamc@530 404 In this section, we give a declarative presentation of Ur's typing rules and related judgments. Inference is the subject of the next section; here, we assume that an oracle has filled in all wildcards with concrete values.
adamc@530 405
adamc@530 406 Since there is significant mutual recursion among the judgments, we introduce them all before beginning to give rules. We use the same variety of contexts throughout this section, implicitly introducing new sorts of context entries as needed.
adamc@530 407 \begin{itemize}
adamc@655 408 \item $\Gamma \vdash \kappa$ expresses kind well-formedness.
adamc@530 409 \item $\Gamma \vdash c :: \kappa$ assigns a kind to a constructor in a context.
adamc@530 410 \item $\Gamma \vdash c \sim c$ proves the disjointness of two record constructors; that is, that they share no field names. We overload the judgment to apply to pairs of field names as well.
adamc@531 411 \item $\Gamma \vdash c \hookrightarrow C$ proves that record constructor $c$ decomposes into set $C$ of field names and record constructors.
adamc@530 412 \item $\Gamma \vdash c \equiv c$ proves the computational equivalence of two constructors. This is often called a \emph{definitional equality} in the world of type theory.
adamc@530 413 \item $\Gamma \vdash e : \tau$ is a standard typing judgment.
adamc@534 414 \item $\Gamma \vdash p \leadsto \Gamma; \tau$ combines typing of patterns with calculation of which new variables they bind.
adamc@537 415 \item $\Gamma \vdash d \leadsto \Gamma$ expresses how a declaration modifies a context. We overload this judgment to apply to sequences of declarations, as well as to signature items and sequences of signature items.
adamc@537 416 \item $\Gamma \vdash S \equiv S$ is the signature equivalence judgment.
adamc@536 417 \item $\Gamma \vdash S \leq S$ is the signature compatibility judgment. We write $\Gamma \vdash S$ as shorthand for $\Gamma \vdash S \leq S$.
adamc@530 418 \item $\Gamma \vdash M : S$ is the module signature checking judgment.
adamc@537 419 \item $\mt{proj}(M, \overline{s}, V)$ is a partial function for projecting a signature item from $\overline{s}$, given the module $M$ that we project from. $V$ may be $\mt{con} \; x$, $\mt{datatype} \; x$, $\mt{val} \; x$, $\mt{signature} \; X$, or $\mt{structure} \; X$. The parameter $M$ is needed because the projected signature item may refer to other items from $\overline{s}$.
adamc@539 420 \item $\mt{selfify}(M, \overline{s})$ adds information to signature items $\overline{s}$ to reflect the fact that we are concerned with the particular module $M$. This function is overloaded to work over individual signature items as well.
adamc@530 421 \end{itemize}
adamc@530 422
adamc@655 423
adamc@655 424 \subsection{Kind Well-Formedness}
adamc@655 425
adamc@655 426 $$\infer{\Gamma \vdash \mt{Type}}{}
adamc@655 427 \quad \infer{\Gamma \vdash \mt{Unit}}{}
adamc@655 428 \quad \infer{\Gamma \vdash \mt{Name}}{}
adamc@655 429 \quad \infer{\Gamma \vdash \kappa_1 \to \kappa_2}{
adamc@655 430 \Gamma \vdash \kappa_1
adamc@655 431 & \Gamma \vdash \kappa_2
adamc@655 432 }
adamc@655 433 \quad \infer{\Gamma \vdash \{\kappa\}}{
adamc@655 434 \Gamma \vdash \kappa
adamc@655 435 }
adamc@655 436 \quad \infer{\Gamma \vdash (\kappa_1 \times \ldots \times \kappa_n)}{
adamc@655 437 \forall i: \Gamma \vdash \kappa_i
adamc@655 438 }$$
adamc@655 439
adamc@655 440 $$\infer{\Gamma \vdash X}{
adamc@655 441 X \in \Gamma
adamc@655 442 }
adamc@655 443 \quad \infer{\Gamma \vdash X \longrightarrow \kappa}{
adamc@655 444 \Gamma, X \vdash \kappa
adamc@655 445 }$$
adamc@655 446
adamc@530 447 \subsection{Kinding}
adamc@530 448
adamc@655 449 We write $[X \mapsto \kappa_1]\kappa_2$ for capture-avoiding substitution of $\kappa_1$ for $X$ in $\kappa_2$.
adamc@655 450
adamc@530 451 $$\infer{\Gamma \vdash (c) :: \kappa :: \kappa}{
adamc@530 452 \Gamma \vdash c :: \kappa
adamc@530 453 }
adamc@530 454 \quad \infer{\Gamma \vdash x :: \kappa}{
adamc@530 455 x :: \kappa \in \Gamma
adamc@530 456 }
adamc@530 457 \quad \infer{\Gamma \vdash x :: \kappa}{
adamc@530 458 x :: \kappa = c \in \Gamma
adamc@530 459 }$$
adamc@530 460
adamc@530 461 $$\infer{\Gamma \vdash M.x :: \kappa}{
adamc@537 462 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 463 & \mt{proj}(M, \overline{s}, \mt{con} \; x) = \kappa
adamc@530 464 }
adamc@530 465 \quad \infer{\Gamma \vdash M.x :: \kappa}{
adamc@537 466 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 467 & \mt{proj}(M, \overline{s}, \mt{con} \; x) = (\kappa, c)
adamc@530 468 }$$
adamc@530 469
adamc@530 470 $$\infer{\Gamma \vdash \tau_1 \to \tau_2 :: \mt{Type}}{
adamc@530 471 \Gamma \vdash \tau_1 :: \mt{Type}
adamc@530 472 & \Gamma \vdash \tau_2 :: \mt{Type}
adamc@530 473 }
adamc@530 474 \quad \infer{\Gamma \vdash x \; ? \: \kappa \to \tau :: \mt{Type}}{
adamc@530 475 \Gamma, x :: \kappa \vdash \tau :: \mt{Type}
adamc@530 476 }
adamc@655 477 \quad \infer{\Gamma \vdash X \longrightarrow \tau :: \mt{Type}}{
adamc@655 478 \Gamma, X \vdash \tau :: \mt{Type}
adamc@655 479 }
adamc@530 480 \quad \infer{\Gamma \vdash \$c :: \mt{Type}}{
adamc@530 481 \Gamma \vdash c :: \{\mt{Type}\}
adamc@530 482 }$$
adamc@530 483
adamc@530 484 $$\infer{\Gamma \vdash c_1 \; c_2 :: \kappa_2}{
adamc@530 485 \Gamma \vdash c_1 :: \kappa_1 \to \kappa_2
adamc@530 486 & \Gamma \vdash c_2 :: \kappa_1
adamc@530 487 }
adamc@530 488 \quad \infer{\Gamma \vdash \lambda x \; :: \; \kappa_1 \Rightarrow c :: \kappa_1 \to \kappa_2}{
adamc@530 489 \Gamma, x :: \kappa_1 \vdash c :: \kappa_2
adamc@530 490 }$$
adamc@530 491
adamc@655 492 $$\infer{\Gamma \vdash c[\kappa'] :: [X \mapsto \kappa']\kappa}{
adamc@655 493 \Gamma \vdash c :: X \to \kappa
adamc@655 494 & \Gamma \vdash \kappa'
adamc@655 495 }
adamc@655 496 \quad \infer{\Gamma \vdash X \Longrightarrow c :: X \to \kappa}{
adamc@655 497 \Gamma, X \vdash c :: \kappa
adamc@655 498 }$$
adamc@655 499
adamc@530 500 $$\infer{\Gamma \vdash () :: \mt{Unit}}{}
adamc@530 501 \quad \infer{\Gamma \vdash \#X :: \mt{Name}}{}$$
adamc@530 502
adamc@530 503 $$\infer{\Gamma \vdash [\overline{c_i = c'_i}] :: \{\kappa\}}{
adamc@530 504 \forall i: \Gamma \vdash c_i : \mt{Name}
adamc@530 505 & \Gamma \vdash c'_i :: \kappa
adamc@530 506 & \forall i \neq j: \Gamma \vdash c_i \sim c_j
adamc@530 507 }
adamc@530 508 \quad \infer{\Gamma \vdash c_1 \rc c_2 :: \{\kappa\}}{
adamc@530 509 \Gamma \vdash c_1 :: \{\kappa\}
adamc@530 510 & \Gamma \vdash c_2 :: \{\kappa\}
adamc@530 511 & \Gamma \vdash c_1 \sim c_2
adamc@530 512 }$$
adamc@530 513
adamc@655 514 $$\infer{\Gamma \vdash \mt{map} :: (\kappa_1 \to \kappa_2) \to \{\kappa_1\} \to \{\kappa_2\}}{}$$
adamc@530 515
adamc@573 516 $$\infer{\Gamma \vdash (\overline c) :: (\kappa_1 \times \ldots \times \kappa_n)}{
adamc@573 517 \forall i: \Gamma \vdash c_i :: \kappa_i
adamc@530 518 }
adamc@573 519 \quad \infer{\Gamma \vdash c.i :: \kappa_i}{
adamc@573 520 \Gamma \vdash c :: (\kappa_1 \times \ldots \times \kappa_n)
adamc@530 521 }$$
adamc@530 522
adamc@655 523 $$\infer{\Gamma \vdash \lambda [c_1 \sim c_2] \Rightarrow \tau :: \mt{Type}}{
adamc@655 524 \Gamma \vdash c_1 :: \{\kappa\}
adamc@530 525 & \Gamma \vdash c_2 :: \{\kappa'\}
adamc@655 526 & \Gamma, c_1 \sim c_2 \vdash \tau :: \mt{Type}
adamc@530 527 }$$
adamc@530 528
adamc@531 529 \subsection{Record Disjointness}
adamc@531 530
adamc@531 531 $$\infer{\Gamma \vdash c_1 \sim c_2}{
adamc@558 532 \Gamma \vdash c_1 \hookrightarrow C_1
adamc@558 533 & \Gamma \vdash c_2 \hookrightarrow C_2
adamc@558 534 & \forall c'_1 \in C_1, c'_2 \in C_2: \Gamma \vdash c'_1 \sim c'_2
adamc@531 535 }
adamc@531 536 \quad \infer{\Gamma \vdash X \sim X'}{
adamc@531 537 X \neq X'
adamc@531 538 }$$
adamc@531 539
adamc@531 540 $$\infer{\Gamma \vdash c_1 \sim c_2}{
adamc@531 541 c'_1 \sim c'_2 \in \Gamma
adamc@558 542 & \Gamma \vdash c'_1 \hookrightarrow C_1
adamc@558 543 & \Gamma \vdash c'_2 \hookrightarrow C_2
adamc@558 544 & c_1 \in C_1
adamc@558 545 & c_2 \in C_2
adamc@531 546 }$$
adamc@531 547
adamc@531 548 $$\infer{\Gamma \vdash c \hookrightarrow \{c\}}{}
adamc@531 549 \quad \infer{\Gamma \vdash [\overline{c = c'}] \hookrightarrow \{\overline{c}\}}{}
adamc@531 550 \quad \infer{\Gamma \vdash c_1 \rc c_2 \hookrightarrow C_1 \cup C_2}{
adamc@531 551 \Gamma \vdash c_1 \hookrightarrow C_1
adamc@531 552 & \Gamma \vdash c_2 \hookrightarrow C_2
adamc@531 553 }
adamc@531 554 \quad \infer{\Gamma \vdash c \hookrightarrow C}{
adamc@531 555 \Gamma \vdash c \equiv c'
adamc@531 556 & \Gamma \vdash c' \hookrightarrow C
adamc@531 557 }
adamc@531 558 \quad \infer{\Gamma \vdash \mt{map} \; f \; c \hookrightarrow C}{
adamc@531 559 \Gamma \vdash c \hookrightarrow C
adamc@531 560 }$$
adamc@531 561
adamc@541 562 \subsection{\label{definitional}Definitional Equality}
adamc@532 563
adamc@655 564 We use $\mathcal C$ to stand for a one-hole context that, when filled, yields a constructor. The notation $\mathcal C[c]$ plugs $c$ into $\mathcal C$. We omit the standard definition of one-hole contexts. We write $[x \mapsto c_1]c_2$ for capture-avoiding substitution of $c_1$ for $x$ in $c_2$, with analogous notation for substituting a kind in a constructor.
adamc@532 565
adamc@532 566 $$\infer{\Gamma \vdash c \equiv c}{}
adamc@532 567 \quad \infer{\Gamma \vdash c_1 \equiv c_2}{
adamc@532 568 \Gamma \vdash c_2 \equiv c_1
adamc@532 569 }
adamc@532 570 \quad \infer{\Gamma \vdash c_1 \equiv c_3}{
adamc@532 571 \Gamma \vdash c_1 \equiv c_2
adamc@532 572 & \Gamma \vdash c_2 \equiv c_3
adamc@532 573 }
adamc@532 574 \quad \infer{\Gamma \vdash \mathcal C[c_1] \equiv \mathcal C[c_2]}{
adamc@532 575 \Gamma \vdash c_1 \equiv c_2
adamc@532 576 }$$
adamc@532 577
adamc@532 578 $$\infer{\Gamma \vdash x \equiv c}{
adamc@532 579 x :: \kappa = c \in \Gamma
adamc@532 580 }
adamc@532 581 \quad \infer{\Gamma \vdash M.x \equiv c}{
adamc@537 582 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 583 & \mt{proj}(M, \overline{s}, \mt{con} \; x) = (\kappa, c)
adamc@532 584 }
adamc@532 585 \quad \infer{\Gamma \vdash (\overline c).i \equiv c_i}{}$$
adamc@532 586
adamc@532 587 $$\infer{\Gamma \vdash (\lambda x :: \kappa \Rightarrow c) \; c' \equiv [x \mapsto c'] c}{}
adamc@655 588 \quad \infer{\Gamma \vdash (X \Longrightarrow c) [\kappa] \equiv [X \mapsto \kappa] c}{}$$
adamc@655 589
adamc@655 590 $$\infer{\Gamma \vdash c_1 \rc c_2 \equiv c_2 \rc c_1}{}
adamc@532 591 \quad \infer{\Gamma \vdash c_1 \rc (c_2 \rc c_3) \equiv (c_1 \rc c_2) \rc c_3}{}$$
adamc@532 592
adamc@532 593 $$\infer{\Gamma \vdash [] \rc c \equiv c}{}
adamc@532 594 \quad \infer{\Gamma \vdash [\overline{c_1 = c'_1}] \rc [\overline{c_2 = c'_2}] \equiv [\overline{c_1 = c'_1}, \overline{c_2 = c'_2}]}{}$$
adamc@532 595
adamc@655 596 $$\infer{\Gamma \vdash \mt{map} \; f \; [] \equiv []}{}
adamc@655 597 \quad \infer{\Gamma \vdash \mt{map} \; f \; ([c_1 = c_2] \rc c) \equiv [c_1 = f \; c_2] \rc \mt{map} \; f \; c}{}$$
adamc@532 598
adamc@532 599 $$\infer{\Gamma \vdash \mt{map} \; (\lambda x \Rightarrow x) \; c \equiv c}{}
adamc@655 600 \quad \infer{\Gamma \vdash \mt{map} \; f \; (\mt{map} \; f' \; c)
adamc@655 601 \equiv \mt{map} \; (\lambda x \Rightarrow f \; (f' \; x)) \; c}{}$$
adamc@532 602
adamc@532 603 $$\infer{\Gamma \vdash \mt{map} \; f \; (c_1 \rc c_2) \equiv \mt{map} \; f \; c_1 \rc \mt{map} \; f \; c_2}{}$$
adamc@531 604
adamc@534 605 \subsection{Expression Typing}
adamc@533 606
adamc@533 607 We assume the existence of a function $T$ assigning types to literal constants. It maps integer constants to $\mt{Basis}.\mt{int}$, float constants to $\mt{Basis}.\mt{float}$, and string constants to $\mt{Basis}.\mt{string}$.
adamc@533 608
adamc@533 609 We also refer to a function $\mathcal I$, such that $\mathcal I(\tau)$ ``uses an oracle'' to instantiate all constructor function arguments at the beginning of $\tau$ that are marked implicit; i.e., replace $x_1 ::: \kappa_1 \to \ldots \to x_n ::: \kappa_n \to \tau$ with $[x_1 \mapsto c_1]\ldots[x_n \mapsto c_n]\tau$, where the $c_i$s are inferred and $\tau$ does not start like $x ::: \kappa \to \tau'$.
