annotate doc/manual.tex @ 750:059074c8d2fc

LEFT JOIN
author Adam Chlipala <adamc@hcoop.net>
date Tue, 28 Apr 2009 11:05:28 -0400
parents f963356b53fd
children ec0a0dd0ca12
rev   line source
adamc@524 1 \documentclass{article}
adamc@554 2 \usepackage{fullpage,amsmath,amssymb,proof,url}
adamc@524 3
adamc@524 4 \newcommand{\cd}[1]{\texttt{#1}}
adamc@524 5 \newcommand{\mt}[1]{\mathsf{#1}}
adamc@524 6
adamc@524 7 \newcommand{\rc}{+ \hspace{-.075in} + \;}
adamc@527 8 \newcommand{\rcut}{\; \texttt{--} \;}
adamc@527 9 \newcommand{\rcutM}{\; \texttt{---} \;}
adamc@524 10
adamc@524 11 \begin{document}
adamc@524 12
adamc@524 13 \title{The Ur/Web Manual}
adamc@524 14 \author{Adam Chlipala}
adamc@524 15
adamc@524 16 \maketitle
adamc@524 17
adamc@540 18 \tableofcontents
adamc@540 19
adamc@554 20
adamc@554 21 \section{Introduction}
adamc@554 22
adamc@554 23 \emph{Ur} is a programming language designed to introduce richer type system features into functional programming in the tradition of ML and Haskell. Ur is functional, pure, statically-typed, and strict. Ur supports a powerful kind of \emph{metaprogramming} based on \emph{row types}.
adamc@554 24
adamc@554 25 \emph{Ur/Web} is Ur plus a special standard library and associated rules for parsing and optimization. Ur/Web supports construction of dynamic web applications backed by SQL databases. The signature of the standard library is such that well-typed Ur/Web programs ``don't go wrong'' in a very broad sense. Not only do they not crash during particular page generations, but they also may not:
adamc@554 26
adamc@554 27 \begin{itemize}
adamc@554 28 \item Suffer from any kinds of code-injection attacks
adamc@554 29 \item Return invalid HTML
adamc@554 30 \item Contain dead intra-application links
adamc@554 31 \item Have mismatches between HTML forms and the fields expected by their handlers
adamc@652 32 \item Include client-side code that makes incorrect assumptions about the ``AJAX''-style services that the remote web server provides
adamc@554 33 \item Attempt invalid SQL queries
adamc@652 34 \item Use improper marshaling or unmarshaling in communication with SQL databases or between browsers and web servers
adamc@554 35 \end{itemize}
adamc@554 36
adamc@554 37 This type safety is just the foundation of the Ur/Web methodology. It is also possible to use metaprogramming to build significant application pieces by analysis of type structure. For instance, the demo includes an ML-style functor for building an admin interface for an arbitrary SQL table. The type system guarantees that the admin interface sub-application that comes out will always be free of the above-listed bugs, no matter which well-typed table description is given as input.
adamc@554 38
adamc@652 39 The Ur/Web compiler also produces very efficient object code that does not use garbage collection. These compiled programs will often be even more efficient than what most programmers would bother to write in C. The compiler also generates JavaScript versions of client-side code, with no need to write those parts of applications in a different language.
adamc@554 40
adamc@554 41 \medskip
adamc@554 42
adamc@554 43 The official web site for Ur is:
adamc@554 44 \begin{center}
adamc@554 45 \url{http://www.impredicative.com/ur/}
adamc@554 46 \end{center}
adamc@554 47
adamc@555 48
adamc@555 49 \section{Installation}
adamc@555 50
adamc@555 51 If you are lucky, then the following standard command sequence will suffice for installation, in a directory to which you have unpacked the latest distribution tarball.
adamc@555 52
adamc@555 53 \begin{verbatim}
adamc@555 54 ./configure
adamc@555 55 make
adamc@555 56 sudo make install
adamc@555 57 \end{verbatim}
adamc@555 58
adamc@555 59 Some other packages must be installed for the above to work. At a minimum, you need a standard UNIX shell, with standard UNIX tools like sed and GCC in your execution path; and MLton, the whole-program optimizing compiler for Standard ML. To build programs that access SQL databases, you also need libpq, the PostgreSQL client library. As of this writing, in the ``testing'' version of Debian Linux, this command will install the more uncommon of these dependencies:
adamc@555 60
adamc@555 61 \begin{verbatim}
adamc@555 62 apt-get install mlton libpq-dev
adamc@555 63 \end{verbatim}
adamc@555 64
adamc@555 65 It is also possible to access the modules of the Ur/Web compiler interactively, within Standard ML of New Jersey. To install the prerequisites in Debian testing:
adamc@555 66
adamc@555 67 \begin{verbatim}
adamc@555 68 apt-get install smlnj libsmlnj-smlnj ml-yacc ml-lpt
adamc@555 69 \end{verbatim}
adamc@555 70
adamc@555 71 To begin an interactive session with the Ur compiler modules, run \texttt{make smlnj}, and then, from within an \texttt{sml} session, run \texttt{CM.make "src/urweb.cm";}. The \texttt{Compiler} module is the main entry point.
adamc@555 72
adamc@555 73 To run an SQL-backed application, you will probably want to install the PostgreSQL server. Version 8.3 or higher is required.
adamc@555 74
adamc@555 75 \begin{verbatim}
adamc@555 76 apt-get install postgresql-8.3
adamc@555 77 \end{verbatim}
adamc@555 78
adamc@555 79 To use the Emacs mode, you must have a modern Emacs installed. We assume that you already know how to do this, if you're in the business of looking for an Emacs mode. The demo generation facility of the compiler will also call out to Emacs to syntax-highlight code, and that process depends on the \texttt{htmlize} module, which can be installed in Debian testing via:
adamc@555 80
adamc@555 81 \begin{verbatim}
adamc@555 82 apt-get install emacs-goodies-el
adamc@555 83 \end{verbatim}
adamc@555 84
adamc@555 85 Even with the right packages installed, configuration and building might fail to work. After you run \texttt{./configure}, you will see the values of some named environment variables printed. You may need to adjust these values to get proper installation for your system. To change a value, store your preferred alternative in the corresponding UNIX environment variable, before running \texttt{./configure}. For instance, here is how to change the list of extra arguments that the Ur/Web compiler will pass to GCC on every invocation.
adamc@555 86
adamc@555 87 \begin{verbatim}
adamc@555 88 GCCARGS=-fnested-functions ./configure
adamc@555 89 \end{verbatim}
adamc@555 90
adamc@555 91 Some OSX users have reported needing to use this particular GCCARGS value.
adamc@555 92
adamc@555 93 The Emacs mode can be set to autoload by adding the following to your \texttt{.emacs} file.
adamc@555 94
adamc@555 95 \begin{verbatim}
adamc@555 96 (add-to-list 'load-path "/usr/local/share/emacs/site-lisp/urweb-mode")
adamc@555 97 (load "urweb-mode-startup")
adamc@555 98 \end{verbatim}
adamc@555 99
adamc@555 100 Change the path in the first line if you chose a different Emacs installation path during configuration.
adamc@555 101
adamc@555 102
adamc@556 103 \section{Command-Line Compiler}
adamc@556 104
adamc@556 105 \subsection{Project Files}
adamc@556 106
adamc@556 107 The basic inputs to the \texttt{urweb} compiler are project files, which have the extension \texttt{.urp}. Here is a sample \texttt{.urp} file.
adamc@556 108
adamc@556 109 \begin{verbatim}
adamc@556 110 database dbname=test
adamc@556 111 sql crud1.sql
adamc@556 112
adamc@556 113 crud
adamc@556 114 crud1
adamc@556 115 \end{verbatim}
adamc@556 116
adamc@556 117 The \texttt{database} line gives the database information string to pass to libpq. In this case, the string only says to connect to a local database named \texttt{test}.
adamc@556 118
adamc@556 119 The \texttt{sql} line asks for an SQL source file to be generated, giving the commands to run to create the tables and sequences that this application expects to find. After building this \texttt{.urp} file, the following commands could be used to initialize the database, assuming that the current UNIX user exists as a Postgres user with database creation privileges:
adamc@556 120
adamc@556 121 \begin{verbatim}
adamc@556 122 createdb test
adamc@556 123 psql -f crud1.sql test
adamc@556 124 \end{verbatim}
adamc@556 125
adamc@556 126 A blank line always separates the named directives from a list of modules to include in the project; if there are no named directives, a blank line must begin the file.
adamc@556 127
adamc@556 128 For each entry \texttt{M} in the module list, the file \texttt{M.urs} is included in the project if it exists, and the file \texttt{M.ur} must exist and is always included.
adamc@556 129
adamc@556 130 A few other named directives are supported. \texttt{prefix PREFIX} sets the prefix included before every URI within the generated application; the default is \texttt{/}. \texttt{exe FILENAME} sets the filename to which to write the output executable; the default for file \texttt{P.urp} is \texttt{P.exe}. \texttt{debug} saves some intermediate C files, which is mostly useful to help in debugging the compiler itself. \texttt{profile} generates an executable that may be used with gprof.
adamc@556 131
adamc@701 132 \texttt{timeout N} sets to \texttt{N} seconds the amount of time that the generated server will wait after the last contact from a client before determining that that client has exited the application. Clients that remain active will take the timeout setting into account in determining how often to ping the server, so it only makes sense to set a high timeout to cope with browser and network delays and failures. Higher timeouts can lead to more unnecessary client information taking up memory on the server. The timeout goes unused by any page that doesn't involve the \texttt{recv} function, since the server only needs to store per-client information for clients that receive asynchronous messages.
adamc@701 133
adamc@701 134
adamc@557 135 \subsection{Building an Application}
adamc@557 136
adamc@557 137 To compile project \texttt{P.urp}, simply run
adamc@557 138 \begin{verbatim}
adamc@557 139 urweb P
adamc@557 140 \end{verbatim}
adamc@558 141 The output executable is a standalone web server. Run it with the command-line argument \texttt{-h} to see which options it takes. If the project file lists a database, the web server will attempt to connect to that database on startup.
adamc@557 142
adamc@557 143 To time how long the different compiler phases run, without generating an executable, run
adamc@557 144 \begin{verbatim}
adamc@557 145 urweb -timing P
adamc@557 146 \end{verbatim}
adamc@557 147
adamc@556 148
adamc@529 149 \section{Ur Syntax}
adamc@529 150
adamc@529 151 In this section, we describe the syntax of Ur, deferring to a later section discussion of most of the syntax specific to SQL and XML. The sole exceptions are the declaration forms for tables, sequences, and cookies.
adamc@524 152
adamc@524 153 \subsection{Lexical Conventions}
adamc@524 154
adamc@524 155 We give the Ur language definition in \LaTeX $\;$ math mode, since that is prettier than monospaced ASCII. The corresponding ASCII syntax can be read off directly. Here is the key for mapping math symbols to ASCII character sequences.
adamc@524 156
adamc@524 157 \begin{center}
adamc@524 158 \begin{tabular}{rl}
adamc@524 159 \textbf{\LaTeX} & \textbf{ASCII} \\
adamc@524 160 $\to$ & \cd{->} \\
adamc@652 161 $\longrightarrow$ & \cd{-->} \\
adamc@524 162 $\times$ & \cd{*} \\
adamc@524 163 $\lambda$ & \cd{fn} \\
adamc@524 164 $\Rightarrow$ & \cd{=>} \\
adamc@652 165 $\Longrightarrow$ & \cd{==>} \\
adamc@529 166 $\neq$ & \cd{<>} \\
adamc@529 167 $\leq$ & \cd{<=} \\
adamc@529 168 $\geq$ & \cd{>=} \\
adamc@524 169 \\
adamc@524 170 $x$ & Normal textual identifier, not beginning with an uppercase letter \\
adamc@525 171 $X$ & Normal textual identifier, beginning with an uppercase letter \\
adamc@524 172 \end{tabular}
adamc@524 173 \end{center}
adamc@524 174
adamc@525 175 We often write syntax like $e^*$ to indicate zero or more copies of $e$, $e^+$ to indicate one or more copies, and $e,^*$ and $e,^+$ to indicate multiple copies separated by commas. Another separator may be used in place of a comma. The $e$ term may be surrounded by parentheses to indicate grouping; those parentheses should not be included in the actual ASCII.
