annotate doc/manual.tex @ 555:0b2cf25a5eba

Installation
author Adam Chlipala <adamc@hcoop.net>
date Tue, 09 Dec 2008 11:40:51 -0500
parents 193fe8836419
children 5703a2ad5221
rev   line source
adamc@524 1 \documentclass{article}
adamc@554 2 \usepackage{fullpage,amsmath,amssymb,proof,url}
adamc@524 3
adamc@524 4 \newcommand{\cd}[1]{\texttt{#1}}
adamc@524 5 \newcommand{\mt}[1]{\mathsf{#1}}
adamc@524 6
adamc@524 7 \newcommand{\rc}{+ \hspace{-.075in} + \;}
adamc@527 8 \newcommand{\rcut}{\; \texttt{--} \;}
adamc@527 9 \newcommand{\rcutM}{\; \texttt{---} \;}
adamc@524 10
adamc@524 11 \begin{document}
adamc@524 12
adamc@524 13 \title{The Ur/Web Manual}
adamc@524 14 \author{Adam Chlipala}
adamc@524 15
adamc@524 16 \maketitle
adamc@524 17
adamc@540 18 \tableofcontents
adamc@540 19
adamc@554 20
adamc@554 21 \section{Introduction}
adamc@554 22
adamc@554 23 \emph{Ur} is a programming language designed to introduce richer type system features into functional programming in the tradition of ML and Haskell. Ur is functional, pure, statically-typed, and strict. Ur supports a powerful kind of \emph{metaprogramming} based on \emph{row types}.
adamc@554 24
adamc@554 25 \emph{Ur/Web} is Ur plus a special standard library and associated rules for parsing and optimization. Ur/Web supports construction of dynamic web applications backed by SQL databases. The signature of the standard library is such that well-typed Ur/Web programs ``don't go wrong'' in a very broad sense. Not only do they not crash during particular page generations, but they also may not:
adamc@554 26
adamc@554 27 \begin{itemize}
adamc@554 28 \item Suffer from any kinds of code-injection attacks
adamc@554 29 \item Return invalid HTML
adamc@554 30 \item Contain dead intra-application links
adamc@554 31 \item Have mismatches between HTML forms and the fields expected by their handlers
adamc@554 32 \item Attempt invalid SQL queries
adamc@554 33 \item Use improper marshaling or unmarshaling in communication with SQL databases
adamc@554 34 \end{itemize}
adamc@554 35
adamc@554 36 This type safety is just the foundation of the Ur/Web methodology. It is also possible to use metaprogramming to build significant application pieces by analysis of type structure. For instance, the demo includes an ML-style functor for building an admin interface for an arbitrary SQL table. The type system guarantees that the admin interface sub-application that comes out will always be free of the above-listed bugs, no matter which well-typed table description is given as input.
adamc@554 37
adamc@554 38 The Ur/Web compiler also produces very efficient object code that does not use garbage collection. These compiled programs will often be even more efficient than what most programmers would bother to write in C.
adamc@554 39
adamc@554 40 \medskip
adamc@554 41
adamc@554 42 The official web site for Ur is:
adamc@554 43 \begin{center}
adamc@554 44 \url{http://www.impredicative.com/ur/}
adamc@554 45 \end{center}
adamc@554 46
adamc@555 47
adamc@555 48 \section{Installation}
adamc@555 49
adamc@555 50 If you are lucky, then the following standard command sequence will suffice for installation, in a directory to which you have unpacked the latest distribution tarball.
adamc@555 51
adamc@555 52 \begin{verbatim}
adamc@555 53 ./configure
adamc@555 54 make
adamc@555 55 sudo make install
adamc@555 56 \end{verbatim}
adamc@555 57
adamc@555 58 Some other packages must be installed for the above to work. At a minimum, you need a standard UNIX shell, with standard UNIX tools like sed and GCC in your execution path; and MLton, the whole-program optimizing compiler for Standard ML. To build programs that access SQL databases, you also need libpq, the PostgreSQL client library. As of this writing, in the ``testing'' version of Debian Linux, this command will install the more uncommon of these dependencies:
adamc@555 59
adamc@555 60 \begin{verbatim}
adamc@555 61 apt-get install mlton libpq-dev
adamc@555 62 \end{verbatim}
adamc@555 63
adamc@555 64 It is also possible to access the modules of the Ur/Web compiler interactively, within Standard ML of New Jersey. To install the prerequisites in Debian testing:
adamc@555 65
adamc@555 66 \begin{verbatim}
adamc@555 67 apt-get install smlnj libsmlnj-smlnj ml-yacc ml-lpt
adamc@555 68 \end{verbatim}
adamc@555 69
adamc@555 70 To begin an interactive session with the Ur compiler modules, run \texttt{make smlnj}, and then, from within an \texttt{sml} session, run \texttt{CM.make "src/urweb.cm";}. The \texttt{Compiler} module is the main entry point.
adamc@555 71
adamc@555 72 To run an SQL-backed application, you will probably want to install the PostgreSQL server. Version 8.3 or higher is required.
adamc@555 73
adamc@555 74 \begin{verbatim}
adamc@555 75 apt-get install postgresql-8.3
adamc@555 76 \end{verbatim}
adamc@555 77
adamc@555 78 To use the Emacs mode, you must have a modern Emacs installed. We assume that you already know how to do this, if you're in the business of looking for an Emacs mode. The demo generation facility of the compiler will also call out to Emacs to syntax-highlight code, and that process depends on the \texttt{htmlize} module, which can be installed in Debian testing via:
adamc@555 79
adamc@555 80 \begin{verbatim}
adamc@555 81 apt-get install emacs-goodies-el
adamc@555 82 \end{verbatim}
adamc@555 83
adamc@555 84 Even with the right packages installed, configuration and building might fail to work. After you run \texttt{./configure}, you will see the values of some named environment variables printed. You may need to adjust these values to get proper installation for your system. To change a value, store your preferred alternative in the corresponding UNIX environment variable, before running \texttt{./configure}. For instance, here is how to change the list of extra arguments that the Ur/Web compiler will pass to GCC on every invocation.
adamc@555 85
adamc@555 86 \begin{verbatim}
adamc@555 87 GCCARGS=-fnested-functions ./configure
adamc@555 88 \end{verbatim}
adamc@555 89
adamc@555 90 Some OSX users have reported needing to use this particular GCCARGS value.
adamc@555 91
adamc@555 92 The Emacs mode can be set to autoload by adding the following to your \texttt{.emacs} file.
adamc@555 93
adamc@555 94 \begin{verbatim}
adamc@555 95 (add-to-list 'load-path "/usr/local/share/emacs/site-lisp/urweb-mode")
adamc@555 96 (load "urweb-mode-startup")
adamc@555 97 \end{verbatim}
adamc@555 98
adamc@555 99 Change the path in the first line if you chose a different Emacs installation path during configuration.
adamc@555 100
adamc@555 101
adamc@529 102 \section{Ur Syntax}
adamc@529 103
adamc@529 104 In this section, we describe the syntax of Ur, deferring to a later section discussion of most of the syntax specific to SQL and XML. The sole exceptions are the declaration forms for tables, sequences, and cookies.
adamc@524 105
adamc@524 106 \subsection{Lexical Conventions}
adamc@524 107
adamc@524 108 We give the Ur language definition in \LaTeX $\;$ math mode, since that is prettier than monospaced ASCII. The corresponding ASCII syntax can be read off directly. Here is the key for mapping math symbols to ASCII character sequences.
adamc@524 109
adamc@524 110 \begin{center}
adamc@524 111 \begin{tabular}{rl}
adamc@524 112 \textbf{\LaTeX} & \textbf{ASCII} \\
adamc@524 113 $\to$ & \cd{->} \\
adamc@524 114 $\times$ & \cd{*} \\
adamc@524 115 $\lambda$ & \cd{fn} \\
adamc@524 116 $\Rightarrow$ & \cd{=>} \\
adamc@529 117 $\neq$ & \cd{<>} \\
adamc@529 118 $\leq$ & \cd{<=} \\
adamc@529 119 $\geq$ & \cd{>=} \\
adamc@524 120 \\
adamc@524 121 $x$ & Normal textual identifier, not beginning with an uppercase letter \\
adamc@525 122 $X$ & Normal textual identifier, beginning with an uppercase letter \\
adamc@524 123 \end{tabular}
adamc@524 124 \end{center}
adamc@524 125
adamc@525 126 We often write syntax like $e^*$ to indicate zero or more copies of $e$, $e^+$ to indicate one or more copies, and $e,^*$ and $e,^+$ to indicate multiple copies separated by commas. Another separator may be used in place of a comma. The $e$ term may be surrounded by parentheses to indicate grouping; those parentheses should not be included in the actual ASCII.
adamc@524 127
adamc@526 128 We write $\ell$ for literals of the primitive types, for the most part following C conventions. There are $\mt{int}$, $\mt{float}$, and $\mt{string}$ literals.
adamc@526 129
adamc@527 130 This version of the manual doesn't include operator precedences; see \texttt{src/urweb.grm} for that.
adamc@527 131
adamc@552 132 \subsection{\label{core}Core Syntax}
adamc@524 133
adamc@524 134 \emph{Kinds} classify types and other compile-time-only entities. Each kind in the grammar is listed with a description of the sort of data it classifies.
adamc@524 135 $$\begin{array}{rrcll}
adamc@524 136 \textrm{Kinds} & \kappa &::=& \mt{Type} & \textrm{proper types} \\
adamc@525 137 &&& \mt{Unit} & \textrm{the trivial constructor} \\
adamc@525 138 &&& \mt{Name} & \textrm{field names} \\
adamc@525 139 &&& \kappa \to \kappa & \textrm{type-level functions} \\
adamc@525 140 &&& \{\kappa\} & \textrm{type-level records} \\
adamc@525 141 &&& (\kappa\times^+) & \textrm{type-level tuples} \\
adamc@529 142 &&& \_\_ & \textrm{wildcard} \\
adamc@525 143 &&& (\kappa) & \textrm{explicit precedence} \\
adamc@524 144 \end{array}$$
adamc@524 145
adamc@524 146 Ur supports several different notions of functions that take types as arguments. These arguments can be either implicit, causing them to be inferred at use sites; or explicit, forcing them to be specified manually at use sites. There is a common explicitness annotation convention applied at the definitions of and in the types of such functions.
adamc@524 147 $$\begin{array}{rrcll}
adamc@524 148 \textrm{Explicitness} & ? &::=& :: & \textrm{explicit} \\
adamc@525 149 &&& \; ::: & \textrm{implicit}
adamc@524 150 \end{array}$$
adamc@524 151
adamc@524 152 \emph{Constructors} are the main class of compile-time-only data. They include proper types and are classified by kinds.
adamc@524 153 $$\begin{array}{rrcll}
adamc@524 154 \textrm{Constructors} & c, \tau &::=& (c) :: \kappa & \textrm{kind annotation} \\
adamc@530 155 &&& \hat{x} & \textrm{constructor variable} \\
adamc@524 156 \\
adamc@525 157 &&& \tau \to \tau & \textrm{function type} \\
adamc@525 158 &&& x \; ? \; \kappa \to \tau & \textrm{polymorphic function type} \\
adamc@525 159 &&& \$ c & \textrm{record type} \\
adamc@524 160 \\
adamc@525 161 &&& c \; c & \textrm{type-level function application} \\
adamc@530 162 &&& \lambda x \; :: \; \kappa \Rightarrow c & \textrm{type-level function abstraction} \\
adamc@524 163 \\
adamc@525 164 &&& () & \textrm{type-level unit} \\
adamc@525 165 &&& \#X & \textrm{field name} \\
adamc@524 166 \\
adamc@525 167 &&& [(c = c)^*] & \textrm{known-length type-level record} \\
adamc@525 168 &&& c \rc c & \textrm{type-level record concatenation} \\
adamc@525 169 &&& \mt{fold} & \textrm{type-level record fold} \\
adamc@524 170 \\
adamc@525 171 &&& (c^+) & \textrm{type-level tuple} \\
adamc@525 172 &&& c.n & \textrm{type-level tuple projection ($n \in \mathbb N^+$)} \\
adamc@524 173 \\
adamc@525 174 &&& \lambda [c \sim c] \Rightarrow c & \textrm{guarded constructor} \\
adamc@524 175 \\
adamc@529 176 &&& \_ :: \kappa & \textrm{wildcard} \\
adamc@525 177 &&& (c) & \textrm{explicit precedence} \\
adamc@530 178 \\
adamc@530 179 \textrm{Qualified uncapitalized variables} & \hat{x} &::=& x & \textrm{not from a module} \\
adamc@530 180 &&& M.x & \textrm{projection from a module} \\
adamc@525 181 \end{array}$$
adamc@525 182
adamc@525 183 Modules of the module system are described by \emph{signatures}.
adamc@525 184 $$\begin{array}{rrcll}
adamc@525 185 \textrm{Signatures} & S &::=& \mt{sig} \; s^* \; \mt{end} & \textrm{constant} \\
adamc@525 186 &&& X & \textrm{variable} \\
adamc@525 187 &&& \mt{functor}(X : S) : S & \textrm{functor} \\
adamc@529 188 &&& S \; \mt{where} \; \mt{con} \; x = c & \textrm{concretizing an abstract constructor} \\
adamc@525 189 &&& M.X & \textrm{projection from a module} \\
adamc@525 190 \\
adamc@525 191 \textrm{Signature items} & s &::=& \mt{con} \; x :: \kappa & \textrm{abstract constructor} \\
adamc@525 192 &&& \mt{con} \; x :: \kappa = c & \textrm{concrete constructor} \\
adamc@528 193 &&& \mt{datatype} \; x \; x^* = dc\mid^+ & \textrm{algebraic datatype definition} \\
adamc@529 194 &&& \mt{datatype} \; x = \mt{datatype} \; M.x & \textrm{algebraic datatype import} \\
adamc@525 195 &&& \mt{val} \; x : \tau & \textrm{value} \\
adamc@525 196 &&& \mt{structure} \; X : S & \textrm{sub-module} \\
adamc@525 197 &&& \mt{signature} \; X = S & \textrm{sub-signature} \\
adamc@525 198 &&& \mt{include} \; S & \textrm{signature inclusion} \\
adamc@525 199 &&& \mt{constraint} \; c \sim c & \textrm{record disjointness constraint} \\
adamc@525 200 &&& \mt{class} \; x & \textrm{abstract type class} \\
adamc@525 201 &&& \mt{class} \; x = c & \textrm{concrete type class} \\
adamc@525 202 \\
adamc@525 203 \textrm{Datatype constructors} & dc &::=& X & \textrm{nullary constructor} \\
adamc@525 204 &&& X \; \mt{of} \; \tau & \textrm{unary constructor} \\
adamc@524 205 \end{array}$$
adamc@524 206
adamc@526 207 \emph{Patterns} are used to describe structural conditions on expressions, such that expressions may be tested against patterns, generating assignments to pattern variables if successful.
adamc@526 208 $$\begin{array}{rrcll}
adamc@526 209 \textrm{Patterns} & p &::=& \_ & \textrm{wildcard} \\
adamc@526 210 &&& x & \textrm{variable} \\
adamc@526 211 &&& \ell & \textrm{constant} \\
adamc@526 212 &&& \hat{X} & \textrm{nullary constructor} \\
adamc@526 213 &&& \hat{X} \; p & \textrm{unary constructor} \\
adamc@526 214 &&& \{(x = p,)^*\} & \textrm{rigid record pattern} \\
adamc@526 215 &&& \{(x = p,)^+, \ldots\} & \textrm{flexible record pattern} \\
adamc@527 216 &&& (p) & \textrm{explicit precedence} \\
adamc@526 217 \\
adamc@529 218 \textrm{Qualified capitalized variables} & \hat{X} &::=& X & \textrm{not from a module} \\
adamc@526 219 &&& M.X & \textrm{projection from a module} \\
adamc@526 220 \end{array}$$
adamc@526 221
adamc@527 222 \emph{Expressions} are the main run-time entities, corresponding to both ``expressions'' and ``statements'' in mainstream imperative languages.
adamc@527 223 $$\begin{array}{rrcll}
adamc@527 224 \textrm{Expressions} & e &::=& e : \tau & \textrm{type annotation} \\
adamc@529 225 &&& \hat{x} & \textrm{variable} \\
adamc@529 226 &&& \hat{X} & \textrm{datatype constructor} \\
adamc@527 227 &&& \ell & \textrm{constant} \\
adamc@527 228 \\
adamc@527 229 &&& e \; e & \textrm{function application} \\
adamc@527 230 &&& \lambda x : \tau \Rightarrow e & \textrm{function abstraction} \\
adamc@527 231 &&& e [c] & \textrm{polymorphic function application} \\
adamc@527 232 &&& \lambda x \; ? \; \kappa \Rightarrow e & \textrm{polymorphic function abstraction} \\
adamc@527 233 \\
adamc@527 234 &&& \{(c = e,)^*\} & \textrm{known-length record} \\
adamc@527 235 &&& e.c & \textrm{record field projection} \\
adamc@527 236 &&& e \rc e & \textrm{record concatenation} \\
adamc@527 237 &&& e \rcut c & \textrm{removal of a single record field} \\
adamc@527 238 &&& e \rcutM c & \textrm{removal of multiple record fields} \\
adamc@527 239 &&& \mt{fold} & \textrm{fold over fields of a type-level record} \\
adamc@527 240 \\
adamc@527 241 &&& \mt{let} \; ed^* \; \mt{in} \; e \; \mt{end} & \textrm{local definitions} \\
adamc@527 242 \\
adamc@527 243 &&& \mt{case} \; e \; \mt{of} \; (p \Rightarrow e|)^+ & \textrm{pattern matching} \\
adamc@527 244 \\
adamc@527 245 &&& \lambda [c \sim c] \Rightarrow e & \textrm{guarded expression} \\
adamc@527 246 \\
adamc@527 247 &&& \_ & \textrm{wildcard} \\
adamc@527 248 &&& (e) & \textrm{explicit precedence} \\
adamc@527 249 \\
adamc@527 250 \textrm{Local declarations} & ed &::=& \cd{val} \; x : \tau = e & \textrm{non-recursive value} \\
adamc@527 251 &&& \cd{val} \; \cd{rec} \; (x : \tau = e \; \cd{and})^+ & \textrm{mutually-recursive values} \\
adamc@527 252 \end{array}$$
adamc@527 253
adamc@528 254 \emph{Declarations} primarily bring new symbols into context.