adamc@533 610
adamc@533 611 $$\infer{\Gamma \vdash e : \tau : \tau}{
adamc@533 612 \Gamma \vdash e : \tau
adamc@533 613 }
adamc@533 614 \quad \infer{\Gamma \vdash e : \tau}{
adamc@533 615 \Gamma \vdash e : \tau'
adamc@533 616 & \Gamma \vdash \tau' \equiv \tau
adamc@533 617 }
adamc@533 618 \quad \infer{\Gamma \vdash \ell : T(\ell)}{}$$
adamc@533 619
adamc@533 620 $$\infer{\Gamma \vdash x : \mathcal I(\tau)}{
adamc@533 621 x : \tau \in \Gamma
adamc@533 622 }
adamc@533 623 \quad \infer{\Gamma \vdash M.x : \mathcal I(\tau)}{
adamc@537 624 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 625 & \mt{proj}(M, \overline{s}, \mt{val} \; x) = \tau
adamc@533 626 }
adamc@533 627 \quad \infer{\Gamma \vdash X : \mathcal I(\tau)}{
adamc@533 628 X : \tau \in \Gamma
adamc@533 629 }
adamc@533 630 \quad \infer{\Gamma \vdash M.X : \mathcal I(\tau)}{
adamc@537 631 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 632 & \mt{proj}(M, \overline{s}, \mt{val} \; X) = \tau
adamc@533 633 }$$
adamc@533 634
adamc@533 635 $$\infer{\Gamma \vdash e_1 \; e_2 : \tau_2}{
adamc@533 636 \Gamma \vdash e_1 : \tau_1 \to \tau_2
adamc@533 637 & \Gamma \vdash e_2 : \tau_1
adamc@533 638 }
adamc@533 639 \quad \infer{\Gamma \vdash \lambda x : \tau_1 \Rightarrow e : \tau_1 \to \tau_2}{
adamc@533 640 \Gamma, x : \tau_1 \vdash e : \tau_2
adamc@533 641 }$$
adamc@533 642
adamc@533 643 $$\infer{\Gamma \vdash e [c] : [x \mapsto c]\tau}{
adamc@533 644 \Gamma \vdash e : x :: \kappa \to \tau
adamc@533 645 & \Gamma \vdash c :: \kappa
adamc@533 646 }
adamc@533 647 \quad \infer{\Gamma \vdash \lambda x \; ? \; \kappa \Rightarrow e : x \; ? \; \kappa \to \tau}{
adamc@533 648 \Gamma, x :: \kappa \vdash e : \tau
adamc@533 649 }$$
adamc@533 650
adamc@655 651 $$\infer{\Gamma \vdash e [\kappa] : [X \mapsto \kappa]\tau}{
adamc@655 652 \Gamma \vdash e : X \longrightarrow \tau
adamc@655 653 & \Gamma \vdash \kappa
adamc@655 654 }
adamc@655 655 \quad \infer{\Gamma \vdash X \Longrightarrow e : X \longrightarrow \tau}{
adamc@655 656 \Gamma, X \vdash e : \tau
adamc@655 657 }$$
adamc@655 658
adamc@533 659 $$\infer{\Gamma \vdash \{\overline{c = e}\} : \{\overline{c : \tau}\}}{
adamc@533 660 \forall i: \Gamma \vdash c_i :: \mt{Name}
adamc@533 661 & \Gamma \vdash e_i : \tau_i
adamc@533 662 & \forall i \neq j: \Gamma \vdash c_i \sim c_j
adamc@533 663 }
adamc@533 664 \quad \infer{\Gamma \vdash e.c : \tau}{
adamc@533 665 \Gamma \vdash e : \$([c = \tau] \rc c')
adamc@533 666 }
adamc@533 667 \quad \infer{\Gamma \vdash e_1 \rc e_2 : \$(c_1 \rc c_2)}{
adamc@533 668 \Gamma \vdash e_1 : \$c_1
adamc@533 669 & \Gamma \vdash e_2 : \$c_2
adamc@573 670 & \Gamma \vdash c_1 \sim c_2
adamc@533 671 }$$
adamc@533 672
adamc@533 673 $$\infer{\Gamma \vdash e \rcut c : \$c'}{
adamc@533 674 \Gamma \vdash e : \$([c = \tau] \rc c')
adamc@533 675 }
adamc@533 676 \quad \infer{\Gamma \vdash e \rcutM c : \$c'}{
adamc@533 677 \Gamma \vdash e : \$(c \rc c')
adamc@533 678 }$$
adamc@533 679
adamc@533 680 $$\infer{\Gamma \vdash \mt{let} \; \overline{ed} \; \mt{in} \; e \; \mt{end} : \tau}{
adamc@533 681 \Gamma \vdash \overline{ed} \leadsto \Gamma'
adamc@533 682 & \Gamma' \vdash e : \tau
adamc@533 683 }
adamc@533 684 \quad \infer{\Gamma \vdash \mt{case} \; e \; \mt{of} \; \overline{p \Rightarrow e} : \tau}{
adamc@533 685 \forall i: \Gamma \vdash p_i \leadsto \Gamma_i, \tau'
adamc@533 686 & \Gamma_i \vdash e_i : \tau
adamc@533 687 }$$
adamc@533 688
adamc@573 689 $$\infer{\Gamma \vdash \lambda [c_1 \sim c_2] \Rightarrow e : \lambda [c_1 \sim c_2] \Rightarrow \tau}{
adamc@533 690 \Gamma \vdash c_1 :: \{\kappa\}
adamc@655 691 & \Gamma \vdash c_2 :: \{\kappa'\}
adamc@533 692 & \Gamma, c_1 \sim c_2 \vdash e : \tau
adamc@662 693 }
adamc@662 694 \quad \infer{\Gamma \vdash e \; ! : \tau}{
adamc@662 695 \Gamma \vdash e : [c_1 \sim c_2] \Rightarrow \tau
adamc@662 696 & \Gamma \vdash c_1 \sim c_2
adamc@533 697 }$$
adamc@533 698
adamc@534 699 \subsection{Pattern Typing}
adamc@534 700
adamc@534 701 $$\infer{\Gamma \vdash \_ \leadsto \Gamma; \tau}{}
adamc@534 702 \quad \infer{\Gamma \vdash x \leadsto \Gamma, x : \tau; \tau}{}
adamc@534 703 \quad \infer{\Gamma \vdash \ell \leadsto \Gamma; T(\ell)}{}$$
adamc@534 704
adamc@534 705 $$\infer{\Gamma \vdash X \leadsto \Gamma; \overline{[x_i \mapsto \tau'_i]}\tau}{
adamc@534 706 X : \overline{x ::: \mt{Type}} \to \tau \in \Gamma
adamc@534 707 & \textrm{$\tau$ not a function type}
adamc@534 708 }
adamc@534 709 \quad \infer{\Gamma \vdash X \; p \leadsto \Gamma'; \overline{[x_i \mapsto \tau'_i]}\tau}{
adamc@534 710 X : \overline{x ::: \mt{Type}} \to \tau'' \to \tau \in \Gamma
adamc@534 711 & \Gamma \vdash p \leadsto \Gamma'; \overline{[x_i \mapsto \tau'_i]}\tau''
adamc@534 712 }$$
adamc@534 713
adamc@534 714 $$\infer{\Gamma \vdash M.X \leadsto \Gamma; \overline{[x_i \mapsto \tau'_i]}\tau}{
adamc@537 715 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 716 & \mt{proj}(M, \overline{s}, \mt{val} \; X) = \overline{x ::: \mt{Type}} \to \tau
adamc@534 717 & \textrm{$\tau$ not a function type}
adamc@534 718 }$$
adamc@534 719
adamc@534 720 $$\infer{\Gamma \vdash M.X \; p \leadsto \Gamma'; \overline{[x_i \mapsto \tau'_i]}\tau}{
adamc@537 721 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 722 & \mt{proj}(M, \overline{s}, \mt{val} \; X) = \overline{x ::: \mt{Type}} \to \tau'' \to \tau
adamc@534 723 & \Gamma \vdash p \leadsto \Gamma'; \overline{[x_i \mapsto \tau'_i]}\tau''
adamc@534 724 }$$
adamc@534 725
adamc@534 726 $$\infer{\Gamma \vdash \{\overline{x = p}\} \leadsto \Gamma_n; \{\overline{x = \tau}\}}{
adamc@534 727 \Gamma_0 = \Gamma
adamc@534 728 & \forall i: \Gamma_i \vdash p_i \leadsto \Gamma_{i+1}; \tau_i
adamc@534 729 }
adamc@534 730 \quad \infer{\Gamma \vdash \{\overline{x = p}, \ldots\} \leadsto \Gamma_n; \$([\overline{x = \tau}] \rc c)}{
adamc@534 731 \Gamma_0 = \Gamma
adamc@534 732 & \forall i: \Gamma_i \vdash p_i \leadsto \Gamma_{i+1}; \tau_i
adamc@534 733 }$$
adamc@534 734
adamc@535 735 \subsection{Declaration Typing}
adamc@535 736
adamc@535 737 We use an auxiliary judgment $\overline{y}; x; \Gamma \vdash \overline{dc} \leadsto \Gamma'$, expressing the enrichment of $\Gamma$ with the types of the datatype constructors $\overline{dc}$, when they are known to belong to datatype $x$ with type parameters $\overline{y}$.
adamc@535 738
adamc@655 739 This is the first judgment where we deal with constructor classes, for the $\mt{class}$ declaration form. We will omit their special handling in this formal specification. Section \ref{typeclasses} gives an informal description of how constructor classes influence type inference.
adamc@535 740
adamc@558 741 We presuppose the existence of a function $\mathcal O$, where $\mathcal O(M, \overline{s})$ implements the $\mt{open}$ declaration by producing a context with the appropriate entry for each available component of module $M$ with signature items $\overline{s}$. Where possible, $\mathcal O$ uses ``transparent'' entries (e.g., an abstract type $M.x$ is mapped to $x :: \mt{Type} = M.x$), so that the relationship with $M$ is maintained. A related function $\mathcal O_c$ builds a context containing the disjointness constraints found in $\overline s$.
adamc@537 742 We write $\kappa_1^n \to \kappa$ as a shorthand, where $\kappa_1^0 \to \kappa = \kappa$ and $\kappa_1^{n+1} \to \kappa_2 = \kappa_1 \to (\kappa_1^n \to \kappa_2)$. We write $\mt{len}(\overline{y})$ for the length of vector $\overline{y}$ of variables.
adamc@535 743
adamc@535 744 $$\infer{\Gamma \vdash \cdot \leadsto \Gamma}{}
adamc@535 745 \quad \infer{\Gamma \vdash d, \overline{d} \leadsto \Gamma''}{
adamc@535 746 \Gamma \vdash d \leadsto \Gamma'
adamc@535 747 & \Gamma' \vdash \overline{d} \leadsto \Gamma''
adamc@535 748 }$$
adamc@535 749
adamc@535 750 $$\infer{\Gamma \vdash \mt{con} \; x :: \kappa = c \leadsto \Gamma, x :: \kappa = c}{
adamc@535 751 \Gamma \vdash c :: \kappa
adamc@535 752 }
adamc@535 753 \quad \infer{\Gamma \vdash \mt{datatype} \; x \; \overline{y} = \overline{dc} \leadsto \Gamma'}{
adamc@535 754 \overline{y}; x; \Gamma, x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type} \vdash \overline{dc} \leadsto \Gamma'
adamc@535 755 }$$
adamc@535 756
adamc@535 757 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leadsto \Gamma'}{
adamc@537 758 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 759 & \mt{proj}(M, \overline{s}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})
adamc@535 760 & \overline{y}; x; \Gamma, x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type} = M.z \vdash \overline{dc} \leadsto \Gamma'
adamc@535 761 }$$
adamc@535 762
adamc@535 763 $$\infer{\Gamma \vdash \mt{val} \; x : \tau = e \leadsto \Gamma, x : \tau}{
adamc@535 764 \Gamma \vdash e : \tau
adamc@535 765 }$$
adamc@535 766
adamc@535 767 $$\infer{\Gamma \vdash \mt{val} \; \mt{rec} \; \overline{x : \tau = e} \leadsto \Gamma, \overline{x : \tau}}{
adamc@535 768 \forall i: \Gamma, \overline{x : \tau} \vdash e_i : \tau_i
adamc@535 769 & \textrm{$e_i$ starts with an expression $\lambda$, optionally preceded by constructor and disjointness $\lambda$s}
adamc@535 770 }$$
adamc@535 771
adamc@535 772 $$\infer{\Gamma \vdash \mt{structure} \; X : S = M \leadsto \Gamma, X : S}{
adamc@535 773 \Gamma \vdash M : S
adamc@558 774 & \textrm{ $M$ not a constant or application}
adamc@535 775 }
adamc@558 776 \quad \infer{\Gamma \vdash \mt{structure} \; X : S = M \leadsto \Gamma, X : \mt{selfify}(X, \overline{s})}{
adamc@558 777 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@539 778 }$$
adamc@539 779
adamc@539 780 $$\infer{\Gamma \vdash \mt{signature} \; X = S \leadsto \Gamma, X = S}{
adamc@535 781 \Gamma \vdash S
adamc@535 782 }$$
adamc@535 783
adamc@537 784 $$\infer{\Gamma \vdash \mt{open} \; M \leadsto \Gamma, \mathcal O(M, \overline{s})}{
adamc@537 785 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@535 786 }$$
adamc@535 787
adamc@535 788 $$\infer{\Gamma \vdash \mt{constraint} \; c_1 \sim c_2 \leadsto \Gamma}{
adamc@535 789 \Gamma \vdash c_1 :: \{\kappa\}
adamc@535 790 & \Gamma \vdash c_2 :: \{\kappa\}
adamc@535 791 & \Gamma \vdash c_1 \sim c_2
adamc@535 792 }
adamc@537 793 \quad \infer{\Gamma \vdash \mt{open} \; \mt{constraints} \; M \leadsto \Gamma, \mathcal O_c(M, \overline{s})}{
adamc@537 794 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@535 795 }$$
adamc@535 796
adamc@784 797 $$\infer{\Gamma \vdash \mt{table} \; x : c \leadsto \Gamma, x : \mt{Basis}.\mt{sql\_table} \; c \; []}{
adamc@535 798 \Gamma \vdash c :: \{\mt{Type}\}
adamc@535 799 }
adamc@784 800 \quad \infer{\Gamma \vdash \mt{view} \; x : c \leadsto \Gamma, x : \mt{Basis}.\mt{sql\_view} \; c}{
adamc@784 801 \Gamma \vdash c :: \{\mt{Type}\}
adamc@784 802 }$$
adamc@784 803
adamc@784 804 $$\infer{\Gamma \vdash \mt{sequence} \; x \leadsto \Gamma, x : \mt{Basis}.\mt{sql\_sequence}}{}$$
adamc@535 805
adamc@535 806 $$\infer{\Gamma \vdash \mt{cookie} \; x : \tau \leadsto \Gamma, x : \mt{Basis}.\mt{http\_cookie} \; \tau}{
adamc@535 807 \Gamma \vdash \tau :: \mt{Type}
adamc@784 808 }
adamc@784 809 \quad \infer{\Gamma \vdash \mt{style} \; x \leadsto \Gamma, x : \mt{Basis}.\mt{css\_class}}{}$$
adamc@535 810
adamc@784 811 $$\infer{\Gamma \vdash \mt{class} \; x :: \kappa = c \leadsto \Gamma, x :: \kappa = c}{
adamc@784 812 \Gamma \vdash c :: \kappa
adamc@535 813 }$$
adamc@535 814
adamc@535 815 $$\infer{\overline{y}; x; \Gamma \vdash \cdot \leadsto \Gamma}{}
adamc@535 816 \quad \infer{\overline{y}; x; \Gamma \vdash X \mid \overline{dc} \leadsto \Gamma', X : \overline{y ::: \mt{Type}} \to x \; \overline{y}}{
adamc@535 817 \overline{y}; x; \Gamma \vdash \overline{dc} \leadsto \Gamma'
adamc@535 818 }
adamc@535 819 \quad \infer{\overline{y}; x; \Gamma \vdash X \; \mt{of} \; \tau \mid \overline{dc} \leadsto \Gamma', X : \overline{y ::: \mt{Type}} \to \tau \to x \; \overline{y}}{
adamc@535 820 \overline{y}; x; \Gamma \vdash \overline{dc} \leadsto \Gamma'
adamc@535 821 }$$
adamc@535 822
adamc@537 823 \subsection{Signature Item Typing}
adamc@537 824
adamc@537 825 We appeal to a signature item analogue of the $\mathcal O$ function from the last subsection.
adamc@537 826
adamc@537 827 $$\infer{\Gamma \vdash \cdot \leadsto \Gamma}{}
adamc@537 828 \quad \infer{\Gamma \vdash s, \overline{s} \leadsto \Gamma''}{
adamc@537 829 \Gamma \vdash s \leadsto \Gamma'
adamc@537 830 & \Gamma' \vdash \overline{s} \leadsto \Gamma''
adamc@537 831 }$$
adamc@537 832
adamc@537 833 $$\infer{\Gamma \vdash \mt{con} \; x :: \kappa \leadsto \Gamma, x :: \kappa}{}
adamc@537 834 \quad \infer{\Gamma \vdash \mt{con} \; x :: \kappa = c \leadsto \Gamma, x :: \kappa = c}{
adamc@537 835 \Gamma \vdash c :: \kappa
adamc@537 836 }
adamc@537 837 \quad \infer{\Gamma \vdash \mt{datatype} \; x \; \overline{y} = \overline{dc} \leadsto \Gamma'}{
adamc@537 838 \overline{y}; x; \Gamma, x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type} \vdash \overline{dc} \leadsto \Gamma'
adamc@537 839 }$$
adamc@537 840
adamc@537 841 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leadsto \Gamma'}{
adamc@537 842 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 843 & \mt{proj}(M, \overline{s}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})
adamc@537 844 & \overline{y}; x; \Gamma, x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type} = M.z \vdash \overline{dc} \leadsto \Gamma'
adamc@537 845 }$$
adamc@537 846
adamc@537 847 $$\infer{\Gamma \vdash \mt{val} \; x : \tau \leadsto \Gamma, x : \tau}{
adamc@537 848 \Gamma \vdash \tau :: \mt{Type}
adamc@537 849 }$$
adamc@537 850
adamc@537 851 $$\infer{\Gamma \vdash \mt{structure} \; X : S \leadsto \Gamma, X : S}{
adamc@537 852 \Gamma \vdash S
adamc@537 853 }
adamc@537 854 \quad \infer{\Gamma \vdash \mt{signature} \; X = S \leadsto \Gamma, X = S}{
adamc@537 855 \Gamma \vdash S
adamc@537 856 }$$
adamc@537 857
adamc@537 858 $$\infer{\Gamma \vdash \mt{include} \; S \leadsto \Gamma, \mathcal O(\overline{s})}{
adamc@537 859 \Gamma \vdash S
adamc@537 860 & \Gamma \vdash S \equiv \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 861 }$$
adamc@537 862
adamc@537 863 $$\infer{\Gamma \vdash \mt{constraint} \; c_1 \sim c_2 \leadsto \Gamma, c_1 \sim c_2}{
adamc@537 864 \Gamma \vdash c_1 :: \{\kappa\}
adamc@537 865 & \Gamma \vdash c_2 :: \{\kappa\}
adamc@537 866 }$$
adamc@537 867
adamc@784 868 $$\infer{\Gamma \vdash \mt{class} \; x :: \kappa = c \leadsto \Gamma, x :: \kappa = c}{
adamc@784 869 \Gamma \vdash c :: \kappa
adamc@537 870 }
adamc@784 871 \quad \infer{\Gamma \vdash \mt{class} \; x :: \kappa \leadsto \Gamma, x :: \kappa}{}$$
adamc@537 872
adamc@536 873 \subsection{Signature Compatibility}
adamc@536 874
adamc@558 875 To simplify the judgments in this section, we assume that all signatures are alpha-varied as necessary to avoid including multiple bindings for the same identifier. This is in addition to the usual alpha-variation of locally-bound variables.
adamc@537 876
adamc@537 877 We rely on a judgment $\Gamma \vdash \overline{s} \leq s'$, which expresses the occurrence in signature items $\overline{s}$ of an item compatible with $s'$. We also use a judgment $\Gamma \vdash \overline{dc} \leq \overline{dc}$, which expresses compatibility of datatype definitions.