adamc@524 176
adamc@526 177 We write $\ell$ for literals of the primitive types, for the most part following C conventions. There are $\mt{int}$, $\mt{float}$, and $\mt{string}$ literals.
adamc@526 178
adamc@527 179 This version of the manual doesn't include operator precedences; see \texttt{src/urweb.grm} for that.
adamc@527 180
adamc@552 181 \subsection{\label{core}Core Syntax}
adamc@524 182
adamc@524 183 \emph{Kinds} classify types and other compile-time-only entities. Each kind in the grammar is listed with a description of the sort of data it classifies.
adamc@524 184 $$\begin{array}{rrcll}
adamc@524 185 \textrm{Kinds} & \kappa &::=& \mt{Type} & \textrm{proper types} \\
adamc@525 186 &&& \mt{Unit} & \textrm{the trivial constructor} \\
adamc@525 187 &&& \mt{Name} & \textrm{field names} \\
adamc@525 188 &&& \kappa \to \kappa & \textrm{type-level functions} \\
adamc@525 189 &&& \{\kappa\} & \textrm{type-level records} \\
adamc@525 190 &&& (\kappa\times^+) & \textrm{type-level tuples} \\
adamc@652 191 &&& X & \textrm{variable} \\
adamc@652 192 &&& X \longrightarrow k & \textrm{kind-polymorphic type-level function} \\
adamc@529 193 &&& \_\_ & \textrm{wildcard} \\
adamc@525 194 &&& (\kappa) & \textrm{explicit precedence} \\
adamc@524 195 \end{array}$$
adamc@524 196
adamc@524 197 Ur supports several different notions of functions that take types as arguments. These arguments can be either implicit, causing them to be inferred at use sites; or explicit, forcing them to be specified manually at use sites. There is a common explicitness annotation convention applied at the definitions of and in the types of such functions.
adamc@524 198 $$\begin{array}{rrcll}
adamc@524 199 \textrm{Explicitness} & ? &::=& :: & \textrm{explicit} \\
adamc@558 200 &&& ::: & \textrm{implicit}
adamc@524 201 \end{array}$$
adamc@524 202
adamc@524 203 \emph{Constructors} are the main class of compile-time-only data. They include proper types and are classified by kinds.
adamc@524 204 $$\begin{array}{rrcll}
adamc@524 205 \textrm{Constructors} & c, \tau &::=& (c) :: \kappa & \textrm{kind annotation} \\
adamc@530 206 &&& \hat{x} & \textrm{constructor variable} \\
adamc@524 207 \\
adamc@525 208 &&& \tau \to \tau & \textrm{function type} \\
adamc@525 209 &&& x \; ? \; \kappa \to \tau & \textrm{polymorphic function type} \\
adamc@652 210 &&& X \longrightarrow \tau & \textrm{kind-polymorphic function type} \\
adamc@525 211 &&& \$ c & \textrm{record type} \\
adamc@524 212 \\
adamc@525 213 &&& c \; c & \textrm{type-level function application} \\
adamc@530 214 &&& \lambda x \; :: \; \kappa \Rightarrow c & \textrm{type-level function abstraction} \\
adamc@524 215 \\
adamc@652 216 &&& X \Longrightarrow c & \textrm{type-level kind-polymorphic function abstraction} \\
adamc@655 217 &&& c [\kappa] & \textrm{type-level kind-polymorphic function application} \\
adamc@652 218 \\
adamc@525 219 &&& () & \textrm{type-level unit} \\
adamc@525 220 &&& \#X & \textrm{field name} \\
adamc@524 221 \\
adamc@525 222 &&& [(c = c)^*] & \textrm{known-length type-level record} \\
adamc@525 223 &&& c \rc c & \textrm{type-level record concatenation} \\
adamc@652 224 &&& \mt{map} & \textrm{type-level record map} \\
adamc@524 225 \\
adamc@558 226 &&& (c,^+) & \textrm{type-level tuple} \\
adamc@525 227 &&& c.n & \textrm{type-level tuple projection ($n \in \mathbb N^+$)} \\
adamc@524 228 \\
adamc@652 229 &&& [c \sim c] \Rightarrow \tau & \textrm{guarded type} \\
adamc@524 230 \\
adamc@529 231 &&& \_ :: \kappa & \textrm{wildcard} \\
adamc@525 232 &&& (c) & \textrm{explicit precedence} \\
adamc@530 233 \\
adamc@530 234 \textrm{Qualified uncapitalized variables} & \hat{x} &::=& x & \textrm{not from a module} \\
adamc@530 235 &&& M.x & \textrm{projection from a module} \\
adamc@525 236 \end{array}$$
adamc@525 237
adamc@655 238 We include both abstraction and application for kind polymorphism, but applications are only inferred internally; they may not be written explicitly in source programs.
adamc@655 239
adamc@525 240 Modules of the module system are described by \emph{signatures}.
adamc@525 241 $$\begin{array}{rrcll}
adamc@525 242 \textrm{Signatures} & S &::=& \mt{sig} \; s^* \; \mt{end} & \textrm{constant} \\
adamc@525 243 &&& X & \textrm{variable} \\
adamc@525 244 &&& \mt{functor}(X : S) : S & \textrm{functor} \\
adamc@529 245 &&& S \; \mt{where} \; \mt{con} \; x = c & \textrm{concretizing an abstract constructor} \\
adamc@525 246 &&& M.X & \textrm{projection from a module} \\
adamc@525 247 \\
adamc@525 248 \textrm{Signature items} & s &::=& \mt{con} \; x :: \kappa & \textrm{abstract constructor} \\
adamc@525 249 &&& \mt{con} \; x :: \kappa = c & \textrm{concrete constructor} \\
adamc@528 250 &&& \mt{datatype} \; x \; x^* = dc\mid^+ & \textrm{algebraic datatype definition} \\
adamc@529 251 &&& \mt{datatype} \; x = \mt{datatype} \; M.x & \textrm{algebraic datatype import} \\
adamc@525 252 &&& \mt{val} \; x : \tau & \textrm{value} \\
adamc@525 253 &&& \mt{structure} \; X : S & \textrm{sub-module} \\
adamc@525 254 &&& \mt{signature} \; X = S & \textrm{sub-signature} \\
adamc@525 255 &&& \mt{include} \; S & \textrm{signature inclusion} \\
adamc@525 256 &&& \mt{constraint} \; c \sim c & \textrm{record disjointness constraint} \\
adamc@654 257 &&& \mt{class} \; x :: \kappa & \textrm{abstract constructor class} \\
adamc@654 258 &&& \mt{class} \; x :: \kappa = c & \textrm{concrete constructor class} \\
adamc@525 259 \\
adamc@525 260 \textrm{Datatype constructors} & dc &::=& X & \textrm{nullary constructor} \\
adamc@525 261 &&& X \; \mt{of} \; \tau & \textrm{unary constructor} \\
adamc@524 262 \end{array}$$
adamc@524 263
adamc@526 264 \emph{Patterns} are used to describe structural conditions on expressions, such that expressions may be tested against patterns, generating assignments to pattern variables if successful.
adamc@526 265 $$\begin{array}{rrcll}
adamc@526 266 \textrm{Patterns} & p &::=& \_ & \textrm{wildcard} \\
adamc@526 267 &&& x & \textrm{variable} \\
adamc@526 268 &&& \ell & \textrm{constant} \\
adamc@526 269 &&& \hat{X} & \textrm{nullary constructor} \\
adamc@526 270 &&& \hat{X} \; p & \textrm{unary constructor} \\
adamc@526 271 &&& \{(x = p,)^*\} & \textrm{rigid record pattern} \\
adamc@526 272 &&& \{(x = p,)^+, \ldots\} & \textrm{flexible record pattern} \\
adamc@527 273 &&& (p) & \textrm{explicit precedence} \\
adamc@526 274 \\
adamc@529 275 \textrm{Qualified capitalized variables} & \hat{X} &::=& X & \textrm{not from a module} \\
adamc@526 276 &&& M.X & \textrm{projection from a module} \\
adamc@526 277 \end{array}$$
adamc@526 278
adamc@527 279 \emph{Expressions} are the main run-time entities, corresponding to both ``expressions'' and ``statements'' in mainstream imperative languages.
adamc@527 280 $$\begin{array}{rrcll}
adamc@527 281 \textrm{Expressions} & e &::=& e : \tau & \textrm{type annotation} \\
adamc@529 282 &&& \hat{x} & \textrm{variable} \\
adamc@529 283 &&& \hat{X} & \textrm{datatype constructor} \\
adamc@527 284 &&& \ell & \textrm{constant} \\
adamc@527 285 \\
adamc@527 286 &&& e \; e & \textrm{function application} \\
adamc@527 287 &&& \lambda x : \tau \Rightarrow e & \textrm{function abstraction} \\
adamc@527 288 &&& e [c] & \textrm{polymorphic function application} \\
adamc@527 289 &&& \lambda x \; ? \; \kappa \Rightarrow e & \textrm{polymorphic function abstraction} \\
adamc@655 290 &&& e [\kappa] & \textrm{kind-polymorphic function application} \\
adamc@652 291 &&& X \Longrightarrow e & \textrm{kind-polymorphic function abstraction} \\
adamc@527 292 \\
adamc@527 293 &&& \{(c = e,)^*\} & \textrm{known-length record} \\
adamc@527 294 &&& e.c & \textrm{record field projection} \\
adamc@527 295 &&& e \rc e & \textrm{record concatenation} \\
adamc@527 296 &&& e \rcut c & \textrm{removal of a single record field} \\
adamc@527 297 &&& e \rcutM c & \textrm{removal of multiple record fields} \\
adamc@527 298 \\
adamc@527 299 &&& \mt{let} \; ed^* \; \mt{in} \; e \; \mt{end} & \textrm{local definitions} \\
adamc@527 300 \\
adamc@527 301 &&& \mt{case} \; e \; \mt{of} \; (p \Rightarrow e|)^+ & \textrm{pattern matching} \\
adamc@527 302 \\
adamc@654 303 &&& \lambda [c \sim c] \Rightarrow e & \textrm{guarded expression abstraction} \\
adamc@654 304 &&& e \; ! & \textrm{guarded expression application} \\
adamc@527 305 \\
adamc@527 306 &&& \_ & \textrm{wildcard} \\
adamc@527 307 &&& (e) & \textrm{explicit precedence} \\
adamc@527 308 \\
adamc@527 309 \textrm{Local declarations} & ed &::=& \cd{val} \; x : \tau = e & \textrm{non-recursive value} \\
adamc@527 310 &&& \cd{val} \; \cd{rec} \; (x : \tau = e \; \cd{and})^+ & \textrm{mutually-recursive values} \\
adamc@527 311 \end{array}$$
adamc@527 312
adamc@655 313 As with constructors, we include both abstraction and application for kind polymorphism, but applications are only inferred internally.
adamc@655 314
adamc@528 315 \emph{Declarations} primarily bring new symbols into context.
adamc@528 316 $$\begin{array}{rrcll}
adamc@528 317 \textrm{Declarations} & d &::=& \mt{con} \; x :: \kappa = c & \textrm{constructor synonym} \\
adamc@528 318 &&& \mt{datatype} \; x \; x^* = dc\mid^+ & \textrm{algebraic datatype definition} \\
adamc@529 319 &&& \mt{datatype} \; x = \mt{datatype} \; M.x & \textrm{algebraic datatype import} \\
adamc@528 320 &&& \mt{val} \; x : \tau = e & \textrm{value} \\
adamc@528 321 &&& \mt{val} \; \cd{rec} \; (x : \tau = e \; \mt{and})^+ & \textrm{mutually-recursive values} \\
adamc@528 322 &&& \mt{structure} \; X : S = M & \textrm{module definition} \\
adamc@528 323 &&& \mt{signature} \; X = S & \textrm{signature definition} \\
adamc@528 324 &&& \mt{open} \; M & \textrm{module inclusion} \\
adamc@528 325 &&& \mt{constraint} \; c \sim c & \textrm{record disjointness constraint} \\
adamc@528 326 &&& \mt{open} \; \mt{constraints} \; M & \textrm{inclusion of just the constraints from a module} \\
adamc@528 327 &&& \mt{table} \; x : c & \textrm{SQL table} \\
adamc@528 328 &&& \mt{sequence} \; x & \textrm{SQL sequence} \\
adamc@535 329 &&& \mt{cookie} \; x : \tau & \textrm{HTTP cookie} \\
adamc@654 330 &&& \mt{class} \; x :: \kappa = c & \textrm{concrete constructor class} \\
adamc@528 331 \\
adamc@529 332 \textrm{Modules} & M &::=& \mt{struct} \; d^* \; \mt{end} & \textrm{constant} \\
adamc@529 333 &&& X & \textrm{variable} \\
adamc@529 334 &&& M.X & \textrm{projection} \\
adamc@529 335 &&& M(M) & \textrm{functor application} \\
adamc@529 336 &&& \mt{functor}(X : S) : S = M & \textrm{functor abstraction} \\
adamc@528 337 \end{array}$$
adamc@528 338
adamc@528 339 There are two kinds of Ur files. A file named $M\texttt{.ur}$ is an \emph{implementation file}, and it should contain a sequence of declarations $d^*$. A file named $M\texttt{.urs}$ is an \emph{interface file}; it must always have a matching $M\texttt{.ur}$ and should contain a sequence of signature items $s^*$. When both files are present, the overall effect is the same as a monolithic declaration $\mt{structure} \; M : \mt{sig} \; s^* \; \mt{end} = \mt{struct} \; d^* \; \mt{end}$. When no interface file is included, the overall effect is similar, with a signature for module $M$ being inferred rather than just checked against an interface.