adamc@528 255 $$\begin{array}{rrcll}
adamc@528 256 \textrm{Declarations} & d &::=& \mt{con} \; x :: \kappa = c & \textrm{constructor synonym} \\
adamc@528 257 &&& \mt{datatype} \; x \; x^* = dc\mid^+ & \textrm{algebraic datatype definition} \\
adamc@529 258 &&& \mt{datatype} \; x = \mt{datatype} \; M.x & \textrm{algebraic datatype import} \\
adamc@528 259 &&& \mt{val} \; x : \tau = e & \textrm{value} \\
adamc@528 260 &&& \mt{val} \; \cd{rec} \; (x : \tau = e \; \mt{and})^+ & \textrm{mutually-recursive values} \\
adamc@528 261 &&& \mt{structure} \; X : S = M & \textrm{module definition} \\
adamc@528 262 &&& \mt{signature} \; X = S & \textrm{signature definition} \\
adamc@528 263 &&& \mt{open} \; M & \textrm{module inclusion} \\
adamc@528 264 &&& \mt{constraint} \; c \sim c & \textrm{record disjointness constraint} \\
adamc@528 265 &&& \mt{open} \; \mt{constraints} \; M & \textrm{inclusion of just the constraints from a module} \\
adamc@528 266 &&& \mt{table} \; x : c & \textrm{SQL table} \\
adamc@528 267 &&& \mt{sequence} \; x & \textrm{SQL sequence} \\
adamc@535 268 &&& \mt{cookie} \; x : \tau & \textrm{HTTP cookie} \\
adamc@528 269 &&& \mt{class} \; x = c & \textrm{concrete type class} \\
adamc@528 270 \\
adamc@529 271 \textrm{Modules} & M &::=& \mt{struct} \; d^* \; \mt{end} & \textrm{constant} \\
adamc@529 272 &&& X & \textrm{variable} \\
adamc@529 273 &&& M.X & \textrm{projection} \\
adamc@529 274 &&& M(M) & \textrm{functor application} \\
adamc@529 275 &&& \mt{functor}(X : S) : S = M & \textrm{functor abstraction} \\
adamc@528 276 \end{array}$$
adamc@528 277
adamc@528 278 There are two kinds of Ur files. A file named $M\texttt{.ur}$ is an \emph{implementation file}, and it should contain a sequence of declarations $d^*$. A file named $M\texttt{.urs}$ is an \emph{interface file}; it must always have a matching $M\texttt{.ur}$ and should contain a sequence of signature items $s^*$. When both files are present, the overall effect is the same as a monolithic declaration $\mt{structure} \; M : \mt{sig} \; s^* \; \mt{end} = \mt{struct} \; d^* \; \mt{end}$. When no interface file is included, the overall effect is similar, with a signature for module $M$ being inferred rather than just checked against an interface.
adamc@527 279
adamc@529 280 \subsection{Shorthands}
adamc@529 281
adamc@529 282 There are a variety of derived syntactic forms that elaborate into the core syntax from the last subsection. We will present the additional forms roughly following the order in which we presented the constructs that they elaborate into.
adamc@529 283
adamc@529 284 In many contexts where record fields are expected, like in a projection $e.c$, a constant field may be written as simply $X$, rather than $\#X$.
adamc@529 285
adamc@529 286 A record type may be written $\{(c = c,)^*\}$, which elaborates to $\$[(c = c,)^*]$.
adamc@529 287
adamc@533 288 The notation $[c_1, \ldots, c_n]$ is shorthand for $[c_1 = (), \ldots, c_n = ()]$.
adamc@533 289
adamc@529 290 A tuple type $(\tau_1, \ldots, \tau_n)$ expands to a record type $\{1 = \tau_1, \ldots, n = \tau_n\}$, with natural numbers as field names. A tuple pattern $(p_1, \ldots, p_n)$ expands to a rigid record pattern $\{1 = p_1, \ldots, n = p_n\}$. Positive natural numbers may be used in most places where field names would be allowed.
adamc@529 291
adamc@529 292 In general, several adjacent $\lambda$ forms may be combined into one, and kind and type annotations may be omitted, in which case they are implicitly included as wildcards. More formally, for constructor-level abstractions, we can define a new non-terminal $b ::= x \mid (x :: \kappa) \mid [c \sim c]$ and allow composite abstractions of the form $\lambda b^+ \Rightarrow c$, elaborating into the obvious sequence of one core $\lambda$ per element of $b^+$.
adamc@529 293
adamc@529 294 For any signature item or declaration that defines some entity to be equal to $A$ with classification annotation $B$ (e.g., $\mt{val} \; x : B = A$), $B$ and the preceding colon (or similar punctuation) may be omitted, in which case it is filled in as a wildcard.
adamc@529 295
adamc@529 296 A signature item or declaration $\mt{type} \; x$ or $\mt{type} \; x = \tau$ is elaborated into $\mt{con} \; x :: \mt{Type}$ or $\mt{con} \; x :: \mt{Type} = \tau$, respectively.
adamc@529 297
adamc@529 298 A signature item or declaration $\mt{class} \; x = \lambda y :: \mt{Type} \Rightarrow c$ may be abbreviated $\mt{class} \; x \; y = c$.
adamc@529 299
adamc@529 300 Handling of implicit and explicit constructor arguments may be tweaked with some prefixes to variable references. An expression $@x$ is a version of $x$ where all implicit constructor arguments have been made explicit. An expression $@@x$ achieves the same effect, additionally halting automatic resolution of type class instances. The same syntax works for variables projected out of modules and for capitalized variables (datatype constructors).
adamc@529 301
adamc@529 302 At the expression level, an analogue is available of the composite $\lambda$ form for constructors. We define the language of binders as $b ::= x \mid (x : \tau) \mid (x \; ? \; \kappa) \mid [c \sim c]$. A lone variable $x$ as a binder stands for an expression variable of unspecified type.
adamc@529 303
adamc@529 304 A $\mt{val}$ or $\mt{val} \; \mt{rec}$ declaration may include expression binders before the equal sign, following the binder grammar from the last paragraph. Such declarations are elaborated into versions that add additional $\lambda$s to the fronts of the righthand sides, as appropriate. The keyword $\mt{fun}$ is a synonym for $\mt{val} \; \mt{rec}$.
adamc@529 305
adamc@529 306 A signature item $\mt{functor} \; X_1 \; (X_2 : S_1) : S_2$ is elaborated into $\mt{structure} \; X_1 : \mt{functor}(X_2 : S_1) : S_2$. A declaration $\mt{functor} \; X_1 \; (X_2 : S_1) : S_2 = M$ is elaborated into $\mt{structure} \; X_1 : \mt{functor}(X_2 : S_1) : S_2 = \mt{functor}(X_2 : S_1) : S_2 = M$.
adamc@529 307
adamc@529 308 A declaration $\mt{table} \; x : \{(c = c,)^*\}$ is elaborated into $\mt{table} \; x : [(c = c,)^*]$
adamc@529 309
adamc@529 310 The syntax $\mt{where} \; \mt{type}$ is an alternate form of $\mt{where} \; \mt{con}$.
adamc@529 311
adamc@529 312 The syntax $\mt{if} \; e \; \mt{then} \; e_1 \; \mt{else} \; e_2$ expands to $\mt{case} \; e \; \mt{of} \; \mt{Basis}.\mt{True} \Rightarrow e_1 \mid \mt{Basis}.\mt{False} \Rightarrow e_2$.
adamc@529 313
adamc@529 314 There are infix operator syntaxes for a number of functions defined in the $\mt{Basis}$ module. There is $=$ for $\mt{eq}$, $\neq$ for $\mt{neq}$, $-$ for $\mt{neg}$ (as a prefix operator) and $\mt{minus}$, $+$ for $\mt{plus}$, $\times$ for $\mt{times}$, $/$ for $\mt{div}$, $\%$ for $\mt{mod}$, $<$ for $\mt{lt}$, $\leq$ for $\mt{le}$, $>$ for $\mt{gt}$, and $\geq$ for $\mt{ge}$.
adamc@529 315
adamc@529 316 A signature item $\mt{table} \; x : c$ is shorthand for $\mt{val} \; x : \mt{Basis}.\mt{sql\_table} \; c$. $\mt{sequence} \; x$ is short for $\mt{val} \; x : \mt{Basis}.\mt{sql\_sequence}$, and $\mt{cookie} \; x : \tau$ is shorthand for $\mt{val} \; x : \mt{Basis}.\mt{http\_cookie} \; \tau$.
adamc@529 317
adamc@530 318
adamc@530 319 \section{Static Semantics}
adamc@530 320
adamc@530 321 In this section, we give a declarative presentation of Ur's typing rules and related judgments. Inference is the subject of the next section; here, we assume that an oracle has filled in all wildcards with concrete values.
adamc@530 322
adamc@530 323 Since there is significant mutual recursion among the judgments, we introduce them all before beginning to give rules. We use the same variety of contexts throughout this section, implicitly introducing new sorts of context entries as needed.
adamc@530 324 \begin{itemize}
adamc@530 325 \item $\Gamma \vdash c :: \kappa$ assigns a kind to a constructor in a context.
adamc@530 326 \item $\Gamma \vdash c \sim c$ proves the disjointness of two record constructors; that is, that they share no field names. We overload the judgment to apply to pairs of field names as well.
adamc@531 327 \item $\Gamma \vdash c \hookrightarrow C$ proves that record constructor $c$ decomposes into set $C$ of field names and record constructors.
adamc@530 328 \item $\Gamma \vdash c \equiv c$ proves the computational equivalence of two constructors. This is often called a \emph{definitional equality} in the world of type theory.
adamc@530 329 \item $\Gamma \vdash e : \tau$ is a standard typing judgment.
adamc@534 330 \item $\Gamma \vdash p \leadsto \Gamma; \tau$ combines typing of patterns with calculation of which new variables they bind.
adamc@537 331 \item $\Gamma \vdash d \leadsto \Gamma$ expresses how a declaration modifies a context. We overload this judgment to apply to sequences of declarations, as well as to signature items and sequences of signature items.
adamc@537 332 \item $\Gamma \vdash S \equiv S$ is the signature equivalence judgment.
adamc@536 333 \item $\Gamma \vdash S \leq S$ is the signature compatibility judgment. We write $\Gamma \vdash S$ as shorthand for $\Gamma \vdash S \leq S$.
adamc@530 334 \item $\Gamma \vdash M : S$ is the module signature checking judgment.
adamc@537 335 \item $\mt{proj}(M, \overline{s}, V)$ is a partial function for projecting a signature item from $\overline{s}$, given the module $M$ that we project from. $V$ may be $\mt{con} \; x$, $\mt{datatype} \; x$, $\mt{val} \; x$, $\mt{signature} \; X$, or $\mt{structure} \; X$. The parameter $M$ is needed because the projected signature item may refer to other items from $\overline{s}$.
adamc@539 336 \item $\mt{selfify}(M, \overline{s})$ adds information to signature items $\overline{s}$ to reflect the fact that we are concerned with the particular module $M$. This function is overloaded to work over individual signature items as well.
adamc@530 337 \end{itemize}
adamc@530 338
adamc@530 339 \subsection{Kinding}
adamc@530 340
adamc@530 341 $$\infer{\Gamma \vdash (c) :: \kappa :: \kappa}{
adamc@530 342 \Gamma \vdash c :: \kappa
adamc@530 343 }
adamc@530 344 \quad \infer{\Gamma \vdash x :: \kappa}{
adamc@530 345 x :: \kappa \in \Gamma
adamc@530 346 }
adamc@530 347 \quad \infer{\Gamma \vdash x :: \kappa}{
adamc@530 348 x :: \kappa = c \in \Gamma
adamc@530 349 }$$
adamc@530 350
adamc@530 351 $$\infer{\Gamma \vdash M.x :: \kappa}{
adamc@537 352 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 353 & \mt{proj}(M, \overline{s}, \mt{con} \; x) = \kappa
adamc@530 354 }
adamc@530 355 \quad \infer{\Gamma \vdash M.x :: \kappa}{
adamc@537 356 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 357 & \mt{proj}(M, \overline{s}, \mt{con} \; x) = (\kappa, c)
adamc@530 358 }$$
adamc@530 359
adamc@530 360 $$\infer{\Gamma \vdash \tau_1 \to \tau_2 :: \mt{Type}}{
adamc@530 361 \Gamma \vdash \tau_1 :: \mt{Type}
adamc@530 362 & \Gamma \vdash \tau_2 :: \mt{Type}
adamc@530 363 }
adamc@530 364 \quad \infer{\Gamma \vdash x \; ? \: \kappa \to \tau :: \mt{Type}}{
adamc@530 365 \Gamma, x :: \kappa \vdash \tau :: \mt{Type}
adamc@530 366 }
adamc@530 367 \quad \infer{\Gamma \vdash \$c :: \mt{Type}}{
adamc@530 368 \Gamma \vdash c :: \{\mt{Type}\}
adamc@530 369 }$$
adamc@530 370
adamc@530 371 $$\infer{\Gamma \vdash c_1 \; c_2 :: \kappa_2}{
adamc@530 372 \Gamma \vdash c_1 :: \kappa_1 \to \kappa_2
adamc@530 373 & \Gamma \vdash c_2 :: \kappa_1
adamc@530 374 }
adamc@530 375 \quad \infer{\Gamma \vdash \lambda x \; :: \; \kappa_1 \Rightarrow c :: \kappa_1 \to \kappa_2}{
adamc@530 376 \Gamma, x :: \kappa_1 \vdash c :: \kappa_2
adamc@530 377 }$$
adamc@530 378
adamc@530 379 $$\infer{\Gamma \vdash () :: \mt{Unit}}{}
adamc@530 380 \quad \infer{\Gamma \vdash \#X :: \mt{Name}}{}$$
adamc@530 381
adamc@530 382 $$\infer{\Gamma \vdash [\overline{c_i = c'_i}] :: \{\kappa\}}{
adamc@530 383 \forall i: \Gamma \vdash c_i : \mt{Name}
adamc@530 384 & \Gamma \vdash c'_i :: \kappa
adamc@530 385 & \forall i \neq j: \Gamma \vdash c_i \sim c_j
adamc@530 386 }
adamc@530 387 \quad \infer{\Gamma \vdash c_1 \rc c_2 :: \{\kappa\}}{
adamc@530 388 \Gamma \vdash c_1 :: \{\kappa\}
adamc@530 389 & \Gamma \vdash c_2 :: \{\kappa\}
adamc@530 390 & \Gamma \vdash c_1 \sim c_2
adamc@530 391 }$$
adamc@530 392
adamc@530 393 $$\infer{\Gamma \vdash \mt{fold} :: ((\mt{Name} \to \kappa_1 \to \kappa_2 \to \kappa_2) \to \kappa_2 \to \{\kappa_1\} \to \kappa_2}{}$$
adamc@530 394
adamc@530 395 $$\infer{\Gamma \vdash (\overline c) :: (k_1 \times \ldots \times k_n)}{
adamc@530 396 \forall i: \Gamma \vdash c_i :: k_i
adamc@530 397 }
adamc@530 398 \quad \infer{\Gamma \vdash c.i :: k_i}{
adamc@530 399 \Gamma \vdash c :: (k_1 \times \ldots \times k_n)
adamc@530 400 }$$
adamc@530 401
adamc@530 402 $$\infer{\Gamma \vdash \lambda [c_1 \sim c_2] \Rightarrow c :: \kappa}{
adamc@530 403 \Gamma \vdash c_1 :: \{\kappa'\}
adamc@530 404 & \Gamma \vdash c_2 :: \{\kappa'\}
adamc@530 405 & \Gamma, c_1 \sim c_2 \vdash c :: \kappa
adamc@530 406 }$$
adamc@530 407
adamc@531 408 \subsection{Record Disjointness}
adamc@531 409
adamc@531 410 We will use a keyword $\mt{map}$ as a shorthand, such that, for $f$ of kind $\kappa \to \kappa'$, $\mt{map} \; f$ stands for $\mt{fold} \; (\lambda (x_1 :: \mt{Name}) (x_2 :: \kappa) (x_3 :: \{\kappa'\}) \Rightarrow [x_1 = f \; x_2] \rc x_3) \; []$.