adamc@537 878
adamc@536 879 $$\infer{\Gamma \vdash S \equiv S}{}
adamc@536 880 \quad \infer{\Gamma \vdash S_1 \equiv S_2}{
adamc@536 881 \Gamma \vdash S_2 \equiv S_1
adamc@536 882 }
adamc@536 883 \quad \infer{\Gamma \vdash X \equiv S}{
adamc@536 884 X = S \in \Gamma
adamc@536 885 }
adamc@536 886 \quad \infer{\Gamma \vdash M.X \equiv S}{
adamc@537 887 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 888 & \mt{proj}(M, \overline{s}, \mt{signature} \; X) = S
adamc@536 889 }$$
adamc@536 890
adamc@536 891 $$\infer{\Gamma \vdash S \; \mt{where} \; \mt{con} \; x = c \equiv \mt{sig} \; \overline{s^1} \; \mt{con} \; x :: \kappa = c \; \overline{s_2} \; \mt{end}}{
adamc@536 892 \Gamma \vdash S \equiv \mt{sig} \; \overline{s^1} \; \mt{con} \; x :: \kappa \; \overline{s_2} \; \mt{end}
adamc@536 893 & \Gamma \vdash c :: \kappa
adamc@537 894 }
adamc@537 895 \quad \infer{\Gamma \vdash \mt{sig} \; \overline{s^1} \; \mt{include} \; S \; \overline{s^2} \; \mt{end} \equiv \mt{sig} \; \overline{s^1} \; \overline{s} \; \overline{s^2} \; \mt{end}}{
adamc@537 896 \Gamma \vdash S \equiv \mt{sig} \; \overline{s} \; \mt{end}
adamc@536 897 }$$
adamc@536 898
adamc@536 899 $$\infer{\Gamma \vdash S_1 \leq S_2}{
adamc@536 900 \Gamma \vdash S_1 \equiv S_2
adamc@536 901 }
adamc@536 902 \quad \infer{\Gamma \vdash \mt{sig} \; \overline{s} \; \mt{end} \leq \mt{sig} \; \mt{end}}{}
adamc@537 903 \quad \infer{\Gamma \vdash \mt{sig} \; \overline{s} \; \mt{end} \leq \mt{sig} \; s' \; \overline{s'} \; \mt{end}}{
adamc@537 904 \Gamma \vdash \overline{s} \leq s'
adamc@537 905 & \Gamma \vdash s' \leadsto \Gamma'
adamc@537 906 & \Gamma' \vdash \mt{sig} \; \overline{s} \; \mt{end} \leq \mt{sig} \; \overline{s'} \; \mt{end}
adamc@537 907 }$$
adamc@537 908
adamc@537 909 $$\infer{\Gamma \vdash s \; \overline{s} \leq s'}{
adamc@537 910 \Gamma \vdash s \leq s'
adamc@537 911 }
adamc@537 912 \quad \infer{\Gamma \vdash s \; \overline{s} \leq s'}{
adamc@537 913 \Gamma \vdash s \leadsto \Gamma'
adamc@537 914 & \Gamma' \vdash \overline{s} \leq s'
adamc@536 915 }$$
adamc@536 916
adamc@536 917 $$\infer{\Gamma \vdash \mt{functor} (X : S_1) : S_2 \leq \mt{functor} (X : S'_1) : S'_2}{
adamc@536 918 \Gamma \vdash S'_1 \leq S_1
adamc@536 919 & \Gamma, X : S'_1 \vdash S_2 \leq S'_2
adamc@536 920 }$$
adamc@536 921
adamc@537 922 $$\infer{\Gamma \vdash \mt{con} \; x :: \kappa \leq \mt{con} \; x :: \kappa}{}
adamc@537 923 \quad \infer{\Gamma \vdash \mt{con} \; x :: \kappa = c \leq \mt{con} \; x :: \kappa}{}
adamc@558 924 \quad \infer{\Gamma \vdash \mt{datatype} \; x \; \overline{y} = \overline{dc} \leq \mt{con} \; x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type}}{}$$
adamc@537 925
adamc@537 926 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leq \mt{con} \; x :: \mt{Type}^{\mt{len}(y)} \to \mt{Type}}{
adamc@537 927 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 928 & \mt{proj}(M, \overline{s}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})
adamc@537 929 }$$
adamc@537 930
adamc@784 931 $$\infer{\Gamma \vdash \mt{class} \; x :: \kappa \leq \mt{con} \; x :: \kappa}{}
adamc@784 932 \quad \infer{\Gamma \vdash \mt{class} \; x :: \kappa = c \leq \mt{con} \; x :: \kappa}{}$$
adamc@537 933
adamc@537 934 $$\infer{\Gamma \vdash \mt{con} \; x :: \kappa = c_1 \leq \mt{con} \; x :: \mt{\kappa} = c_2}{
adamc@537 935 \Gamma \vdash c_1 \equiv c_2
adamc@537 936 }
adamc@784 937 \quad \infer{\Gamma \vdash \mt{class} \; x :: \kappa = c_1 \leq \mt{con} \; x :: \kappa = c_2}{
adamc@537 938 \Gamma \vdash c_1 \equiv c_2
adamc@537 939 }$$
adamc@537 940
adamc@537 941 $$\infer{\Gamma \vdash \mt{datatype} \; x \; \overline{y} = \overline{dc} \leq \mt{datatype} \; x \; \overline{y} = \overline{dc'}}{
adamc@537 942 \Gamma, \overline{y :: \mt{Type}} \vdash \overline{dc} \leq \overline{dc'}
adamc@537 943 }$$
adamc@537 944
adamc@537 945 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leq \mt{datatype} \; x \; \overline{y} = \overline{dc'}}{
adamc@537 946 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 947 & \mt{proj}(M, \overline{s}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})
adamc@537 948 & \Gamma, \overline{y :: \mt{Type}} \vdash \overline{dc} \leq \overline{dc'}
adamc@537 949 }$$
adamc@537 950
adamc@537 951 $$\infer{\Gamma \vdash \cdot \leq \cdot}{}
adamc@537 952 \quad \infer{\Gamma \vdash X; \overline{dc} \leq X; \overline{dc'}}{
adamc@537 953 \Gamma \vdash \overline{dc} \leq \overline{dc'}
adamc@537 954 }
adamc@537 955 \quad \infer{\Gamma \vdash X \; \mt{of} \; \tau_1; \overline{dc} \leq X \; \mt{of} \; \tau_2; \overline{dc'}}{
adamc@537 956 \Gamma \vdash \tau_1 \equiv \tau_2
adamc@537 957 & \Gamma \vdash \overline{dc} \leq \overline{dc'}
adamc@537 958 }$$
adamc@537 959
adamc@537 960 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leq \mt{datatype} \; x = \mt{datatype} \; M'.z'}{
adamc@537 961 \Gamma \vdash M.z \equiv M'.z'
adamc@537 962 }$$
adamc@537 963
adamc@537 964 $$\infer{\Gamma \vdash \mt{val} \; x : \tau_1 \leq \mt{val} \; x : \tau_2}{
adamc@537 965 \Gamma \vdash \tau_1 \equiv \tau_2
adamc@537 966 }
adamc@537 967 \quad \infer{\Gamma \vdash \mt{structure} \; X : S_1 \leq \mt{structure} \; X : S_2}{
adamc@537 968 \Gamma \vdash S_1 \leq S_2
adamc@537 969 }
adamc@537 970 \quad \infer{\Gamma \vdash \mt{signature} \; X = S_1 \leq \mt{signature} \; X = S_2}{
adamc@537 971 \Gamma \vdash S_1 \leq S_2
adamc@537 972 & \Gamma \vdash S_2 \leq S_1
adamc@537 973 }$$
adamc@537 974
adamc@537 975 $$\infer{\Gamma \vdash \mt{constraint} \; c_1 \sim c_2 \leq \mt{constraint} \; c'_1 \sim c'_2}{
adamc@537 976 \Gamma \vdash c_1 \equiv c'_1
adamc@537 977 & \Gamma \vdash c_2 \equiv c'_2
adamc@537 978 }$$
adamc@537 979
adamc@655 980 $$\infer{\Gamma \vdash \mt{class} \; x :: \kappa \leq \mt{class} \; x :: \kappa}{}
adamc@655 981 \quad \infer{\Gamma \vdash \mt{class} \; x :: \kappa = c \leq \mt{class} \; x :: \kappa}{}
adamc@655 982 \quad \infer{\Gamma \vdash \mt{class} \; x :: \kappa = c_1 \leq \mt{class} \; x :: \kappa = c_2}{
adamc@537 983 \Gamma \vdash c_1 \equiv c_2
adamc@537 984 }$$
adamc@537 985
adamc@538 986 \subsection{Module Typing}
adamc@538 987
adamc@538 988 We use a helper function $\mt{sigOf}$, which converts declarations and sequences of declarations into their principal signature items and sequences of signature items, respectively.
adamc@538 989
adamc@538 990 $$\infer{\Gamma \vdash M : S}{
adamc@538 991 \Gamma \vdash M : S'
adamc@538 992 & \Gamma \vdash S' \leq S
adamc@538 993 }
adamc@538 994 \quad \infer{\Gamma \vdash \mt{struct} \; \overline{d} \; \mt{end} : \mt{sig} \; \mt{sigOf}(\overline{d}) \; \mt{end}}{
adamc@538 995 \Gamma \vdash \overline{d} \leadsto \Gamma'
adamc@538 996 }
adamc@538 997 \quad \infer{\Gamma \vdash X : S}{
adamc@538 998 X : S \in \Gamma
adamc@538 999 }$$
adamc@538 1000
adamc@538 1001 $$\infer{\Gamma \vdash M.X : S}{
adamc@538 1002 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@538 1003 & \mt{proj}(M, \overline{s}, \mt{structure} \; X) = S
adamc@538 1004 }$$
adamc@538 1005
adamc@538 1006 $$\infer{\Gamma \vdash M_1(M_2) : [X \mapsto M_2]S_2}{
adamc@538 1007 \Gamma \vdash M_1 : \mt{functor}(X : S_1) : S_2
adamc@538 1008 & \Gamma \vdash M_2 : S_1
adamc@538 1009 }
adamc@538 1010 \quad \infer{\Gamma \vdash \mt{functor} (X : S_1) : S_2 = M : \mt{functor} (X : S_1) : S_2}{
adamc@538 1011 \Gamma \vdash S_1
adamc@538 1012 & \Gamma, X : S_1 \vdash S_2
adamc@538 1013 & \Gamma, X : S_1 \vdash M : S_2
adamc@538 1014 }$$
adamc@538 1015
adamc@538 1016 \begin{eqnarray*}
adamc@538 1017 \mt{sigOf}(\cdot) &=& \cdot \\
adamc@538 1018 \mt{sigOf}(s \; \overline{s'}) &=& \mt{sigOf}(s) \; \mt{sigOf}(\overline{s'}) \\
adamc@538 1019 \\
adamc@538 1020 \mt{sigOf}(\mt{con} \; x :: \kappa = c) &=& \mt{con} \; x :: \kappa = c \\
adamc@538 1021 \mt{sigOf}(\mt{datatype} \; x \; \overline{y} = \overline{dc}) &=& \mt{datatype} \; x \; \overline{y} = \overline{dc} \\
adamc@538 1022 \mt{sigOf}(\mt{datatype} \; x = \mt{datatype} \; M.z) &=& \mt{datatype} \; x = \mt{datatype} \; M.z \\
adamc@538 1023 \mt{sigOf}(\mt{val} \; x : \tau = e) &=& \mt{val} \; x : \tau \\
adamc@538 1024 \mt{sigOf}(\mt{val} \; \mt{rec} \; \overline{x : \tau = e}) &=& \overline{\mt{val} \; x : \tau} \\
adamc@538 1025 \mt{sigOf}(\mt{structure} \; X : S = M) &=& \mt{structure} \; X : S \\
adamc@538 1026 \mt{sigOf}(\mt{signature} \; X = S) &=& \mt{signature} \; X = S \\
adamc@538 1027 \mt{sigOf}(\mt{open} \; M) &=& \mt{include} \; S \textrm{ (where $\Gamma \vdash M : S$)} \\
adamc@538 1028 \mt{sigOf}(\mt{constraint} \; c_1 \sim c_2) &=& \mt{constraint} \; c_1 \sim c_2 \\
adamc@538 1029 \mt{sigOf}(\mt{open} \; \mt{constraints} \; M) &=& \cdot \\
adamc@538 1030 \mt{sigOf}(\mt{table} \; x : c) &=& \mt{table} \; x : c \\
adamc@784 1031 \mt{sigOf}(\mt{view} \; x : c) &=& \mt{view} \; x : c \\
adamc@538 1032 \mt{sigOf}(\mt{sequence} \; x) &=& \mt{sequence} \; x \\
adamc@538 1033 \mt{sigOf}(\mt{cookie} \; x : \tau) &=& \mt{cookie} \; x : \tau \\
adamc@784 1034 \mt{sigOf}(\mt{style} \; x) &=& \mt{style} \; x \\
adamc@655 1035 \mt{sigOf}(\mt{class} \; x :: \kappa = c) &=& \mt{class} \; x :: \kappa = c \\
adamc@538 1036 \end{eqnarray*}
adamc@539 1037 \begin{eqnarray*}
adamc@539 1038 \mt{selfify}(M, \cdot) &=& \cdot \\
adamc@558 1039 \mt{selfify}(M, s \; \overline{s'}) &=& \mt{selfify}(M, s) \; \mt{selfify}(M, \overline{s'}) \\
adamc@539 1040 \\
adamc@539 1041 \mt{selfify}(M, \mt{con} \; x :: \kappa) &=& \mt{con} \; x :: \kappa = M.x \\
adamc@539 1042 \mt{selfify}(M, \mt{con} \; x :: \kappa = c) &=& \mt{con} \; x :: \kappa = c \\
adamc@539 1043 \mt{selfify}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc}) &=& \mt{datatype} \; x \; \overline{y} = \mt{datatype} \; M.x \\
adamc@539 1044 \mt{selfify}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z) &=& \mt{datatype} \; x = \mt{datatype} \; M'.z \\
adamc@539 1045 \mt{selfify}(M, \mt{val} \; x : \tau) &=& \mt{val} \; x : \tau \\
adamc@539 1046 \mt{selfify}(M, \mt{structure} \; X : S) &=& \mt{structure} \; X : \mt{selfify}(M.X, \overline{s}) \textrm{ (where $\Gamma \vdash S \equiv \mt{sig} \; \overline{s} \; \mt{end}$)} \\
adamc@539 1047 \mt{selfify}(M, \mt{signature} \; X = S) &=& \mt{signature} \; X = S \\
adamc@539 1048 \mt{selfify}(M, \mt{include} \; S) &=& \mt{include} \; S \\
adamc@539 1049 \mt{selfify}(M, \mt{constraint} \; c_1 \sim c_2) &=& \mt{constraint} \; c_1 \sim c_2 \\
adamc@655 1050 \mt{selfify}(M, \mt{class} \; x :: \kappa) &=& \mt{class} \; x :: \kappa = M.x \\
adamc@655 1051 \mt{selfify}(M, \mt{class} \; x :: \kappa = c) &=& \mt{class} \; x :: \kappa = c \\
adamc@539 1052 \end{eqnarray*}
adamc@539 1053
adamc@540 1054 \subsection{Module Projection}
adamc@540 1055
adamc@540 1056 \begin{eqnarray*}
adamc@540 1057 \mt{proj}(M, \mt{con} \; x :: \kappa \; \overline{s}, \mt{con} \; x) &=& \kappa \\
adamc@540 1058 \mt{proj}(M, \mt{con} \; x :: \kappa = c \; \overline{s}, \mt{con} \; x) &=& (\kappa, c) \\
adamc@540 1059 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, \mt{con} \; x) &=& \mt{Type}^{\mt{len}(\overline{y})} \to \mt{Type} \\
adamc@540 1060 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z \; \overline{s}, \mt{con} \; x) &=& (\mt{Type}^{\mt{len}(\overline{y})} \to \mt{Type}, M'.z) \textrm{ (where $\Gamma \vdash M' : \mt{sig} \; \overline{s'} \; \mt{end}$} \\
adamc@540 1061 && \textrm{and $\mt{proj}(M', \overline{s'}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})$)} \\
adamc@655 1062 \mt{proj}(M, \mt{class} \; x :: \kappa \; \overline{s}, \mt{con} \; x) &=& \kappa \to \mt{Type} \\
adamc@655 1063 \mt{proj}(M, \mt{class} \; x :: \kappa = c \; \overline{s}, \mt{con} \; x) &=& (\kappa \to \mt{Type}, c) \\
adamc@540 1064 \\
adamc@540 1065 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, \mt{datatype} \; x) &=& (\overline{y}, \overline{dc}) \\
adamc@540 1066 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z \; \overline{s}, \mt{con} \; x) &=& \mt{proj}(M', \overline{s'}, \mt{datatype} \; z) \textrm{ (where $\Gamma \vdash M' : \mt{sig} \; \overline{s'} \; \mt{end}$)} \\
adamc@540 1067 \\
adamc@540 1068 \mt{proj}(M, \mt{val} \; x : \tau \; \overline{s}, \mt{val} \; x) &=& \tau \\
adamc@540 1069 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, \mt{val} \; X) &=& \overline{y ::: \mt{Type}} \to M.x \; \overline y \textrm{ (where $X \in \overline{dc}$)} \\
adamc@540 1070 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, \mt{val} \; X) &=& \overline{y ::: \mt{Type}} \to \tau \to M.x \; \overline y \textrm{ (where $X \; \mt{of} \; \tau \in \overline{dc}$)} \\
adamc@540 1071 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z, \mt{val} \; X) &=& \overline{y ::: \mt{Type}} \to M.x \; \overline y \textrm{ (where $\Gamma \vdash M' : \mt{sig} \; \overline{s'} \; \mt{end}$} \\
adamc@540 1072 && \textrm{and $\mt{proj}(M', \overline{s'}, \mt{datatype} \; z = (\overline{y}, \overline{dc})$ and $X \in \overline{dc}$)} \\
adamc@540 1073 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z, \mt{val} \; X) &=& \overline{y ::: \mt{Type}} \to \tau \to M.x \; \overline y \textrm{ (where $\Gamma \vdash M' : \mt{sig} \; \overline{s'} \; \mt{end}$} \\
adamc@558 1074 && \textrm{and $\mt{proj}(M', \overline{s'}, \mt{datatype} \; z = (\overline{y}, \overline{dc})$ and $X \; \mt{of} \; \tau \in \overline{dc}$)} \\
adamc@540 1075 \\
adamc@540 1076 \mt{proj}(M, \mt{structure} \; X : S \; \overline{s}, \mt{structure} \; X) &=& S \\
adamc@540 1077 \\
adamc@540 1078 \mt{proj}(M, \mt{signature} \; X = S \; \overline{s}, \mt{signature} \; X) &=& S \\
adamc@540 1079 \\
adamc@540 1080 \mt{proj}(M, \mt{con} \; x :: \kappa \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1081 \mt{proj}(M, \mt{con} \; x :: \kappa = c \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1082 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1083 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1084 \mt{proj}(M, \mt{val} \; x : \tau \; \overline{s}, V) &=& \mt{proj}(M, \overline{s}, V) \\
adamc@540 1085 \mt{proj}(M, \mt{structure} \; X : S \; \overline{s}, V) &=& [X \mapsto M.X]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1086 \mt{proj}(M, \mt{signature} \; X = S \; \overline{s}, V) &=& [X \mapsto M.X]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1087 \mt{proj}(M, \mt{include} \; S \; \overline{s}, V) &=& \mt{proj}(M, \overline{s'} \; \overline{s}, V) \textrm{ (where $\Gamma \vdash S \equiv \mt{sig} \; \overline{s'} \; \mt{end}$)} \\
adamc@540 1088 \mt{proj}(M, \mt{constraint} \; c_1 \sim c_2 \; \overline{s}, V) &=& \mt{proj}(M, \overline{s}, V) \\
adamc@655 1089 \mt{proj}(M, \mt{class} \; x :: \kappa \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@655 1090 \mt{proj}(M, \mt{class} \; x :: \kappa = c \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1091 \end{eqnarray*}
adamc@540 1092
adamc@541 1093
adamc@541 1094 \section{Type Inference}
adamc@541 1095
adamc@541 1096 The Ur/Web compiler uses \emph{heuristic type inference}, with no claims of completeness with respect to the declarative specification of the last section. The rules in use seem to work well in practice. This section summarizes those rules, to help Ur programmers predict what will work and what won't.