adamc@527 340
adamc@529 341 \subsection{Shorthands}
adamc@529 342
adamc@529 343 There are a variety of derived syntactic forms that elaborate into the core syntax from the last subsection. We will present the additional forms roughly following the order in which we presented the constructs that they elaborate into.
adamc@529 344
adamc@529 345 In many contexts where record fields are expected, like in a projection $e.c$, a constant field may be written as simply $X$, rather than $\#X$.
adamc@529 346
adamc@529 347 A record type may be written $\{(c = c,)^*\}$, which elaborates to $\$[(c = c,)^*]$.
adamc@529 348
adamc@533 349 The notation $[c_1, \ldots, c_n]$ is shorthand for $[c_1 = (), \ldots, c_n = ()]$.
adamc@533 350
adamc@529 351 A tuple type $(\tau_1, \ldots, \tau_n)$ expands to a record type $\{1 = \tau_1, \ldots, n = \tau_n\}$, with natural numbers as field names. A tuple pattern $(p_1, \ldots, p_n)$ expands to a rigid record pattern $\{1 = p_1, \ldots, n = p_n\}$. Positive natural numbers may be used in most places where field names would be allowed.
adamc@529 352
adamc@654 353 In general, several adjacent $\lambda$ forms may be combined into one, and kind and type annotations may be omitted, in which case they are implicitly included as wildcards. More formally, for constructor-level abstractions, we can define a new non-terminal $b ::= x \mid (x :: \kappa) \mid X$ and allow composite abstractions of the form $\lambda b^+ \Rightarrow c$, elaborating into the obvious sequence of one core $\lambda$ per element of $b^+$.
adamc@529 354
adamc@529 355 For any signature item or declaration that defines some entity to be equal to $A$ with classification annotation $B$ (e.g., $\mt{val} \; x : B = A$), $B$ and the preceding colon (or similar punctuation) may be omitted, in which case it is filled in as a wildcard.
adamc@529 356
adamc@529 357 A signature item or declaration $\mt{type} \; x$ or $\mt{type} \; x = \tau$ is elaborated into $\mt{con} \; x :: \mt{Type}$ or $\mt{con} \; x :: \mt{Type} = \tau$, respectively.
adamc@529 358
adamc@654 359 A signature item or declaration $\mt{class} \; x = \lambda y \Rightarrow c$ may be abbreviated $\mt{class} \; x \; y = c$.
adamc@529 360
adamc@654 361 Handling of implicit and explicit constructor arguments may be tweaked with some prefixes to variable references. An expression $@x$ is a version of $x$ where all implicit constructor arguments have been made explicit. An expression $@@x$ achieves the same effect, additionally halting automatic resolution of type class instances and automatic proving of disjointness constraints. The default is that any prefix of a variable's type consisting only of implicit polymorphism, type class instances, and disjointness obligations is resolved automatically, with the variable treated as having the type that starts after the last implicit element, with suitable unification variables substituted. The same syntax works for variables projected out of modules and for capitalized variables (datatype constructors).
adamc@529 362
adamc@654 363 At the expression level, an analogue is available of the composite $\lambda$ form for constructors. We define the language of binders as $b ::= x \mid (x : \tau) \mid (x \; ? \; \kappa) \mid X \mid [c \sim c]$. A lone variable $x$ as a binder stands for an expression variable of unspecified type.
adamc@529 364
adamc@529 365 A $\mt{val}$ or $\mt{val} \; \mt{rec}$ declaration may include expression binders before the equal sign, following the binder grammar from the last paragraph. Such declarations are elaborated into versions that add additional $\lambda$s to the fronts of the righthand sides, as appropriate. The keyword $\mt{fun}$ is a synonym for $\mt{val} \; \mt{rec}$.
adamc@529 366
adamc@529 367 A signature item $\mt{functor} \; X_1 \; (X_2 : S_1) : S_2$ is elaborated into $\mt{structure} \; X_1 : \mt{functor}(X_2 : S_1) : S_2$. A declaration $\mt{functor} \; X_1 \; (X_2 : S_1) : S_2 = M$ is elaborated into $\mt{structure} \; X_1 : \mt{functor}(X_2 : S_1) : S_2 = \mt{functor}(X_2 : S_1) : S_2 = M$.
adamc@529 368
adamc@529 369 A declaration $\mt{table} \; x : \{(c = c,)^*\}$ is elaborated into $\mt{table} \; x : [(c = c,)^*]$
adamc@529 370
adamc@529 371 The syntax $\mt{where} \; \mt{type}$ is an alternate form of $\mt{where} \; \mt{con}$.
adamc@529 372
adamc@529 373 The syntax $\mt{if} \; e \; \mt{then} \; e_1 \; \mt{else} \; e_2$ expands to $\mt{case} \; e \; \mt{of} \; \mt{Basis}.\mt{True} \Rightarrow e_1 \mid \mt{Basis}.\mt{False} \Rightarrow e_2$.
adamc@529 374
adamc@529 375 There are infix operator syntaxes for a number of functions defined in the $\mt{Basis}$ module. There is $=$ for $\mt{eq}$, $\neq$ for $\mt{neq}$, $-$ for $\mt{neg}$ (as a prefix operator) and $\mt{minus}$, $+$ for $\mt{plus}$, $\times$ for $\mt{times}$, $/$ for $\mt{div}$, $\%$ for $\mt{mod}$, $<$ for $\mt{lt}$, $\leq$ for $\mt{le}$, $>$ for $\mt{gt}$, and $\geq$ for $\mt{ge}$.
adamc@529 376
adamc@529 377 A signature item $\mt{table} \; x : c$ is shorthand for $\mt{val} \; x : \mt{Basis}.\mt{sql\_table} \; c$. $\mt{sequence} \; x$ is short for $\mt{val} \; x : \mt{Basis}.\mt{sql\_sequence}$, and $\mt{cookie} \; x : \tau$ is shorthand for $\mt{val} \; x : \mt{Basis}.\mt{http\_cookie} \; \tau$.
adamc@529 378
adamc@530 379
adamc@530 380 \section{Static Semantics}
adamc@530 381
adamc@530 382 In this section, we give a declarative presentation of Ur's typing rules and related judgments. Inference is the subject of the next section; here, we assume that an oracle has filled in all wildcards with concrete values.
adamc@530 383
adamc@530 384 Since there is significant mutual recursion among the judgments, we introduce them all before beginning to give rules. We use the same variety of contexts throughout this section, implicitly introducing new sorts of context entries as needed.
adamc@530 385 \begin{itemize}
adamc@655 386 \item $\Gamma \vdash \kappa$ expresses kind well-formedness.
adamc@530 387 \item $\Gamma \vdash c :: \kappa$ assigns a kind to a constructor in a context.
adamc@530 388 \item $\Gamma \vdash c \sim c$ proves the disjointness of two record constructors; that is, that they share no field names. We overload the judgment to apply to pairs of field names as well.
adamc@531 389 \item $\Gamma \vdash c \hookrightarrow C$ proves that record constructor $c$ decomposes into set $C$ of field names and record constructors.
adamc@530 390 \item $\Gamma \vdash c \equiv c$ proves the computational equivalence of two constructors. This is often called a \emph{definitional equality} in the world of type theory.
adamc@530 391 \item $\Gamma \vdash e : \tau$ is a standard typing judgment.
adamc@534 392 \item $\Gamma \vdash p \leadsto \Gamma; \tau$ combines typing of patterns with calculation of which new variables they bind.
adamc@537 393 \item $\Gamma \vdash d \leadsto \Gamma$ expresses how a declaration modifies a context. We overload this judgment to apply to sequences of declarations, as well as to signature items and sequences of signature items.
adamc@537 394 \item $\Gamma \vdash S \equiv S$ is the signature equivalence judgment.
adamc@536 395 \item $\Gamma \vdash S \leq S$ is the signature compatibility judgment. We write $\Gamma \vdash S$ as shorthand for $\Gamma \vdash S \leq S$.
adamc@530 396 \item $\Gamma \vdash M : S$ is the module signature checking judgment.
adamc@537 397 \item $\mt{proj}(M, \overline{s}, V)$ is a partial function for projecting a signature item from $\overline{s}$, given the module $M$ that we project from. $V$ may be $\mt{con} \; x$, $\mt{datatype} \; x$, $\mt{val} \; x$, $\mt{signature} \; X$, or $\mt{structure} \; X$. The parameter $M$ is needed because the projected signature item may refer to other items from $\overline{s}$.
adamc@539 398 \item $\mt{selfify}(M, \overline{s})$ adds information to signature items $\overline{s}$ to reflect the fact that we are concerned with the particular module $M$. This function is overloaded to work over individual signature items as well.
adamc@530 399 \end{itemize}
adamc@530 400
adamc@655 401
adamc@655 402 \subsection{Kind Well-Formedness}
adamc@655 403
adamc@655 404 $$\infer{\Gamma \vdash \mt{Type}}{}
adamc@655 405 \quad \infer{\Gamma \vdash \mt{Unit}}{}
adamc@655 406 \quad \infer{\Gamma \vdash \mt{Name}}{}
adamc@655 407 \quad \infer{\Gamma \vdash \kappa_1 \to \kappa_2}{
adamc@655 408 \Gamma \vdash \kappa_1
adamc@655 409 & \Gamma \vdash \kappa_2
adamc@655 410 }
adamc@655 411 \quad \infer{\Gamma \vdash \{\kappa\}}{
adamc@655 412 \Gamma \vdash \kappa
adamc@655 413 }
adamc@655 414 \quad \infer{\Gamma \vdash (\kappa_1 \times \ldots \times \kappa_n)}{
adamc@655 415 \forall i: \Gamma \vdash \kappa_i
adamc@655 416 }$$
adamc@655 417
adamc@655 418 $$\infer{\Gamma \vdash X}{
adamc@655 419 X \in \Gamma
adamc@655 420 }
adamc@655 421 \quad \infer{\Gamma \vdash X \longrightarrow \kappa}{
adamc@655 422 \Gamma, X \vdash \kappa
adamc@655 423 }$$
adamc@655 424
adamc@530 425 \subsection{Kinding}
adamc@530 426
adamc@655 427 We write $[X \mapsto \kappa_1]\kappa_2$ for capture-avoiding substitution of $\kappa_1$ for $X$ in $\kappa_2$.