adamc@531 411
adamc@531 412 $$\infer{\Gamma \vdash c_1 \sim c_2}{
adamc@531 413 \Gamma \vdash c_1 \hookrightarrow c'_1
adamc@531 414 & \Gamma \vdash c_2 \hookrightarrow c'_2
adamc@531 415 & \forall c''_1 \in c'_1, c''_2 \in c'_2: \Gamma \vdash c''_1 \sim c''_2
adamc@531 416 }
adamc@531 417 \quad \infer{\Gamma \vdash X \sim X'}{
adamc@531 418 X \neq X'
adamc@531 419 }$$
adamc@531 420
adamc@531 421 $$\infer{\Gamma \vdash c_1 \sim c_2}{
adamc@531 422 c'_1 \sim c'_2 \in \Gamma
adamc@531 423 & \Gamma \vdash c'_1 \hookrightarrow c''_1
adamc@531 424 & \Gamma \vdash c'_2 \hookrightarrow c''_2
adamc@531 425 & c_1 \in c''_1
adamc@531 426 & c_2 \in c''_2
adamc@531 427 }$$
adamc@531 428
adamc@531 429 $$\infer{\Gamma \vdash c \hookrightarrow \{c\}}{}
adamc@531 430 \quad \infer{\Gamma \vdash [\overline{c = c'}] \hookrightarrow \{\overline{c}\}}{}
adamc@531 431 \quad \infer{\Gamma \vdash c_1 \rc c_2 \hookrightarrow C_1 \cup C_2}{
adamc@531 432 \Gamma \vdash c_1 \hookrightarrow C_1
adamc@531 433 & \Gamma \vdash c_2 \hookrightarrow C_2
adamc@531 434 }
adamc@531 435 \quad \infer{\Gamma \vdash c \hookrightarrow C}{
adamc@531 436 \Gamma \vdash c \equiv c'
adamc@531 437 & \Gamma \vdash c' \hookrightarrow C
adamc@531 438 }
adamc@531 439 \quad \infer{\Gamma \vdash \mt{map} \; f \; c \hookrightarrow C}{
adamc@531 440 \Gamma \vdash c \hookrightarrow C
adamc@531 441 }$$
adamc@531 442
adamc@541 443 \subsection{\label{definitional}Definitional Equality}
adamc@532 444
adamc@532 445 We use $\mathcal C$ to stand for a one-hole context that, when filled, yields a constructor. The notation $\mathcal C[c]$ plugs $c$ into $\mathcal C$. We omit the standard definition of one-hole contexts. We write $[x \mapsto c_1]c_2$ for capture-avoiding substitution of $c_1$ for $x$ in $c_2$.
adamc@532 446
adamc@532 447 $$\infer{\Gamma \vdash c \equiv c}{}
adamc@532 448 \quad \infer{\Gamma \vdash c_1 \equiv c_2}{
adamc@532 449 \Gamma \vdash c_2 \equiv c_1
adamc@532 450 }
adamc@532 451 \quad \infer{\Gamma \vdash c_1 \equiv c_3}{
adamc@532 452 \Gamma \vdash c_1 \equiv c_2
adamc@532 453 & \Gamma \vdash c_2 \equiv c_3
adamc@532 454 }
adamc@532 455 \quad \infer{\Gamma \vdash \mathcal C[c_1] \equiv \mathcal C[c_2]}{
adamc@532 456 \Gamma \vdash c_1 \equiv c_2
adamc@532 457 }$$
adamc@532 458
adamc@532 459 $$\infer{\Gamma \vdash x \equiv c}{
adamc@532 460 x :: \kappa = c \in \Gamma
adamc@532 461 }
adamc@532 462 \quad \infer{\Gamma \vdash M.x \equiv c}{
adamc@537 463 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 464 & \mt{proj}(M, \overline{s}, \mt{con} \; x) = (\kappa, c)
adamc@532 465 }
adamc@532 466 \quad \infer{\Gamma \vdash (\overline c).i \equiv c_i}{}$$
adamc@532 467
adamc@532 468 $$\infer{\Gamma \vdash (\lambda x :: \kappa \Rightarrow c) \; c' \equiv [x \mapsto c'] c}{}
adamc@532 469 \quad \infer{\Gamma \vdash c_1 \rc c_2 \equiv c_2 \rc c_1}{}
adamc@532 470 \quad \infer{\Gamma \vdash c_1 \rc (c_2 \rc c_3) \equiv (c_1 \rc c_2) \rc c_3}{}$$
adamc@532 471
adamc@532 472 $$\infer{\Gamma \vdash [] \rc c \equiv c}{}
adamc@532 473 \quad \infer{\Gamma \vdash [\overline{c_1 = c'_1}] \rc [\overline{c_2 = c'_2}] \equiv [\overline{c_1 = c'_1}, \overline{c_2 = c'_2}]}{}$$
adamc@532 474
adamc@532 475 $$\infer{\Gamma \vdash \lambda [c_1 \sim c_2] \Rightarrow c \equiv c}{
adamc@532 476 \Gamma \vdash c_1 \sim c_2
adamc@532 477 }
adamc@532 478 \quad \infer{\Gamma \vdash \mt{fold} \; f \; i \; [] \equiv i}{}
adamc@532 479 \quad \infer{\Gamma \vdash \mt{fold} \; f \; i \; ([c_1 = c_2] \rc c) \equiv f \; c_1 \; c_2 \; (\mt{fold} \; f \; i \; c)}{}$$
adamc@532 480
adamc@532 481 $$\infer{\Gamma \vdash \mt{map} \; (\lambda x \Rightarrow x) \; c \equiv c}{}
adamc@532 482 \quad \infer{\Gamma \vdash \mt{fold} \; f \; i \; (\mt{map} \; f' \; c)
adamc@532 483 \equiv \mt{fold} \; (\lambda (x_1 :: \mt{Name}) (x_2 :: \kappa) \Rightarrow f \; x_1 \; (f' \; x_2)) \; i \; c}{}$$
adamc@532 484
adamc@532 485 $$\infer{\Gamma \vdash \mt{map} \; f \; (c_1 \rc c_2) \equiv \mt{map} \; f \; c_1 \rc \mt{map} \; f \; c_2}{}$$
adamc@531 486
adamc@534 487 \subsection{Expression Typing}
adamc@533 488
adamc@533 489 We assume the existence of a function $T$ assigning types to literal constants. It maps integer constants to $\mt{Basis}.\mt{int}$, float constants to $\mt{Basis}.\mt{float}$, and string constants to $\mt{Basis}.\mt{string}$.
adamc@533 490
adamc@533 491 We also refer to a function $\mathcal I$, such that $\mathcal I(\tau)$ ``uses an oracle'' to instantiate all constructor function arguments at the beginning of $\tau$ that are marked implicit; i.e., replace $x_1 ::: \kappa_1 \to \ldots \to x_n ::: \kappa_n \to \tau$ with $[x_1 \mapsto c_1]\ldots[x_n \mapsto c_n]\tau$, where the $c_i$s are inferred and $\tau$ does not start like $x ::: \kappa \to \tau'$.
adamc@533 492
adamc@533 493 $$\infer{\Gamma \vdash e : \tau : \tau}{
adamc@533 494 \Gamma \vdash e : \tau
adamc@533 495 }
adamc@533 496 \quad \infer{\Gamma \vdash e : \tau}{
adamc@533 497 \Gamma \vdash e : \tau'
adamc@533 498 & \Gamma \vdash \tau' \equiv \tau
adamc@533 499 }
adamc@533 500 \quad \infer{\Gamma \vdash \ell : T(\ell)}{}$$
adamc@533 501
adamc@533 502 $$\infer{\Gamma \vdash x : \mathcal I(\tau)}{
adamc@533 503 x : \tau \in \Gamma
adamc@533 504 }
adamc@533 505 \quad \infer{\Gamma \vdash M.x : \mathcal I(\tau)}{
adamc@537 506 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 507 & \mt{proj}(M, \overline{s}, \mt{val} \; x) = \tau
adamc@533 508 }
adamc@533 509 \quad \infer{\Gamma \vdash X : \mathcal I(\tau)}{
adamc@533 510 X : \tau \in \Gamma
adamc@533 511 }
adamc@533 512 \quad \infer{\Gamma \vdash M.X : \mathcal I(\tau)}{
adamc@537 513 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 514 & \mt{proj}(M, \overline{s}, \mt{val} \; X) = \tau
adamc@533 515 }$$
adamc@533 516
adamc@533 517 $$\infer{\Gamma \vdash e_1 \; e_2 : \tau_2}{
adamc@533 518 \Gamma \vdash e_1 : \tau_1 \to \tau_2
adamc@533 519 & \Gamma \vdash e_2 : \tau_1
adamc@533 520 }
adamc@533 521 \quad \infer{\Gamma \vdash \lambda x : \tau_1 \Rightarrow e : \tau_1 \to \tau_2}{
adamc@533 522 \Gamma, x : \tau_1 \vdash e : \tau_2
adamc@533 523 }$$
adamc@533 524
adamc@533 525 $$\infer{\Gamma \vdash e [c] : [x \mapsto c]\tau}{
adamc@533 526 \Gamma \vdash e : x :: \kappa \to \tau
adamc@533 527 & \Gamma \vdash c :: \kappa
adamc@533 528 }
adamc@533 529 \quad \infer{\Gamma \vdash \lambda x \; ? \; \kappa \Rightarrow e : x \; ? \; \kappa \to \tau}{
adamc@533 530 \Gamma, x :: \kappa \vdash e : \tau
adamc@533 531 }$$
adamc@533 532
adamc@533 533 $$\infer{\Gamma \vdash \{\overline{c = e}\} : \{\overline{c : \tau}\}}{
adamc@533 534 \forall i: \Gamma \vdash c_i :: \mt{Name}
adamc@533 535 & \Gamma \vdash e_i : \tau_i
adamc@533 536 & \forall i \neq j: \Gamma \vdash c_i \sim c_j
adamc@533 537 }
adamc@533 538 \quad \infer{\Gamma \vdash e.c : \tau}{
adamc@533 539 \Gamma \vdash e : \$([c = \tau] \rc c')
adamc@533 540 }
adamc@533 541 \quad \infer{\Gamma \vdash e_1 \rc e_2 : \$(c_1 \rc c_2)}{
adamc@533 542 \Gamma \vdash e_1 : \$c_1
adamc@533 543 & \Gamma \vdash e_2 : \$c_2
adamc@533 544 }$$
adamc@533 545
adamc@533 546 $$\infer{\Gamma \vdash e \rcut c : \$c'}{
adamc@533 547 \Gamma \vdash e : \$([c = \tau] \rc c')
adamc@533 548 }
adamc@533 549 \quad \infer{\Gamma \vdash e \rcutM c : \$c'}{
adamc@533 550 \Gamma \vdash e : \$(c \rc c')
adamc@533 551 }$$
adamc@533 552
adamc@533 553 $$\infer{\Gamma \vdash \mt{fold} : \begin{array}{c}
adamc@533 554 x_1 :: (\{\kappa\} \to \tau)
adamc@533 555 \to (x_2 :: \mt{Name} \to x_3 :: \kappa \to x_4 :: \{\kappa\} \to \lambda [[x_2] \sim x_4]
adamc@533 556 \Rightarrow x_1 \; x_4 \to x_1 \; ([x_2 = x_3] \rc x_4)) \\
adamc@533 557 \to x_1 \; [] \to x_5 :: \{\kappa\} \to x_1 \; x_5
adamc@533 558 \end{array}}{}$$
adamc@533 559
adamc@533 560 $$\infer{\Gamma \vdash \mt{let} \; \overline{ed} \; \mt{in} \; e \; \mt{end} : \tau}{
adamc@533 561 \Gamma \vdash \overline{ed} \leadsto \Gamma'
adamc@533 562 & \Gamma' \vdash e : \tau
adamc@533 563 }
adamc@533 564 \quad \infer{\Gamma \vdash \mt{case} \; e \; \mt{of} \; \overline{p \Rightarrow e} : \tau}{
adamc@533 565 \forall i: \Gamma \vdash p_i \leadsto \Gamma_i, \tau'
adamc@533 566 & \Gamma_i \vdash e_i : \tau
adamc@533 567 }$$
adamc@533 568
adamc@533 569 $$\infer{\Gamma \vdash [c_1 \sim c_2] \Rightarrow e : [c_1 \sim c_2] \Rightarrow \tau}{
adamc@533 570 \Gamma \vdash c_1 :: \{\kappa\}
adamc@533 571 & \Gamma \vdash c_2 :: \{\kappa\}
adamc@533 572 & \Gamma, c_1 \sim c_2 \vdash e : \tau
adamc@533 573 }$$
adamc@533 574
adamc@534 575 \subsection{Pattern Typing}
adamc@534 576
adamc@534 577 $$\infer{\Gamma \vdash \_ \leadsto \Gamma; \tau}{}
adamc@534 578 \quad \infer{\Gamma \vdash x \leadsto \Gamma, x : \tau; \tau}{}
adamc@534 579 \quad \infer{\Gamma \vdash \ell \leadsto \Gamma; T(\ell)}{}$$
adamc@534 580
adamc@534 581 $$\infer{\Gamma \vdash X \leadsto \Gamma; \overline{[x_i \mapsto \tau'_i]}\tau}{
adamc@534 582 X : \overline{x ::: \mt{Type}} \to \tau \in \Gamma
adamc@534 583 & \textrm{$\tau$ not a function type}
adamc@534 584 }
adamc@534 585 \quad \infer{\Gamma \vdash X \; p \leadsto \Gamma'; \overline{[x_i \mapsto \tau'_i]}\tau}{
adamc@534 586 X : \overline{x ::: \mt{Type}} \to \tau'' \to \tau \in \Gamma
adamc@534 587 & \Gamma \vdash p \leadsto \Gamma'; \overline{[x_i \mapsto \tau'_i]}\tau''
adamc@534 588 }$$
adamc@534 589
adamc@534 590 $$\infer{\Gamma \vdash M.X \leadsto \Gamma; \overline{[x_i \mapsto \tau'_i]}\tau}{
adamc@537 591 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 592 & \mt{proj}(M, \overline{s}, \mt{val} \; X) = \overline{x ::: \mt{Type}} \to \tau
adamc@534 593 & \textrm{$\tau$ not a function type}
adamc@534 594 }$$
adamc@534 595
adamc@534 596 $$\infer{\Gamma \vdash M.X \; p \leadsto \Gamma'; \overline{[x_i \mapsto \tau'_i]}\tau}{
adamc@537 597 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 598 & \mt{proj}(M, \overline{s}, \mt{val} \; X) = \overline{x ::: \mt{Type}} \to \tau'' \to \tau
adamc@534 599 & \Gamma \vdash p \leadsto \Gamma'; \overline{[x_i \mapsto \tau'_i]}\tau''
adamc@534 600 }$$
adamc@534 601
adamc@534 602 $$\infer{\Gamma \vdash \{\overline{x = p}\} \leadsto \Gamma_n; \{\overline{x = \tau}\}}{
adamc@534 603 \Gamma_0 = \Gamma
adamc@534 604 & \forall i: \Gamma_i \vdash p_i \leadsto \Gamma_{i+1}; \tau_i
adamc@534 605 }
adamc@534 606 \quad \infer{\Gamma \vdash \{\overline{x = p}, \ldots\} \leadsto \Gamma_n; \$([\overline{x = \tau}] \rc c)}{
adamc@534 607 \Gamma_0 = \Gamma
adamc@534 608 & \forall i: \Gamma_i \vdash p_i \leadsto \Gamma_{i+1}; \tau_i
adamc@534 609 }$$
adamc@534 610
adamc@535 611 \subsection{Declaration Typing}
adamc@535 612
adamc@535 613 We use an auxiliary judgment $\overline{y}; x; \Gamma \vdash \overline{dc} \leadsto \Gamma'$, expressing the enrichment of $\Gamma$ with the types of the datatype constructors $\overline{dc}$, when they are known to belong to datatype $x$ with type parameters $\overline{y}$.
adamc@535 614
adamc@541 615 This is the first judgment where we deal with type classes, for the $\mt{class}$ declaration form. We will omit their special handling in this formal specification. Section \ref{typeclasses} gives an informal description of how type classes influence type inference.
adamc@535 616
adamc@537 617 We presuppose the existence of a function $\mathcal O$, where $\mathcal(M, \overline{s})$ implements the $\mt{open}$ declaration by producing a context with the appropriate entry for each available component of module $M$ with signature items $\overline{s}$. Where possible, $\mathcal O$ uses ``transparent'' entries (e.g., an abstract type $M.x$ is mapped to $x :: \mt{Type} = M.x$), so that the relationship with $M$ is maintained. A related function $\mathcal O_c$ builds a context containing the disjointness constraints found in $S$.
adamc@537 618
adamc@537 619 We write $\kappa_1^n \to \kappa$ as a shorthand, where $\kappa_1^0 \to \kappa = \kappa$ and $\kappa_1^{n+1} \to \kappa_2 = \kappa_1 \to (\kappa_1^n \to \kappa_2)$. We write $\mt{len}(\overline{y})$ for the length of vector $\overline{y}$ of variables.