adamc@541 1097
adamc@541 1098 \subsection{Basic Unification}
adamc@541 1099
adamc@560 1100 Type-checkers for languages based on the Hindley-Milner type discipline, like ML and Haskell, take advantage of \emph{principal typing} properties, making complete type inference relatively straightforward. Inference algorithms are traditionally implemented using type unification variables, at various points asserting equalities between types, in the process discovering the values of type variables. The Ur/Web compiler uses the same basic strategy, but the complexity of the type system rules out easy completeness.
adamc@541 1101
adamc@656 1102 Type-checking can require evaluating recursive functional programs, thanks to the type-level $\mt{map}$ operator. When a unification variable appears in such a type, the next step of computation can be undetermined. The value of that variable might be determined later, but this would be ``too late'' for the unification problems generated at the first occurrence. This is the essential source of incompleteness.
adamc@541 1103
adamc@541 1104 Nonetheless, the unification engine tends to do reasonably well. Unlike in ML, polymorphism is never inferred in definitions; it must be indicated explicitly by writing out constructor-level parameters. By writing these and other annotations, the programmer can generally get the type inference engine to do most of the type reconstruction work.
adamc@541 1105
adamc@541 1106 \subsection{Unifying Record Types}
adamc@541 1107
adamc@570 1108 The type inference engine tries to take advantage of the algebraic rules governing type-level records, as shown in Section \ref{definitional}. When two constructors of record kind are unified, they are reduced to normal forms, with like terms crossed off from each normal form until, hopefully, nothing remains. This cannot be complete, with the inclusion of unification variables. The type-checker can help you understand what goes wrong when the process fails, as it outputs the unmatched remainders of the two normal forms.
adamc@541 1109
adamc@656 1110 \subsection{\label{typeclasses}Constructor Classes}
adamc@541 1111
adamc@784 1112 Ur includes a constructor class facility inspired by Haskell's. The current version is experimental, with very general Prolog-like facilities that can lead to compile-time non-termination.
adamc@541 1113
adamc@784 1114 Constructor classes are integrated with the module system. A constructor class of kind $\kappa$ is just a constructor of kind $\kappa$. By marking such a constructor $c$ as a constructor class, the programmer instructs the type inference engine to, in each scope, record all values of types $c \; c_1 \; \ldots \; c_n$ as \emph{instances}. Any function argument whose type is of such a form is treated as implicit, to be determined by examining the current instance database.
adamc@541 1115
adamc@656 1116 The ``dictionary encoding'' often used in Haskell implementations is made explicit in Ur. Constructor class instances are just properly-typed values, and they can also be considered as ``proofs'' of membership in the class. In some cases, it is useful to pass these proofs around explicitly. An underscore written where a proof is expected will also be inferred, if possible, from the current instance database.
adamc@541 1117
adamc@656 1118 Just as for constructors, constructors classes may be exported from modules, and they may be exported as concrete or abstract. Concrete constructor classes have their ``real'' definitions exposed, so that client code may add new instances freely. Abstract constructor classes are useful as ``predicates'' that can be used to enforce invariants, as we will see in some definitions of SQL syntax in the Ur/Web standard library.
adamc@541 1119
adamc@541 1120 \subsection{Reverse-Engineering Record Types}
adamc@541 1121
adamc@656 1122 It's useful to write Ur functions and functors that take record constructors as inputs, but these constructors can grow quite long, even though their values are often implied by other arguments. The compiler uses a simple heuristic to infer the values of unification variables that are mapped over, yielding known results. If the result is empty, we're done; if it's not empty, we replace a single unification variable with a new constructor formed from three new unification variables, as in $[\alpha = \beta] \rc \gamma$. This process can often be repeated to determine a unification variable fully.
adamc@541 1123
adamc@541 1124 \subsection{Implicit Arguments in Functor Applications}
adamc@541 1125
adamc@656 1126 Constructor, constraint, and constructor class witness members of structures may be omitted, when those structures are used in contexts where their assigned signatures imply how to fill in those missing members. This feature combines well with reverse-engineering to allow for uses of complicated meta-programming functors with little more code than would be necessary to invoke an untyped, ad-hoc code generator.
adamc@541 1127
adamc@541 1128
adamc@542 1129 \section{The Ur Standard Library}
adamc@542 1130
adamc@542 1131 The built-in parts of the Ur/Web standard library are described by the signature in \texttt{lib/basis.urs} in the distribution. A module $\mt{Basis}$ ascribing to that signature is available in the initial environment, and every program is implicitly prefixed by $\mt{open} \; \mt{Basis}$.
adamc@542 1132
adamc@542 1133 Additionally, other common functions that are definable within Ur are included in \texttt{lib/top.urs} and \texttt{lib/top.ur}. This $\mt{Top}$ module is also opened implicitly.
adamc@542 1134
adamc@542 1135 The idea behind Ur is to serve as the ideal host for embedded domain-specific languages. For now, however, the ``generic'' functionality is intermixed with Ur/Web-specific functionality, including in these two library modules. We hope that these generic library components have types that speak for themselves. The next section introduces the Ur/Web-specific elements. Here, we only give the type declarations from the beginning of $\mt{Basis}$.
adamc@542 1136 $$\begin{array}{l}
adamc@542 1137 \mt{type} \; \mt{int} \\
adamc@542 1138 \mt{type} \; \mt{float} \\
adamc@542 1139 \mt{type} \; \mt{string} \\
adamc@542 1140 \mt{type} \; \mt{time} \\
adamc@785 1141 \mt{type} \; \mt{blob} \\
adamc@542 1142 \\
adamc@542 1143 \mt{type} \; \mt{unit} = \{\} \\
adamc@542 1144 \\
adamc@542 1145 \mt{datatype} \; \mt{bool} = \mt{False} \mid \mt{True} \\
adamc@542 1146 \\
adamc@785 1147 \mt{datatype} \; \mt{option} \; \mt{t} = \mt{None} \mid \mt{Some} \; \mt{of} \; \mt{t} \\
adamc@785 1148 \\
adamc@785 1149 \mt{datatype} \; \mt{list} \; \mt{t} = \mt{Nil} \mid \mt{Cons} \; \mt{of} \; \mt{t} \times \mt{list} \; \mt{t}
adamc@542 1150 \end{array}$$
adamc@542 1151
adamc@785 1152 The only unusual element of this list is the $\mt{blob}$ type, which stands for binary sequences.
adamc@785 1153
adamc@657 1154 Another important generic Ur element comes at the beginning of \texttt{top.urs}.
adamc@657 1155
adamc@657 1156 $$\begin{array}{l}
adamc@657 1157 \mt{con} \; \mt{folder} :: \mt{K} \longrightarrow \{\mt{K}\} \to \mt{Type} \\
adamc@657 1158 \\
adamc@657 1159 \mt{val} \; \mt{fold} : \mt{K} \longrightarrow \mt{tf} :: (\{\mt{K}\} \to \mt{Type}) \\
adamc@657 1160 \hspace{.1in} \to (\mt{nm} :: \mt{Name} \to \mt{v} :: \mt{K} \to \mt{r} :: \{\mt{K}\} \to [[\mt{nm}] \sim \mt{r}] \Rightarrow \\
adamc@657 1161 \hspace{.2in} \mt{tf} \; \mt{r} \to \mt{tf} \; ([\mt{nm} = \mt{v}] \rc \mt{r})) \\
adamc@657 1162 \hspace{.1in} \to \mt{tf} \; [] \\
adamc@657 1163 \hspace{.1in} \to \mt{r} :: \{\mt{K}\} \to \mt{folder} \; \mt{r} \to \mt{tf} \; \mt{r}
adamc@657 1164 \end{array}$$
adamc@657 1165
adamc@657 1166 For a type-level record $\mt{r}$, a $\mt{folder} \; \mt{r}$ encodes a permutation of $\mt{r}$'s elements. The $\mt{fold}$ function can be called on a $\mt{folder}$ to iterate over the elements of $\mt{r}$ in that order. $\mt{fold}$ is parameterized on a type-level function to be used to calculate the type of each intermediate result of folding. After processing a subset $\mt{r'}$ of $\mt{r}$'s entries, the type of the accumulator should be $\mt{tf} \; \mt{r'}$. The next two expression arguments to $\mt{fold}$ are the usual step function and initial accumulator, familiar from fold functions over lists. The final two arguments are the record to fold over and a $\mt{folder}$ for it.
adamc@657 1167
adamc@664 1168 The Ur compiler treats $\mt{folder}$ like a constructor class, using built-in rules to infer $\mt{folder}$s for records with known structure. The order in which field names are mentioned in source code is used as a hint about the permutation that the programmer would like.
adamc@657 1169
adamc@542 1170
adamc@542 1171 \section{The Ur/Web Standard Library}
adamc@542 1172
adamc@658 1173 \subsection{Monads}
adamc@658 1174
adamc@658 1175 The Ur Basis defines the monad constructor class from Haskell.
adamc@658 1176
adamc@658 1177 $$\begin{array}{l}
adamc@658 1178 \mt{class} \; \mt{monad} :: \mt{Type} \to \mt{Type} \\
adamc@658 1179 \mt{val} \; \mt{return} : \mt{m} ::: (\mt{Type} \to \mt{Type}) \to \mt{t} ::: \mt{Type} \\
adamc@658 1180 \hspace{.1in} \to \mt{monad} \; \mt{m} \\
adamc@658 1181 \hspace{.1in} \to \mt{t} \to \mt{m} \; \mt{t} \\
adamc@658 1182 \mt{val} \; \mt{bind} : \mt{m} ::: (\mt{Type} \to \mt{Type}) \to \mt{t1} ::: \mt{Type} \to \mt{t2} ::: \mt{Type} \\
adamc@658 1183 \hspace{.1in} \to \mt{monad} \; \mt{m} \\
adamc@658 1184 \hspace{.1in} \to \mt{m} \; \mt{t1} \to (\mt{t1} \to \mt{m} \; \mt{t2}) \\
adamc@658 1185 \hspace{.1in} \to \mt{m} \; \mt{t2}
adamc@658 1186 \end{array}$$
adamc@658 1187
adamc@542 1188 \subsection{Transactions}
adamc@542 1189
adamc@542 1190 Ur is a pure language; we use Haskell's trick to support controlled side effects. The standard library defines a monad $\mt{transaction}$, meant to stand for actions that may be undone cleanly. By design, no other kinds of actions are supported.
adamc@542 1191 $$\begin{array}{l}
adamc@542 1192 \mt{con} \; \mt{transaction} :: \mt{Type} \to \mt{Type} \\
adamc@658 1193 \mt{val} \; \mt{transaction\_monad} : \mt{monad} \; \mt{transaction}
adamc@542 1194 \end{array}$$
adamc@542 1195
adamc@542 1196 \subsection{HTTP}
adamc@542 1197
adamc@542 1198 There are transactions for reading an HTTP header by name and for getting and setting strongly-typed cookies. Cookies may only be created by the $\mt{cookie}$ declaration form, ensuring that they be named consistently based on module structure.
adamc@542 1199 $$\begin{array}{l}
adamc@786 1200 \mt{val} \; \mt{requestHeader} : \mt{string} \to \mt{transaction} \; (\mt{option} \; \mt{string}) \\
adamc@786 1201 \\
adamc@786 1202 \mt{con} \; \mt{http\_cookie} :: \mt{Type} \to \mt{Type} \\
adamc@786 1203 \mt{val} \; \mt{getCookie} : \mt{t} ::: \mt{Type} \to \mt{http\_cookie} \; \mt{t} \to \mt{transaction} \; (\mt{option} \; \mt{t}) \\
adamc@786 1204 \mt{val} \; \mt{setCookie} : \mt{t} ::: \mt{Type} \to \mt{http\_cookie} \; \mt{t} \to \mt{t} \to \mt{transaction} \; \mt{unit}
adamc@786 1205 \end{array}$$
adamc@786 1206
adamc@786 1207 There are also an abstract $\mt{url}$ type and functions for converting to it, based on the policy defined by \texttt{[allow|deny] url} directives in the project file.
adamc@786 1208 $$\begin{array}{l}
adamc@786 1209 \mt{type} \; \mt{url} \\
adamc@786 1210 \mt{val} \; \mt{bless} : \mt{string} \to \mt{url} \\
adamc@786 1211 \mt{val} \; \mt{checkUrl} : \mt{string} \to \mt{option} \; \mt{url}
adamc@786 1212 \end{array}$$
adamc@786 1213 $\mt{bless}$ raises a runtime error if the string passed to it fails the URL policy.
adamc@786 1214
adamc@786 1215 It's possible for pages to return files of arbitrary MIME types. A file can be input from the user using this data type, along with the $\mt{upload}$ form tag.
adamc@786 1216 $$\begin{array}{l}
adamc@786 1217 \mt{type} \; \mt{file} \\
adamc@786 1218 \mt{val} \; \mt{fileName} : \mt{file} \to \mt{option} \; \mt{string} \\
adamc@786 1219 \mt{val} \; \mt{fileMimeType} : \mt{file} \to \mt{string} \\
adamc@786 1220 \mt{val} \; \mt{fileData} : \mt{file} \to \mt{blob}
adamc@786 1221 \end{array}$$
adamc@786 1222
adamc@786 1223 A blob can be extracted from a file and returned as the page result. There are bless and check functions for MIME types analogous to those for URLs.
adamc@786 1224 $$\begin{array}{l}
adamc@786 1225 \mt{type} \; \mt{mimeType} \\
adamc@786 1226 \mt{val} \; \mt{blessMime} : \mt{string} \to \mt{mimeType} \\
adamc@786 1227 \mt{val} \; \mt{checkMime} : \mt{string} \to \mt{option} \; \mt{mimeType} \\
adamc@786 1228 \mt{val} \; \mt{returnBlob} : \mt{t} ::: \mt{Type} \to \mt{blob} \to \mt{mimeType} \to \mt{transaction} \; \mt{t}
adamc@542 1229 \end{array}$$
adamc@542 1230
adamc@543 1231 \subsection{SQL}
adamc@543 1232
adamc@543 1233 The fundamental unit of interest in the embedding of SQL is tables, described by a type family and creatable only via the $\mt{table}$ declaration form.
adamc@543 1234 $$\begin{array}{l}
adamc@785 1235 \mt{con} \; \mt{sql\_table} :: \{\mt{Type}\} \to \{\{\mt{Unit}\}\} \to \mt{Type}
adamc@785 1236 \end{array}$$
adamc@785 1237 The first argument to this constructor gives the names and types of a table's columns, and the second argument gives the set of valid keys. Keys are the only subsets of the columns that may be referenced as foreign keys. Each key has a name.
adamc@785 1238
adamc@785 1239 We also have the simpler type family of SQL views, which have no keys.
adamc@785 1240 $$\begin{array}{l}
adamc@785 1241 \mt{con} \; \mt{sql\_view} :: \{\mt{Type}\} \to \mt{Type}
adamc@543 1242 \end{array}$$
adamc@543 1243
adamc@785 1244 A multi-parameter type class is used to allow tables and views to be used interchangeably, with a way of extracting the set of columns from each.
adamc@785 1245 $$\begin{array}{l}
adamc@785 1246 \mt{class} \; \mt{fieldsOf} :: \mt{Type} \to \{\mt{Type}\} \to \mt{Type} \\
adamc@785 1247 \mt{val} \; \mt{fieldsOf\_table} : \mt{fs} ::: \{\mt{Type}\} \to \mt{keys} ::: \{\{\mt{Unit}\}\} \to \mt{fieldsOf} \; (\mt{sql\_table} \; \mt{fs} \; \mt{keys}) \; \mt{fs} \\
adamc@785 1248 \mt{val} \; \mt{fieldsOf\_view} : \mt{fs} ::: \{\mt{Type}\} \to \mt{fieldsOf} \; (\mt{sql\_view} \; \mt{fs}) \; \mt{fs}
adamc@785 1249 \end{array}$$
adamc@785 1250
adamc@785 1251 \subsubsection{Table Constraints}
adamc@785 1252
adamc@785 1253 Tables may be declared with constraints, such that database modifications that violate the constraints are blocked. A table may have at most one \texttt{PRIMARY KEY} constraint, which gives the subset of columns that will most often be used to look up individual rows in the table.
adamc@785 1254
adamc@785 1255 $$\begin{array}{l}
adamc@785 1256 \mt{con} \; \mt{primary\_key} :: \{\mt{Type}\} \to \{\{\mt{Unit}\}\} \to \mt{Type} \\
adamc@785 1257 \mt{val} \; \mt{no\_primary\_key} : \mt{fs} ::: \{\mt{Type}\} \to \mt{primary\_key} \; \mt{fs} \; [] \\
adamc@785 1258 \mt{val} \; \mt{primary\_key} : \mt{rest} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \to \mt{key1} :: \mt{Name} \to \mt{keys} :: \{\mt{Type}\} \\
adamc@785 1259 \hspace{.1in} \to [[\mt{key1}] \sim \mt{keys}] \Rightarrow [[\mt{key1} = \mt{t}] \rc \mt{keys} \sim \mt{rest}] \\
adamc@785 1260 \hspace{.1in} \Rightarrow \$([\mt{key1} = \mt{sql\_injectable\_prim} \; \mt{t}] \rc \mt{map} \; \mt{sql\_injectable\_prim} \; \mt{keys}) \\
adamc@785 1261 \hspace{.1in} \to \mt{primary\_key} \; ([\mt{key1} = \mt{t}] \rc \mt{keys} \rc \mt{rest}) \; [\mt{Pkey} = [\mt{key1}] \rc \mt{map} \; (\lambda \_ \Rightarrow ()) \; \mt{keys}]
adamc@785 1262 \end{array}$$
adamc@785 1263 The type class $\mt{sql\_injectable\_prim}$ characterizes which types are allowed in SQL and are not $\mt{option}$ types. In SQL, a \texttt{PRIMARY KEY} constraint enforces after-the-fact that a column may not contain \texttt{NULL}s, but Ur/Web forces that information to be included in table types from the beginning. Thus, the only effect of this kind of constraint in Ur/Web is to enforce uniqueness of the given key within the table.
adamc@785 1264
adamc@785 1265 A type family stands for sets of named constraints of the remaining varieties.
adamc@785 1266 $$\begin{array}{l}
adamc@785 1267 \mt{con} \; \mt{sql\_constraints} :: \{\mt{Type}\} \to \{\{\mt{Unit}\}\} \to \mt{Type}
adamc@785 1268 \end{array}$$
adamc@785 1269 The first argument gives the column types of the table being constrained, and the second argument maps constraint names to the keys that they define. Constraints that don't define keys are mapped to ``empty keys.''
adamc@785 1270
adamc@785 1271 There is a type family of individual, unnamed constraints.