adamc@655 428
adamc@530 429 $$\infer{\Gamma \vdash (c) :: \kappa :: \kappa}{
adamc@530 430 \Gamma \vdash c :: \kappa
adamc@530 431 }
adamc@530 432 \quad \infer{\Gamma \vdash x :: \kappa}{
adamc@530 433 x :: \kappa \in \Gamma
adamc@530 434 }
adamc@530 435 \quad \infer{\Gamma \vdash x :: \kappa}{
adamc@530 436 x :: \kappa = c \in \Gamma
adamc@530 437 }$$
adamc@530 438
adamc@530 439 $$\infer{\Gamma \vdash M.x :: \kappa}{
adamc@537 440 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 441 & \mt{proj}(M, \overline{s}, \mt{con} \; x) = \kappa
adamc@530 442 }
adamc@530 443 \quad \infer{\Gamma \vdash M.x :: \kappa}{
adamc@537 444 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 445 & \mt{proj}(M, \overline{s}, \mt{con} \; x) = (\kappa, c)
adamc@530 446 }$$
adamc@530 447
adamc@530 448 $$\infer{\Gamma \vdash \tau_1 \to \tau_2 :: \mt{Type}}{
adamc@530 449 \Gamma \vdash \tau_1 :: \mt{Type}
adamc@530 450 & \Gamma \vdash \tau_2 :: \mt{Type}
adamc@530 451 }
adamc@530 452 \quad \infer{\Gamma \vdash x \; ? \: \kappa \to \tau :: \mt{Type}}{
adamc@530 453 \Gamma, x :: \kappa \vdash \tau :: \mt{Type}
adamc@530 454 }
adamc@655 455 \quad \infer{\Gamma \vdash X \longrightarrow \tau :: \mt{Type}}{
adamc@655 456 \Gamma, X \vdash \tau :: \mt{Type}
adamc@655 457 }
adamc@530 458 \quad \infer{\Gamma \vdash \$c :: \mt{Type}}{
adamc@530 459 \Gamma \vdash c :: \{\mt{Type}\}
adamc@530 460 }$$
adamc@530 461
adamc@530 462 $$\infer{\Gamma \vdash c_1 \; c_2 :: \kappa_2}{
adamc@530 463 \Gamma \vdash c_1 :: \kappa_1 \to \kappa_2
adamc@530 464 & \Gamma \vdash c_2 :: \kappa_1
adamc@530 465 }
adamc@530 466 \quad \infer{\Gamma \vdash \lambda x \; :: \; \kappa_1 \Rightarrow c :: \kappa_1 \to \kappa_2}{
adamc@530 467 \Gamma, x :: \kappa_1 \vdash c :: \kappa_2
adamc@530 468 }$$
adamc@530 469
adamc@655 470 $$\infer{\Gamma \vdash c[\kappa'] :: [X \mapsto \kappa']\kappa}{
adamc@655 471 \Gamma \vdash c :: X \to \kappa
adamc@655 472 & \Gamma \vdash \kappa'
adamc@655 473 }
adamc@655 474 \quad \infer{\Gamma \vdash X \Longrightarrow c :: X \to \kappa}{
adamc@655 475 \Gamma, X \vdash c :: \kappa
adamc@655 476 }$$
adamc@655 477
adamc@530 478 $$\infer{\Gamma \vdash () :: \mt{Unit}}{}
adamc@530 479 \quad \infer{\Gamma \vdash \#X :: \mt{Name}}{}$$
adamc@530 480
adamc@530 481 $$\infer{\Gamma \vdash [\overline{c_i = c'_i}] :: \{\kappa\}}{
adamc@530 482 \forall i: \Gamma \vdash c_i : \mt{Name}
adamc@530 483 & \Gamma \vdash c'_i :: \kappa
adamc@530 484 & \forall i \neq j: \Gamma \vdash c_i \sim c_j
adamc@530 485 }
adamc@530 486 \quad \infer{\Gamma \vdash c_1 \rc c_2 :: \{\kappa\}}{
adamc@530 487 \Gamma \vdash c_1 :: \{\kappa\}
adamc@530 488 & \Gamma \vdash c_2 :: \{\kappa\}
adamc@530 489 & \Gamma \vdash c_1 \sim c_2
adamc@530 490 }$$
adamc@530 491
adamc@655 492 $$\infer{\Gamma \vdash \mt{map} :: (\kappa_1 \to \kappa_2) \to \{\kappa_1\} \to \{\kappa_2\}}{}$$
adamc@530 493
adamc@573 494 $$\infer{\Gamma \vdash (\overline c) :: (\kappa_1 \times \ldots \times \kappa_n)}{
adamc@573 495 \forall i: \Gamma \vdash c_i :: \kappa_i
adamc@530 496 }
adamc@573 497 \quad \infer{\Gamma \vdash c.i :: \kappa_i}{
adamc@573 498 \Gamma \vdash c :: (\kappa_1 \times \ldots \times \kappa_n)
adamc@530 499 }$$
adamc@530 500
adamc@655 501 $$\infer{\Gamma \vdash \lambda [c_1 \sim c_2] \Rightarrow \tau :: \mt{Type}}{
adamc@655 502 \Gamma \vdash c_1 :: \{\kappa\}
adamc@530 503 & \Gamma \vdash c_2 :: \{\kappa'\}
adamc@655 504 & \Gamma, c_1 \sim c_2 \vdash \tau :: \mt{Type}
adamc@530 505 }$$
adamc@530 506
adamc@531 507 \subsection{Record Disjointness}
adamc@531 508
adamc@531 509 $$\infer{\Gamma \vdash c_1 \sim c_2}{
adamc@558 510 \Gamma \vdash c_1 \hookrightarrow C_1
adamc@558 511 & \Gamma \vdash c_2 \hookrightarrow C_2
adamc@558 512 & \forall c'_1 \in C_1, c'_2 \in C_2: \Gamma \vdash c'_1 \sim c'_2
adamc@531 513 }
adamc@531 514 \quad \infer{\Gamma \vdash X \sim X'}{
adamc@531 515 X \neq X'
adamc@531 516 }$$
adamc@531 517
adamc@531 518 $$\infer{\Gamma \vdash c_1 \sim c_2}{
adamc@531 519 c'_1 \sim c'_2 \in \Gamma
adamc@558 520 & \Gamma \vdash c'_1 \hookrightarrow C_1
adamc@558 521 & \Gamma \vdash c'_2 \hookrightarrow C_2
adamc@558 522 & c_1 \in C_1
adamc@558 523 & c_2 \in C_2
adamc@531 524 }$$
adamc@531 525
adamc@531 526 $$\infer{\Gamma \vdash c \hookrightarrow \{c\}}{}
adamc@531 527 \quad \infer{\Gamma \vdash [\overline{c = c'}] \hookrightarrow \{\overline{c}\}}{}
adamc@531 528 \quad \infer{\Gamma \vdash c_1 \rc c_2 \hookrightarrow C_1 \cup C_2}{
adamc@531 529 \Gamma \vdash c_1 \hookrightarrow C_1
adamc@531 530 & \Gamma \vdash c_2 \hookrightarrow C_2
adamc@531 531 }
adamc@531 532 \quad \infer{\Gamma \vdash c \hookrightarrow C}{
adamc@531 533 \Gamma \vdash c \equiv c'
adamc@531 534 & \Gamma \vdash c' \hookrightarrow C
adamc@531 535 }
adamc@531 536 \quad \infer{\Gamma \vdash \mt{map} \; f \; c \hookrightarrow C}{
adamc@531 537 \Gamma \vdash c \hookrightarrow C
adamc@531 538 }$$
adamc@531 539
adamc@541 540 \subsection{\label{definitional}Definitional Equality}
adamc@532 541
adamc@655 542 We use $\mathcal C$ to stand for a one-hole context that, when filled, yields a constructor. The notation $\mathcal C[c]$ plugs $c$ into $\mathcal C$. We omit the standard definition of one-hole contexts. We write $[x \mapsto c_1]c_2$ for capture-avoiding substitution of $c_1$ for $x$ in $c_2$, with analogous notation for substituting a kind in a constructor.
adamc@532 543
adamc@532 544 $$\infer{\Gamma \vdash c \equiv c}{}
adamc@532 545 \quad \infer{\Gamma \vdash c_1 \equiv c_2}{
adamc@532 546 \Gamma \vdash c_2 \equiv c_1
adamc@532 547 }
adamc@532 548 \quad \infer{\Gamma \vdash c_1 \equiv c_3}{
adamc@532 549 \Gamma \vdash c_1 \equiv c_2
adamc@532 550 & \Gamma \vdash c_2 \equiv c_3
adamc@532 551 }
adamc@532 552 \quad \infer{\Gamma \vdash \mathcal C[c_1] \equiv \mathcal C[c_2]}{
adamc@532 553 \Gamma \vdash c_1 \equiv c_2
adamc@532 554 }$$
adamc@532 555
adamc@532 556 $$\infer{\Gamma \vdash x \equiv c}{
adamc@532 557 x :: \kappa = c \in \Gamma
adamc@532 558 }
adamc@532 559 \quad \infer{\Gamma \vdash M.x \equiv c}{
adamc@537 560 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 561 & \mt{proj}(M, \overline{s}, \mt{con} \; x) = (\kappa, c)
adamc@532 562 }
adamc@532 563 \quad \infer{\Gamma \vdash (\overline c).i \equiv c_i}{}$$
adamc@532 564
adamc@532 565 $$\infer{\Gamma \vdash (\lambda x :: \kappa \Rightarrow c) \; c' \equiv [x \mapsto c'] c}{}
adamc@655 566 \quad \infer{\Gamma \vdash (X \Longrightarrow c) [\kappa] \equiv [X \mapsto \kappa] c}{}$$
adamc@655 567
adamc@655 568 $$\infer{\Gamma \vdash c_1 \rc c_2 \equiv c_2 \rc c_1}{}
adamc@532 569 \quad \infer{\Gamma \vdash c_1 \rc (c_2 \rc c_3) \equiv (c_1 \rc c_2) \rc c_3}{}$$
adamc@532 570
adamc@532 571 $$\infer{\Gamma \vdash [] \rc c \equiv c}{}
adamc@532 572 \quad \infer{\Gamma \vdash [\overline{c_1 = c'_1}] \rc [\overline{c_2 = c'_2}] \equiv [\overline{c_1 = c'_1}, \overline{c_2 = c'_2}]}{}$$
adamc@532 573
adamc@655 574 $$\infer{\Gamma \vdash \mt{map} \; f \; [] \equiv []}{}
adamc@655 575 \quad \infer{\Gamma \vdash \mt{map} \; f \; ([c_1 = c_2] \rc c) \equiv [c_1 = f \; c_2] \rc \mt{map} \; f \; c}{}$$
adamc@532 576
adamc@532 577 $$\infer{\Gamma \vdash \mt{map} \; (\lambda x \Rightarrow x) \; c \equiv c}{}
adamc@655 578 \quad \infer{\Gamma \vdash \mt{map} \; f \; (\mt{map} \; f' \; c)
adamc@655 579 \equiv \mt{map} \; (\lambda x \Rightarrow f \; (f' \; x)) \; c}{}$$
adamc@532 580
adamc@532 581 $$\infer{\Gamma \vdash \mt{map} \; f \; (c_1 \rc c_2) \equiv \mt{map} \; f \; c_1 \rc \mt{map} \; f \; c_2}{}$$
adamc@531 582
adamc@534 583 \subsection{Expression Typing}
adamc@533 584
adamc@533 585 We assume the existence of a function $T$ assigning types to literal constants. It maps integer constants to $\mt{Basis}.\mt{int}$, float constants to $\mt{Basis}.\mt{float}$, and string constants to $\mt{Basis}.\mt{string}$.
adamc@533 586
adamc@533 587 We also refer to a function $\mathcal I$, such that $\mathcal I(\tau)$ ``uses an oracle'' to instantiate all constructor function arguments at the beginning of $\tau$ that are marked implicit; i.e., replace $x_1 ::: \kappa_1 \to \ldots \to x_n ::: \kappa_n \to \tau$ with $[x_1 \mapsto c_1]\ldots[x_n \mapsto c_n]\tau$, where the $c_i$s are inferred and $\tau$ does not start like $x ::: \kappa \to \tau'$.