adamc@535 620
adamc@535 621 $$\infer{\Gamma \vdash \cdot \leadsto \Gamma}{}
adamc@535 622 \quad \infer{\Gamma \vdash d, \overline{d} \leadsto \Gamma''}{
adamc@535 623 \Gamma \vdash d \leadsto \Gamma'
adamc@535 624 & \Gamma' \vdash \overline{d} \leadsto \Gamma''
adamc@535 625 }$$
adamc@535 626
adamc@535 627 $$\infer{\Gamma \vdash \mt{con} \; x :: \kappa = c \leadsto \Gamma, x :: \kappa = c}{
adamc@535 628 \Gamma \vdash c :: \kappa
adamc@535 629 }
adamc@535 630 \quad \infer{\Gamma \vdash \mt{datatype} \; x \; \overline{y} = \overline{dc} \leadsto \Gamma'}{
adamc@535 631 \overline{y}; x; \Gamma, x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type} \vdash \overline{dc} \leadsto \Gamma'
adamc@535 632 }$$
adamc@535 633
adamc@535 634 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leadsto \Gamma'}{
adamc@537 635 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 636 & \mt{proj}(M, \overline{s}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})
adamc@535 637 & \overline{y}; x; \Gamma, x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type} = M.z \vdash \overline{dc} \leadsto \Gamma'
adamc@535 638 }$$
adamc@535 639
adamc@535 640 $$\infer{\Gamma \vdash \mt{val} \; x : \tau = e \leadsto \Gamma, x : \tau}{
adamc@535 641 \Gamma \vdash e : \tau
adamc@535 642 }$$
adamc@535 643
adamc@535 644 $$\infer{\Gamma \vdash \mt{val} \; \mt{rec} \; \overline{x : \tau = e} \leadsto \Gamma, \overline{x : \tau}}{
adamc@535 645 \forall i: \Gamma, \overline{x : \tau} \vdash e_i : \tau_i
adamc@535 646 & \textrm{$e_i$ starts with an expression $\lambda$, optionally preceded by constructor and disjointness $\lambda$s}
adamc@535 647 }$$
adamc@535 648
adamc@535 649 $$\infer{\Gamma \vdash \mt{structure} \; X : S = M \leadsto \Gamma, X : S}{
adamc@535 650 \Gamma \vdash M : S
adamc@539 651 & \textrm{ ($M$ not a $\mt{struct} \; \ldots \; \mt{end}$)}
adamc@535 652 }
adamc@539 653 \quad \infer{\Gamma \vdash \mt{structure} \; X : S = \mt{struct} \; \overline{d} \; \mt{end} \leadsto \Gamma, X : \mt{selfify}(X, \overline{s})}{
adamc@539 654 \Gamma \vdash \mt{struct} \; \overline{d} \; \mt{end} : \mt{sig} \; \overline{s} \; \mt{end}
adamc@539 655 }$$
adamc@539 656
adamc@539 657 $$\infer{\Gamma \vdash \mt{signature} \; X = S \leadsto \Gamma, X = S}{
adamc@535 658 \Gamma \vdash S
adamc@535 659 }$$
adamc@535 660
adamc@537 661 $$\infer{\Gamma \vdash \mt{open} \; M \leadsto \Gamma, \mathcal O(M, \overline{s})}{
adamc@537 662 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@535 663 }$$
adamc@535 664
adamc@535 665 $$\infer{\Gamma \vdash \mt{constraint} \; c_1 \sim c_2 \leadsto \Gamma}{
adamc@535 666 \Gamma \vdash c_1 :: \{\kappa\}
adamc@535 667 & \Gamma \vdash c_2 :: \{\kappa\}
adamc@535 668 & \Gamma \vdash c_1 \sim c_2
adamc@535 669 }
adamc@537 670 \quad \infer{\Gamma \vdash \mt{open} \; \mt{constraints} \; M \leadsto \Gamma, \mathcal O_c(M, \overline{s})}{
adamc@537 671 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@535 672 }$$
adamc@535 673
adamc@535 674 $$\infer{\Gamma \vdash \mt{table} \; x : c \leadsto \Gamma, x : \mt{Basis}.\mt{sql\_table} \; c}{
adamc@535 675 \Gamma \vdash c :: \{\mt{Type}\}
adamc@535 676 }
adamc@535 677 \quad \infer{\Gamma \vdash \mt{sequence} \; x \leadsto \Gamma, x : \mt{Basis}.\mt{sql\_sequence}}{}$$
adamc@535 678
adamc@535 679 $$\infer{\Gamma \vdash \mt{cookie} \; x : \tau \leadsto \Gamma, x : \mt{Basis}.\mt{http\_cookie} \; \tau}{
adamc@535 680 \Gamma \vdash \tau :: \mt{Type}
adamc@535 681 }$$
adamc@535 682
adamc@535 683 $$\infer{\Gamma \vdash \mt{class} \; x = c \leadsto \Gamma, x :: \mt{Type} \to \mt{Type} = c}{
adamc@535 684 \Gamma \vdash c :: \mt{Type} \to \mt{Type}
adamc@535 685 }$$
adamc@535 686
adamc@535 687 $$\infer{\overline{y}; x; \Gamma \vdash \cdot \leadsto \Gamma}{}
adamc@535 688 \quad \infer{\overline{y}; x; \Gamma \vdash X \mid \overline{dc} \leadsto \Gamma', X : \overline{y ::: \mt{Type}} \to x \; \overline{y}}{
adamc@535 689 \overline{y}; x; \Gamma \vdash \overline{dc} \leadsto \Gamma'
adamc@535 690 }
adamc@535 691 \quad \infer{\overline{y}; x; \Gamma \vdash X \; \mt{of} \; \tau \mid \overline{dc} \leadsto \Gamma', X : \overline{y ::: \mt{Type}} \to \tau \to x \; \overline{y}}{
adamc@535 692 \overline{y}; x; \Gamma \vdash \overline{dc} \leadsto \Gamma'
adamc@535 693 }$$
adamc@535 694
adamc@537 695 \subsection{Signature Item Typing}
adamc@537 696
adamc@537 697 We appeal to a signature item analogue of the $\mathcal O$ function from the last subsection.
adamc@537 698
adamc@537 699 $$\infer{\Gamma \vdash \cdot \leadsto \Gamma}{}
adamc@537 700 \quad \infer{\Gamma \vdash s, \overline{s} \leadsto \Gamma''}{
adamc@537 701 \Gamma \vdash s \leadsto \Gamma'
adamc@537 702 & \Gamma' \vdash \overline{s} \leadsto \Gamma''
adamc@537 703 }$$
adamc@537 704
adamc@537 705 $$\infer{\Gamma \vdash \mt{con} \; x :: \kappa \leadsto \Gamma, x :: \kappa}{}
adamc@537 706 \quad \infer{\Gamma \vdash \mt{con} \; x :: \kappa = c \leadsto \Gamma, x :: \kappa = c}{
adamc@537 707 \Gamma \vdash c :: \kappa
adamc@537 708 }
adamc@537 709 \quad \infer{\Gamma \vdash \mt{datatype} \; x \; \overline{y} = \overline{dc} \leadsto \Gamma'}{
adamc@537 710 \overline{y}; x; \Gamma, x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type} \vdash \overline{dc} \leadsto \Gamma'
adamc@537 711 }$$
adamc@537 712
adamc@537 713 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leadsto \Gamma'}{
adamc@537 714 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 715 & \mt{proj}(M, \overline{s}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})
adamc@537 716 & \overline{y}; x; \Gamma, x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type} = M.z \vdash \overline{dc} \leadsto \Gamma'
adamc@537 717 }$$
adamc@537 718
adamc@537 719 $$\infer{\Gamma \vdash \mt{val} \; x : \tau \leadsto \Gamma, x : \tau}{
adamc@537 720 \Gamma \vdash \tau :: \mt{Type}
adamc@537 721 }$$
adamc@537 722
adamc@537 723 $$\infer{\Gamma \vdash \mt{structure} \; X : S \leadsto \Gamma, X : S}{
adamc@537 724 \Gamma \vdash S
adamc@537 725 }
adamc@537 726 \quad \infer{\Gamma \vdash \mt{signature} \; X = S \leadsto \Gamma, X = S}{
adamc@537 727 \Gamma \vdash S
adamc@537 728 }$$
adamc@537 729
adamc@537 730 $$\infer{\Gamma \vdash \mt{include} \; S \leadsto \Gamma, \mathcal O(\overline{s})}{
adamc@537 731 \Gamma \vdash S
adamc@537 732 & \Gamma \vdash S \equiv \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 733 }$$
adamc@537 734
adamc@537 735 $$\infer{\Gamma \vdash \mt{constraint} \; c_1 \sim c_2 \leadsto \Gamma, c_1 \sim c_2}{
adamc@537 736 \Gamma \vdash c_1 :: \{\kappa\}
adamc@537 737 & \Gamma \vdash c_2 :: \{\kappa\}
adamc@537 738 }$$
adamc@537 739
adamc@537 740 $$\infer{\Gamma \vdash \mt{class} \; x = c \leadsto \Gamma, x :: \mt{Type} \to \mt{Type} = c}{
adamc@537 741 \Gamma \vdash c :: \mt{Type} \to \mt{Type}
adamc@537 742 }
adamc@537 743 \quad \infer{\Gamma \vdash \mt{class} \; x \leadsto \Gamma, x :: \mt{Type} \to \mt{Type}}{}$$
adamc@537 744
adamc@536 745 \subsection{Signature Compatibility}
adamc@536 746
adamc@537 747 To simplify the judgments in this section, we assume that all signatures are alpha-varied as necessary to avoid including mmultiple bindings for the same identifier. This is in addition to the usual alpha-variation of locally-bound variables.
adamc@537 748
adamc@537 749 We rely on a judgment $\Gamma \vdash \overline{s} \leq s'$, which expresses the occurrence in signature items $\overline{s}$ of an item compatible with $s'$. We also use a judgment $\Gamma \vdash \overline{dc} \leq \overline{dc}$, which expresses compatibility of datatype definitions.
adamc@537 750
adamc@536 751 $$\infer{\Gamma \vdash S \equiv S}{}
adamc@536 752 \quad \infer{\Gamma \vdash S_1 \equiv S_2}{
adamc@536 753 \Gamma \vdash S_2 \equiv S_1
adamc@536 754 }
adamc@536 755 \quad \infer{\Gamma \vdash X \equiv S}{
adamc@536 756 X = S \in \Gamma
adamc@536 757 }
adamc@536 758 \quad \infer{\Gamma \vdash M.X \equiv S}{
adamc@537 759 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 760 & \mt{proj}(M, \overline{s}, \mt{signature} \; X) = S
adamc@536 761 }$$
adamc@536 762
adamc@536 763 $$\infer{\Gamma \vdash S \; \mt{where} \; \mt{con} \; x = c \equiv \mt{sig} \; \overline{s^1} \; \mt{con} \; x :: \kappa = c \; \overline{s_2} \; \mt{end}}{
adamc@536 764 \Gamma \vdash S \equiv \mt{sig} \; \overline{s^1} \; \mt{con} \; x :: \kappa \; \overline{s_2} \; \mt{end}
adamc@536 765 & \Gamma \vdash c :: \kappa
adamc@537 766 }
adamc@537 767 \quad \infer{\Gamma \vdash \mt{sig} \; \overline{s^1} \; \mt{include} \; S \; \overline{s^2} \; \mt{end} \equiv \mt{sig} \; \overline{s^1} \; \overline{s} \; \overline{s^2} \; \mt{end}}{
adamc@537 768 \Gamma \vdash S \equiv \mt{sig} \; \overline{s} \; \mt{end}
adamc@536 769 }$$
adamc@536 770
adamc@536 771 $$\infer{\Gamma \vdash S_1 \leq S_2}{
adamc@536 772 \Gamma \vdash S_1 \equiv S_2
adamc@536 773 }
adamc@536 774 \quad \infer{\Gamma \vdash \mt{sig} \; \overline{s} \; \mt{end} \leq \mt{sig} \; \mt{end}}{}
adamc@537 775 \quad \infer{\Gamma \vdash \mt{sig} \; \overline{s} \; \mt{end} \leq \mt{sig} \; s' \; \overline{s'} \; \mt{end}}{
adamc@537 776 \Gamma \vdash \overline{s} \leq s'
adamc@537 777 & \Gamma \vdash s' \leadsto \Gamma'
adamc@537 778 & \Gamma' \vdash \mt{sig} \; \overline{s} \; \mt{end} \leq \mt{sig} \; \overline{s'} \; \mt{end}
adamc@537 779 }$$
adamc@537 780
adamc@537 781 $$\infer{\Gamma \vdash s \; \overline{s} \leq s'}{
adamc@537 782 \Gamma \vdash s \leq s'
adamc@537 783 }
adamc@537 784 \quad \infer{\Gamma \vdash s \; \overline{s} \leq s'}{
adamc@537 785 \Gamma \vdash s \leadsto \Gamma'
adamc@537 786 & \Gamma' \vdash \overline{s} \leq s'
adamc@536 787 }$$
adamc@536 788
adamc@536 789 $$\infer{\Gamma \vdash \mt{functor} (X : S_1) : S_2 \leq \mt{functor} (X : S'_1) : S'_2}{
adamc@536 790 \Gamma \vdash S'_1 \leq S_1
adamc@536 791 & \Gamma, X : S'_1 \vdash S_2 \leq S'_2
adamc@536 792 }$$
adamc@536 793
adamc@537 794 $$\infer{\Gamma \vdash \mt{con} \; x :: \kappa \leq \mt{con} \; x :: \kappa}{}
adamc@537 795 \quad \infer{\Gamma \vdash \mt{con} \; x :: \kappa = c \leq \mt{con} \; x :: \kappa}{}
adamc@537 796 \quad \infer{\Gamma \vdash \mt{datatype} \; x \; \overline{y} = \overline{dc} \leq \mt{con} \; x :: \mt{Type}}{}$$
adamc@537 797
adamc@537 798 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leq \mt{con} \; x :: \mt{Type}^{\mt{len}(y)} \to \mt{Type}}{
adamc@537 799 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 800 & \mt{proj}(M, \overline{s}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})
adamc@537 801 }$$
adamc@537 802
adamc@537 803 $$\infer{\Gamma \vdash \mt{class} \; x \leq \mt{con} \; x :: \mt{Type} \to \mt{Type}}{}
adamc@537 804 \quad \infer{\Gamma \vdash \mt{class} \; x = c \leq \mt{con} \; x :: \mt{Type} \to \mt{Type}}{}$$
adamc@537 805
adamc@537 806 $$\infer{\Gamma \vdash \mt{con} \; x :: \kappa = c_1 \leq \mt{con} \; x :: \mt{\kappa} = c_2}{
adamc@537 807 \Gamma \vdash c_1 \equiv c_2
adamc@537 808 }
adamc@537 809 \quad \infer{\Gamma \vdash \mt{class} \; x = c_1 \leq \mt{con} \; x :: \mt{Type} \to \mt{Type} = c_2}{
adamc@537 810 \Gamma \vdash c_1 \equiv c_2
adamc@537 811 }$$
adamc@537 812
adamc@537 813 $$\infer{\Gamma \vdash \mt{datatype} \; x \; \overline{y} = \overline{dc} \leq \mt{datatype} \; x \; \overline{y} = \overline{dc'}}{
adamc@537 814 \Gamma, \overline{y :: \mt{Type}} \vdash \overline{dc} \leq \overline{dc'}
adamc@537 815 }$$
adamc@537 816
adamc@537 817 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leq \mt{datatype} \; x \; \overline{y} = \overline{dc'}}{
adamc@537 818 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 819 & \mt{proj}(M, \overline{s}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})
adamc@537 820 & \Gamma, \overline{y :: \mt{Type}} \vdash \overline{dc} \leq \overline{dc'}
adamc@537 821 }$$
adamc@537 822
adamc@537 823 $$\infer{\Gamma \vdash \cdot \leq \cdot}{}
adamc@537 824 \quad \infer{\Gamma \vdash X; \overline{dc} \leq X; \overline{dc'}}{
adamc@537 825 \Gamma \vdash \overline{dc} \leq \overline{dc'}
adamc@537 826 }
adamc@537 827 \quad \infer{\Gamma \vdash X \; \mt{of} \; \tau_1; \overline{dc} \leq X \; \mt{of} \; \tau_2; \overline{dc'}}{
adamc@537 828 \Gamma \vdash \tau_1 \equiv \tau_2
adamc@537 829 & \Gamma \vdash \overline{dc} \leq \overline{dc'}
adamc@537 830 }$$
adamc@537 831
adamc@537 832 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leq \mt{datatype} \; x = \mt{datatype} \; M'.z'}{
adamc@537 833 \Gamma \vdash M.z \equiv M'.z'
adamc@537 834 }$$
adamc@537 835
adamc@537 836 $$\infer{\Gamma \vdash \mt{val} \; x : \tau_1 \leq \mt{val} \; x : \tau_2}{
adamc@537 837 \Gamma \vdash \tau_1 \equiv \tau_2
adamc@537 838 }
adamc@537 839 \quad \infer{\Gamma \vdash \mt{structure} \; X : S_1 \leq \mt{structure} \; X : S_2}{
adamc@537 840 \Gamma \vdash S_1 \leq S_2
adamc@537 841 }
adamc@537 842 \quad \infer{\Gamma \vdash \mt{signature} \; X = S_1 \leq \mt{signature} \; X = S_2}{
adamc@537 843 \Gamma \vdash S_1 \leq S_2
adamc@537 844 & \Gamma \vdash S_2 \leq S_1
adamc@537 845 }$$
adamc@537 846
adamc@537 847 $$\infer{\Gamma \vdash \mt{constraint} \; c_1 \sim c_2 \leq \mt{constraint} \; c'_1 \sim c'_2}{
adamc@537 848 \Gamma \vdash c_1 \equiv c'_1
adamc@537 849 & \Gamma \vdash c_2 \equiv c'_2
adamc@537 850 }$$
adamc@537 851
adamc@537 852 $$\infer{\Gamma \vdash \mt{class} \; x \leq \mt{class} \; x}{}
adamc@537 853 \quad \infer{\Gamma \vdash \mt{class} \; x = c \leq \mt{class} \; x}{}
adamc@537 854 \quad \infer{\Gamma \vdash \mt{class} \; x = c_1 \leq \mt{class} \; x = c_2}{
adamc@537 855 \Gamma \vdash c_1 \equiv c_2
adamc@537 856 }$$
adamc@537 857
adamc@538 858 \subsection{Module Typing}
adamc@538 859
adamc@538 860 We use a helper function $\mt{sigOf}$, which converts declarations and sequences of declarations into their principal signature items and sequences of signature items, respectively.