adamc@785 1272 $$\begin{array}{l}
adamc@785 1273 \mt{con} \; \mt{sql\_constraint} :: \{\mt{Type}\} \to \{\mt{Unit}\} \to \mt{Type}
adamc@785 1274 \end{array}$$
adamc@785 1275 The first argument is the same as above, and the second argument gives the key columns for just this constraint.
adamc@785 1276
adamc@785 1277 We have operations for assembling constraints into constraint sets.
adamc@785 1278 $$\begin{array}{l}
adamc@785 1279 \mt{val} \; \mt{no\_constraint} : \mt{fs} ::: \{\mt{Type}\} \to \mt{sql\_constraints} \; \mt{fs} \; [] \\
adamc@785 1280 \mt{val} \; \mt{one\_constraint} : \mt{fs} ::: \{\mt{Type}\} \to \mt{unique} ::: \{\mt{Unit}\} \to \mt{name} :: \mt{Name} \\
adamc@785 1281 \hspace{.1in} \to \mt{sql\_constraint} \; \mt{fs} \; \mt{unique} \to \mt{sql\_constraints} \; \mt{fs} \; [\mt{name} = \mt{unique}] \\
adamc@785 1282 \mt{val} \; \mt{join\_constraints} : \mt{fs} ::: \{\mt{Type}\} \to \mt{uniques1} ::: \{\{\mt{Unit}\}\} \to \mt{uniques2} ::: \{\{\mt{Unit}\}\} \to [\mt{uniques1} \sim \mt{uniques2}] \\
adamc@785 1283 \hspace{.1in} \Rightarrow \mt{sql\_constraints} \; \mt{fs} \; \mt{uniques1} \to \mt{sql\_constraints} \; \mt{fs} \; \mt{uniques2} \to \mt{sql\_constraints} \; \mt{fs} \; (\mt{uniques1} \rc \mt{uniques2})
adamc@785 1284 \end{array}$$
adamc@785 1285
adamc@785 1286 A \texttt{UNIQUE} constraint forces a set of columns to be a key, which means that no combination of column values may occur more than once in the table. The $\mt{unique1}$ and $\mt{unique}$ arguments are separated out only to ensure that empty \texttt{UNIQUE} constraints are rejected.
adamc@785 1287 $$\begin{array}{l}
adamc@785 1288 \mt{val} \; \mt{unique} : \mt{rest} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \to \mt{unique1} :: \mt{Name} \to \mt{unique} :: \{\mt{Type}\} \\
adamc@785 1289 \hspace{.1in} \to [[\mt{unique1}] \sim \mt{unique}] \Rightarrow [[\mt{unique1} = \mt{t}] \rc \mt{unique} \sim \mt{rest}] \\
adamc@785 1290 \hspace{.1in} \Rightarrow \mt{sql\_constraint} \; ([\mt{unique1} = \mt{t}] \rc \mt{unique} \rc \mt{rest}) \; ([\mt{unique1}] \rc \mt{map} \; (\lambda \_ \Rightarrow ()) \; \mt{unique})
adamc@785 1291 \end{array}$$
adamc@785 1292
adamc@785 1293 A \texttt{FOREIGN KEY} constraint connects a set of local columns to a local or remote key, enforcing that the local columns always reference an existent row of the foreign key's table. A local column of type $\mt{t}$ may be linked to a foreign column of type $\mt{option} \; \mt{t}$, and vice versa. We formalize that notion with a type class.
adamc@785 1294 $$\begin{array}{l}
adamc@785 1295 \mt{class} \; \mt{linkable} :: \mt{Type} \to \mt{Type} \to \mt{Type} \\
adamc@785 1296 \mt{val} \; \mt{linkable\_same} : \mt{t} ::: \mt{Type} \to \mt{linkable} \; \mt{t} \; \mt{t} \\
adamc@785 1297 \mt{val} \; \mt{linkable\_from\_nullable} : \mt{t} ::: \mt{Type} \to \mt{linkable} \; (\mt{option} \; \mt{t}) \; \mt{t} \\
adamc@785 1298 \mt{val} \; \mt{linkable\_to\_nullable} : \mt{t} ::: \mt{Type} \to \mt{linkable} \; \mt{t} \; (\mt{option} \; \mt{t})
adamc@785 1299 \end{array}$$
adamc@785 1300
adamc@785 1301 The $\mt{matching}$ type family uses $\mt{linkable}$ to define when two keys match up type-wise.
adamc@785 1302 $$\begin{array}{l}
adamc@785 1303 \mt{con} \; \mt{matching} :: \{\mt{Type}\} \to \{\mt{Type}\} \to \mt{Type} \\
adamc@785 1304 \mt{val} \; \mt{mat\_nil} : \mt{matching} \; [] \; [] \\
adamc@785 1305 \mt{val} \; \mt{mat\_cons} : \mt{t1} ::: \mt{Type} \to \mt{rest1} ::: \{\mt{Type}\} \to \mt{t2} ::: \mt{Type} \to \mt{rest2} ::: \{\mt{Type}\} \to \mt{nm1} :: \mt{Name} \to \mt{nm2} :: \mt{Name} \\
adamc@785 1306 \hspace{.1in} \to [[\mt{nm1}] \sim \mt{rest1}] \Rightarrow [[\mt{nm2}] \sim \mt{rest2}] \Rightarrow \mt{linkable} \; \mt{t1} \; \mt{t2} \to \mt{matching} \; \mt{rest1} \; \mt{rest2} \\
adamc@785 1307 \hspace{.1in} \to \mt{matching} \; ([\mt{nm1} = \mt{t1}] \rc \mt{rest1}) \; ([\mt{nm2} = \mt{t2}] \rc \mt{rest2})
adamc@785 1308 \end{array}$$
adamc@785 1309
adamc@785 1310 SQL provides a number of different propagation modes for \texttt{FOREIGN KEY} constraints, governing what happens when a row containing a still-referenced foreign key value is deleted or modified to have a different key value. The argument of a propagation mode's type gives the local key type.
adamc@785 1311 $$\begin{array}{l}
adamc@785 1312 \mt{con} \; \mt{propagation\_mode} :: \{\mt{Type}\} \to \mt{Type} \\
adamc@785 1313 \mt{val} \; \mt{restrict} : \mt{fs} ::: \{\mt{Type}\} \to \mt{propagation\_mode} \; \mt{fs} \\
adamc@785 1314 \mt{val} \; \mt{cascade} : \mt{fs} ::: \{\mt{Type}\} \to \mt{propagation\_mode} \; \mt{fs} \\
adamc@785 1315 \mt{val} \; \mt{no\_action} : \mt{fs} ::: \{\mt{Type}\} \to \mt{propagation\_mode} \; \mt{fs} \\
adamc@785 1316 \mt{val} \; \mt{set\_null} : \mt{fs} ::: \{\mt{Type}\} \to \mt{propagation\_mode} \; (\mt{map} \; \mt{option} \; \mt{fs})
adamc@785 1317 \end{array}$$
adamc@785 1318
adamc@785 1319 Finally, we put these ingredient together to define the \texttt{FOREIGN KEY} constraint function.
adamc@785 1320 $$\begin{array}{l}
adamc@785 1321 \mt{val} \; \mt{foreign\_key} : \mt{mine1} ::: \mt{Name} \to \mt{t} ::: \mt{Type} \to \mt{mine} ::: \{\mt{Type}\} \to \mt{munused} ::: \{\mt{Type}\} \to \mt{foreign} ::: \{\mt{Type}\} \\
adamc@785 1322 \hspace{.1in} \to \mt{funused} ::: \{\mt{Type}\} \to \mt{nm} ::: \mt{Name} \to \mt{uniques} ::: \{\{\mt{Unit}\}\} \\
adamc@785 1323 \hspace{.1in} \to [[\mt{mine1}] \sim \mt{mine}] \Rightarrow [[\mt{mine1} = \mt{t}] \rc \mt{mine} \sim \mt{munused}] \Rightarrow [\mt{foreign} \sim \mt{funused}] \Rightarrow [[\mt{nm}] \sim \mt{uniques}] \\
adamc@785 1324 \hspace{.1in} \Rightarrow \mt{matching} \; ([\mt{mine1} = \mt{t}] \rc \mt{mine}) \; \mt{foreign} \\
adamc@785 1325 \hspace{.1in} \to \mt{sql\_table} \; (\mt{foreign} \rc \mt{funused}) \; ([\mt{nm} = \mt{map} \; (\lambda \_ \Rightarrow ()) \; \mt{foreign}] \rc \mt{uniques}) \\
adamc@785 1326 \hspace{.1in} \to \{\mt{OnDelete} : \mt{propagation\_mode} \; ([\mt{mine1} = \mt{t}] \rc \mt{mine}), \\
adamc@785 1327 \hspace{.2in} \mt{OnUpdate} : \mt{propagation\_mode} \; ([\mt{mine1} = \mt{t}] \rc \mt{mine})\} \\
adamc@785 1328 \hspace{.1in} \to \mt{sql\_constraint} \; ([\mt{mine1} = \mt{t}] \rc \mt{mine} \rc \mt{munused}) \; []
adamc@785 1329 \end{array}$$
adamc@785 1330
adamc@785 1331 The last kind of constraint is a \texttt{CHECK} constraint, which attaches a boolean invariant over a row's contents. It is defined using the $\mt{sql\_exp}$ type family, which we discuss in more detail below.
adamc@785 1332 $$\begin{array}{l}
adamc@785 1333 \mt{val} \; \mt{check} : \mt{fs} ::: \{\mt{Type}\} \to \mt{sql\_exp} \; [] \; [] \; \mt{fs} \; \mt{bool} \to \mt{sql\_constraint} \; \mt{fs} \; []
adamc@785 1334 \end{array}$$
adamc@785 1335
adamc@785 1336 Section \ref{tables} shows the expanded syntax of the $\mt{table}$ declaration and signature item that includes constraints. There is no other way to use constraints with SQL in Ur/Web.
adamc@785 1337
adamc@784 1338
adamc@543 1339 \subsubsection{Queries}
adamc@543 1340
adamc@543 1341 A final query is constructed via the $\mt{sql\_query}$ function. Constructor arguments respectively specify the table fields we select (as records mapping tables to the subsets of their fields that we choose) and the (always named) extra expressions that we select.
adamc@543 1342 $$\begin{array}{l}
adamc@543 1343 \mt{con} \; \mt{sql\_query} :: \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \\
adamc@543 1344 \mt{val} \; \mt{sql\_query} : \mt{tables} ::: \{\{\mt{Type}\}\} \\
adamc@543 1345 \hspace{.1in} \to \mt{selectedFields} ::: \{\{\mt{Type}\}\} \\
adamc@543 1346 \hspace{.1in} \to \mt{selectedExps} ::: \{\mt{Type}\} \\
adamc@543 1347 \hspace{.1in} \to \{\mt{Rows} : \mt{sql\_query1} \; \mt{tables} \; \mt{selectedFields} \; \mt{selectedExps}, \\
adamc@543 1348 \hspace{.2in} \mt{OrderBy} : \mt{sql\_order\_by} \; \mt{tables} \; \mt{selectedExps}, \\
adamc@543 1349 \hspace{.2in} \mt{Limit} : \mt{sql\_limit}, \\
adamc@543 1350 \hspace{.2in} \mt{Offset} : \mt{sql\_offset}\} \\
adamc@543 1351 \hspace{.1in} \to \mt{sql\_query} \; \mt{selectedFields} \; \mt{selectedExps}
adamc@543 1352 \end{array}$$
adamc@543 1353
adamc@545 1354 Queries are used by folding over their results inside transactions.
adamc@545 1355 $$\begin{array}{l}
adamc@545 1356 \mt{val} \; \mt{query} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \lambda [\mt{tables} \sim \mt{exps}] \Rightarrow \mt{state} ::: \mt{Type} \to \mt{sql\_query} \; \mt{tables} \; \mt{exps} \\
adamc@658 1357 \hspace{.1in} \to (\$(\mt{exps} \rc \mt{map} \; (\lambda \mt{fields} :: \{\mt{Type}\} \Rightarrow \$\mt{fields}) \; \mt{tables}) \\
adamc@545 1358 \hspace{.2in} \to \mt{state} \to \mt{transaction} \; \mt{state}) \\
adamc@545 1359 \hspace{.1in} \to \mt{state} \to \mt{transaction} \; \mt{state}
adamc@545 1360 \end{array}$$
adamc@545 1361
adamc@543 1362 Most of the complexity of the query encoding is in the type $\mt{sql\_query1}$, which includes simple queries and derived queries based on relational operators. Constructor arguments respectively specify the tables we select from, the subset of fields that we keep from each table for the result rows, and the extra expressions that we select.
adamc@543 1363 $$\begin{array}{l}
adamc@543 1364 \mt{con} \; \mt{sql\_query1} :: \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \\
adamc@543 1365 \\
adamc@543 1366 \mt{type} \; \mt{sql\_relop} \\
adamc@543 1367 \mt{val} \; \mt{sql\_union} : \mt{sql\_relop} \\
adamc@543 1368 \mt{val} \; \mt{sql\_intersect} : \mt{sql\_relop} \\
adamc@543 1369 \mt{val} \; \mt{sql\_except} : \mt{sql\_relop} \\
adamc@543 1370 \mt{val} \; \mt{sql\_relop} : \mt{tables1} ::: \{\{\mt{Type}\}\} \\
adamc@543 1371 \hspace{.1in} \to \mt{tables2} ::: \{\{\mt{Type}\}\} \\
adamc@543 1372 \hspace{.1in} \to \mt{selectedFields} ::: \{\{\mt{Type}\}\} \\
adamc@543 1373 \hspace{.1in} \to \mt{selectedExps} ::: \{\mt{Type}\} \\
adamc@543 1374 \hspace{.1in} \to \mt{sql\_relop} \\
adamc@543 1375 \hspace{.1in} \to \mt{sql\_query1} \; \mt{tables1} \; \mt{selectedFields} \; \mt{selectedExps} \\
adamc@543 1376 \hspace{.1in} \to \mt{sql\_query1} \; \mt{tables2} \; \mt{selectedFields} \; \mt{selectedExps} \\
adamc@543 1377 \hspace{.1in} \to \mt{sql\_query1} \; \mt{selectedFields} \; \mt{selectedFields} \; \mt{selectedExps}
adamc@543 1378 \end{array}$$
adamc@543 1379
adamc@543 1380 $$\begin{array}{l}
adamc@543 1381 \mt{val} \; \mt{sql\_query1} : \mt{tables} ::: \{\{\mt{Type}\}\} \\
adamc@543 1382 \hspace{.1in} \to \mt{grouped} ::: \{\{\mt{Type}\}\} \\
adamc@543 1383 \hspace{.1in} \to \mt{selectedFields} ::: \{\{\mt{Type}\}\} \\
adamc@543 1384 \hspace{.1in} \to \mt{selectedExps} ::: \{\mt{Type}\} \\
adamc@786 1385 \hspace{.1in} \to \{\mt{From} : \mt{sql\_from\_items} \; \mt{tables}, \\
adamc@543 1386 \hspace{.2in} \mt{Where} : \mt{sql\_exp} \; \mt{tables} \; [] \; [] \; \mt{bool}, \\
adamc@543 1387 \hspace{.2in} \mt{GroupBy} : \mt{sql\_subset} \; \mt{tables} \; \mt{grouped}, \\
adamc@543 1388 \hspace{.2in} \mt{Having} : \mt{sql\_exp} \; \mt{grouped} \; \mt{tables} \; [] \; \mt{bool}, \\
adamc@543 1389 \hspace{.2in} \mt{SelectFields} : \mt{sql\_subset} \; \mt{grouped} \; \mt{selectedFields}, \\
adamc@658 1390 \hspace{.2in} \mt {SelectExps} : \$(\mt{map} \; (\mt{sql\_exp} \; \mt{grouped} \; \mt{tables} \; []) \; \mt{selectedExps}) \} \\
adamc@543 1391 \hspace{.1in} \to \mt{sql\_query1} \; \mt{tables} \; \mt{selectedFields} \; \mt{selectedExps}
adamc@543 1392 \end{array}$$
adamc@543 1393
adamc@543 1394 To encode projection of subsets of fields in $\mt{SELECT}$ clauses, and to encode $\mt{GROUP} \; \mt{BY}$ clauses, we rely on a type family $\mt{sql\_subset}$, capturing what it means for one record of table fields to be a subset of another. The main constructor $\mt{sql\_subset}$ ``proves subset facts'' by requiring a split of a record into kept and dropped parts. The extra constructor $\mt{sql\_subset\_all}$ is a convenience for keeping all fields of a record.
adamc@543 1395 $$\begin{array}{l}
adamc@543 1396 \mt{con} \; \mt{sql\_subset} :: \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \mt{Type} \\
adamc@543 1397 \mt{val} \; \mt{sql\_subset} : \mt{keep\_drop} :: \{(\{\mt{Type}\} \times \{\mt{Type}\})\} \\
adamc@543 1398 \hspace{.1in} \to \mt{sql\_subset} \\
adamc@658 1399 \hspace{.2in} (\mt{map} \; (\lambda \mt{fields} :: (\{\mt{Type}\} \times \{\mt{Type}\}) \Rightarrow \mt{fields}.1 \rc \mt{fields}.2)\; \mt{keep\_drop}) \\
adamc@658 1400 \hspace{.2in} (\mt{map} \; (\lambda \mt{fields} :: (\{\mt{Type}\} \times \{\mt{Type}\}) \Rightarrow \mt{fields}.1) \; \mt{keep\_drop}) \\
adamc@543 1401 \mt{val} \; \mt{sql\_subset\_all} : \mt{tables} :: \{\{\mt{Type}\}\} \to \mt{sql\_subset} \; \mt{tables} \; \mt{tables}
adamc@543 1402 \end{array}$$
adamc@543 1403
adamc@560 1404 SQL expressions are used in several places, including $\mt{SELECT}$, $\mt{WHERE}$, $\mt{HAVING}$, and $\mt{ORDER} \; \mt{BY}$ clauses. They reify a fragment of the standard SQL expression language, while making it possible to inject ``native'' Ur values in some places. The arguments to the $\mt{sql\_exp}$ type family respectively give the unrestricted-availability table fields, the table fields that may only be used in arguments to aggregate functions, the available selected expressions, and the type of the expression.
adamc@543 1405 $$\begin{array}{l}
adamc@543 1406 \mt{con} \; \mt{sql\_exp} :: \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \to \mt{Type}
adamc@543 1407 \end{array}$$
adamc@543 1408
adamc@543 1409 Any field in scope may be converted to an expression.