adamc@533 588
adamc@533 589 $$\infer{\Gamma \vdash e : \tau : \tau}{
adamc@533 590 \Gamma \vdash e : \tau
adamc@533 591 }
adamc@533 592 \quad \infer{\Gamma \vdash e : \tau}{
adamc@533 593 \Gamma \vdash e : \tau'
adamc@533 594 & \Gamma \vdash \tau' \equiv \tau
adamc@533 595 }
adamc@533 596 \quad \infer{\Gamma \vdash \ell : T(\ell)}{}$$
adamc@533 597
adamc@533 598 $$\infer{\Gamma \vdash x : \mathcal I(\tau)}{
adamc@533 599 x : \tau \in \Gamma
adamc@533 600 }
adamc@533 601 \quad \infer{\Gamma \vdash M.x : \mathcal I(\tau)}{
adamc@537 602 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 603 & \mt{proj}(M, \overline{s}, \mt{val} \; x) = \tau
adamc@533 604 }
adamc@533 605 \quad \infer{\Gamma \vdash X : \mathcal I(\tau)}{
adamc@533 606 X : \tau \in \Gamma
adamc@533 607 }
adamc@533 608 \quad \infer{\Gamma \vdash M.X : \mathcal I(\tau)}{
adamc@537 609 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 610 & \mt{proj}(M, \overline{s}, \mt{val} \; X) = \tau
adamc@533 611 }$$
adamc@533 612
adamc@533 613 $$\infer{\Gamma \vdash e_1 \; e_2 : \tau_2}{
adamc@533 614 \Gamma \vdash e_1 : \tau_1 \to \tau_2
adamc@533 615 & \Gamma \vdash e_2 : \tau_1
adamc@533 616 }
adamc@533 617 \quad \infer{\Gamma \vdash \lambda x : \tau_1 \Rightarrow e : \tau_1 \to \tau_2}{
adamc@533 618 \Gamma, x : \tau_1 \vdash e : \tau_2
adamc@533 619 }$$
adamc@533 620
adamc@533 621 $$\infer{\Gamma \vdash e [c] : [x \mapsto c]\tau}{
adamc@533 622 \Gamma \vdash e : x :: \kappa \to \tau
adamc@533 623 & \Gamma \vdash c :: \kappa
adamc@533 624 }
adamc@533 625 \quad \infer{\Gamma \vdash \lambda x \; ? \; \kappa \Rightarrow e : x \; ? \; \kappa \to \tau}{
adamc@533 626 \Gamma, x :: \kappa \vdash e : \tau
adamc@533 627 }$$
adamc@533 628
adamc@655 629 $$\infer{\Gamma \vdash e [\kappa] : [X \mapsto \kappa]\tau}{
adamc@655 630 \Gamma \vdash e : X \longrightarrow \tau
adamc@655 631 & \Gamma \vdash \kappa
adamc@655 632 }
adamc@655 633 \quad \infer{\Gamma \vdash X \Longrightarrow e : X \longrightarrow \tau}{
adamc@655 634 \Gamma, X \vdash e : \tau
adamc@655 635 }$$
adamc@655 636
adamc@533 637 $$\infer{\Gamma \vdash \{\overline{c = e}\} : \{\overline{c : \tau}\}}{
adamc@533 638 \forall i: \Gamma \vdash c_i :: \mt{Name}
adamc@533 639 & \Gamma \vdash e_i : \tau_i
adamc@533 640 & \forall i \neq j: \Gamma \vdash c_i \sim c_j
adamc@533 641 }
adamc@533 642 \quad \infer{\Gamma \vdash e.c : \tau}{
adamc@533 643 \Gamma \vdash e : \$([c = \tau] \rc c')
adamc@533 644 }
adamc@533 645 \quad \infer{\Gamma \vdash e_1 \rc e_2 : \$(c_1 \rc c_2)}{
adamc@533 646 \Gamma \vdash e_1 : \$c_1
adamc@533 647 & \Gamma \vdash e_2 : \$c_2
adamc@573 648 & \Gamma \vdash c_1 \sim c_2
adamc@533 649 }$$
adamc@533 650
adamc@533 651 $$\infer{\Gamma \vdash e \rcut c : \$c'}{
adamc@533 652 \Gamma \vdash e : \$([c = \tau] \rc c')
adamc@533 653 }
adamc@533 654 \quad \infer{\Gamma \vdash e \rcutM c : \$c'}{
adamc@533 655 \Gamma \vdash e : \$(c \rc c')
adamc@533 656 }$$
adamc@533 657
adamc@533 658 $$\infer{\Gamma \vdash \mt{let} \; \overline{ed} \; \mt{in} \; e \; \mt{end} : \tau}{
adamc@533 659 \Gamma \vdash \overline{ed} \leadsto \Gamma'
adamc@533 660 & \Gamma' \vdash e : \tau
adamc@533 661 }
adamc@533 662 \quad \infer{\Gamma \vdash \mt{case} \; e \; \mt{of} \; \overline{p \Rightarrow e} : \tau}{
adamc@533 663 \forall i: \Gamma \vdash p_i \leadsto \Gamma_i, \tau'
adamc@533 664 & \Gamma_i \vdash e_i : \tau
adamc@533 665 }$$
adamc@533 666
adamc@573 667 $$\infer{\Gamma \vdash \lambda [c_1 \sim c_2] \Rightarrow e : \lambda [c_1 \sim c_2] \Rightarrow \tau}{
adamc@533 668 \Gamma \vdash c_1 :: \{\kappa\}
adamc@655 669 & \Gamma \vdash c_2 :: \{\kappa'\}
adamc@533 670 & \Gamma, c_1 \sim c_2 \vdash e : \tau
adamc@662 671 }
adamc@662 672 \quad \infer{\Gamma \vdash e \; ! : \tau}{
adamc@662 673 \Gamma \vdash e : [c_1 \sim c_2] \Rightarrow \tau
adamc@662 674 & \Gamma \vdash c_1 \sim c_2
adamc@533 675 }$$
adamc@533 676
adamc@534 677 \subsection{Pattern Typing}
adamc@534 678
adamc@534 679 $$\infer{\Gamma \vdash \_ \leadsto \Gamma; \tau}{}
adamc@534 680 \quad \infer{\Gamma \vdash x \leadsto \Gamma, x : \tau; \tau}{}
adamc@534 681 \quad \infer{\Gamma \vdash \ell \leadsto \Gamma; T(\ell)}{}$$
adamc@534 682
adamc@534 683 $$\infer{\Gamma \vdash X \leadsto \Gamma; \overline{[x_i \mapsto \tau'_i]}\tau}{
adamc@534 684 X : \overline{x ::: \mt{Type}} \to \tau \in \Gamma
adamc@534 685 & \textrm{$\tau$ not a function type}
adamc@534 686 }
adamc@534 687 \quad \infer{\Gamma \vdash X \; p \leadsto \Gamma'; \overline{[x_i \mapsto \tau'_i]}\tau}{
adamc@534 688 X : \overline{x ::: \mt{Type}} \to \tau'' \to \tau \in \Gamma
adamc@534 689 & \Gamma \vdash p \leadsto \Gamma'; \overline{[x_i \mapsto \tau'_i]}\tau''
adamc@534 690 }$$
adamc@534 691
adamc@534 692 $$\infer{\Gamma \vdash M.X \leadsto \Gamma; \overline{[x_i \mapsto \tau'_i]}\tau}{
adamc@537 693 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 694 & \mt{proj}(M, \overline{s}, \mt{val} \; X) = \overline{x ::: \mt{Type}} \to \tau
adamc@534 695 & \textrm{$\tau$ not a function type}
adamc@534 696 }$$
adamc@534 697
adamc@534 698 $$\infer{\Gamma \vdash M.X \; p \leadsto \Gamma'; \overline{[x_i \mapsto \tau'_i]}\tau}{
adamc@537 699 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 700 & \mt{proj}(M, \overline{s}, \mt{val} \; X) = \overline{x ::: \mt{Type}} \to \tau'' \to \tau
adamc@534 701 & \Gamma \vdash p \leadsto \Gamma'; \overline{[x_i \mapsto \tau'_i]}\tau''
adamc@534 702 }$$
adamc@534 703
adamc@534 704 $$\infer{\Gamma \vdash \{\overline{x = p}\} \leadsto \Gamma_n; \{\overline{x = \tau}\}}{
adamc@534 705 \Gamma_0 = \Gamma
adamc@534 706 & \forall i: \Gamma_i \vdash p_i \leadsto \Gamma_{i+1}; \tau_i
adamc@534 707 }
adamc@534 708 \quad \infer{\Gamma \vdash \{\overline{x = p}, \ldots\} \leadsto \Gamma_n; \$([\overline{x = \tau}] \rc c)}{
adamc@534 709 \Gamma_0 = \Gamma
adamc@534 710 & \forall i: \Gamma_i \vdash p_i \leadsto \Gamma_{i+1}; \tau_i
adamc@534 711 }$$
adamc@534 712
adamc@535 713 \subsection{Declaration Typing}
adamc@535 714
adamc@535 715 We use an auxiliary judgment $\overline{y}; x; \Gamma \vdash \overline{dc} \leadsto \Gamma'$, expressing the enrichment of $\Gamma$ with the types of the datatype constructors $\overline{dc}$, when they are known to belong to datatype $x$ with type parameters $\overline{y}$.
adamc@535 716
adamc@655 717 This is the first judgment where we deal with constructor classes, for the $\mt{class}$ declaration form. We will omit their special handling in this formal specification. Section \ref{typeclasses} gives an informal description of how constructor classes influence type inference.
adamc@535 718
adamc@558 719 We presuppose the existence of a function $\mathcal O$, where $\mathcal O(M, \overline{s})$ implements the $\mt{open}$ declaration by producing a context with the appropriate entry for each available component of module $M$ with signature items $\overline{s}$. Where possible, $\mathcal O$ uses ``transparent'' entries (e.g., an abstract type $M.x$ is mapped to $x :: \mt{Type} = M.x$), so that the relationship with $M$ is maintained. A related function $\mathcal O_c$ builds a context containing the disjointness constraints found in $\overline s$.
adamc@537 720 We write $\kappa_1^n \to \kappa$ as a shorthand, where $\kappa_1^0 \to \kappa = \kappa$ and $\kappa_1^{n+1} \to \kappa_2 = \kappa_1 \to (\kappa_1^n \to \kappa_2)$. We write $\mt{len}(\overline{y})$ for the length of vector $\overline{y}$ of variables.