adamc@538 861
adamc@538 862 $$\infer{\Gamma \vdash M : S}{
adamc@538 863 \Gamma \vdash M : S'
adamc@538 864 & \Gamma \vdash S' \leq S
adamc@538 865 }
adamc@538 866 \quad \infer{\Gamma \vdash \mt{struct} \; \overline{d} \; \mt{end} : \mt{sig} \; \mt{sigOf}(\overline{d}) \; \mt{end}}{
adamc@538 867 \Gamma \vdash \overline{d} \leadsto \Gamma'
adamc@538 868 }
adamc@538 869 \quad \infer{\Gamma \vdash X : S}{
adamc@538 870 X : S \in \Gamma
adamc@538 871 }$$
adamc@538 872
adamc@538 873 $$\infer{\Gamma \vdash M.X : S}{
adamc@538 874 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@538 875 & \mt{proj}(M, \overline{s}, \mt{structure} \; X) = S
adamc@538 876 }$$
adamc@538 877
adamc@538 878 $$\infer{\Gamma \vdash M_1(M_2) : [X \mapsto M_2]S_2}{
adamc@538 879 \Gamma \vdash M_1 : \mt{functor}(X : S_1) : S_2
adamc@538 880 & \Gamma \vdash M_2 : S_1
adamc@538 881 }
adamc@538 882 \quad \infer{\Gamma \vdash \mt{functor} (X : S_1) : S_2 = M : \mt{functor} (X : S_1) : S_2}{
adamc@538 883 \Gamma \vdash S_1
adamc@538 884 & \Gamma, X : S_1 \vdash S_2
adamc@538 885 & \Gamma, X : S_1 \vdash M : S_2
adamc@538 886 }$$
adamc@538 887
adamc@538 888 \begin{eqnarray*}
adamc@538 889 \mt{sigOf}(\cdot) &=& \cdot \\
adamc@538 890 \mt{sigOf}(s \; \overline{s'}) &=& \mt{sigOf}(s) \; \mt{sigOf}(\overline{s'}) \\
adamc@538 891 \\
adamc@538 892 \mt{sigOf}(\mt{con} \; x :: \kappa = c) &=& \mt{con} \; x :: \kappa = c \\
adamc@538 893 \mt{sigOf}(\mt{datatype} \; x \; \overline{y} = \overline{dc}) &=& \mt{datatype} \; x \; \overline{y} = \overline{dc} \\
adamc@538 894 \mt{sigOf}(\mt{datatype} \; x = \mt{datatype} \; M.z) &=& \mt{datatype} \; x = \mt{datatype} \; M.z \\
adamc@538 895 \mt{sigOf}(\mt{val} \; x : \tau = e) &=& \mt{val} \; x : \tau \\
adamc@538 896 \mt{sigOf}(\mt{val} \; \mt{rec} \; \overline{x : \tau = e}) &=& \overline{\mt{val} \; x : \tau} \\
adamc@538 897 \mt{sigOf}(\mt{structure} \; X : S = M) &=& \mt{structure} \; X : S \\
adamc@538 898 \mt{sigOf}(\mt{signature} \; X = S) &=& \mt{signature} \; X = S \\
adamc@538 899 \mt{sigOf}(\mt{open} \; M) &=& \mt{include} \; S \textrm{ (where $\Gamma \vdash M : S$)} \\
adamc@538 900 \mt{sigOf}(\mt{constraint} \; c_1 \sim c_2) &=& \mt{constraint} \; c_1 \sim c_2 \\
adamc@538 901 \mt{sigOf}(\mt{open} \; \mt{constraints} \; M) &=& \cdot \\
adamc@538 902 \mt{sigOf}(\mt{table} \; x : c) &=& \mt{table} \; x : c \\
adamc@538 903 \mt{sigOf}(\mt{sequence} \; x) &=& \mt{sequence} \; x \\
adamc@538 904 \mt{sigOf}(\mt{cookie} \; x : \tau) &=& \mt{cookie} \; x : \tau \\
adamc@538 905 \mt{sigOf}(\mt{class} \; x = c) &=& \mt{class} \; x = c \\
adamc@538 906 \end{eqnarray*}
adamc@538 907
adamc@539 908 \begin{eqnarray*}
adamc@539 909 \mt{selfify}(M, \cdot) &=& \cdot \\
adamc@539 910 \mt{selfify}(M, s \; \overline{s'}) &=& \mt{selfify}(M, \sigma, s) \; \mt{selfify}(M, \overline{s'}) \\
adamc@539 911 \\
adamc@539 912 \mt{selfify}(M, \mt{con} \; x :: \kappa) &=& \mt{con} \; x :: \kappa = M.x \\
adamc@539 913 \mt{selfify}(M, \mt{con} \; x :: \kappa = c) &=& \mt{con} \; x :: \kappa = c \\
adamc@539 914 \mt{selfify}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc}) &=& \mt{datatype} \; x \; \overline{y} = \mt{datatype} \; M.x \\
adamc@539 915 \mt{selfify}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z) &=& \mt{datatype} \; x = \mt{datatype} \; M'.z \\
adamc@539 916 \mt{selfify}(M, \mt{val} \; x : \tau) &=& \mt{val} \; x : \tau \\
adamc@539 917 \mt{selfify}(M, \mt{structure} \; X : S) &=& \mt{structure} \; X : \mt{selfify}(M.X, \overline{s}) \textrm{ (where $\Gamma \vdash S \equiv \mt{sig} \; \overline{s} \; \mt{end}$)} \\
adamc@539 918 \mt{selfify}(M, \mt{signature} \; X = S) &=& \mt{signature} \; X = S \\
adamc@539 919 \mt{selfify}(M, \mt{include} \; S) &=& \mt{include} \; S \\
adamc@539 920 \mt{selfify}(M, \mt{constraint} \; c_1 \sim c_2) &=& \mt{constraint} \; c_1 \sim c_2 \\
adamc@539 921 \mt{selfify}(M, \mt{class} \; x) &=& \mt{class} \; x = M.x \\
adamc@539 922 \mt{selfify}(M, \mt{class} \; x = c) &=& \mt{class} \; x = c \\
adamc@539 923 \end{eqnarray*}
adamc@539 924
adamc@540 925 \subsection{Module Projection}
adamc@540 926
adamc@540 927 \begin{eqnarray*}
adamc@540 928 \mt{proj}(M, \mt{con} \; x :: \kappa \; \overline{s}, \mt{con} \; x) &=& \kappa \\
adamc@540 929 \mt{proj}(M, \mt{con} \; x :: \kappa = c \; \overline{s}, \mt{con} \; x) &=& (\kappa, c) \\
adamc@540 930 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, \mt{con} \; x) &=& \mt{Type}^{\mt{len}(\overline{y})} \to \mt{Type} \\
adamc@540 931 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z \; \overline{s}, \mt{con} \; x) &=& (\mt{Type}^{\mt{len}(\overline{y})} \to \mt{Type}, M'.z) \textrm{ (where $\Gamma \vdash M' : \mt{sig} \; \overline{s'} \; \mt{end}$} \\
adamc@540 932 && \textrm{and $\mt{proj}(M', \overline{s'}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})$)} \\
adamc@540 933 \mt{proj}(M, \mt{class} \; x \; \overline{s}, \mt{con} \; x) &=& \mt{Type} \to \mt{Type} \\
adamc@540 934 \mt{proj}(M, \mt{class} \; x = c \; \overline{s}, \mt{con} \; x) &=& (\mt{Type} \to \mt{Type}, c) \\
adamc@540 935 \\
adamc@540 936 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, \mt{datatype} \; x) &=& (\overline{y}, \overline{dc}) \\
adamc@540 937 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z \; \overline{s}, \mt{con} \; x) &=& \mt{proj}(M', \overline{s'}, \mt{datatype} \; z) \textrm{ (where $\Gamma \vdash M' : \mt{sig} \; \overline{s'} \; \mt{end}$)} \\
adamc@540 938 \\
adamc@540 939 \mt{proj}(M, \mt{val} \; x : \tau \; \overline{s}, \mt{val} \; x) &=& \tau \\
adamc@540 940 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, \mt{val} \; X) &=& \overline{y ::: \mt{Type}} \to M.x \; \overline y \textrm{ (where $X \in \overline{dc}$)} \\
adamc@540 941 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, \mt{val} \; X) &=& \overline{y ::: \mt{Type}} \to \tau \to M.x \; \overline y \textrm{ (where $X \; \mt{of} \; \tau \in \overline{dc}$)} \\
adamc@540 942 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z, \mt{val} \; X) &=& \overline{y ::: \mt{Type}} \to M.x \; \overline y \textrm{ (where $\Gamma \vdash M' : \mt{sig} \; \overline{s'} \; \mt{end}$} \\
adamc@540 943 && \textrm{and $\mt{proj}(M', \overline{s'}, \mt{datatype} \; z = (\overline{y}, \overline{dc})$ and $X \in \overline{dc}$)} \\
adamc@540 944 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z, \mt{val} \; X) &=& \overline{y ::: \mt{Type}} \to \tau \to M.x \; \overline y \textrm{ (where $\Gamma \vdash M' : \mt{sig} \; \overline{s'} \; \mt{end}$} \\
adamc@540 945 && \textrm{and $\mt{proj}(M', \overline{s'}, \mt{datatype} \; z = (\overline{y}, \overline{dc})$ and $X : \tau \in \overline{dc}$)} \\
adamc@540 946 \\
adamc@540 947 \mt{proj}(M, \mt{structure} \; X : S \; \overline{s}, \mt{structure} \; X) &=& S \\
adamc@540 948 \\
adamc@540 949 \mt{proj}(M, \mt{signature} \; X = S \; \overline{s}, \mt{signature} \; X) &=& S \\
adamc@540 950 \\
adamc@540 951 \mt{proj}(M, \mt{con} \; x :: \kappa \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 952 \mt{proj}(M, \mt{con} \; x :: \kappa = c \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 953 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 954 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 955 \mt{proj}(M, \mt{val} \; x : \tau \; \overline{s}, V) &=& \mt{proj}(M, \overline{s}, V) \\
adamc@540 956 \mt{proj}(M, \mt{structure} \; X : S \; \overline{s}, V) &=& [X \mapsto M.X]\mt{proj}(M, \overline{s}, V) \\
adamc@540 957 \mt{proj}(M, \mt{signature} \; X = S \; \overline{s}, V) &=& [X \mapsto M.X]\mt{proj}(M, \overline{s}, V) \\
adamc@540 958 \mt{proj}(M, \mt{include} \; S \; \overline{s}, V) &=& \mt{proj}(M, \overline{s'} \; \overline{s}, V) \textrm{ (where $\Gamma \vdash S \equiv \mt{sig} \; \overline{s'} \; \mt{end}$)} \\
adamc@540 959 \mt{proj}(M, \mt{constraint} \; c_1 \sim c_2 \; \overline{s}, V) &=& \mt{proj}(M, \overline{s}, V) \\
adamc@540 960 \mt{proj}(M, \mt{class} \; x \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 961 \mt{proj}(M, \mt{class} \; x = c \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 962 \end{eqnarray*}
adamc@540 963
adamc@541 964
adamc@541 965 \section{Type Inference}
adamc@541 966
adamc@541 967 The Ur/Web compiler uses \emph{heuristic type inference}, with no claims of completeness with respect to the declarative specification of the last section. The rules in use seem to work well in practice. This section summarizes those rules, to help Ur programmers predict what will work and what won't.
adamc@541 968
adamc@541 969 \subsection{Basic Unification}
adamc@541 970
adamc@541 971 Type-checkers for languages based on the Hindly-Milner type discipline, like ML and Haskell, take advantage of \emph{principal typing} properties, making complete type inference relatively straightforward. Inference algorithms are traditionally implemented using type unification variables, at various points asserting equalities between types, in the process discovering the values of type variables. The Ur/Web compiler uses the same basic strategy, but the complexity of the type system rules out easy completeness.
adamc@541 972
adamc@541 973 Type-checking can require evaluating recursive functional programs, thanks to the type-level $\mt{fold}$ operator. When a unification variable appears in such a type, the next step of computation can be undetermined. The value of that variable might be determined later, but this would be ``too late'' for the unification problems generated at the first occurrence. This is the essential source of incompletness.
adamc@541 974
adamc@541 975 Nonetheless, the unification engine tends to do reasonably well. Unlike in ML, polymorphism is never inferred in definitions; it must be indicated explicitly by writing out constructor-level parameters. By writing these and other annotations, the programmer can generally get the type inference engine to do most of the type reconstruction work.
adamc@541 976
adamc@541 977 \subsection{Unifying Record Types}
adamc@541 978
adamc@541 979 The type inference engine tries to take advantage of the algebraic rules governing type-level records, as shown in Section \ref{definitional}. When two constructors of record kind are unified, they are reduce to normal forms, with like terms crossed off from each normal form until, hopefully, nothing remains. This cannot be complete, with the inclusion of unification variables. The type-checker can help you understand what goes wrong when the process fails, as it outputs the unmatched remainders of the two normal forms.
adamc@541 980
adamc@541 981 \subsection{\label{typeclasses}Type Classes}
adamc@541 982
adamc@541 983 Ur includes a type class facility inspired by Haskell's. The current version is very rudimentary, only supporting instances for particular types built up from abstract types and datatypes and type-level application.
adamc@541 984
adamc@541 985 Type classes are integrated with the module system. A type class is just a constructor of kind $\mt{Type} \to \mt{Type}$. By marking such a constructor $c$ as a type class, the programmer instructs the type inference engine to, in each scope, record all values of types $c \; \tau$ as \emph{instances}. Any function argument whose type is of such a form is treated as implicit, to be determined by examining the current instance database.
adamc@541 986
adamc@541 987 The ``dictionary encoding'' often used in Haskell implementations is made explicit in Ur. Type class instances are just properly-typed values, and they can also be considered as ``proofs'' of membership in the class. In some cases, it is useful to pass these proofs around explicitly. An underscore written where a proof is expected will also be inferred, if possible, from the current instance database.
adamc@541 988
adamc@541 989 Just as for types, type classes may be exported from modules, and they may be exported as concrete or abstract. Concrete type classes have their ``real'' definitions exposed, so that client code may add new instances freely. Abstract type classes are useful as ``predicates'' that can be used to enforce invariants, as we will see in some definitions of SQL syntax in the Ur/Web standard library.
adamc@541 990
adamc@541 991 \subsection{Reverse-Engineering Record Types}
adamc@541 992
adamc@541 993 It's useful to write Ur functions and functors that take record constructors as inputs, but these constructors can grow quite long, even though their values are often implied by other arguments. The compiler uses a simple heuristic to infer the values of unification variables that are folded over, yielding known results. Often, as in the case of $\mt{map}$-like folds, the base and recursive cases of a fold produce constructors with different top-level structure. Thus, if the result of the fold is known, examining its top-level structure reveals whether the record being folded over is empty or not. If it's empty, we're done; if it's not empty, we replace a single unification variable with a new constructor formed from three new unification variables, as in $[\alpha = \beta] \rc \gamma$. This process can often be repeated to determine a unification variable fully.
adamc@541 994
adamc@541 995 \subsection{Implicit Arguments in Functor Applications}
adamc@541 996
adamc@541 997 Constructor, constraint, and type class witness members of structures may be omitted, when those structures are used in contexts where their assigned signatures imply how to fill in those missing members. This feature combines well with reverse-engineering to allow for uses of complicated meta-programming functors with little more code than would be necessary to invoke an untyped, ad-hoc code generator.
adamc@541 998
adamc@541 999
adamc@542 1000 \section{The Ur Standard Library}
adamc@542 1001
adamc@542 1002 The built-in parts of the Ur/Web standard library are described by the signature in \texttt{lib/basis.urs} in the distribution. A module $\mt{Basis}$ ascribing to that signature is available in the initial environment, and every program is implicitly prefixed by $\mt{open} \; \mt{Basis}$.