adamc@543 1410 $$\begin{array}{l}
adamc@543 1411 \mt{val} \; \mt{sql\_field} : \mt{otherTabs} ::: \{\{\mt{Type}\}\} \to \mt{otherFields} ::: \{\mt{Type}\} \\
adamc@543 1412 \hspace{.1in} \to \mt{fieldType} ::: \mt{Type} \to \mt{agg} ::: \{\{\mt{Type}\}\} \\
adamc@543 1413 \hspace{.1in} \to \mt{exps} ::: \{\mt{Type}\} \\
adamc@543 1414 \hspace{.1in} \to \mt{tab} :: \mt{Name} \to \mt{field} :: \mt{Name} \\
adamc@543 1415 \hspace{.1in} \to \mt{sql\_exp} \; ([\mt{tab} = [\mt{field} = \mt{fieldType}] \rc \mt{otherFields}] \rc \mt{otherTabs}) \; \mt{agg} \; \mt{exps} \; \mt{fieldType}
adamc@543 1416 \end{array}$$
adamc@543 1417
adamc@544 1418 There is an analogous function for referencing named expressions.
adamc@544 1419 $$\begin{array}{l}
adamc@544 1420 \mt{val} \; \mt{sql\_exp} : \mt{tabs} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{t} ::: \mt{Type} \to \mt{rest} ::: \{\mt{Type}\} \to \mt{nm} :: \mt{Name} \\
adamc@544 1421 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tabs} \; \mt{agg} \; ([\mt{nm} = \mt{t}] \rc \mt{rest}) \; \mt{t}
adamc@544 1422 \end{array}$$
adamc@544 1423
adamc@544 1424 Ur values of appropriate types may be injected into SQL expressions.
adamc@544 1425 $$\begin{array}{l}
adamc@786 1426 \mt{class} \; \mt{sql\_injectable\_prim} \\
adamc@786 1427 \mt{val} \; \mt{sql\_bool} : \mt{sql\_injectable\_prim} \; \mt{bool} \\
adamc@786 1428 \mt{val} \; \mt{sql\_int} : \mt{sql\_injectable\_prim} \; \mt{int} \\
adamc@786 1429 \mt{val} \; \mt{sql\_float} : \mt{sql\_injectable\_prim} \; \mt{float} \\
adamc@786 1430 \mt{val} \; \mt{sql\_string} : \mt{sql\_injectable\_prim} \; \mt{string} \\
adamc@786 1431 \mt{val} \; \mt{sql\_time} : \mt{sql\_injectable\_prim} \; \mt{time} \\
adamc@786 1432 \mt{val} \; \mt{sql\_blob} : \mt{sql\_injectable\_prim} \; \mt{blob} \\
adamc@786 1433 \mt{val} \; \mt{sql\_channel} : \mt{t} ::: \mt{Type} \to \mt{sql\_injectable\_prim} \; (\mt{channel} \; \mt{t}) \\
adamc@786 1434 \mt{val} \; \mt{sql\_client} : \mt{sql\_injectable\_prim} \; \mt{client} \\
adamc@786 1435 \\
adamc@544 1436 \mt{class} \; \mt{sql\_injectable} \\
adamc@786 1437 \mt{val} \; \mt{sql\_prim} : \mt{t} ::: \mt{Type} \to \mt{sql\_injectable\_prim} \; \mt{t} \to \mt{sql\_injectable} \; \mt{t} \\
adamc@786 1438 \mt{val} \; \mt{sql\_option\_prim} : \mt{t} ::: \mt{Type} \to \mt{sql\_injectable\_prim} \; \mt{t} \to \mt{sql\_injectable} \; (\mt{option} \; \mt{t}) \\
adamc@786 1439 \\
adamc@544 1440 \mt{val} \; \mt{sql\_inject} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \to \mt{sql\_injectable} \; \mt{t} \\
adamc@544 1441 \hspace{.1in} \to \mt{t} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t}
adamc@544 1442 \end{array}$$
adamc@544 1443
adamc@544 1444 We have the SQL nullness test, which is necessary because of the strange SQL semantics of equality in the presence of null values.
adamc@544 1445 $$\begin{array}{l}
adamc@544 1446 \mt{val} \; \mt{sql\_is\_null} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \\
adamc@544 1447 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; (\mt{option} \; \mt{t}) \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{bool}
adamc@544 1448 \end{array}$$
adamc@544 1449
adamc@559 1450 We have generic nullary, unary, and binary operators.
adamc@544 1451 $$\begin{array}{l}
adamc@544 1452 \mt{con} \; \mt{sql\_nfunc} :: \mt{Type} \to \mt{Type} \\
adamc@544 1453 \mt{val} \; \mt{sql\_current\_timestamp} : \mt{sql\_nfunc} \; \mt{time} \\
adamc@544 1454 \mt{val} \; \mt{sql\_nfunc} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \\
adamc@544 1455 \hspace{.1in} \to \mt{sql\_nfunc} \; \mt{t} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t} \\\end{array}$$
adamc@544 1456
adamc@544 1457 $$\begin{array}{l}
adamc@544 1458 \mt{con} \; \mt{sql\_unary} :: \mt{Type} \to \mt{Type} \to \mt{Type} \\
adamc@544 1459 \mt{val} \; \mt{sql\_not} : \mt{sql\_unary} \; \mt{bool} \; \mt{bool} \\
adamc@544 1460 \mt{val} \; \mt{sql\_unary} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{arg} ::: \mt{Type} \to \mt{res} ::: \mt{Type} \\
adamc@544 1461 \hspace{.1in} \to \mt{sql\_unary} \; \mt{arg} \; \mt{res} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{arg} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{res} \\
adamc@544 1462 \end{array}$$
adamc@544 1463
adamc@544 1464 $$\begin{array}{l}
adamc@544 1465 \mt{con} \; \mt{sql\_binary} :: \mt{Type} \to \mt{Type} \to \mt{Type} \to \mt{Type} \\
adamc@544 1466 \mt{val} \; \mt{sql\_and} : \mt{sql\_binary} \; \mt{bool} \; \mt{bool} \; \mt{bool} \\
adamc@544 1467 \mt{val} \; \mt{sql\_or} : \mt{sql\_binary} \; \mt{bool} \; \mt{bool} \; \mt{bool} \\
adamc@544 1468 \mt{val} \; \mt{sql\_binary} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{arg_1} ::: \mt{Type} \to \mt{arg_2} ::: \mt{Type} \to \mt{res} ::: \mt{Type} \\
adamc@544 1469 \hspace{.1in} \to \mt{sql\_binary} \; \mt{arg_1} \; \mt{arg_2} \; \mt{res} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{arg_1} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{arg_2} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{res}
adamc@544 1470 \end{array}$$
adamc@544 1471
adamc@544 1472 $$\begin{array}{l}
adamc@559 1473 \mt{class} \; \mt{sql\_arith} \\
adamc@559 1474 \mt{val} \; \mt{sql\_int\_arith} : \mt{sql\_arith} \; \mt{int} \\
adamc@559 1475 \mt{val} \; \mt{sql\_float\_arith} : \mt{sql\_arith} \; \mt{float} \\
adamc@559 1476 \mt{val} \; \mt{sql\_neg} : \mt{t} ::: \mt{Type} \to \mt{sql\_arith} \; \mt{t} \to \mt{sql\_unary} \; \mt{t} \; \mt{t} \\
adamc@559 1477 \mt{val} \; \mt{sql\_plus} : \mt{t} ::: \mt{Type} \to \mt{sql\_arith} \; \mt{t} \to \mt{sql\_binary} \; \mt{t} \; \mt{t} \; \mt{t} \\
adamc@559 1478 \mt{val} \; \mt{sql\_minus} : \mt{t} ::: \mt{Type} \to \mt{sql\_arith} \; \mt{t} \to \mt{sql\_binary} \; \mt{t} \; \mt{t} \; \mt{t} \\
adamc@559 1479 \mt{val} \; \mt{sql\_times} : \mt{t} ::: \mt{Type} \to \mt{sql\_arith} \; \mt{t} \to \mt{sql\_binary} \; \mt{t} \; \mt{t} \; \mt{t} \\
adamc@559 1480 \mt{val} \; \mt{sql\_div} : \mt{t} ::: \mt{Type} \to \mt{sql\_arith} \; \mt{t} \to \mt{sql\_binary} \; \mt{t} \; \mt{t} \; \mt{t} \\
adamc@559 1481 \mt{val} \; \mt{sql\_mod} : \mt{sql\_binary} \; \mt{int} \; \mt{int} \; \mt{int}
adamc@559 1482 \end{array}$$
adamc@544 1483
adamc@656 1484 Finally, we have aggregate functions. The $\mt{COUNT(\ast)}$ syntax is handled specially, since it takes no real argument. The other aggregate functions are placed into a general type family, using constructor classes to restrict usage to properly-typed arguments. The key aspect of the $\mt{sql\_aggregate}$ function's type is the shift of aggregate-function-only fields into unrestricted fields.
adamc@544 1485 $$\begin{array}{l}
adamc@544 1486 \mt{val} \; \mt{sql\_count} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{int}
adamc@544 1487 \end{array}$$
adamc@544 1488
adamc@544 1489 $$\begin{array}{l}
adamc@544 1490 \mt{con} \; \mt{sql\_aggregate} :: \mt{Type} \to \mt{Type} \\
adamc@544 1491 \mt{val} \; \mt{sql\_aggregate} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \\
adamc@544 1492 \hspace{.1in} \to \mt{sql\_aggregate} \; \mt{t} \to \mt{sql\_exp} \; \mt{agg} \; \mt{agg} \; \mt{exps} \; \mt{t} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t}
adamc@544 1493 \end{array}$$
adamc@544 1494
adamc@544 1495 $$\begin{array}{l}
adamc@544 1496 \mt{class} \; \mt{sql\_summable} \\
adamc@544 1497 \mt{val} \; \mt{sql\_summable\_int} : \mt{sql\_summable} \; \mt{int} \\
adamc@544 1498 \mt{val} \; \mt{sql\_summable\_float} : \mt{sql\_summable} \; \mt{float} \\
adamc@544 1499 \mt{val} \; \mt{sql\_avg} : \mt{t} ::: \mt{Type} \to \mt{sql\_summable} \; \mt{t} \to \mt{sql\_aggregate} \; \mt{t} \\
adamc@544 1500 \mt{val} \; \mt{sql\_sum} : \mt{t} ::: \mt{Type} \to \mt{sql\_summable} \mt{t} \to \mt{sql\_aggregate} \; \mt{t}
adamc@544 1501 \end{array}$$
adamc@544 1502
adamc@544 1503 $$\begin{array}{l}
adamc@544 1504 \mt{class} \; \mt{sql\_maxable} \\
adamc@544 1505 \mt{val} \; \mt{sql\_maxable\_int} : \mt{sql\_maxable} \; \mt{int} \\
adamc@544 1506 \mt{val} \; \mt{sql\_maxable\_float} : \mt{sql\_maxable} \; \mt{float} \\
adamc@544 1507 \mt{val} \; \mt{sql\_maxable\_string} : \mt{sql\_maxable} \; \mt{string} \\
adamc@544 1508 \mt{val} \; \mt{sql\_maxable\_time} : \mt{sql\_maxable} \; \mt{time} \\
adamc@544 1509 \mt{val} \; \mt{sql\_max} : \mt{t} ::: \mt{Type} \to \mt{sql\_maxable} \; \mt{t} \to \mt{sql\_aggregate} \; \mt{t} \\
adamc@544 1510 \mt{val} \; \mt{sql\_min} : \mt{t} ::: \mt{Type} \to \mt{sql\_maxable} \; \mt{t} \to \mt{sql\_aggregate} \; \mt{t}
adamc@544 1511 \end{array}$$
adamc@544 1512
adamc@786 1513 \texttt{FROM} clauses are specified using a type family.
adamc@786 1514 $$\begin{array}{l}
adamc@786 1515 \mt{con} \; \mt{sql\_from\_items} :: \{\{\mt{Type}\}\} \to \mt{Type} \\
adamc@786 1516 \mt{val} \; \mt{sql\_from\_table} : \mt{t} ::: \mt{Type} \to \mt{fs} ::: \{\mt{Type}\} \to \mt{fieldsOf} \; \mt{t} \; \mt{fs} \to \mt{name} :: \mt{Name} \to \mt{t} \to \mt{sql\_from\_items} \; [\mt{name} = \mt{fs}] \\
adamc@786 1517 \mt{val} \; \mt{sql\_from\_comma} : \mt{tabs1} ::: \{\{\mt{Type}\}\} \to \mt{tabs2} ::: \{\{\mt{Type}\}\} \to [\mt{tabs1} \sim \mt{tabs2}] \\
adamc@786 1518 \hspace{.1in} \Rightarrow \mt{sql\_from\_items} \; \mt{tabs1} \to \mt{sql\_from\_items} \; \mt{tabs2} \\
adamc@786 1519 \hspace{.1in} \to \mt{sql\_from\_items} \; (\mt{tabs1} \rc \mt{tabs2}) \\
adamc@786 1520 \mt{val} \; \mt{sql\_inner\_join} : \mt{tabs1} ::: \{\{\mt{Type}\}\} \to \mt{tabs2} ::: \{\{\mt{Type}\}\} \to [\mt{tabs1} \sim \mt{tabs2}] \\
adamc@786 1521 \hspace{.1in} \Rightarrow \mt{sql\_from\_items} \; \mt{tabs1} \to \mt{sql\_from\_items} \; \mt{tabs2} \\
adamc@786 1522 \hspace{.1in} \to \mt{sql\_exp} \; (\mt{tabs1} \rc \mt{tabs2}) \; [] \; [] \; \mt{bool} \\
adamc@786 1523 \hspace{.1in} \to \mt{sql\_from\_items} \; (\mt{tabs1} \rc \mt{tabs2})
adamc@786 1524 \end{array}$$
adamc@786 1525
adamc@786 1526 Besides these basic cases, outer joins are supported, which requires a type class for turning non-$\mt{option}$ columns into $\mt{option}$ columns.
adamc@786 1527 $$\begin{array}{l}
adamc@786 1528 \mt{class} \; \mt{nullify} :: \mt{Type} \to \mt{Type} \to \mt{Type} \\
adamc@786 1529 \mt{val} \; \mt{nullify\_option} : \mt{t} ::: \mt{Type} \to \mt{nullify} \; (\mt{option} \; \mt{t}) \; (\mt{option} \; \mt{t}) \\
adamc@786 1530 \mt{val} \; \mt{nullify\_prim} : \mt{t} ::: \mt{Type} \to \mt{sql\_injectable\_prim} \; \mt{t} \to \mt{nullify} \; \mt{t} \; (\mt{option} \; \mt{t})
adamc@786 1531 \end{array}$$
adamc@786 1532
adamc@786 1533 Left, right, and full outer joins can now be expressed using functions that accept records of $\mt{nullify}$ instances. Here, we give only the type for a left join as an example.
adamc@786 1534
adamc@786 1535 $$\begin{array}{l}
adamc@786 1536 \mt{val} \; \mt{sql\_left\_join} : \mt{tabs1} ::: \{\{\mt{Type}\}\} \to \mt{tabs2} ::: \{\{(\mt{Type} \times \mt{Type})\}\} \to [\mt{tabs1} \sim \mt{tabs2}] \\
adamc@786 1537 \hspace{.1in} \Rightarrow \$(\mt{map} \; (\lambda \mt{r} \Rightarrow \$(\mt{map} \; (\lambda \mt{p} :: (\mt{Type} \times \mt{Type}) \Rightarrow \mt{nullify} \; \mt{p}.1 \; \mt{p}.2) \; \mt{r})) \; \mt{tabs2}) \\
adamc@786 1538 \hspace{.1in} \to \mt{sql\_from\_items} \; \mt{tabs1} \to \mt{sql\_from\_items} \; (\mt{map} \; (\mt{map} \; (\lambda \mt{p} :: (\mt{Type} \times \mt{Type}) \Rightarrow \mt{p}.1)) \; \mt{tabs2}) \\
adamc@786 1539 \hspace{.1in} \to \mt{sql\_exp} \; (\mt{tabs1} \rc \mt{map} \; (\mt{map} \; (\lambda \mt{p} :: (\mt{Type} \times \mt{Type}) \Rightarrow \mt{p}.1)) \; \mt{tabs2}) \; [] \; [] \; \mt{bool} \\
adamc@786 1540 \hspace{.1in} \to \mt{sql\_from\_items} \; (\mt{tabs1} \rc \mt{map} \; (\mt{map} \; (\lambda \mt{p} :: (\mt{Type} \times \mt{Type}) \Rightarrow \mt{p}.2)) \; \mt{tabs2})
adamc@786 1541 \end{array}$$
adamc@786 1542
adamc@544 1543 We wrap up the definition of query syntax with the types used in representing $\mt{ORDER} \; \mt{BY}$, $\mt{LIMIT}$, and $\mt{OFFSET}$ clauses.
adamc@544 1544 $$\begin{array}{l}
adamc@544 1545 \mt{type} \; \mt{sql\_direction} \\
adamc@544 1546 \mt{val} \; \mt{sql\_asc} : \mt{sql\_direction} \\
adamc@544 1547 \mt{val} \; \mt{sql\_desc} : \mt{sql\_direction} \\
adamc@544 1548 \\
adamc@544 1549 \mt{con} \; \mt{sql\_order\_by} :: \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \\
adamc@544 1550 \mt{val} \; \mt{sql\_order\_by\_Nil} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{exps} :: \{\mt{Type}\} \to \mt{sql\_order\_by} \; \mt{tables} \; \mt{exps} \\
adamc@544 1551 \mt{val} \; \mt{sql\_order\_by\_Cons} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \\
adamc@544 1552 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tables} \; [] \; \mt{exps} \; \mt{t} \to \mt{sql\_direction} \to \mt{sql\_order\_by} \; \mt{tables} \; \mt{exps} \to \mt{sql\_order\_by} \; \mt{tables} \; \mt{exps} \\
adamc@544 1553 \\
adamc@544 1554 \mt{type} \; \mt{sql\_limit} \\
adamc@544 1555 \mt{val} \; \mt{sql\_no\_limit} : \mt{sql\_limit} \\
adamc@544 1556 \mt{val} \; \mt{sql\_limit} : \mt{int} \to \mt{sql\_limit} \\
adamc@544 1557 \\
adamc@544 1558 \mt{type} \; \mt{sql\_offset} \\
adamc@544 1559 \mt{val} \; \mt{sql\_no\_offset} : \mt{sql\_offset} \\
adamc@544 1560 \mt{val} \; \mt{sql\_offset} : \mt{int} \to \mt{sql\_offset}
adamc@544 1561 \end{array}$$
adamc@544 1562
adamc@545 1563
adamc@545 1564 \subsubsection{DML}
adamc@545 1565
adamc@545 1566 The Ur/Web library also includes an embedding of a fragment of SQL's DML, the Data Manipulation Language, for modifying database tables. Any piece of DML may be executed in a transaction.
adamc@545 1567
adamc@545 1568 $$\begin{array}{l}
adamc@545 1569 \mt{type} \; \mt{dml} \\
adamc@545 1570 \mt{val} \; \mt{dml} : \mt{dml} \to \mt{transaction} \; \mt{unit}
adamc@545 1571 \end{array}$$
adamc@545 1572
adamc@545 1573 Properly-typed records may be used to form $\mt{INSERT}$ commands.