adamc@535 721
adamc@535 722 $$\infer{\Gamma \vdash \cdot \leadsto \Gamma}{}
adamc@535 723 \quad \infer{\Gamma \vdash d, \overline{d} \leadsto \Gamma''}{
adamc@535 724 \Gamma \vdash d \leadsto \Gamma'
adamc@535 725 & \Gamma' \vdash \overline{d} \leadsto \Gamma''
adamc@535 726 }$$
adamc@535 727
adamc@535 728 $$\infer{\Gamma \vdash \mt{con} \; x :: \kappa = c \leadsto \Gamma, x :: \kappa = c}{
adamc@535 729 \Gamma \vdash c :: \kappa
adamc@535 730 }
adamc@535 731 \quad \infer{\Gamma \vdash \mt{datatype} \; x \; \overline{y} = \overline{dc} \leadsto \Gamma'}{
adamc@535 732 \overline{y}; x; \Gamma, x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type} \vdash \overline{dc} \leadsto \Gamma'
adamc@535 733 }$$
adamc@535 734
adamc@535 735 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leadsto \Gamma'}{
adamc@537 736 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 737 & \mt{proj}(M, \overline{s}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})
adamc@535 738 & \overline{y}; x; \Gamma, x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type} = M.z \vdash \overline{dc} \leadsto \Gamma'
adamc@535 739 }$$
adamc@535 740
adamc@535 741 $$\infer{\Gamma \vdash \mt{val} \; x : \tau = e \leadsto \Gamma, x : \tau}{
adamc@535 742 \Gamma \vdash e : \tau
adamc@535 743 }$$
adamc@535 744
adamc@535 745 $$\infer{\Gamma \vdash \mt{val} \; \mt{rec} \; \overline{x : \tau = e} \leadsto \Gamma, \overline{x : \tau}}{
adamc@535 746 \forall i: \Gamma, \overline{x : \tau} \vdash e_i : \tau_i
adamc@535 747 & \textrm{$e_i$ starts with an expression $\lambda$, optionally preceded by constructor and disjointness $\lambda$s}
adamc@535 748 }$$
adamc@535 749
adamc@535 750 $$\infer{\Gamma \vdash \mt{structure} \; X : S = M \leadsto \Gamma, X : S}{
adamc@535 751 \Gamma \vdash M : S
adamc@558 752 & \textrm{ $M$ not a constant or application}
adamc@535 753 }
adamc@558 754 \quad \infer{\Gamma \vdash \mt{structure} \; X : S = M \leadsto \Gamma, X : \mt{selfify}(X, \overline{s})}{
adamc@558 755 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@539 756 }$$
adamc@539 757
adamc@539 758 $$\infer{\Gamma \vdash \mt{signature} \; X = S \leadsto \Gamma, X = S}{
adamc@535 759 \Gamma \vdash S
adamc@535 760 }$$
adamc@535 761
adamc@537 762 $$\infer{\Gamma \vdash \mt{open} \; M \leadsto \Gamma, \mathcal O(M, \overline{s})}{
adamc@537 763 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@535 764 }$$
adamc@535 765
adamc@535 766 $$\infer{\Gamma \vdash \mt{constraint} \; c_1 \sim c_2 \leadsto \Gamma}{
adamc@535 767 \Gamma \vdash c_1 :: \{\kappa\}
adamc@535 768 & \Gamma \vdash c_2 :: \{\kappa\}
adamc@535 769 & \Gamma \vdash c_1 \sim c_2
adamc@535 770 }
adamc@537 771 \quad \infer{\Gamma \vdash \mt{open} \; \mt{constraints} \; M \leadsto \Gamma, \mathcal O_c(M, \overline{s})}{
adamc@537 772 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@535 773 }$$
adamc@535 774
adamc@535 775 $$\infer{\Gamma \vdash \mt{table} \; x : c \leadsto \Gamma, x : \mt{Basis}.\mt{sql\_table} \; c}{
adamc@535 776 \Gamma \vdash c :: \{\mt{Type}\}
adamc@535 777 }
adamc@535 778 \quad \infer{\Gamma \vdash \mt{sequence} \; x \leadsto \Gamma, x : \mt{Basis}.\mt{sql\_sequence}}{}$$
adamc@535 779
adamc@535 780 $$\infer{\Gamma \vdash \mt{cookie} \; x : \tau \leadsto \Gamma, x : \mt{Basis}.\mt{http\_cookie} \; \tau}{
adamc@535 781 \Gamma \vdash \tau :: \mt{Type}
adamc@535 782 }$$
adamc@535 783
adamc@655 784 $$\infer{\Gamma \vdash \mt{class} \; x :: \kappa = c \leadsto \Gamma, x :: \kappa \to \mt{Type} = c}{
adamc@655 785 \Gamma \vdash c :: \kappa \to \mt{Type}
adamc@535 786 }$$
adamc@535 787
adamc@535 788 $$\infer{\overline{y}; x; \Gamma \vdash \cdot \leadsto \Gamma}{}
adamc@535 789 \quad \infer{\overline{y}; x; \Gamma \vdash X \mid \overline{dc} \leadsto \Gamma', X : \overline{y ::: \mt{Type}} \to x \; \overline{y}}{
adamc@535 790 \overline{y}; x; \Gamma \vdash \overline{dc} \leadsto \Gamma'
adamc@535 791 }
adamc@535 792 \quad \infer{\overline{y}; x; \Gamma \vdash X \; \mt{of} \; \tau \mid \overline{dc} \leadsto \Gamma', X : \overline{y ::: \mt{Type}} \to \tau \to x \; \overline{y}}{
adamc@535 793 \overline{y}; x; \Gamma \vdash \overline{dc} \leadsto \Gamma'
adamc@535 794 }$$
adamc@535 795
adamc@537 796 \subsection{Signature Item Typing}
adamc@537 797
adamc@537 798 We appeal to a signature item analogue of the $\mathcal O$ function from the last subsection.
adamc@537 799
adamc@537 800 $$\infer{\Gamma \vdash \cdot \leadsto \Gamma}{}
adamc@537 801 \quad \infer{\Gamma \vdash s, \overline{s} \leadsto \Gamma''}{
adamc@537 802 \Gamma \vdash s \leadsto \Gamma'
adamc@537 803 & \Gamma' \vdash \overline{s} \leadsto \Gamma''
adamc@537 804 }$$
adamc@537 805
adamc@537 806 $$\infer{\Gamma \vdash \mt{con} \; x :: \kappa \leadsto \Gamma, x :: \kappa}{}
adamc@537 807 \quad \infer{\Gamma \vdash \mt{con} \; x :: \kappa = c \leadsto \Gamma, x :: \kappa = c}{
adamc@537 808 \Gamma \vdash c :: \kappa
adamc@537 809 }
adamc@537 810 \quad \infer{\Gamma \vdash \mt{datatype} \; x \; \overline{y} = \overline{dc} \leadsto \Gamma'}{
adamc@537 811 \overline{y}; x; \Gamma, x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type} \vdash \overline{dc} \leadsto \Gamma'
adamc@537 812 }$$
adamc@537 813
adamc@537 814 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leadsto \Gamma'}{
adamc@537 815 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 816 & \mt{proj}(M, \overline{s}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})
adamc@537 817 & \overline{y}; x; \Gamma, x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type} = M.z \vdash \overline{dc} \leadsto \Gamma'
adamc@537 818 }$$
adamc@537 819
adamc@537 820 $$\infer{\Gamma \vdash \mt{val} \; x : \tau \leadsto \Gamma, x : \tau}{
adamc@537 821 \Gamma \vdash \tau :: \mt{Type}
adamc@537 822 }$$
adamc@537 823
adamc@537 824 $$\infer{\Gamma \vdash \mt{structure} \; X : S \leadsto \Gamma, X : S}{
adamc@537 825 \Gamma \vdash S
adamc@537 826 }
adamc@537 827 \quad \infer{\Gamma \vdash \mt{signature} \; X = S \leadsto \Gamma, X = S}{
adamc@537 828 \Gamma \vdash S
adamc@537 829 }$$
adamc@537 830
adamc@537 831 $$\infer{\Gamma \vdash \mt{include} \; S \leadsto \Gamma, \mathcal O(\overline{s})}{
adamc@537 832 \Gamma \vdash S
adamc@537 833 & \Gamma \vdash S \equiv \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 834 }$$
adamc@537 835
adamc@537 836 $$\infer{\Gamma \vdash \mt{constraint} \; c_1 \sim c_2 \leadsto \Gamma, c_1 \sim c_2}{
adamc@537 837 \Gamma \vdash c_1 :: \{\kappa\}
adamc@537 838 & \Gamma \vdash c_2 :: \{\kappa\}
adamc@537 839 }$$
adamc@537 840
adamc@655 841 $$\infer{\Gamma \vdash \mt{class} \; x :: \kappa = c \leadsto \Gamma, x :: \kappa \to \mt{Type} = c}{
adamc@655 842 \Gamma \vdash c :: \kappa \to \mt{Type}
adamc@537 843 }
adamc@655 844 \quad \infer{\Gamma \vdash \mt{class} \; x :: \kappa \leadsto \Gamma, x :: \kappa \to \mt{Type}}{}$$
adamc@537 845
adamc@536 846 \subsection{Signature Compatibility}
adamc@536 847
adamc@558 848 To simplify the judgments in this section, we assume that all signatures are alpha-varied as necessary to avoid including multiple bindings for the same identifier. This is in addition to the usual alpha-variation of locally-bound variables.
adamc@537 849
adamc@537 850 We rely on a judgment $\Gamma \vdash \overline{s} \leq s'$, which expresses the occurrence in signature items $\overline{s}$ of an item compatible with $s'$. We also use a judgment $\Gamma \vdash \overline{dc} \leq \overline{dc}$, which expresses compatibility of datatype definitions.
adamc@537 851
adamc@536 852 $$\infer{\Gamma \vdash S \equiv S}{}
adamc@536 853 \quad \infer{\Gamma \vdash S_1 \equiv S_2}{
adamc@536 854 \Gamma \vdash S_2 \equiv S_1
adamc@536 855 }
adamc@536 856 \quad \infer{\Gamma \vdash X \equiv S}{
adamc@536 857 X = S \in \Gamma
adamc@536 858 }
adamc@536 859 \quad \infer{\Gamma \vdash M.X \equiv S}{
adamc@537 860 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 861 & \mt{proj}(M, \overline{s}, \mt{signature} \; X) = S
adamc@536 862 }$$
adamc@536 863
adamc@536 864 $$\infer{\Gamma \vdash S \; \mt{where} \; \mt{con} \; x = c \equiv \mt{sig} \; \overline{s^1} \; \mt{con} \; x :: \kappa = c \; \overline{s_2} \; \mt{end}}{
adamc@536 865 \Gamma \vdash S \equiv \mt{sig} \; \overline{s^1} \; \mt{con} \; x :: \kappa \; \overline{s_2} \; \mt{end}
adamc@536 866 & \Gamma \vdash c :: \kappa
adamc@537 867 }
adamc@537 868 \quad \infer{\Gamma \vdash \mt{sig} \; \overline{s^1} \; \mt{include} \; S \; \overline{s^2} \; \mt{end} \equiv \mt{sig} \; \overline{s^1} \; \overline{s} \; \overline{s^2} \; \mt{end}}{
adamc@537 869 \Gamma \vdash S \equiv \mt{sig} \; \overline{s} \; \mt{end}
adamc@536 870 }$$
adamc@536 871
adamc@536 872 $$\infer{\Gamma \vdash S_1 \leq S_2}{
adamc@536 873 \Gamma \vdash S_1 \equiv S_2
adamc@536 874 }
adamc@536 875 \quad \infer{\Gamma \vdash \mt{sig} \; \overline{s} \; \mt{end} \leq \mt{sig} \; \mt{end}}{}
adamc@537 876 \quad \infer{\Gamma \vdash \mt{sig} \; \overline{s} \; \mt{end} \leq \mt{sig} \; s' \; \overline{s'} \; \mt{end}}{
adamc@537 877 \Gamma \vdash \overline{s} \leq s'
adamc@537 878 & \Gamma \vdash s' \leadsto \Gamma'
adamc@537 879 & \Gamma' \vdash \mt{sig} \; \overline{s} \; \mt{end} \leq \mt{sig} \; \overline{s'} \; \mt{end}
adamc@537 880 }$$
adamc@537 881
adamc@537 882 $$\infer{\Gamma \vdash s \; \overline{s} \leq s'}{
adamc@537 883 \Gamma \vdash s \leq s'
adamc@537 884 }
adamc@537 885 \quad \infer{\Gamma \vdash s \; \overline{s} \leq s'}{
adamc@537 886 \Gamma \vdash s \leadsto \Gamma'
adamc@537 887 & \Gamma' \vdash \overline{s} \leq s'
adamc@536 888 }$$
adamc@536 889
adamc@536 890 $$\infer{\Gamma \vdash \mt{functor} (X : S_1) : S_2 \leq \mt{functor} (X : S'_1) : S'_2}{
adamc@536 891 \Gamma \vdash S'_1 \leq S_1
adamc@536 892 & \Gamma, X : S'_1 \vdash S_2 \leq S'_2
adamc@536 893 }$$
adamc@536 894
adamc@537 895 $$\infer{\Gamma \vdash \mt{con} \; x :: \kappa \leq \mt{con} \; x :: \kappa}{}
adamc@537 896 \quad \infer{\Gamma \vdash \mt{con} \; x :: \kappa = c \leq \mt{con} \; x :: \kappa}{}
adamc@558 897 \quad \infer{\Gamma \vdash \mt{datatype} \; x \; \overline{y} = \overline{dc} \leq \mt{con} \; x :: \mt{Type}^{\mt{len}(\overline y)} \to \mt{Type}}{}$$
adamc@537 898
adamc@537 899 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leq \mt{con} \; x :: \mt{Type}^{\mt{len}(y)} \to \mt{Type}}{
adamc@537 900 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 901 & \mt{proj}(M, \overline{s}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})
adamc@537 902 }$$
adamc@537 903
adamc@655 904 $$\infer{\Gamma \vdash \mt{class} \; x :: \kappa \leq \mt{con} \; x :: \kappa \to \mt{Type}}{}
adamc@655 905 \quad \infer{\Gamma \vdash \mt{class} \; x :: \kappa = c \leq \mt{con} \; x :: \kappa \to \mt{Type}}{}$$
adamc@537 906
adamc@537 907 $$\infer{\Gamma \vdash \mt{con} \; x :: \kappa = c_1 \leq \mt{con} \; x :: \mt{\kappa} = c_2}{
adamc@537 908 \Gamma \vdash c_1 \equiv c_2
adamc@537 909 }
adamc@655 910 \quad \infer{\Gamma \vdash \mt{class} \; x :: \kappa = c_1 \leq \mt{con} \; x :: \kappa \to \mt{Type} = c_2}{
adamc@537 911 \Gamma \vdash c_1 \equiv c_2
adamc@537 912 }$$
adamc@537 913
adamc@537 914 $$\infer{\Gamma \vdash \mt{datatype} \; x \; \overline{y} = \overline{dc} \leq \mt{datatype} \; x \; \overline{y} = \overline{dc'}}{
adamc@537 915 \Gamma, \overline{y :: \mt{Type}} \vdash \overline{dc} \leq \overline{dc'}
adamc@537 916 }$$
adamc@537 917