adamc@542 1003
adamc@542 1004 Additionally, other common functions that are definable within Ur are included in \texttt{lib/top.urs} and \texttt{lib/top.ur}. This $\mt{Top}$ module is also opened implicitly.
adamc@542 1005
adamc@542 1006 The idea behind Ur is to serve as the ideal host for embedded domain-specific languages. For now, however, the ``generic'' functionality is intermixed with Ur/Web-specific functionality, including in these two library modules. We hope that these generic library components have types that speak for themselves. The next section introduces the Ur/Web-specific elements. Here, we only give the type declarations from the beginning of $\mt{Basis}$.
adamc@542 1007 $$\begin{array}{l}
adamc@542 1008 \mt{type} \; \mt{int} \\
adamc@542 1009 \mt{type} \; \mt{float} \\
adamc@542 1010 \mt{type} \; \mt{string} \\
adamc@542 1011 \mt{type} \; \mt{time} \\
adamc@542 1012 \\
adamc@542 1013 \mt{type} \; \mt{unit} = \{\} \\
adamc@542 1014 \\
adamc@542 1015 \mt{datatype} \; \mt{bool} = \mt{False} \mid \mt{True} \\
adamc@542 1016 \\
adamc@542 1017 \mt{datatype} \; \mt{option} \; \mt{t} = \mt{None} \mid \mt{Some} \; \mt{of} \; \mt{t}
adamc@542 1018 \end{array}$$
adamc@542 1019
adamc@542 1020
adamc@542 1021 \section{The Ur/Web Standard Library}
adamc@542 1022
adamc@542 1023 \subsection{Transactions}
adamc@542 1024
adamc@542 1025 Ur is a pure language; we use Haskell's trick to support controlled side effects. The standard library defines a monad $\mt{transaction}$, meant to stand for actions that may be undone cleanly. By design, no other kinds of actions are supported.
adamc@542 1026 $$\begin{array}{l}
adamc@542 1027 \mt{con} \; \mt{transaction} :: \mt{Type} \to \mt{Type} \\
adamc@542 1028 \\
adamc@542 1029 \mt{val} \; \mt{return} : \mt{t} ::: \mt{Type} \to \mt{t} \to \mt{transaction} \; \mt{t} \\
adamc@542 1030 \mt{val} \; \mt{bind} : \mt{t_1} ::: \mt{Type} \to \mt{t_2} ::: \mt{Type} \to \mt{transaction} \; \mt{t_1} \to (\mt{t_1} \to \mt{transaction} \; \mt{t_2}) \to \mt{transaction} \; \mt{t_2}
adamc@542 1031 \end{array}$$
adamc@542 1032
adamc@542 1033 \subsection{HTTP}
adamc@542 1034
adamc@542 1035 There are transactions for reading an HTTP header by name and for getting and setting strongly-typed cookies. Cookies may only be created by the $\mt{cookie}$ declaration form, ensuring that they be named consistently based on module structure.
adamc@542 1036 $$\begin{array}{l}
adamc@542 1037 \mt{val} \; \mt{requestHeader} : \mt{string} \to \mt{transaction} \; (\mt{option} \; \mt{string}) \\
adamc@542 1038 \\
adamc@542 1039 \mt{con} \; \mt{http\_cookie} :: \mt{Type} \to \mt{Type} \\
adamc@542 1040 \mt{val} \; \mt{getCookie} : \mt{t} ::: \mt{Type} \to \mt{http\_cookie} \; \mt{t} \to \mt{transaction} \; (\mt{option} \; \mt{t}) \\
adamc@542 1041 \mt{val} \; \mt{setCookie} : \mt{t} ::: \mt{Type} \to \mt{http\_cookie} \; \mt{t} \to \mt{t} \to \mt{transaction} \; \mt{unit}
adamc@542 1042 \end{array}$$
adamc@542 1043
adamc@543 1044 \subsection{SQL}
adamc@543 1045
adamc@543 1046 The fundamental unit of interest in the embedding of SQL is tables, described by a type family and creatable only via the $\mt{table}$ declaration form.
adamc@543 1047 $$\begin{array}{l}
adamc@543 1048 \mt{con} \; \mt{sql\_table} :: \{\mt{Type}\} \to \mt{Type}
adamc@543 1049 \end{array}$$
adamc@543 1050
adamc@543 1051 \subsubsection{Queries}
adamc@543 1052
adamc@543 1053 A final query is constructed via the $\mt{sql\_query}$ function. Constructor arguments respectively specify the table fields we select (as records mapping tables to the subsets of their fields that we choose) and the (always named) extra expressions that we select.
adamc@543 1054 $$\begin{array}{l}
adamc@543 1055 \mt{con} \; \mt{sql\_query} :: \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \\
adamc@543 1056 \mt{val} \; \mt{sql\_query} : \mt{tables} ::: \{\{\mt{Type}\}\} \\
adamc@543 1057 \hspace{.1in} \to \mt{selectedFields} ::: \{\{\mt{Type}\}\} \\
adamc@543 1058 \hspace{.1in} \to \mt{selectedExps} ::: \{\mt{Type}\} \\
adamc@543 1059 \hspace{.1in} \to \{\mt{Rows} : \mt{sql\_query1} \; \mt{tables} \; \mt{selectedFields} \; \mt{selectedExps}, \\
adamc@543 1060 \hspace{.2in} \mt{OrderBy} : \mt{sql\_order\_by} \; \mt{tables} \; \mt{selectedExps}, \\
adamc@543 1061 \hspace{.2in} \mt{Limit} : \mt{sql\_limit}, \\
adamc@543 1062 \hspace{.2in} \mt{Offset} : \mt{sql\_offset}\} \\
adamc@543 1063 \hspace{.1in} \to \mt{sql\_query} \; \mt{selectedFields} \; \mt{selectedExps}
adamc@543 1064 \end{array}$$
adamc@543 1065
adamc@545 1066 Queries are used by folding over their results inside transactions.
adamc@545 1067 $$\begin{array}{l}
adamc@545 1068 \mt{val} \; \mt{query} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \lambda [\mt{tables} \sim \mt{exps}] \Rightarrow \mt{state} ::: \mt{Type} \to \mt{sql\_query} \; \mt{tables} \; \mt{exps} \\
adamc@545 1069 \hspace{.1in} \to (\$(\mt{exps} \rc \mt{fold} \; (\lambda \mt{nm} \; (\mt{fields} :: \{\mt{Type}\}) \; \mt{acc} \; [[\mt{nm}] \sim \mt{acc}] \Rightarrow [\mt{nm} = \$\mt{fields}] \rc \mt{acc}) \; [] \; \mt{tables}) \\
adamc@545 1070 \hspace{.2in} \to \mt{state} \to \mt{transaction} \; \mt{state}) \\
adamc@545 1071 \hspace{.1in} \to \mt{state} \to \mt{transaction} \; \mt{state}
adamc@545 1072 \end{array}$$
adamc@545 1073
adamc@543 1074 Most of the complexity of the query encoding is in the type $\mt{sql\_query1}$, which includes simple queries and derived queries based on relational operators. Constructor arguments respectively specify the tables we select from, the subset of fields that we keep from each table for the result rows, and the extra expressions that we select.
adamc@543 1075 $$\begin{array}{l}
adamc@543 1076 \mt{con} \; \mt{sql\_query1} :: \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \\
adamc@543 1077 \\
adamc@543 1078 \mt{type} \; \mt{sql\_relop} \\
adamc@543 1079 \mt{val} \; \mt{sql\_union} : \mt{sql\_relop} \\
adamc@543 1080 \mt{val} \; \mt{sql\_intersect} : \mt{sql\_relop} \\
adamc@543 1081 \mt{val} \; \mt{sql\_except} : \mt{sql\_relop} \\
adamc@543 1082 \mt{val} \; \mt{sql\_relop} : \mt{tables1} ::: \{\{\mt{Type}\}\} \\
adamc@543 1083 \hspace{.1in} \to \mt{tables2} ::: \{\{\mt{Type}\}\} \\
adamc@543 1084 \hspace{.1in} \to \mt{selectedFields} ::: \{\{\mt{Type}\}\} \\
adamc@543 1085 \hspace{.1in} \to \mt{selectedExps} ::: \{\mt{Type}\} \\
adamc@543 1086 \hspace{.1in} \to \mt{sql\_relop} \\
adamc@543 1087 \hspace{.1in} \to \mt{sql\_query1} \; \mt{tables1} \; \mt{selectedFields} \; \mt{selectedExps} \\
adamc@543 1088 \hspace{.1in} \to \mt{sql\_query1} \; \mt{tables2} \; \mt{selectedFields} \; \mt{selectedExps} \\
adamc@543 1089 \hspace{.1in} \to \mt{sql\_query1} \; \mt{selectedFields} \; \mt{selectedFields} \; \mt{selectedExps}
adamc@543 1090 \end{array}$$
adamc@543 1091
adamc@543 1092 $$\begin{array}{l}
adamc@543 1093 \mt{val} \; \mt{sql\_query1} : \mt{tables} ::: \{\{\mt{Type}\}\} \\
adamc@543 1094 \hspace{.1in} \to \mt{grouped} ::: \{\{\mt{Type}\}\} \\
adamc@543 1095 \hspace{.1in} \to \mt{selectedFields} ::: \{\{\mt{Type}\}\} \\
adamc@543 1096 \hspace{.1in} \to \mt{selectedExps} ::: \{\mt{Type}\} \\
adamc@543 1097 \hspace{.1in} \to \{\mt{From} : \$(\mt{fold} \; (\lambda \mt{nm} \; (\mt{fields} :: \{\mt{Type}\}) \; \mt{acc} \; [[\mt{nm}] \sim \mt{acc}] \Rightarrow [\mt{nm} = \mt{sql\_table} \; \mt{fields}] \rc \mt{acc}) \; [] \; \mt{tables}), \\
adamc@543 1098 \hspace{.2in} \mt{Where} : \mt{sql\_exp} \; \mt{tables} \; [] \; [] \; \mt{bool}, \\
adamc@543 1099 \hspace{.2in} \mt{GroupBy} : \mt{sql\_subset} \; \mt{tables} \; \mt{grouped}, \\
adamc@543 1100 \hspace{.2in} \mt{Having} : \mt{sql\_exp} \; \mt{grouped} \; \mt{tables} \; [] \; \mt{bool}, \\
adamc@543 1101 \hspace{.2in} \mt{SelectFields} : \mt{sql\_subset} \; \mt{grouped} \; \mt{selectedFields}, \\
adamc@543 1102 \hspace{.2in} \mt {SelectExps} : \$(\mt{fold} \; (\lambda \mt{nm} \; (\mt{t} :: \mt{Type}) \; \mt{acc} \; [[\mt{nm}] \sim \mt{acc}] \Rightarrow [\mt{nm} = \mt{sql\_exp} \; \mt{grouped} \; \mt{tables} \; [] \; \mt{t}] \rc \mt{acc}) \; [] \; \mt{selectedExps}) \} \\
adamc@543 1103 \hspace{.1in} \to \mt{sql\_query1} \; \mt{tables} \; \mt{selectedFields} \; \mt{selectedExps}
adamc@543 1104 \end{array}$$
adamc@543 1105
adamc@543 1106 To encode projection of subsets of fields in $\mt{SELECT}$ clauses, and to encode $\mt{GROUP} \; \mt{BY}$ clauses, we rely on a type family $\mt{sql\_subset}$, capturing what it means for one record of table fields to be a subset of another. The main constructor $\mt{sql\_subset}$ ``proves subset facts'' by requiring a split of a record into kept and dropped parts. The extra constructor $\mt{sql\_subset\_all}$ is a convenience for keeping all fields of a record.
adamc@543 1107 $$\begin{array}{l}
adamc@543 1108 \mt{con} \; \mt{sql\_subset} :: \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \mt{Type} \\
adamc@543 1109 \mt{val} \; \mt{sql\_subset} : \mt{keep\_drop} :: \{(\{\mt{Type}\} \times \{\mt{Type}\})\} \\
adamc@543 1110 \hspace{.1in} \to \mt{sql\_subset} \\
adamc@543 1111 \hspace{.2in} (\mt{fold} \; (\lambda \mt{nm} \; (\mt{fields} :: (\{\mt{Type}\} \times \{\mt{Type}\})) \; \mt{acc} \; [[\mt{nm}] \sim \mt{acc}] \; [\mt{fields}.1 \sim \mt{fields}.2] \Rightarrow \\
adamc@543 1112 \hspace{.3in} [\mt{nm} = \mt{fields}.1 \rc \mt{fields}.2] \rc \mt{acc}) \; [] \; \mt{keep\_drop}) \\
adamc@543 1113 \hspace{.2in} (\mt{fold} \; (\lambda \mt{nm} \; (\mt{fields} :: (\{\mt{Type}\} \times \{\mt{Type}\})) \; \mt{acc} \; [[\mt{nm}] \sim \mt{acc}] \Rightarrow [\mt{nm} = \mt{fields}.1] \rc \mt{acc}) \; [] \; \mt{keep\_drop}) \\
adamc@543 1114 \mt{val} \; \mt{sql\_subset\_all} : \mt{tables} :: \{\{\mt{Type}\}\} \to \mt{sql\_subset} \; \mt{tables} \; \mt{tables}
adamc@543 1115 \end{array}$$
adamc@543 1116
adamc@543 1117 SQL expressions are used in several places, including $\mt{SELECT}$, $\mt{WHERE}$, $\mt{HAVING}$, and $\mt{ORDER} \; \mt{BY}$ clauses. They reify a fragment of the standard SQL expression language, while making it possible to inject ``native'' Ur values in some places. The arguments to the $\mt{sql\_exp}$ type family respectively give the unrestricted-availablity table fields, the table fields that may only be used in arguments to aggregate functions, the available selected expressions, and the type of the expression.
adamc@543 1118 $$\begin{array}{l}
adamc@543 1119 \mt{con} \; \mt{sql\_exp} :: \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \to \mt{Type}
adamc@543 1120 \end{array}$$
adamc@543 1121
adamc@543 1122 Any field in scope may be converted to an expression.
adamc@543 1123 $$\begin{array}{l}
adamc@543 1124 \mt{val} \; \mt{sql\_field} : \mt{otherTabs} ::: \{\{\mt{Type}\}\} \to \mt{otherFields} ::: \{\mt{Type}\} \\
adamc@543 1125 \hspace{.1in} \to \mt{fieldType} ::: \mt{Type} \to \mt{agg} ::: \{\{\mt{Type}\}\} \\
adamc@543 1126 \hspace{.1in} \to \mt{exps} ::: \{\mt{Type}\} \\
adamc@543 1127 \hspace{.1in} \to \mt{tab} :: \mt{Name} \to \mt{field} :: \mt{Name} \\
adamc@543 1128 \hspace{.1in} \to \mt{sql\_exp} \; ([\mt{tab} = [\mt{field} = \mt{fieldType}] \rc \mt{otherFields}] \rc \mt{otherTabs}) \; \mt{agg} \; \mt{exps} \; \mt{fieldType}
adamc@543 1129 \end{array}$$
adamc@543 1130
adamc@544 1131 There is an analogous function for referencing named expressions.
adamc@544 1132 $$\begin{array}{l}
adamc@544 1133 \mt{val} \; \mt{sql\_exp} : \mt{tabs} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{t} ::: \mt{Type} \to \mt{rest} ::: \{\mt{Type}\} \to \mt{nm} :: \mt{Name} \\
adamc@544 1134 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tabs} \; \mt{agg} \; ([\mt{nm} = \mt{t}] \rc \mt{rest}) \; \mt{t}
adamc@544 1135 \end{array}$$
adamc@544 1136
adamc@544 1137 Ur values of appropriate types may be injected into SQL expressions.
adamc@544 1138 $$\begin{array}{l}
adamc@544 1139 \mt{class} \; \mt{sql\_injectable} \\
adamc@544 1140 \mt{val} \; \mt{sql\_bool} : \mt{sql\_injectable} \; \mt{bool} \\
adamc@544 1141 \mt{val} \; \mt{sql\_int} : \mt{sql\_injectable} \; \mt{int} \\
adamc@544 1142 \mt{val} \; \mt{sql\_float} : \mt{sql\_injectable} \; \mt{float} \\
adamc@544 1143 \mt{val} \; \mt{sql\_string} : \mt{sql\_injectable} \; \mt{string} \\
adamc@544 1144 \mt{val} \; \mt{sql\_time} : \mt{sql\_injectable} \; \mt{time} \\
adamc@544 1145 \mt{val} \; \mt{sql\_option\_bool} : \mt{sql\_injectable} \; (\mt{option} \; \mt{bool}) \\
adamc@544 1146 \mt{val} \; \mt{sql\_option\_int} : \mt{sql\_injectable} \; (\mt{option} \; \mt{int}) \\
adamc@544 1147 \mt{val} \; \mt{sql\_option\_float} : \mt{sql\_injectable} \; (\mt{option} \; \mt{float}) \\
adamc@544 1148 \mt{val} \; \mt{sql\_option\_string} : \mt{sql\_injectable} \; (\mt{option} \; \mt{string}) \\
adamc@544 1149 \mt{val} \; \mt{sql\_option\_time} : \mt{sql\_injectable} \; (\mt{option} \; \mt{time}) \\
adamc@544 1150 \mt{val} \; \mt{sql\_inject} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \to \mt{sql\_injectable} \; \mt{t} \\
adamc@544 1151 \hspace{.1in} \to \mt{t} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t}
adamc@544 1152 \end{array}$$
adamc@544 1153
adamc@544 1154 We have the SQL nullness test, which is necessary because of the strange SQL semantics of equality in the presence of null values.