adamc@545 1574 $$\begin{array}{l}
adamc@545 1575 \mt{val} \; \mt{insert} : \mt{fields} ::: \{\mt{Type}\} \to \mt{sql\_table} \; \mt{fields} \\
adamc@658 1576 \hspace{.1in} \to \$(\mt{map} \; (\mt{sql\_exp} \; [] \; [] \; []) \; \mt{fields}) \to \mt{dml}
adamc@545 1577 \end{array}$$
adamc@545 1578
adamc@545 1579 An $\mt{UPDATE}$ command is formed from a choice of which table fields to leave alone and which to change, along with an expression to use to compute the new value of each changed field and a $\mt{WHERE}$ clause.
adamc@545 1580 $$\begin{array}{l}
adamc@545 1581 \mt{val} \; \mt{update} : \mt{unchanged} ::: \{\mt{Type}\} \to \mt{changed} :: \{\mt{Type}\} \to \lambda [\mt{changed} \sim \mt{unchanged}] \\
adamc@658 1582 \hspace{.1in} \Rightarrow \$(\mt{map} \; (\mt{sql\_exp} \; [\mt{T} = \mt{changed} \rc \mt{unchanged}] \; [] \; []) \; \mt{changed}) \\
adamc@545 1583 \hspace{.1in} \to \mt{sql\_table} \; (\mt{changed} \rc \mt{unchanged}) \to \mt{sql\_exp} \; [\mt{T} = \mt{changed} \rc \mt{unchanged}] \; [] \; [] \; \mt{bool} \to \mt{dml}
adamc@545 1584 \end{array}$$
adamc@545 1585
adamc@545 1586 A $\mt{DELETE}$ command is formed from a table and a $\mt{WHERE}$ clause.
adamc@545 1587 $$\begin{array}{l}
adamc@545 1588 \mt{val} \; \mt{delete} : \mt{fields} ::: \{\mt{Type}\} \to \mt{sql\_table} \; \mt{fields} \to \mt{sql\_exp} \; [\mt{T} = \mt{fields}] \; [] \; [] \; \mt{bool} \to \mt{dml}
adamc@545 1589 \end{array}$$
adamc@545 1590
adamc@546 1591 \subsubsection{Sequences}
adamc@546 1592
adamc@546 1593 SQL sequences are counters with concurrency control, often used to assign unique IDs. Ur/Web supports them via a simple interface. The only way to create a sequence is with the $\mt{sequence}$ declaration form.
adamc@546 1594
adamc@546 1595 $$\begin{array}{l}
adamc@546 1596 \mt{type} \; \mt{sql\_sequence} \\
adamc@546 1597 \mt{val} \; \mt{nextval} : \mt{sql\_sequence} \to \mt{transaction} \; \mt{int}
adamc@546 1598 \end{array}$$
adamc@546 1599
adamc@546 1600
adamc@547 1601 \subsection{XML}
adamc@547 1602
adamc@547 1603 Ur/Web's library contains an encoding of XML syntax and semantic constraints. We make no effort to follow the standards governing XML schemas. Rather, XML fragments are viewed more as values of ML datatypes, and we only track which tags are allowed inside which other tags.
adamc@547 1604
adamc@547 1605 The basic XML type family has arguments respectively indicating the \emph{context} of a fragment, the fields that the fragment expects to be bound on entry (and their types), and the fields that the fragment will bind (and their types). Contexts are a record-based ``poor man's subtyping'' encoding, with each possible set of valid tags corresponding to a different context record. The arguments dealing with field binding are only relevant to HTML forms.
adamc@547 1606 $$\begin{array}{l}
adamc@547 1607 \mt{con} \; \mt{xml} :: \{\mt{Unit}\} \to \{\mt{Type}\} \to \{\mt{Type}\} \to \mt{Type}
adamc@547 1608 \end{array}$$
adamc@547 1609
adamc@547 1610 We also have a type family of XML tags, indexed respectively by the record of optional attributes accepted by the tag, the context in which the tag may be placed, the context required of children of the tag, which form fields the tag uses, and which fields the tag defines.
adamc@547 1611 $$\begin{array}{l}
adamc@547 1612 \mt{con} \; \mt{tag} :: \{\mt{Type}\} \to \{\mt{Unit}\} \to \{\mt{Unit}\} \to \{\mt{Type}\} \to \{\mt{Type}\} \to \mt{Type}
adamc@547 1613 \end{array}$$
adamc@547 1614
adamc@547 1615 Literal text may be injected into XML as ``CDATA.''
adamc@547 1616 $$\begin{array}{l}
adamc@547 1617 \mt{val} \; \mt{cdata} : \mt{ctx} ::: \{\mt{Unit}\} \to \mt{use} ::: \{\mt{Type}\} \to \mt{string} \to \mt{xml} \; \mt{ctx} \; \mt{use} \; []
adamc@547 1618 \end{array}$$
adamc@547 1619
adamc@547 1620 There is a function for producing an XML tree with a particular tag at its root.
adamc@547 1621 $$\begin{array}{l}
adamc@547 1622 \mt{val} \; \mt{tag} : \mt{attrsGiven} ::: \{\mt{Type}\} \to \mt{attrsAbsent} ::: \{\mt{Type}\} \to \mt{ctxOuter} ::: \{\mt{Unit}\} \to \mt{ctxInner} ::: \{\mt{Unit}\} \\
adamc@547 1623 \hspace{.1in} \to \mt{useOuter} ::: \{\mt{Type}\} \to \mt{useInner} ::: \{\mt{Type}\} \to \mt{bindOuter} ::: \{\mt{Type}\} \to \mt{bindInner} ::: \{\mt{Type}\} \\
adamc@787 1624 \hspace{.1in} \to \lambda [\mt{attrsGiven} \sim \mt{attrsAbsent}] \; [\mt{useOuter} \sim \mt{useInner}] \; [\mt{bindOuter} \sim \mt{bindInner}] \\
adamc@787 1625 \hspace{.1in} \Rightarrow \mt{option} \; \mt{css\_class} \\
adamc@787 1626 \hspace{.1in} \to \$\mt{attrsGiven} \\
adamc@547 1627 \hspace{.1in} \to \mt{tag} \; (\mt{attrsGiven} \rc \mt{attrsAbsent}) \; \mt{ctxOuter} \; \mt{ctxInner} \; \mt{useOuter} \; \mt{bindOuter} \\
adamc@547 1628 \hspace{.1in} \to \mt{xml} \; \mt{ctxInner} \; \mt{useInner} \; \mt{bindInner} \to \mt{xml} \; \mt{ctxOuter} \; (\mt{useOuter} \rc \mt{useInner}) \; (\mt{bindOuter} \rc \mt{bindInner})
adamc@547 1629 \end{array}$$
adamc@787 1630 Note that any tag may be assigned a CSS class. This is the sole way of making use of the values produced by $\mt{style}$ declarations. Ur/Web itself doesn't deal with the syntax or semantics of style sheets; they can be linked via URLs with \texttt{link} tags. However, Ur/Web does make it easy to calculate upper bounds on usage of CSS classes through program analysis.
adamc@547 1631
adamc@547 1632 Two XML fragments may be concatenated.
adamc@547 1633 $$\begin{array}{l}
adamc@547 1634 \mt{val} \; \mt{join} : \mt{ctx} ::: \{\mt{Unit}\} \to \mt{use_1} ::: \{\mt{Type}\} \to \mt{bind_1} ::: \{\mt{Type}\} \to \mt{bind_2} ::: \{\mt{Type}\} \\
adamc@547 1635 \hspace{.1in} \to \lambda [\mt{use_1} \sim \mt{bind_1}] \; [\mt{bind_1} \sim \mt{bind_2}] \\
adamc@547 1636 \hspace{.1in} \Rightarrow \mt{xml} \; \mt{ctx} \; \mt{use_1} \; \mt{bind_1} \to \mt{xml} \; \mt{ctx} \; (\mt{use_1} \rc \mt{bind_1}) \; \mt{bind_2} \to \mt{xml} \; \mt{ctx} \; \mt{use_1} \; (\mt{bind_1} \rc \mt{bind_2})
adamc@547 1637 \end{array}$$
adamc@547 1638
adamc@547 1639 Finally, any XML fragment may be updated to ``claim'' to use more form fields than it does.
adamc@547 1640 $$\begin{array}{l}
adamc@547 1641 \mt{val} \; \mt{useMore} : \mt{ctx} ::: \{\mt{Unit}\} \to \mt{use_1} ::: \{\mt{Type}\} \to \mt{use_2} ::: \{\mt{Type}\} \to \mt{bind} ::: \{\mt{Type}\} \to \lambda [\mt{use_1} \sim \mt{use_2}] \\
adamc@547 1642 \hspace{.1in} \Rightarrow \mt{xml} \; \mt{ctx} \; \mt{use_1} \; \mt{bind} \to \mt{xml} \; \mt{ctx} \; (\mt{use_1} \rc \mt{use_2}) \; \mt{bind}
adamc@547 1643 \end{array}$$
adamc@547 1644
adamc@547 1645 We will not list here the different HTML tags and related functions from the standard library. They should be easy enough to understand from the code in \texttt{basis.urs}. The set of tags in the library is not yet claimed to be complete for HTML standards.
adamc@547 1646
adamc@547 1647 One last useful function is for aborting any page generation, returning some XML as an error message. This function takes the place of some uses of a general exception mechanism.
adamc@547 1648 $$\begin{array}{l}
adamc@547 1649 \mt{val} \; \mt{error} : \mt{t} ::: \mt{Type} \to \mt{xml} \; [\mt{Body}] \; [] \; [] \to \mt{t}
adamc@547 1650 \end{array}$$
adamc@547 1651
adamc@549 1652
adamc@701 1653 \subsection{Client-Side Programming}
adamc@659 1654
adamc@701 1655 Ur/Web supports running code on web browsers, via automatic compilation to JavaScript.
adamc@701 1656
adamc@701 1657 \subsubsection{The Basics}
adamc@701 1658
adamc@701 1659 Clients can open alert dialog boxes, in the usual annoying JavaScript way.
adamc@701 1660 $$\begin{array}{l}
adamc@701 1661 \mt{val} \; \mt{alert} : \mt{string} \to \mt{transaction} \; \mt{unit}
adamc@701 1662 \end{array}$$
adamc@701 1663
adamc@701 1664 Any transaction may be run in a new thread with the $\mt{spawn}$ function.
adamc@701 1665 $$\begin{array}{l}
adamc@701 1666 \mt{val} \; \mt{spawn} : \mt{transaction} \; \mt{unit} \to \mt{transaction} \; \mt{unit}
adamc@701 1667 \end{array}$$
adamc@701 1668
adamc@701 1669 The current thread can be paused for at least a specified number of milliseconds.
adamc@701 1670 $$\begin{array}{l}
adamc@701 1671 \mt{val} \; \mt{sleep} : \mt{int} \to \mt{transaction} \; \mt{unit}
adamc@701 1672 \end{array}$$
adamc@701 1673
adamc@787 1674 A few functions are available to registers callbacks for particular error events. Respectively, they are triggered on calls to $\mt{error}$, uncaught JavaScript exceptions, failure of remote procedure calls, the severance of the connection serving asynchronous messages, or the occurrence of some other error with that connection. If no handlers are registered for a kind of error, then occurrences of that error are ignored silently.
adamc@787 1675 $$\begin{array}{l}
adamc@787 1676 \mt{val} \; \mt{onError} : (\mt{xbody} \to \mt{transaction} \; \mt{unit}) \to \mt{transaction} \; \mt{unit} \\
adamc@787 1677 \mt{val} \; \mt{onFail} : (\mt{string} \to \mt{transaction} \; \mt{unit}) \to \mt{transaction} \; \mt{unit} \\
adamc@787 1678 \mt{val} \; \mt{onConnectFail} : \mt{transaction} \; \mt{unit} \to \mt{transaction} \; \mt{unit} \\
adamc@787 1679 \mt{val} \; \mt{onDisconnect} : \mt{transaction} \; \mt{unit} \to \mt{transaction} \; \mt{unit} \\
adamc@787 1680 \mt{val} \; \mt{onServerError} : (\mt{string} \to \mt{transaction} \; \mt{unit}) \to \mt{transaction} \; \mt{unit}
adamc@787 1681 \end{array}$$
adamc@787 1682
adamc@701 1683 \subsubsection{Functional-Reactive Page Generation}
adamc@701 1684
adamc@701 1685 Most approaches to ``AJAX''-style coding involve imperative manipulation of the DOM tree representing an HTML document's structure. Ur/Web follows the \emph{functional-reactive} approach instead. Programs may allocate mutable \emph{sources} of arbitrary types, and an HTML page is effectively a pure function over the latest values of the sources. The page is not mutated directly, but rather it changes automatically as the sources are mutated.
adamc@659 1686
adamc@659 1687 $$\begin{array}{l}
adamc@659 1688 \mt{con} \; \mt{source} :: \mt{Type} \to \mt{Type} \\
adamc@659 1689 \mt{val} \; \mt{source} : \mt{t} ::: \mt{Type} \to \mt{t} \to \mt{transaction} \; (\mt{source} \; \mt{t}) \\
adamc@659 1690 \mt{val} \; \mt{set} : \mt{t} ::: \mt{Type} \to \mt{source} \; \mt{t} \to \mt{t} \to \mt{transaction} \; \mt{unit} \\
adamc@659 1691 \mt{val} \; \mt{get} : \mt{t} ::: \mt{Type} \to \mt{source} \; \mt{t} \to \mt{transaction} \; \mt{t}
adamc@659 1692 \end{array}$$
adamc@659 1693
adamc@659 1694 Pure functions over sources are represented in a monad of \emph{signals}.
adamc@659 1695
adamc@659 1696 $$\begin{array}{l}
adamc@659 1697 \mt{con} \; \mt{signal} :: \mt{Type} \to \mt{Type} \\
adamc@659 1698 \mt{val} \; \mt{signal\_monad} : \mt{monad} \; \mt{signal} \\
adamc@659 1699 \mt{val} \; \mt{signal} : \mt{t} ::: \mt{Type} \to \mt{source} \; \mt{t} \to \mt{signal} \; \mt{t}
adamc@659 1700 \end{array}$$
adamc@659 1701
adamc@659 1702 A reactive portion of an HTML page is injected with a $\mt{dyn}$ tag, which has a signal-valued attribute $\mt{Signal}$.
adamc@659 1703
adamc@659 1704 $$\begin{array}{l}
adamc@701 1705 \mt{val} \; \mt{dyn} : \mt{use} ::: \{\mt{Type}\} \to \mt{bind} ::: \{\mt{Type}\} \to \mt{unit} \\
adamc@701 1706 \hspace{.1in} \to \mt{tag} \; [\mt{Signal} = \mt{signal} \; (\mt{xml} \; \mt{body} \; \mt{use} \; \mt{bind})] \; \mt{body} \; [] \; \mt{use} \; \mt{bind}
adamc@659 1707 \end{array}$$
adamc@659 1708
adamc@701 1709 Transactions can be run on the client by including them in attributes like the $\mt{Onclick}$ attribute of $\mt{button}$, and GUI widgets like $\mt{ctextbox}$ have $\mt{Source}$ attributes that can be used to connect them to sources, so that their values can be read by code running because of, e.g., an $\mt{Onclick}$ event.
adamc@701 1710
adamc@701 1711 \subsubsection{Asynchronous Message-Passing}
adamc@701 1712
adamc@701 1713 To support asynchronous, ``server push'' delivery of messages to clients, any client that might need to receive an asynchronous message is assigned a unique ID. These IDs may be retrieved both on the client and on the server, during execution of code related to a client.
adamc@701 1714
adamc@701 1715 $$\begin{array}{l}
adamc@701 1716 \mt{type} \; \mt{client} \\
adamc@701 1717 \mt{val} \; \mt{self} : \mt{transaction} \; \mt{client}
adamc@701 1718 \end{array}$$
adamc@701 1719
adamc@701 1720 \emph{Channels} are the means of message-passing. Each channel is created in the context of a client and belongs to that client; no other client may receive the channel's messages. Each channel type includes the type of values that may be sent over the channel. Sending and receiving are asynchronous, in the sense that a client need not be ready to receive a message right away. Rather, sent messages may queue up, waiting to be processed.
adamc@701 1721
adamc@701 1722 $$\begin{array}{l}
adamc@701 1723 \mt{con} \; \mt{channel} :: \mt{Type} \to \mt{Type} \\
adamc@701 1724 \mt{val} \; \mt{channel} : \mt{t} ::: \mt{Type} \to \mt{transaction} \; (\mt{channel} \; \mt{t}) \\
adamc@701 1725 \mt{val} \; \mt{send} : \mt{t} ::: \mt{Type} \to \mt{channel} \; \mt{t} \to \mt{t} \to \mt{transaction} \; \mt{unit} \\
adamc@701 1726 \mt{val} \; \mt{recv} : \mt{t} ::: \mt{Type} \to \mt{channel} \; \mt{t} \to \mt{transaction} \; \mt{t}
adamc@701 1727 \end{array}$$
adamc@701 1728
adamc@701 1729 The $\mt{channel}$ and $\mt{send}$ operations may only be executed on the server, and $\mt{recv}$ may only be executed on a client. Neither clients nor channels may be passed as arguments from clients to server-side functions, so persistent channels can only be maintained by storing them in the database and looking them up using the current client ID or some application-specific value as a key.
adamc@701 1730
adamc@701 1731 Clients and channels live only as long as the web browser page views that they are associated with. When a user surfs away, his client and its channels will be garbage-collected, after that user is not heard from for the timeout period. Garbage collection deletes any database row that contains a client or channel directly. Any reference to one of these types inside an $\mt{option}$ is set to $\mt{None}$ instead. Both kinds of handling have the flavor of weak pointers, and that is a useful way to think about clients and channels in the database.
adamc@701 1732
adamc@659 1733
adamc@549 1734 \section{Ur/Web Syntax Extensions}
adamc@549 1735
adamc@549 1736 Ur/Web features some syntactic shorthands for building values using the functions from the last section. This section sketches the grammar of those extensions. We write spans of syntax inside brackets to indicate that they are optional.
adamc@549 1737
adamc@549 1738 \subsection{SQL}
adamc@549 1739
adamc@786 1740 \subsubsection{\label{tables}Table Declarations}
adamc@786 1741
adamc@788 1742 $\mt{table}$ declarations may include constraints, via these grammar rules.