adamc@537 918 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leq \mt{datatype} \; x \; \overline{y} = \overline{dc'}}{
adamc@537 919 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@537 920 & \mt{proj}(M, \overline{s}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})
adamc@537 921 & \Gamma, \overline{y :: \mt{Type}} \vdash \overline{dc} \leq \overline{dc'}
adamc@537 922 }$$
adamc@537 923
adamc@537 924 $$\infer{\Gamma \vdash \cdot \leq \cdot}{}
adamc@537 925 \quad \infer{\Gamma \vdash X; \overline{dc} \leq X; \overline{dc'}}{
adamc@537 926 \Gamma \vdash \overline{dc} \leq \overline{dc'}
adamc@537 927 }
adamc@537 928 \quad \infer{\Gamma \vdash X \; \mt{of} \; \tau_1; \overline{dc} \leq X \; \mt{of} \; \tau_2; \overline{dc'}}{
adamc@537 929 \Gamma \vdash \tau_1 \equiv \tau_2
adamc@537 930 & \Gamma \vdash \overline{dc} \leq \overline{dc'}
adamc@537 931 }$$
adamc@537 932
adamc@537 933 $$\infer{\Gamma \vdash \mt{datatype} \; x = \mt{datatype} \; M.z \leq \mt{datatype} \; x = \mt{datatype} \; M'.z'}{
adamc@537 934 \Gamma \vdash M.z \equiv M'.z'
adamc@537 935 }$$
adamc@537 936
adamc@537 937 $$\infer{\Gamma \vdash \mt{val} \; x : \tau_1 \leq \mt{val} \; x : \tau_2}{
adamc@537 938 \Gamma \vdash \tau_1 \equiv \tau_2
adamc@537 939 }
adamc@537 940 \quad \infer{\Gamma \vdash \mt{structure} \; X : S_1 \leq \mt{structure} \; X : S_2}{
adamc@537 941 \Gamma \vdash S_1 \leq S_2
adamc@537 942 }
adamc@537 943 \quad \infer{\Gamma \vdash \mt{signature} \; X = S_1 \leq \mt{signature} \; X = S_2}{
adamc@537 944 \Gamma \vdash S_1 \leq S_2
adamc@537 945 & \Gamma \vdash S_2 \leq S_1
adamc@537 946 }$$
adamc@537 947
adamc@537 948 $$\infer{\Gamma \vdash \mt{constraint} \; c_1 \sim c_2 \leq \mt{constraint} \; c'_1 \sim c'_2}{
adamc@537 949 \Gamma \vdash c_1 \equiv c'_1
adamc@537 950 & \Gamma \vdash c_2 \equiv c'_2
adamc@537 951 }$$
adamc@537 952
adamc@655 953 $$\infer{\Gamma \vdash \mt{class} \; x :: \kappa \leq \mt{class} \; x :: \kappa}{}
adamc@655 954 \quad \infer{\Gamma \vdash \mt{class} \; x :: \kappa = c \leq \mt{class} \; x :: \kappa}{}
adamc@655 955 \quad \infer{\Gamma \vdash \mt{class} \; x :: \kappa = c_1 \leq \mt{class} \; x :: \kappa = c_2}{
adamc@537 956 \Gamma \vdash c_1 \equiv c_2
adamc@537 957 }$$
adamc@537 958
adamc@538 959 \subsection{Module Typing}
adamc@538 960
adamc@538 961 We use a helper function $\mt{sigOf}$, which converts declarations and sequences of declarations into their principal signature items and sequences of signature items, respectively.
adamc@538 962
adamc@538 963 $$\infer{\Gamma \vdash M : S}{
adamc@538 964 \Gamma \vdash M : S'
adamc@538 965 & \Gamma \vdash S' \leq S
adamc@538 966 }
adamc@538 967 \quad \infer{\Gamma \vdash \mt{struct} \; \overline{d} \; \mt{end} : \mt{sig} \; \mt{sigOf}(\overline{d}) \; \mt{end}}{
adamc@538 968 \Gamma \vdash \overline{d} \leadsto \Gamma'
adamc@538 969 }
adamc@538 970 \quad \infer{\Gamma \vdash X : S}{
adamc@538 971 X : S \in \Gamma
adamc@538 972 }$$
adamc@538 973
adamc@538 974 $$\infer{\Gamma \vdash M.X : S}{
adamc@538 975 \Gamma \vdash M : \mt{sig} \; \overline{s} \; \mt{end}
adamc@538 976 & \mt{proj}(M, \overline{s}, \mt{structure} \; X) = S
adamc@538 977 }$$
adamc@538 978
adamc@538 979 $$\infer{\Gamma \vdash M_1(M_2) : [X \mapsto M_2]S_2}{
adamc@538 980 \Gamma \vdash M_1 : \mt{functor}(X : S_1) : S_2
adamc@538 981 & \Gamma \vdash M_2 : S_1
adamc@538 982 }
adamc@538 983 \quad \infer{\Gamma \vdash \mt{functor} (X : S_1) : S_2 = M : \mt{functor} (X : S_1) : S_2}{
adamc@538 984 \Gamma \vdash S_1
adamc@538 985 & \Gamma, X : S_1 \vdash S_2
adamc@538 986 & \Gamma, X : S_1 \vdash M : S_2
adamc@538 987 }$$
adamc@538 988
adamc@538 989 \begin{eqnarray*}
adamc@538 990 \mt{sigOf}(\cdot) &=& \cdot \\
adamc@538 991 \mt{sigOf}(s \; \overline{s'}) &=& \mt{sigOf}(s) \; \mt{sigOf}(\overline{s'}) \\
adamc@538 992 \\
adamc@538 993 \mt{sigOf}(\mt{con} \; x :: \kappa = c) &=& \mt{con} \; x :: \kappa = c \\
adamc@538 994 \mt{sigOf}(\mt{datatype} \; x \; \overline{y} = \overline{dc}) &=& \mt{datatype} \; x \; \overline{y} = \overline{dc} \\
adamc@538 995 \mt{sigOf}(\mt{datatype} \; x = \mt{datatype} \; M.z) &=& \mt{datatype} \; x = \mt{datatype} \; M.z \\
adamc@538 996 \mt{sigOf}(\mt{val} \; x : \tau = e) &=& \mt{val} \; x : \tau \\
adamc@538 997 \mt{sigOf}(\mt{val} \; \mt{rec} \; \overline{x : \tau = e}) &=& \overline{\mt{val} \; x : \tau} \\
adamc@538 998 \mt{sigOf}(\mt{structure} \; X : S = M) &=& \mt{structure} \; X : S \\
adamc@538 999 \mt{sigOf}(\mt{signature} \; X = S) &=& \mt{signature} \; X = S \\
adamc@538 1000 \mt{sigOf}(\mt{open} \; M) &=& \mt{include} \; S \textrm{ (where $\Gamma \vdash M : S$)} \\
adamc@538 1001 \mt{sigOf}(\mt{constraint} \; c_1 \sim c_2) &=& \mt{constraint} \; c_1 \sim c_2 \\
adamc@538 1002 \mt{sigOf}(\mt{open} \; \mt{constraints} \; M) &=& \cdot \\
adamc@538 1003 \mt{sigOf}(\mt{table} \; x : c) &=& \mt{table} \; x : c \\
adamc@538 1004 \mt{sigOf}(\mt{sequence} \; x) &=& \mt{sequence} \; x \\
adamc@538 1005 \mt{sigOf}(\mt{cookie} \; x : \tau) &=& \mt{cookie} \; x : \tau \\
adamc@655 1006 \mt{sigOf}(\mt{class} \; x :: \kappa = c) &=& \mt{class} \; x :: \kappa = c \\
adamc@538 1007 \end{eqnarray*}
adamc@539 1008 \begin{eqnarray*}
adamc@539 1009 \mt{selfify}(M, \cdot) &=& \cdot \\
adamc@558 1010 \mt{selfify}(M, s \; \overline{s'}) &=& \mt{selfify}(M, s) \; \mt{selfify}(M, \overline{s'}) \\
adamc@539 1011 \\
adamc@539 1012 \mt{selfify}(M, \mt{con} \; x :: \kappa) &=& \mt{con} \; x :: \kappa = M.x \\
adamc@539 1013 \mt{selfify}(M, \mt{con} \; x :: \kappa = c) &=& \mt{con} \; x :: \kappa = c \\
adamc@539 1014 \mt{selfify}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc}) &=& \mt{datatype} \; x \; \overline{y} = \mt{datatype} \; M.x \\
adamc@539 1015 \mt{selfify}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z) &=& \mt{datatype} \; x = \mt{datatype} \; M'.z \\
adamc@539 1016 \mt{selfify}(M, \mt{val} \; x : \tau) &=& \mt{val} \; x : \tau \\
adamc@539 1017 \mt{selfify}(M, \mt{structure} \; X : S) &=& \mt{structure} \; X : \mt{selfify}(M.X, \overline{s}) \textrm{ (where $\Gamma \vdash S \equiv \mt{sig} \; \overline{s} \; \mt{end}$)} \\
adamc@539 1018 \mt{selfify}(M, \mt{signature} \; X = S) &=& \mt{signature} \; X = S \\
adamc@539 1019 \mt{selfify}(M, \mt{include} \; S) &=& \mt{include} \; S \\
adamc@539 1020 \mt{selfify}(M, \mt{constraint} \; c_1 \sim c_2) &=& \mt{constraint} \; c_1 \sim c_2 \\
adamc@655 1021 \mt{selfify}(M, \mt{class} \; x :: \kappa) &=& \mt{class} \; x :: \kappa = M.x \\
adamc@655 1022 \mt{selfify}(M, \mt{class} \; x :: \kappa = c) &=& \mt{class} \; x :: \kappa = c \\
adamc@539 1023 \end{eqnarray*}
adamc@539 1024
adamc@540 1025 \subsection{Module Projection}
adamc@540 1026
adamc@540 1027 \begin{eqnarray*}
adamc@540 1028 \mt{proj}(M, \mt{con} \; x :: \kappa \; \overline{s}, \mt{con} \; x) &=& \kappa \\
adamc@540 1029 \mt{proj}(M, \mt{con} \; x :: \kappa = c \; \overline{s}, \mt{con} \; x) &=& (\kappa, c) \\
adamc@540 1030 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, \mt{con} \; x) &=& \mt{Type}^{\mt{len}(\overline{y})} \to \mt{Type} \\
adamc@540 1031 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z \; \overline{s}, \mt{con} \; x) &=& (\mt{Type}^{\mt{len}(\overline{y})} \to \mt{Type}, M'.z) \textrm{ (where $\Gamma \vdash M' : \mt{sig} \; \overline{s'} \; \mt{end}$} \\
adamc@540 1032 && \textrm{and $\mt{proj}(M', \overline{s'}, \mt{datatype} \; z) = (\overline{y}, \overline{dc})$)} \\
adamc@655 1033 \mt{proj}(M, \mt{class} \; x :: \kappa \; \overline{s}, \mt{con} \; x) &=& \kappa \to \mt{Type} \\
adamc@655 1034 \mt{proj}(M, \mt{class} \; x :: \kappa = c \; \overline{s}, \mt{con} \; x) &=& (\kappa \to \mt{Type}, c) \\
adamc@540 1035 \\
adamc@540 1036 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, \mt{datatype} \; x) &=& (\overline{y}, \overline{dc}) \\
adamc@540 1037 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z \; \overline{s}, \mt{con} \; x) &=& \mt{proj}(M', \overline{s'}, \mt{datatype} \; z) \textrm{ (where $\Gamma \vdash M' : \mt{sig} \; \overline{s'} \; \mt{end}$)} \\
adamc@540 1038 \\
adamc@540 1039 \mt{proj}(M, \mt{val} \; x : \tau \; \overline{s}, \mt{val} \; x) &=& \tau \\
adamc@540 1040 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, \mt{val} \; X) &=& \overline{y ::: \mt{Type}} \to M.x \; \overline y \textrm{ (where $X \in \overline{dc}$)} \\
adamc@540 1041 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, \mt{val} \; X) &=& \overline{y ::: \mt{Type}} \to \tau \to M.x \; \overline y \textrm{ (where $X \; \mt{of} \; \tau \in \overline{dc}$)} \\
adamc@540 1042 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z, \mt{val} \; X) &=& \overline{y ::: \mt{Type}} \to M.x \; \overline y \textrm{ (where $\Gamma \vdash M' : \mt{sig} \; \overline{s'} \; \mt{end}$} \\
adamc@540 1043 && \textrm{and $\mt{proj}(M', \overline{s'}, \mt{datatype} \; z = (\overline{y}, \overline{dc})$ and $X \in \overline{dc}$)} \\
adamc@540 1044 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z, \mt{val} \; X) &=& \overline{y ::: \mt{Type}} \to \tau \to M.x \; \overline y \textrm{ (where $\Gamma \vdash M' : \mt{sig} \; \overline{s'} \; \mt{end}$} \\
adamc@558 1045 && \textrm{and $\mt{proj}(M', \overline{s'}, \mt{datatype} \; z = (\overline{y}, \overline{dc})$ and $X \; \mt{of} \; \tau \in \overline{dc}$)} \\
adamc@540 1046 \\
adamc@540 1047 \mt{proj}(M, \mt{structure} \; X : S \; \overline{s}, \mt{structure} \; X) &=& S \\
adamc@540 1048 \\
adamc@540 1049 \mt{proj}(M, \mt{signature} \; X = S \; \overline{s}, \mt{signature} \; X) &=& S \\
adamc@540 1050 \\
adamc@540 1051 \mt{proj}(M, \mt{con} \; x :: \kappa \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1052 \mt{proj}(M, \mt{con} \; x :: \kappa = c \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1053 \mt{proj}(M, \mt{datatype} \; x \; \overline{y} = \overline{dc} \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1054 \mt{proj}(M, \mt{datatype} \; x = \mt{datatype} \; M'.z \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1055 \mt{proj}(M, \mt{val} \; x : \tau \; \overline{s}, V) &=& \mt{proj}(M, \overline{s}, V) \\
adamc@540 1056 \mt{proj}(M, \mt{structure} \; X : S \; \overline{s}, V) &=& [X \mapsto M.X]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1057 \mt{proj}(M, \mt{signature} \; X = S \; \overline{s}, V) &=& [X \mapsto M.X]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1058 \mt{proj}(M, \mt{include} \; S \; \overline{s}, V) &=& \mt{proj}(M, \overline{s'} \; \overline{s}, V) \textrm{ (where $\Gamma \vdash S \equiv \mt{sig} \; \overline{s'} \; \mt{end}$)} \\
adamc@540 1059 \mt{proj}(M, \mt{constraint} \; c_1 \sim c_2 \; \overline{s}, V) &=& \mt{proj}(M, \overline{s}, V) \\
adamc@655 1060 \mt{proj}(M, \mt{class} \; x :: \kappa \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@655 1061 \mt{proj}(M, \mt{class} \; x :: \kappa = c \; \overline{s}, V) &=& [x \mapsto M.x]\mt{proj}(M, \overline{s}, V) \\
adamc@540 1062 \end{eqnarray*}
adamc@540 1063
adamc@541 1064
adamc@541 1065 \section{Type Inference}
adamc@541 1066
adamc@541 1067 The Ur/Web compiler uses \emph{heuristic type inference}, with no claims of completeness with respect to the declarative specification of the last section. The rules in use seem to work well in practice. This section summarizes those rules, to help Ur programmers predict what will work and what won't.