adamc@544 1155 $$\begin{array}{l}
adamc@544 1156 \mt{val} \; \mt{sql\_is\_null} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \\
adamc@544 1157 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; (\mt{option} \; \mt{t}) \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{bool}
adamc@544 1158 \end{array}$$
adamc@544 1159
adamc@544 1160 We have generic nullary, unary, and binary operators, as well as comparison operators.
adamc@544 1161 $$\begin{array}{l}
adamc@544 1162 \mt{con} \; \mt{sql\_nfunc} :: \mt{Type} \to \mt{Type} \\
adamc@544 1163 \mt{val} \; \mt{sql\_current\_timestamp} : \mt{sql\_nfunc} \; \mt{time} \\
adamc@544 1164 \mt{val} \; \mt{sql\_nfunc} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \\
adamc@544 1165 \hspace{.1in} \to \mt{sql\_nfunc} \; \mt{t} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t} \\\end{array}$$
adamc@544 1166
adamc@544 1167 $$\begin{array}{l}
adamc@544 1168 \mt{con} \; \mt{sql\_unary} :: \mt{Type} \to \mt{Type} \to \mt{Type} \\
adamc@544 1169 \mt{val} \; \mt{sql\_not} : \mt{sql\_unary} \; \mt{bool} \; \mt{bool} \\
adamc@544 1170 \mt{val} \; \mt{sql\_unary} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{arg} ::: \mt{Type} \to \mt{res} ::: \mt{Type} \\
adamc@544 1171 \hspace{.1in} \to \mt{sql\_unary} \; \mt{arg} \; \mt{res} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{arg} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{res} \\
adamc@544 1172 \end{array}$$
adamc@544 1173
adamc@544 1174 $$\begin{array}{l}
adamc@544 1175 \mt{con} \; \mt{sql\_binary} :: \mt{Type} \to \mt{Type} \to \mt{Type} \to \mt{Type} \\
adamc@544 1176 \mt{val} \; \mt{sql\_and} : \mt{sql\_binary} \; \mt{bool} \; \mt{bool} \; \mt{bool} \\
adamc@544 1177 \mt{val} \; \mt{sql\_or} : \mt{sql\_binary} \; \mt{bool} \; \mt{bool} \; \mt{bool} \\
adamc@544 1178 \mt{val} \; \mt{sql\_binary} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{arg_1} ::: \mt{Type} \to \mt{arg_2} ::: \mt{Type} \to \mt{res} ::: \mt{Type} \\
adamc@544 1179 \hspace{.1in} \to \mt{sql\_binary} \; \mt{arg_1} \; \mt{arg_2} \; \mt{res} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{arg_1} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{arg_2} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{res}
adamc@544 1180 \end{array}$$
adamc@544 1181
adamc@544 1182 $$\begin{array}{l}
adamc@544 1183 \mt{type} \; \mt{sql\_comparison} \\
adamc@544 1184 \mt{val} \; \mt{sql\_eq} : \mt{sql\_comparison} \\
adamc@544 1185 \mt{val} \; \mt{sql\_ne} : \mt{sql\_comparison} \\
adamc@544 1186 \mt{val} \; \mt{sql\_lt} : \mt{sql\_comparison} \\
adamc@544 1187 \mt{val} \; \mt{sql\_le} : \mt{sql\_comparison} \\
adamc@544 1188 \mt{val} \; \mt{sql\_gt} : \mt{sql\_comparison} \\
adamc@544 1189 \mt{val} \; \mt{sql\_ge} : \mt{sql\_comparison} \\
adamc@544 1190 \mt{val} \; \mt{sql\_comparison} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \\
adamc@544 1191 \hspace{.1in} \to \mt{sql\_comparison} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{bool}
adamc@544 1192 \end{array}$$
adamc@544 1193
adamc@544 1194 Finally, we have aggregate functions. The $\mt{COUNT(\ast)}$ syntax is handled specially, since it takes no real argument. The other aggregate functions are placed into a general type family, using type classes to restrict usage to properly-typed arguments. The key aspect of the $\mt{sql\_aggregate}$ function's type is the shift of aggregate-function-only fields into unrestricted fields.
adamc@544 1195
adamc@544 1196 $$\begin{array}{l}
adamc@544 1197 \mt{val} \; \mt{sql\_count} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{int}
adamc@544 1198 \end{array}$$
adamc@544 1199
adamc@544 1200 $$\begin{array}{l}
adamc@544 1201 \mt{con} \; \mt{sql\_aggregate} :: \mt{Type} \to \mt{Type} \\
adamc@544 1202 \mt{val} \; \mt{sql\_aggregate} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \\
adamc@544 1203 \hspace{.1in} \to \mt{sql\_aggregate} \; \mt{t} \to \mt{sql\_exp} \; \mt{agg} \; \mt{agg} \; \mt{exps} \; \mt{t} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t}
adamc@544 1204 \end{array}$$
adamc@544 1205
adamc@544 1206 $$\begin{array}{l}
adamc@544 1207 \mt{class} \; \mt{sql\_summable} \\
adamc@544 1208 \mt{val} \; \mt{sql\_summable\_int} : \mt{sql\_summable} \; \mt{int} \\
adamc@544 1209 \mt{val} \; \mt{sql\_summable\_float} : \mt{sql\_summable} \; \mt{float} \\
adamc@544 1210 \mt{val} \; \mt{sql\_avg} : \mt{t} ::: \mt{Type} \to \mt{sql\_summable} \; \mt{t} \to \mt{sql\_aggregate} \; \mt{t} \\
adamc@544 1211 \mt{val} \; \mt{sql\_sum} : \mt{t} ::: \mt{Type} \to \mt{sql\_summable} \mt{t} \to \mt{sql\_aggregate} \; \mt{t}
adamc@544 1212 \end{array}$$
adamc@544 1213
adamc@544 1214 $$\begin{array}{l}
adamc@544 1215 \mt{class} \; \mt{sql\_maxable} \\
adamc@544 1216 \mt{val} \; \mt{sql\_maxable\_int} : \mt{sql\_maxable} \; \mt{int} \\
adamc@544 1217 \mt{val} \; \mt{sql\_maxable\_float} : \mt{sql\_maxable} \; \mt{float} \\
adamc@544 1218 \mt{val} \; \mt{sql\_maxable\_string} : \mt{sql\_maxable} \; \mt{string} \\
adamc@544 1219 \mt{val} \; \mt{sql\_maxable\_time} : \mt{sql\_maxable} \; \mt{time} \\
adamc@544 1220 \mt{val} \; \mt{sql\_max} : \mt{t} ::: \mt{Type} \to \mt{sql\_maxable} \; \mt{t} \to \mt{sql\_aggregate} \; \mt{t} \\
adamc@544 1221 \mt{val} \; \mt{sql\_min} : \mt{t} ::: \mt{Type} \to \mt{sql\_maxable} \; \mt{t} \to \mt{sql\_aggregate} \; \mt{t}
adamc@544 1222 \end{array}$$
adamc@544 1223
adamc@544 1224 We wrap up the definition of query syntax with the types used in representing $\mt{ORDER} \; \mt{BY}$, $\mt{LIMIT}$, and $\mt{OFFSET}$ clauses.
adamc@544 1225 $$\begin{array}{l}
adamc@544 1226 \mt{type} \; \mt{sql\_direction} \\
adamc@544 1227 \mt{val} \; \mt{sql\_asc} : \mt{sql\_direction} \\
adamc@544 1228 \mt{val} \; \mt{sql\_desc} : \mt{sql\_direction} \\
adamc@544 1229 \\
adamc@544 1230 \mt{con} \; \mt{sql\_order\_by} :: \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \\
adamc@544 1231 \mt{val} \; \mt{sql\_order\_by\_Nil} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{exps} :: \{\mt{Type}\} \to \mt{sql\_order\_by} \; \mt{tables} \; \mt{exps} \\
adamc@544 1232 \mt{val} \; \mt{sql\_order\_by\_Cons} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \\
adamc@544 1233 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tables} \; [] \; \mt{exps} \; \mt{t} \to \mt{sql\_direction} \to \mt{sql\_order\_by} \; \mt{tables} \; \mt{exps} \to \mt{sql\_order\_by} \; \mt{tables} \; \mt{exps} \\
adamc@544 1234 \\
adamc@544 1235 \mt{type} \; \mt{sql\_limit} \\
adamc@544 1236 \mt{val} \; \mt{sql\_no\_limit} : \mt{sql\_limit} \\
adamc@544 1237 \mt{val} \; \mt{sql\_limit} : \mt{int} \to \mt{sql\_limit} \\
adamc@544 1238 \\
adamc@544 1239 \mt{type} \; \mt{sql\_offset} \\
adamc@544 1240 \mt{val} \; \mt{sql\_no\_offset} : \mt{sql\_offset} \\
adamc@544 1241 \mt{val} \; \mt{sql\_offset} : \mt{int} \to \mt{sql\_offset}
adamc@544 1242 \end{array}$$
adamc@544 1243
adamc@545 1244
adamc@545 1245 \subsubsection{DML}
adamc@545 1246
adamc@545 1247 The Ur/Web library also includes an embedding of a fragment of SQL's DML, the Data Manipulation Language, for modifying database tables. Any piece of DML may be executed in a transaction.
adamc@545 1248
adamc@545 1249 $$\begin{array}{l}
adamc@545 1250 \mt{type} \; \mt{dml} \\
adamc@545 1251 \mt{val} \; \mt{dml} : \mt{dml} \to \mt{transaction} \; \mt{unit}
adamc@545 1252 \end{array}$$
adamc@545 1253
adamc@545 1254 Properly-typed records may be used to form $\mt{INSERT}$ commands.
adamc@545 1255 $$\begin{array}{l}
adamc@545 1256 \mt{val} \; \mt{insert} : \mt{fields} ::: \{\mt{Type}\} \to \mt{sql\_table} \; \mt{fields} \\
adamc@545 1257 \hspace{.1in} \to \$(\mt{fold} \; (\lambda \mt{nm} \; (\mt{t} :: \mt{Type}) \; \mt{acc} \; [[\mt{nm}] \sim \mt{acc}] \Rightarrow [\mt{nm} = \mt{sql\_exp} \; [] \; [] \; [] \; \mt{t}] \rc \mt{acc}) \; [] \; \mt{fields}) \to \mt{dml}
adamc@545 1258 \end{array}$$
adamc@545 1259
adamc@545 1260 An $\mt{UPDATE}$ command is formed from a choice of which table fields to leave alone and which to change, along with an expression to use to compute the new value of each changed field and a $\mt{WHERE}$ clause.
adamc@545 1261 $$\begin{array}{l}
adamc@545 1262 \mt{val} \; \mt{update} : \mt{unchanged} ::: \{\mt{Type}\} \to \mt{changed} :: \{\mt{Type}\} \to \lambda [\mt{changed} \sim \mt{unchanged}] \\
adamc@545 1263 \hspace{.1in} \Rightarrow \$(\mt{fold} \; (\lambda \mt{nm} \; (\mt{t} :: \mt{Type}) \; \mt{acc} \; [[\mt{nm}] \sim \mt{acc}] \Rightarrow [\mt{nm} = \mt{sql\_exp} \; [\mt{T} = \mt{changed} \rc \mt{unchanged}] \; [] \; [] \; \mt{t}] \rc \mt{acc}) \; [] \; \mt{changed}) \\
adamc@545 1264 \hspace{.1in} \to \mt{sql\_table} \; (\mt{changed} \rc \mt{unchanged}) \to \mt{sql\_exp} \; [\mt{T} = \mt{changed} \rc \mt{unchanged}] \; [] \; [] \; \mt{bool} \to \mt{dml}
adamc@545 1265 \end{array}$$
adamc@545 1266
adamc@545 1267 A $\mt{DELETE}$ command is formed from a table and a $\mt{WHERE}$ clause.
adamc@545 1268 $$\begin{array}{l}
adamc@545 1269 \mt{val} \; \mt{delete} : \mt{fields} ::: \{\mt{Type}\} \to \mt{sql\_table} \; \mt{fields} \to \mt{sql\_exp} \; [\mt{T} = \mt{fields}] \; [] \; [] \; \mt{bool} \to \mt{dml}
adamc@545 1270 \end{array}$$
adamc@545 1271
adamc@546 1272 \subsubsection{Sequences}
adamc@546 1273
adamc@546 1274 SQL sequences are counters with concurrency control, often used to assign unique IDs. Ur/Web supports them via a simple interface. The only way to create a sequence is with the $\mt{sequence}$ declaration form.
adamc@546 1275
adamc@546 1276 $$\begin{array}{l}
adamc@546 1277 \mt{type} \; \mt{sql\_sequence} \\
adamc@546 1278 \mt{val} \; \mt{nextval} : \mt{sql\_sequence} \to \mt{transaction} \; \mt{int}
adamc@546 1279 \end{array}$$
adamc@546 1280
adamc@546 1281
adamc@547 1282 \subsection{XML}
adamc@547 1283
adamc@547 1284 Ur/Web's library contains an encoding of XML syntax and semantic constraints. We make no effort to follow the standards governing XML schemas. Rather, XML fragments are viewed more as values of ML datatypes, and we only track which tags are allowed inside which other tags.
adamc@547 1285
adamc@547 1286 The basic XML type family has arguments respectively indicating the \emph{context} of a fragment, the fields that the fragment expects to be bound on entry (and their types), and the fields that the fragment will bind (and their types). Contexts are a record-based ``poor man's subtyping'' encoding, with each possible set of valid tags corresponding to a different context record. The arguments dealing with field binding are only relevant to HTML forms.
adamc@547 1287 $$\begin{array}{l}
adamc@547 1288 \mt{con} \; \mt{xml} :: \{\mt{Unit}\} \to \{\mt{Type}\} \to \{\mt{Type}\} \to \mt{Type}
adamc@547 1289 \end{array}$$
adamc@547 1290
adamc@547 1291 We also have a type family of XML tags, indexed respectively by the record of optional attributes accepted by the tag, the context in which the tag may be placed, the context required of children of the tag, which form fields the tag uses, and which fields the tag defines.
adamc@547 1292 $$\begin{array}{l}
adamc@547 1293 \mt{con} \; \mt{tag} :: \{\mt{Type}\} \to \{\mt{Unit}\} \to \{\mt{Unit}\} \to \{\mt{Type}\} \to \{\mt{Type}\} \to \mt{Type}
adamc@547 1294 \end{array}$$
adamc@547 1295
adamc@547 1296 Literal text may be injected into XML as ``CDATA.''
adamc@547 1297 $$\begin{array}{l}
adamc@547 1298 \mt{val} \; \mt{cdata} : \mt{ctx} ::: \{\mt{Unit}\} \to \mt{use} ::: \{\mt{Type}\} \to \mt{string} \to \mt{xml} \; \mt{ctx} \; \mt{use} \; []
adamc@547 1299 \end{array}$$
adamc@547 1300
adamc@547 1301 There is a function for producing an XML tree with a particular tag at its root.
adamc@547 1302 $$\begin{array}{l}
adamc@547 1303 \mt{val} \; \mt{tag} : \mt{attrsGiven} ::: \{\mt{Type}\} \to \mt{attrsAbsent} ::: \{\mt{Type}\} \to \mt{ctxOuter} ::: \{\mt{Unit}\} \to \mt{ctxInner} ::: \{\mt{Unit}\} \\
adamc@547 1304 \hspace{.1in} \to \mt{useOuter} ::: \{\mt{Type}\} \to \mt{useInner} ::: \{\mt{Type}\} \to \mt{bindOuter} ::: \{\mt{Type}\} \to \mt{bindInner} ::: \{\mt{Type}\} \\
adamc@547 1305 \hspace{.1in} \to \lambda [\mt{attrsGiven} \sim \mt{attrsAbsent}] \; [\mt{useOuter} \sim \mt{useInner}] \; [\mt{bindOuter} \sim \mt{bindInner}] \Rightarrow \$\mt{attrsGiven} \\
adamc@547 1306 \hspace{.1in} \to \mt{tag} \; (\mt{attrsGiven} \rc \mt{attrsAbsent}) \; \mt{ctxOuter} \; \mt{ctxInner} \; \mt{useOuter} \; \mt{bindOuter} \\
adamc@547 1307 \hspace{.1in} \to \mt{xml} \; \mt{ctxInner} \; \mt{useInner} \; \mt{bindInner} \to \mt{xml} \; \mt{ctxOuter} \; (\mt{useOuter} \rc \mt{useInner}) \; (\mt{bindOuter} \rc \mt{bindInner})
adamc@547 1308 \end{array}$$
adamc@547 1309
adamc@547 1310 Two XML fragments may be concatenated.