adamc@788 1743 $$\begin{array}{rrcll}
adamc@788 1744 \textrm{Declarations} & d &::=& \mt{table} \; x : c \; [pk[,]] \; cts \\
adamc@788 1745 \textrm{Primary key constraints} & pk &::=& \mt{PRIMARY} \; \mt{KEY} \; K \\
adamc@788 1746 \textrm{Keys} & K &::=& f \mid (f, (f,)^+) \\
adamc@788 1747 \textrm{Constraint sets} & cts &::=& \mt{CONSTRAINT} f \; ct \mid cts, cts \mid \{\{e\}\} \\
adamc@788 1748 \textrm{Constraints} & ct &::=& \mt{UNIQUE} \; K \mid \mt{CHECK} \; E \\
adamc@788 1749 &&& \mid \mt{FOREIGN} \; \mt{KEY} \; K \; \mt{REFERENCES} \; F \; (K) \; [\mt{ON} \; \mt{DELETE} \; pr] \; [\mt{ON} \; \mt{UPDATE} \; pr] \\
adamc@788 1750 \textrm{Foreign tables} & F &::=& x \mid \{\{e\}\} \\
adamc@788 1751 \textrm{Propagation modes} & pr &::=& \mt{NO} \; \mt{ACTION} \mid \mt{RESTRICT} \mid \mt{CASCADE} \mid \mt{SET} \; \mt{NULL}
adamc@788 1752 \end{array}$$
adamc@788 1753
adamc@788 1754 A signature item $\mt{table} \; \mt{x} : \mt{c}$ is actually elaborated into two signature items: $\mt{con} \; \mt{x\_hidden\_constraints} :: \{\{\mt{Unit}\}\}$ and $\mt{val} \; \mt{x} : \mt{sql\_table} \; \mt{c} \; \mt{x\_hidden\_constraints}$. This is appropriate for common cases where client code doesn't care which keys a table has. It's also possible to include constraints after a $\mt{table}$ signature item, with the same syntax as for $\mt{table}$ declarations. This may look like dependent typing, but it's just a convenience. The constraints are type-checked to determine a constructor $u$ to include in $\mt{val} \; \mt{x} : \mt{sql\_table} \; \mt{c} \; (u \rc \mt{x\_hidden\_constraints})$, and then the expressions are thrown away. Nonetheless, it can be useful for documentation purposes to include table constraint details in signatures. Note that the automatic generation of $\mt{x\_hidden\_constraints}$ leads to a kind of free subtyping with respect to which constraints are defined.
adamc@788 1755
adamc@788 1756
adamc@549 1757 \subsubsection{Queries}
adamc@549 1758
adamc@550 1759 Queries $Q$ are added to the rules for expressions $e$.
adamc@550 1760
adamc@549 1761 $$\begin{array}{rrcll}
adamc@550 1762 \textrm{Queries} & Q &::=& (q \; [\mt{ORDER} \; \mt{BY} \; (E \; [o],)^+] \; [\mt{LIMIT} \; N] \; [\mt{OFFSET} \; N]) \\
adamc@549 1763 \textrm{Pre-queries} & q &::=& \mt{SELECT} \; P \; \mt{FROM} \; T,^+ \; [\mt{WHERE} \; E] \; [\mt{GROUP} \; \mt{BY} \; p,^+] \; [\mt{HAVING} \; E] \\
adamc@549 1764 &&& \mid q \; R \; q \\
adamc@549 1765 \textrm{Relational operators} & R &::=& \mt{UNION} \mid \mt{INTERSECT} \mid \mt{EXCEPT}
adamc@549 1766 \end{array}$$
adamc@549 1767
adamc@549 1768 $$\begin{array}{rrcll}
adamc@549 1769 \textrm{Projections} & P &::=& \ast & \textrm{all columns} \\
adamc@549 1770 &&& p,^+ & \textrm{particular columns} \\
adamc@549 1771 \textrm{Pre-projections} & p &::=& t.f & \textrm{one column from a table} \\
adamc@558 1772 &&& t.\{\{c\}\} & \textrm{a record of columns from a table (of kind $\{\mt{Type}\}$)} \\
adamc@549 1773 \textrm{Table names} & t &::=& x & \textrm{constant table name (automatically capitalized)} \\
adamc@549 1774 &&& X & \textrm{constant table name} \\
adamc@549 1775 &&& \{\{c\}\} & \textrm{computed table name (of kind $\mt{Name}$)} \\
adamc@549 1776 \textrm{Column names} & f &::=& X & \textrm{constant column name} \\
adamc@549 1777 &&& \{c\} & \textrm{computed column name (of kind $\mt{Name}$)} \\
adamc@549 1778 \textrm{Tables} & T &::=& x & \textrm{table variable, named locally by its own capitalization} \\
adamc@549 1779 &&& x \; \mt{AS} \; t & \textrm{table variable, with local name} \\
adamc@549 1780 &&& \{\{e\}\} \; \mt{AS} \; t & \textrm{computed table expression, with local name} \\
adamc@549 1781 \textrm{SQL expressions} & E &::=& p & \textrm{column references} \\
adamc@549 1782 &&& X & \textrm{named expression references} \\
adamc@549 1783 &&& \{\{e\}\} & \textrm{injected native Ur expressions} \\
adamc@549 1784 &&& \{e\} & \textrm{computed expressions, probably using $\mt{sql\_exp}$ directly} \\
adamc@549 1785 &&& \mt{TRUE} \mid \mt{FALSE} & \textrm{boolean constants} \\
adamc@549 1786 &&& \ell & \textrm{primitive type literals} \\
adamc@549 1787 &&& \mt{NULL} & \textrm{null value (injection of $\mt{None}$)} \\
adamc@549 1788 &&& E \; \mt{IS} \; \mt{NULL} & \textrm{nullness test} \\
adamc@549 1789 &&& n & \textrm{nullary operators} \\
adamc@549 1790 &&& u \; E & \textrm{unary operators} \\
adamc@549 1791 &&& E \; b \; E & \textrm{binary operators} \\
adamc@549 1792 &&& \mt{COUNT}(\ast) & \textrm{count number of rows} \\
adamc@549 1793 &&& a(E) & \textrm{other aggregate function} \\
adamc@549 1794 &&& (E) & \textrm{explicit precedence} \\
adamc@549 1795 \textrm{Nullary operators} & n &::=& \mt{CURRENT\_TIMESTAMP} \\
adamc@549 1796 \textrm{Unary operators} & u &::=& \mt{NOT} \\
adamc@549 1797 \textrm{Binary operators} & b &::=& \mt{AND} \mid \mt{OR} \mid \neq \mid < \mid \leq \mid > \mid \geq \\
adamc@549 1798 \textrm{Aggregate functions} & a &::=& \mt{AVG} \mid \mt{SUM} \mid \mt{MIN} \mid \mt{MAX} \\
adamc@550 1799 \textrm{Directions} & o &::=& \mt{ASC} \mid \mt{DESC} \\
adamc@549 1800 \textrm{SQL integer} & N &::=& n \mid \{e\} \\
adamc@549 1801 \end{array}$$
adamc@549 1802
adamc@549 1803 Additionally, an SQL expression may be inserted into normal Ur code with the syntax $(\mt{SQL} \; E)$ or $(\mt{WHERE} \; E)$.
adamc@549 1804
adamc@550 1805 \subsubsection{DML}
adamc@550 1806
adamc@550 1807 DML commands $D$ are added to the rules for expressions $e$.
adamc@550 1808
adamc@550 1809 $$\begin{array}{rrcll}
adamc@550 1810 \textrm{Commands} & D &::=& (\mt{INSERT} \; \mt{INTO} \; T^E \; (f,^+) \; \mt{VALUES} \; (E,^+)) \\
adamc@550 1811 &&& (\mt{UPDATE} \; T^E \; \mt{SET} \; (f = E,)^+ \; \mt{WHERE} \; E) \\
adamc@550 1812 &&& (\mt{DELETE} \; \mt{FROM} \; T^E \; \mt{WHERE} \; E) \\
adamc@550 1813 \textrm{Table expressions} & T^E &::=& x \mid \{\{e\}\}
adamc@550 1814 \end{array}$$
adamc@550 1815
adamc@550 1816 Inside $\mt{UPDATE}$ and $\mt{DELETE}$ commands, lone variables $X$ are interpreted as references to columns of the implicit table $\mt{T}$, rather than to named expressions.
adamc@549 1817
adamc@551 1818 \subsection{XML}
adamc@551 1819
adamc@551 1820 XML fragments $L$ are added to the rules for expressions $e$.
adamc@551 1821
adamc@551 1822 $$\begin{array}{rrcll}
adamc@551 1823 \textrm{XML fragments} & L &::=& \texttt{<xml/>} \mid \texttt{<xml>}l^*\texttt{</xml>} \\
adamc@551 1824 \textrm{XML pieces} & l &::=& \textrm{text} & \textrm{cdata} \\
adamc@551 1825 &&& \texttt{<}g\texttt{/>} & \textrm{tag with no children} \\
adamc@551 1826 &&& \texttt{<}g\texttt{>}l^*\texttt{</}x\texttt{>} & \textrm{tag with children} \\
adamc@559 1827 &&& \{e\} & \textrm{computed XML fragment} \\
adamc@559 1828 &&& \{[e]\} & \textrm{injection of an Ur expression, via the $\mt{Top}.\mt{txt}$ function} \\
adamc@551 1829 \textrm{Tag} & g &::=& h \; (x = v)^* \\
adamc@551 1830 \textrm{Tag head} & h &::=& x & \textrm{tag name} \\
adamc@551 1831 &&& h\{c\} & \textrm{constructor parameter} \\
adamc@551 1832 \textrm{Attribute value} & v &::=& \ell & \textrm{literal value} \\
adamc@551 1833 &&& \{e\} & \textrm{computed value} \\
adamc@551 1834 \end{array}$$
adamc@551 1835
adamc@552 1836
adamc@553 1837 \section{The Structure of Web Applications}
adamc@553 1838
adamc@553 1839 A web application is built from a series of modules, with one module, the last one appearing in the \texttt{.urp} file, designated as the main module. The signature of the main module determines the URL entry points to the application. Such an entry point should have type $\mt{unit} \to \mt{transaction} \; \mt{page}$, where $\mt{page}$ is a type synonym for top-level HTML pages, defined in $\mt{Basis}$. If such a function is at the top level of main module $M$, it will be accessible at URI \texttt{/M/f}, and so on for more deeply-nested functions, as described in Section \ref{tag} below.
adamc@553 1840
adamc@553 1841 When the standalone web server receives a request for a known page, it calls the function for that page, ``running'' the resulting transaction to produce the page to return to the client. Pages link to other pages with the \texttt{link} attribute of the \texttt{a} HTML tag. A link has type $\mt{transaction} \; \mt{page}$, and the semantics of a link are that this transaction should be run to compute the result page, when the link is followed. Link targets are assigned URL names in the same way as top-level entry points.
adamc@553 1842
adamc@553 1843 HTML forms are handled in a similar way. The $\mt{action}$ attribute of a $\mt{submit}$ form tag takes a value of type $\$\mt{use} \to \mt{transaction} \; \mt{page}$, where $\mt{use}$ is a kind-$\{\mt{Type}\}$ record of the form fields used by this action handler. Action handlers are assigned URL patterns in the same way as above.
adamc@553 1844
adamc@558 1845 For both links and actions, direct arguments and local variables mentioned implicitly via closures are automatically included in serialized form in URLs, in the order in which they appear in the source code.
adamc@553 1846
adamc@660 1847 Ur/Web programs generally mix server- and client-side code in a fairly transparent way. The one important restriction is that mixed client-server code must encapsulate all server-side pieces within named functions. This is because execution of such pieces will be implemented by explicit calls to the remote web server, and it is useful to get the programmer's help in designing the interface to be used. For example, this makes it easier to allow a client running an old version of an application to continue interacting with a server that has been upgraded to a new version, if the programmer took care to keep the interfaces of all of the old remote calls the same. The functions implementing these services are assigned names in the same way as normal web entry points, by using module structure.
adamc@660 1848
adamc@789 1849 \medskip
adamc@789 1850
adamc@789 1851 The HTTP standard suggests that GET requests only be used in ways that generate no side effects. Side effecting operations should use POST requests instead. The Ur/Web compiler enforces this rule strictly, via a simple conservative program analysis. Any page that may have a side effect must be accessed through a form, all of which use POST requests. A page is judged to have a side effect if its code depends syntactically on any of the side-effecting, server-side FFI functions. Links, forms, and most client-side event handlers are not followed during this syntactic traversal, but \texttt{<body onload=\{...\}>} handlers \emph{are} examined, since they run right away and could just as well be considered parts of main page handlers.
adamc@789 1852
adamc@789 1853 Ur/Web includes a kind of automatic protection against cross site request forgery attacks. Whenever any page execution can have side effects and can also read at least one cookie value, all cookie values must be signed cryptographically, to ensure that the user has come to the current page by submitting a form on a real page generated by the proper server. Signing and signature checking are inserted automatically by the compiler. This prevents attacks like phishing schemes where users are directed to counterfeit pages with forms that submit to your application, where a user's cookies might be submitted without his knowledge, causing some undesired side effect.
adamc@789 1854
adamc@553 1855
adamc@552 1856 \section{Compiler Phases}
adamc@552 1857
adamc@552 1858 The Ur/Web compiler is unconventional in that it relies on a kind of \emph{heuristic compilation}. Not all valid programs will compile successfully. Informally, programs fail to compile when they are ``too higher order.'' Compiler phases do their best to eliminate different kinds of higher order-ness, but some programs just won't compile. This is a trade-off for producing very efficient executables. Compiled Ur/Web programs use native C representations and require no garbage collection.
adamc@552 1859
adamc@552 1860 In this section, we step through the main phases of compilation, noting what consequences each phase has for effective programming.
adamc@552 1861
adamc@552 1862 \subsection{Parse}
adamc@552 1863
adamc@552 1864 The compiler reads a \texttt{.urp} file, figures out which \texttt{.urs} and \texttt{.ur} files it references, and combines them all into what is conceptually a single sequence of declarations in the core language of Section \ref{core}.
adamc@552 1865
adamc@552 1866 \subsection{Elaborate}
adamc@552 1867
adamc@552 1868 This is where type inference takes place, translating programs into an explicit form with no more wildcards. This phase is the most likely source of compiler error messages.
adamc@552 1869
adamc@552 1870 \subsection{Unnest}
adamc@552 1871
adamc@552 1872 Named local function definitions are moved to the top level, to avoid the need to generate closures.
adamc@552 1873
adamc@552 1874 \subsection{Corify}
adamc@552 1875
adamc@552 1876 Module system features are compiled away, through inlining of functor definitions at application sites. Afterward, most abstraction boundaries are broken, facilitating optimization.
adamc@552 1877
adamc@552 1878 \subsection{Especialize}
adamc@552 1879
adamc@552 1880 Functions are specialized to particular argument patterns. This is an important trick for avoiding the need to maintain any closures at runtime.
adamc@552 1881
adamc@552 1882 \subsection{Untangle}
adamc@552 1883
adamc@552 1884 Remove unnecessary mutual recursion, splitting recursive groups into strongly-connected components.
adamc@552 1885
adamc@552 1886 \subsection{Shake}
adamc@552 1887
adamc@552 1888 Remove all definitions not needed to run the page handlers that are visible in the signature of the last module listed in the \texttt{.urp} file.
adamc@552 1889
adamc@661 1890 \subsection{Rpcify}
adamc@661 1891
adamc@661 1892 Pieces of code are determined to be client-side, server-side, neither, or both, by figuring out which standard library functions might be needed to execute them. Calls to server-side functions (e.g., $\mt{query}$) within mixed client-server code are identified and replaced with explicit remote calls. Some mixed functions may be converted to continuation-passing style to facilitate this transformation.
adamc@661 1893
adamc@661 1894 \subsection{Untangle, Shake}
adamc@661 1895
adamc@661 1896 Repeat these simplifications.
adamc@661 1897
adamc@553 1898 \subsection{\label{tag}Tag}
adamc@552 1899
adamc@552 1900 Assign a URL name to each link and form action. It is important that these links and actions are written as applications of named functions, because such names are used to generate URL patterns. A URL pattern has a name built from the full module path of the named function, followed by the function name, with all pieces separated by slashes. The path of a functor application is based on the name given to the result, rather than the path of the functor itself.
adamc@552 1901
adamc@552 1902 \subsection{Reduce}
adamc@552 1903
adamc@552 1904 Apply definitional equality rules to simplify the program as much as possible. This effectively includes inlining of every non-recursive definition.
adamc@552 1905
adamc@552 1906 \subsection{Unpoly}
adamc@552 1907
adamc@552 1908 This phase specializes polymorphic functions to the specific arguments passed to them in the program. If the program contains real polymorphic recursion, Unpoly will be insufficient to avoid later error messages about too much polymorphism.
adamc@552 1909
adamc@552 1910 \subsection{Specialize}
adamc@552 1911
adamc@558 1912 Replace uses of parameterized datatypes with versions specialized to specific parameters. As for Unpoly, this phase will not be effective enough in the presence of polymorphic recursion or other fancy uses of impredicative polymorphism.
adamc@552 1913
adamc@552 1914 \subsection{Shake}
adamc@552 1915
adamc@558 1916 Here the compiler repeats the earlier Shake phase.
adamc@552 1917
adamc@552 1918 \subsection{Monoize}
adamc@552 1919
adamc@552 1920 Programs are translated to a new intermediate language without polymorphism or non-$\mt{Type}$ constructors. Error messages may pop up here if earlier phases failed to remove such features.
adamc@552 1921
adamc@552 1922 This is the stage at which concrete names are generated for cookies, tables, and sequences. They are named following the same convention as for links and actions, based on module path information saved from earlier stages. Table and sequence names separate path elements with underscores instead of slashes, and they are prefixed by \texttt{uw\_}.
adamc@664 1923
adamc@552 1924 \subsection{MonoOpt}
adamc@552 1925
adamc@552 1926 Simple algebraic laws are applied to simplify the program, focusing especially on efficient imperative generation of HTML pages.
adamc@552 1927
adamc@552 1928 \subsection{MonoUntangle}
adamc@552 1929
adamc@552 1930 Unnecessary mutual recursion is broken up again.
adamc@552 1931
adamc@552 1932 \subsection{MonoReduce}
adamc@552 1933
adamc@552 1934 Equivalents of the definitional equality rules are applied to simplify programs, with inlining again playing a major role.
adamc@552 1935
adamc@552 1936 \subsection{MonoShake, MonoOpt}
adamc@552 1937
adamc@552 1938 Unneeded declarations are removed, and basic optimizations are repeated.
adamc@552 1939
adamc@552 1940 \subsection{Fuse}
adamc@552 1941
adamc@552 1942 The compiler tries to simplify calls to recursive functions whose results are immediately written as page output. The write action is pushed inside the function definitions to avoid allocation of intermediate results.
adamc@552 1943
adamc@552 1944 \subsection{MonoUntangle, MonoShake}
adamc@552 1945
adamc@552 1946 Fuse often creates more opportunities to remove spurious mutual recursion.
adamc@552 1947
adamc@552 1948 \subsection{Pathcheck}
adamc@552 1949
adamc@552 1950 The compiler checks that no link or action name has been used more than once.
adamc@552 1951
adamc@552 1952 \subsection{Cjrize}
adamc@552 1953
adamc@552 1954 The program is translated to what is more or less a subset of C. If any use of functions as data remains at this point, the compiler will complain.
adamc@552 1955
adamc@552 1956 \subsection{C Compilation and Linking}
adamc@552 1957
adamc@552 1958 The output of the last phase is pretty-printed as C source code and passed to GCC.
adamc@552 1959
adamc@552 1960
adamc@524 1961 \end{document}