adamc@547 1311 $$\begin{array}{l}
adamc@547 1312 \mt{val} \; \mt{join} : \mt{ctx} ::: \{\mt{Unit}\} \to \mt{use_1} ::: \{\mt{Type}\} \to \mt{bind_1} ::: \{\mt{Type}\} \to \mt{bind_2} ::: \{\mt{Type}\} \\
adamc@547 1313 \hspace{.1in} \to \lambda [\mt{use_1} \sim \mt{bind_1}] \; [\mt{bind_1} \sim \mt{bind_2}] \\
adamc@547 1314 \hspace{.1in} \Rightarrow \mt{xml} \; \mt{ctx} \; \mt{use_1} \; \mt{bind_1} \to \mt{xml} \; \mt{ctx} \; (\mt{use_1} \rc \mt{bind_1}) \; \mt{bind_2} \to \mt{xml} \; \mt{ctx} \; \mt{use_1} \; (\mt{bind_1} \rc \mt{bind_2})
adamc@547 1315 \end{array}$$
adamc@547 1316
adamc@547 1317 Finally, any XML fragment may be updated to ``claim'' to use more form fields than it does.
adamc@547 1318 $$\begin{array}{l}
adamc@547 1319 \mt{val} \; \mt{useMore} : \mt{ctx} ::: \{\mt{Unit}\} \to \mt{use_1} ::: \{\mt{Type}\} \to \mt{use_2} ::: \{\mt{Type}\} \to \mt{bind} ::: \{\mt{Type}\} \to \lambda [\mt{use_1} \sim \mt{use_2}] \\
adamc@547 1320 \hspace{.1in} \Rightarrow \mt{xml} \; \mt{ctx} \; \mt{use_1} \; \mt{bind} \to \mt{xml} \; \mt{ctx} \; (\mt{use_1} \rc \mt{use_2}) \; \mt{bind}
adamc@547 1321 \end{array}$$
adamc@547 1322
adamc@547 1323 We will not list here the different HTML tags and related functions from the standard library. They should be easy enough to understand from the code in \texttt{basis.urs}. The set of tags in the library is not yet claimed to be complete for HTML standards.
adamc@547 1324
adamc@547 1325 One last useful function is for aborting any page generation, returning some XML as an error message. This function takes the place of some uses of a general exception mechanism.
adamc@547 1326 $$\begin{array}{l}
adamc@547 1327 \mt{val} \; \mt{error} : \mt{t} ::: \mt{Type} \to \mt{xml} \; [\mt{Body}] \; [] \; [] \to \mt{t}
adamc@547 1328 \end{array}$$
adamc@547 1329
adamc@549 1330
adamc@549 1331 \section{Ur/Web Syntax Extensions}
adamc@549 1332
adamc@549 1333 Ur/Web features some syntactic shorthands for building values using the functions from the last section. This section sketches the grammar of those extensions. We write spans of syntax inside brackets to indicate that they are optional.
adamc@549 1334
adamc@549 1335 \subsection{SQL}
adamc@549 1336
adamc@549 1337 \subsubsection{Queries}
adamc@549 1338
adamc@550 1339 Queries $Q$ are added to the rules for expressions $e$.
adamc@550 1340
adamc@549 1341 $$\begin{array}{rrcll}
adamc@550 1342 \textrm{Queries} & Q &::=& (q \; [\mt{ORDER} \; \mt{BY} \; (E \; [o],)^+] \; [\mt{LIMIT} \; N] \; [\mt{OFFSET} \; N]) \\
adamc@549 1343 \textrm{Pre-queries} & q &::=& \mt{SELECT} \; P \; \mt{FROM} \; T,^+ \; [\mt{WHERE} \; E] \; [\mt{GROUP} \; \mt{BY} \; p,^+] \; [\mt{HAVING} \; E] \\
adamc@549 1344 &&& \mid q \; R \; q \\
adamc@549 1345 \textrm{Relational operators} & R &::=& \mt{UNION} \mid \mt{INTERSECT} \mid \mt{EXCEPT}
adamc@549 1346 \end{array}$$
adamc@549 1347
adamc@549 1348 $$\begin{array}{rrcll}
adamc@549 1349 \textrm{Projections} & P &::=& \ast & \textrm{all columns} \\
adamc@549 1350 &&& p,^+ & \textrm{particular columns} \\
adamc@549 1351 \textrm{Pre-projections} & p &::=& t.f & \textrm{one column from a table} \\
adamc@549 1352 &&& t.\{\{c\}\} & \textrm{a record of colums from a table (of kind $\{\mt{Type}\}$)} \\
adamc@549 1353 \textrm{Table names} & t &::=& x & \textrm{constant table name (automatically capitalized)} \\
adamc@549 1354 &&& X & \textrm{constant table name} \\
adamc@549 1355 &&& \{\{c\}\} & \textrm{computed table name (of kind $\mt{Name}$)} \\
adamc@549 1356 \textrm{Column names} & f &::=& X & \textrm{constant column name} \\
adamc@549 1357 &&& \{c\} & \textrm{computed column name (of kind $\mt{Name}$)} \\
adamc@549 1358 \textrm{Tables} & T &::=& x & \textrm{table variable, named locally by its own capitalization} \\
adamc@549 1359 &&& x \; \mt{AS} \; t & \textrm{table variable, with local name} \\
adamc@549 1360 &&& \{\{e\}\} \; \mt{AS} \; t & \textrm{computed table expression, with local name} \\
adamc@549 1361 \textrm{SQL expressions} & E &::=& p & \textrm{column references} \\
adamc@549 1362 &&& X & \textrm{named expression references} \\
adamc@549 1363 &&& \{\{e\}\} & \textrm{injected native Ur expressions} \\
adamc@549 1364 &&& \{e\} & \textrm{computed expressions, probably using $\mt{sql\_exp}$ directly} \\
adamc@549 1365 &&& \mt{TRUE} \mid \mt{FALSE} & \textrm{boolean constants} \\
adamc@549 1366 &&& \ell & \textrm{primitive type literals} \\
adamc@549 1367 &&& \mt{NULL} & \textrm{null value (injection of $\mt{None}$)} \\
adamc@549 1368 &&& E \; \mt{IS} \; \mt{NULL} & \textrm{nullness test} \\
adamc@549 1369 &&& n & \textrm{nullary operators} \\
adamc@549 1370 &&& u \; E & \textrm{unary operators} \\
adamc@549 1371 &&& E \; b \; E & \textrm{binary operators} \\
adamc@549 1372 &&& \mt{COUNT}(\ast) & \textrm{count number of rows} \\
adamc@549 1373 &&& a(E) & \textrm{other aggregate function} \\
adamc@549 1374 &&& (E) & \textrm{explicit precedence} \\
adamc@549 1375 \textrm{Nullary operators} & n &::=& \mt{CURRENT\_TIMESTAMP} \\
adamc@549 1376 \textrm{Unary operators} & u &::=& \mt{NOT} \\
adamc@549 1377 \textrm{Binary operators} & b &::=& \mt{AND} \mid \mt{OR} \mid \neq \mid < \mid \leq \mid > \mid \geq \\
adamc@549 1378 \textrm{Aggregate functions} & a &::=& \mt{AVG} \mid \mt{SUM} \mid \mt{MIN} \mid \mt{MAX} \\
adamc@550 1379 \textrm{Directions} & o &::=& \mt{ASC} \mid \mt{DESC} \\
adamc@549 1380 \textrm{SQL integer} & N &::=& n \mid \{e\} \\
adamc@549 1381 \end{array}$$
adamc@549 1382
adamc@549 1383 Additionally, an SQL expression may be inserted into normal Ur code with the syntax $(\mt{SQL} \; E)$ or $(\mt{WHERE} \; E)$.
adamc@549 1384
adamc@550 1385 \subsubsection{DML}
adamc@550 1386
adamc@550 1387 DML commands $D$ are added to the rules for expressions $e$.
adamc@550 1388
adamc@550 1389 $$\begin{array}{rrcll}
adamc@550 1390 \textrm{Commands} & D &::=& (\mt{INSERT} \; \mt{INTO} \; T^E \; (f,^+) \; \mt{VALUES} \; (E,^+)) \\
adamc@550 1391 &&& (\mt{UPDATE} \; T^E \; \mt{SET} \; (f = E,)^+ \; \mt{WHERE} \; E) \\
adamc@550 1392 &&& (\mt{DELETE} \; \mt{FROM} \; T^E \; \mt{WHERE} \; E) \\
adamc@550 1393 \textrm{Table expressions} & T^E &::=& x \mid \{\{e\}\}
adamc@550 1394 \end{array}$$
adamc@550 1395
adamc@550 1396 Inside $\mt{UPDATE}$ and $\mt{DELETE}$ commands, lone variables $X$ are interpreted as references to columns of the implicit table $\mt{T}$, rather than to named expressions.
adamc@549 1397
adamc@551 1398 \subsection{XML}
adamc@551 1399
adamc@551 1400 XML fragments $L$ are added to the rules for expressions $e$.
adamc@551 1401
adamc@551 1402 $$\begin{array}{rrcll}
adamc@551 1403 \textrm{XML fragments} & L &::=& \texttt{<xml/>} \mid \texttt{<xml>}l^*\texttt{</xml>} \\
adamc@551 1404 \textrm{XML pieces} & l &::=& \textrm{text} & \textrm{cdata} \\
adamc@551 1405 &&& \texttt{<}g\texttt{/>} & \textrm{tag with no children} \\
adamc@551 1406 &&& \texttt{<}g\texttt{>}l^*\texttt{</}x\texttt{>} & \textrm{tag with children} \\
adamc@551 1407 \textrm{Tag} & g &::=& h \; (x = v)^* \\
adamc@551 1408 \textrm{Tag head} & h &::=& x & \textrm{tag name} \\
adamc@551 1409 &&& h\{c\} & \textrm{constructor parameter} \\
adamc@551 1410 \textrm{Attribute value} & v &::=& \ell & \textrm{literal value} \\
adamc@551 1411 &&& \{e\} & \textrm{computed value} \\
adamc@551 1412 \end{array}$$
adamc@551 1413
adamc@552 1414
adamc@553 1415 \section{The Structure of Web Applications}
adamc@553 1416
adamc@553 1417 A web application is built from a series of modules, with one module, the last one appearing in the \texttt{.urp} file, designated as the main module. The signature of the main module determines the URL entry points to the application. Such an entry point should have type $\mt{unit} \to \mt{transaction} \; \mt{page}$, where $\mt{page}$ is a type synonym for top-level HTML pages, defined in $\mt{Basis}$. If such a function is at the top level of main module $M$, it will be accessible at URI \texttt{/M/f}, and so on for more deeply-nested functions, as described in Section \ref{tag} below.
adamc@553 1418
adamc@553 1419 When the standalone web server receives a request for a known page, it calls the function for that page, ``running'' the resulting transaction to produce the page to return to the client. Pages link to other pages with the \texttt{link} attribute of the \texttt{a} HTML tag. A link has type $\mt{transaction} \; \mt{page}$, and the semantics of a link are that this transaction should be run to compute the result page, when the link is followed. Link targets are assigned URL names in the same way as top-level entry points.
adamc@553 1420
adamc@553 1421 HTML forms are handled in a similar way. The $\mt{action}$ attribute of a $\mt{submit}$ form tag takes a value of type $\$\mt{use} \to \mt{transaction} \; \mt{page}$, where $\mt{use}$ is a kind-$\{\mt{Type}\}$ record of the form fields used by this action handler. Action handlers are assigned URL patterns in the same way as above.
adamc@553 1422
adamc@553 1423 For both links and actions, direct arguments and local variables mentioned implicitly via closures are automatically included in serialized form in URLs, in the order in which they appeared in the source code.
adamc@553 1424
adamc@553 1425
adamc@552 1426 \section{Compiler Phases}
adamc@552 1427
adamc@552 1428 The Ur/Web compiler is unconventional in that it relies on a kind of \emph{heuristic compilation}. Not all valid programs will compile successfully. Informally, programs fail to compile when they are ``too higher order.'' Compiler phases do their best to eliminate different kinds of higher order-ness, but some programs just won't compile. This is a trade-off for producing very efficient executables. Compiled Ur/Web programs use native C representations and require no garbage collection.
adamc@552 1429
adamc@552 1430 In this section, we step through the main phases of compilation, noting what consequences each phase has for effective programming.
adamc@552 1431
adamc@552 1432 \subsection{Parse}
adamc@552 1433
adamc@552 1434 The compiler reads a \texttt{.urp} file, figures out which \texttt{.urs} and \texttt{.ur} files it references, and combines them all into what is conceptually a single sequence of declarations in the core language of Section \ref{core}.
adamc@552 1435
adamc@552 1436 \subsection{Elaborate}
adamc@552 1437
adamc@552 1438 This is where type inference takes place, translating programs into an explicit form with no more wildcards. This phase is the most likely source of compiler error messages.
adamc@552 1439
adamc@552 1440 \subsection{Unnest}
adamc@552 1441
adamc@552 1442 Named local function definitions are moved to the top level, to avoid the need to generate closures.
adamc@552 1443
adamc@552 1444 \subsection{Corify}
adamc@552 1445
adamc@552 1446 Module system features are compiled away, through inlining of functor definitions at application sites. Afterward, most abstraction boundaries are broken, facilitating optimization.
adamc@552 1447
adamc@552 1448 \subsection{Especialize}
adamc@552 1449
adamc@552 1450 Functions are specialized to particular argument patterns. This is an important trick for avoiding the need to maintain any closures at runtime.
adamc@552 1451
adamc@552 1452 \subsection{Untangle}
adamc@552 1453
adamc@552 1454 Remove unnecessary mutual recursion, splitting recursive groups into strongly-connected components.
adamc@552 1455
adamc@552 1456 \subsection{Shake}
adamc@552 1457
adamc@552 1458 Remove all definitions not needed to run the page handlers that are visible in the signature of the last module listed in the \texttt{.urp} file.
adamc@552 1459
adamc@553 1460 \subsection{\label{tag}Tag}
adamc@552 1461
adamc@552 1462 Assign a URL name to each link and form action. It is important that these links and actions are written as applications of named functions, because such names are used to generate URL patterns. A URL pattern has a name built from the full module path of the named function, followed by the function name, with all pieces separated by slashes. The path of a functor application is based on the name given to the result, rather than the path of the functor itself.
adamc@552 1463
adamc@552 1464 \subsection{Reduce}
adamc@552 1465
adamc@552 1466 Apply definitional equality rules to simplify the program as much as possible. This effectively includes inlining of every non-recursive definition.
adamc@552 1467
adamc@552 1468 \subsection{Unpoly}
adamc@552 1469
adamc@552 1470 This phase specializes polymorphic functions to the specific arguments passed to them in the program. If the program contains real polymorphic recursion, Unpoly will be insufficient to avoid later error messages about too much polymorphism.
adamc@552 1471
adamc@552 1472 \subsection{Specialize}
adamc@552 1473
adamc@552 1474 Replace uses of parametrized datatypes with versions specialized to specific parameters. As for Unpoly, this phase will not be effective enough in the presence of polymorphic recursion or other fancy uses of impredicative polymorphism.
adamc@552 1475
adamc@552 1476 \subsection{Shake}
adamc@552 1477
adamc@552 1478 Here the compiler repeats the earlier shake phase.
adamc@552 1479
adamc@552 1480 \subsection{Monoize}
adamc@552 1481
adamc@552 1482 Programs are translated to a new intermediate language without polymorphism or non-$\mt{Type}$ constructors. Error messages may pop up here if earlier phases failed to remove such features.
adamc@552 1483
adamc@552 1484 This is the stage at which concrete names are generated for cookies, tables, and sequences. They are named following the same convention as for links and actions, based on module path information saved from earlier stages. Table and sequence names separate path elements with underscores instead of slashes, and they are prefixed by \texttt{uw\_}.
adamc@552 1485 \subsection{MonoOpt}
adamc@552 1486
adamc@552 1487 Simple algebraic laws are applied to simplify the program, focusing especially on efficient imperative generation of HTML pages.
adamc@552 1488
adamc@552 1489 \subsection{MonoUntangle}
adamc@552 1490
adamc@552 1491 Unnecessary mutual recursion is broken up again.
adamc@552 1492
adamc@552 1493 \subsection{MonoReduce}
adamc@552 1494
adamc@552 1495 Equivalents of the definitional equality rules are applied to simplify programs, with inlining again playing a major role.
adamc@552 1496
adamc@552 1497 \subsection{MonoShake, MonoOpt}
adamc@552 1498
adamc@552 1499 Unneeded declarations are removed, and basic optimizations are repeated.
adamc@552 1500
adamc@552 1501 \subsection{Fuse}
adamc@552 1502
adamc@552 1503 The compiler tries to simplify calls to recursive functions whose results are immediately written as page output. The write action is pushed inside the function definitions to avoid allocation of intermediate results.
adamc@552 1504
adamc@552 1505 \subsection{MonoUntangle, MonoShake}
adamc@552 1506
adamc@552 1507 Fuse often creates more opportunities to remove spurious mutual recursion.
adamc@552 1508
adamc@552 1509 \subsection{Pathcheck}
adamc@552 1510
adamc@552 1511 The compiler checks that no link or action name has been used more than once.
adamc@552 1512
adamc@552 1513 \subsection{Cjrize}
adamc@552 1514
adamc@552 1515 The program is translated to what is more or less a subset of C. If any use of functions as data remains at this point, the compiler will complain.
adamc@552 1516
adamc@552 1517 \subsection{C Compilation and Linking}
adamc@552 1518
adamc@552 1519 The output of the last phase is pretty-printed as C source code and passed to GCC.
adamc@552 1520
adamc@552 1521
adamc@524 1522 \end{document}