adamc@541 1068
adamc@541 1069 \subsection{Basic Unification}
adamc@541 1070
adamc@560 1071 Type-checkers for languages based on the Hindley-Milner type discipline, like ML and Haskell, take advantage of \emph{principal typing} properties, making complete type inference relatively straightforward. Inference algorithms are traditionally implemented using type unification variables, at various points asserting equalities between types, in the process discovering the values of type variables. The Ur/Web compiler uses the same basic strategy, but the complexity of the type system rules out easy completeness.
adamc@541 1072
adamc@656 1073 Type-checking can require evaluating recursive functional programs, thanks to the type-level $\mt{map}$ operator. When a unification variable appears in such a type, the next step of computation can be undetermined. The value of that variable might be determined later, but this would be ``too late'' for the unification problems generated at the first occurrence. This is the essential source of incompleteness.
adamc@541 1074
adamc@541 1075 Nonetheless, the unification engine tends to do reasonably well. Unlike in ML, polymorphism is never inferred in definitions; it must be indicated explicitly by writing out constructor-level parameters. By writing these and other annotations, the programmer can generally get the type inference engine to do most of the type reconstruction work.
adamc@541 1076
adamc@541 1077 \subsection{Unifying Record Types}
adamc@541 1078
adamc@570 1079 The type inference engine tries to take advantage of the algebraic rules governing type-level records, as shown in Section \ref{definitional}. When two constructors of record kind are unified, they are reduced to normal forms, with like terms crossed off from each normal form until, hopefully, nothing remains. This cannot be complete, with the inclusion of unification variables. The type-checker can help you understand what goes wrong when the process fails, as it outputs the unmatched remainders of the two normal forms.
adamc@541 1080
adamc@656 1081 \subsection{\label{typeclasses}Constructor Classes}
adamc@541 1082
adamc@656 1083 Ur includes a constructor class facility inspired by Haskell's. The current version is very rudimentary, only supporting instances for particular constructors built up from abstract constructors and datatypes and type-level application.
adamc@541 1084
adamc@656 1085 Constructor classes are integrated with the module system. A constructor class of kind $\kappa$ is just a constructor of kind $\kappa \to \mt{Type}$. By marking such a constructor $c$ as a constructor class, the programmer instructs the type inference engine to, in each scope, record all values of types $c \; c'$ as \emph{instances}. Any function argument whose type is of such a form is treated as implicit, to be determined by examining the current instance database.
adamc@541 1086
adamc@656 1087 The ``dictionary encoding'' often used in Haskell implementations is made explicit in Ur. Constructor class instances are just properly-typed values, and they can also be considered as ``proofs'' of membership in the class. In some cases, it is useful to pass these proofs around explicitly. An underscore written where a proof is expected will also be inferred, if possible, from the current instance database.
adamc@541 1088
adamc@656 1089 Just as for constructors, constructors classes may be exported from modules, and they may be exported as concrete or abstract. Concrete constructor classes have their ``real'' definitions exposed, so that client code may add new instances freely. Abstract constructor classes are useful as ``predicates'' that can be used to enforce invariants, as we will see in some definitions of SQL syntax in the Ur/Web standard library.
adamc@541 1090
adamc@541 1091 \subsection{Reverse-Engineering Record Types}
adamc@541 1092
adamc@656 1093 It's useful to write Ur functions and functors that take record constructors as inputs, but these constructors can grow quite long, even though their values are often implied by other arguments. The compiler uses a simple heuristic to infer the values of unification variables that are mapped over, yielding known results. If the result is empty, we're done; if it's not empty, we replace a single unification variable with a new constructor formed from three new unification variables, as in $[\alpha = \beta] \rc \gamma$. This process can often be repeated to determine a unification variable fully.
adamc@541 1094
adamc@541 1095 \subsection{Implicit Arguments in Functor Applications}
adamc@541 1096
adamc@656 1097 Constructor, constraint, and constructor class witness members of structures may be omitted, when those structures are used in contexts where their assigned signatures imply how to fill in those missing members. This feature combines well with reverse-engineering to allow for uses of complicated meta-programming functors with little more code than would be necessary to invoke an untyped, ad-hoc code generator.
adamc@541 1098
adamc@541 1099
adamc@542 1100 \section{The Ur Standard Library}
adamc@542 1101
adamc@542 1102 The built-in parts of the Ur/Web standard library are described by the signature in \texttt{lib/basis.urs} in the distribution. A module $\mt{Basis}$ ascribing to that signature is available in the initial environment, and every program is implicitly prefixed by $\mt{open} \; \mt{Basis}$.
adamc@542 1103
adamc@542 1104 Additionally, other common functions that are definable within Ur are included in \texttt{lib/top.urs} and \texttt{lib/top.ur}. This $\mt{Top}$ module is also opened implicitly.
adamc@542 1105
adamc@542 1106 The idea behind Ur is to serve as the ideal host for embedded domain-specific languages. For now, however, the ``generic'' functionality is intermixed with Ur/Web-specific functionality, including in these two library modules. We hope that these generic library components have types that speak for themselves. The next section introduces the Ur/Web-specific elements. Here, we only give the type declarations from the beginning of $\mt{Basis}$.
adamc@542 1107 $$\begin{array}{l}
adamc@542 1108 \mt{type} \; \mt{int} \\
adamc@542 1109 \mt{type} \; \mt{float} \\
adamc@542 1110 \mt{type} \; \mt{string} \\
adamc@542 1111 \mt{type} \; \mt{time} \\
adamc@542 1112 \\
adamc@542 1113 \mt{type} \; \mt{unit} = \{\} \\
adamc@542 1114 \\
adamc@542 1115 \mt{datatype} \; \mt{bool} = \mt{False} \mid \mt{True} \\
adamc@542 1116 \\
adamc@542 1117 \mt{datatype} \; \mt{option} \; \mt{t} = \mt{None} \mid \mt{Some} \; \mt{of} \; \mt{t}
adamc@542 1118 \end{array}$$
adamc@542 1119
adamc@657 1120 Another important generic Ur element comes at the beginning of \texttt{top.urs}.
adamc@657 1121
adamc@657 1122 $$\begin{array}{l}
adamc@657 1123 \mt{con} \; \mt{folder} :: \mt{K} \longrightarrow \{\mt{K}\} \to \mt{Type} \\
adamc@657 1124 \\
adamc@657 1125 \mt{val} \; \mt{fold} : \mt{K} \longrightarrow \mt{tf} :: (\{\mt{K}\} \to \mt{Type}) \\
adamc@657 1126 \hspace{.1in} \to (\mt{nm} :: \mt{Name} \to \mt{v} :: \mt{K} \to \mt{r} :: \{\mt{K}\} \to [[\mt{nm}] \sim \mt{r}] \Rightarrow \\
adamc@657 1127 \hspace{.2in} \mt{tf} \; \mt{r} \to \mt{tf} \; ([\mt{nm} = \mt{v}] \rc \mt{r})) \\
adamc@657 1128 \hspace{.1in} \to \mt{tf} \; [] \\
adamc@657 1129 \hspace{.1in} \to \mt{r} :: \{\mt{K}\} \to \mt{folder} \; \mt{r} \to \mt{tf} \; \mt{r}
adamc@657 1130 \end{array}$$
adamc@657 1131
adamc@657 1132 For a type-level record $\mt{r}$, a $\mt{folder} \; \mt{r}$ encodes a permutation of $\mt{r}$'s elements. The $\mt{fold}$ function can be called on a $\mt{folder}$ to iterate over the elements of $\mt{r}$ in that order. $\mt{fold}$ is parameterized on a type-level function to be used to calculate the type of each intermediate result of folding. After processing a subset $\mt{r'}$ of $\mt{r}$'s entries, the type of the accumulator should be $\mt{tf} \; \mt{r'}$. The next two expression arguments to $\mt{fold}$ are the usual step function and initial accumulator, familiar from fold functions over lists. The final two arguments are the record to fold over and a $\mt{folder}$ for it.
adamc@657 1133
adamc@664 1134 The Ur compiler treats $\mt{folder}$ like a constructor class, using built-in rules to infer $\mt{folder}$s for records with known structure. The order in which field names are mentioned in source code is used as a hint about the permutation that the programmer would like.
adamc@657 1135
adamc@542 1136
adamc@542 1137 \section{The Ur/Web Standard Library}
adamc@542 1138
adamc@658 1139 \subsection{Monads}
adamc@658 1140
adamc@658 1141 The Ur Basis defines the monad constructor class from Haskell.
adamc@658 1142
adamc@658 1143 $$\begin{array}{l}
adamc@658 1144 \mt{class} \; \mt{monad} :: \mt{Type} \to \mt{Type} \\
adamc@658 1145 \mt{val} \; \mt{return} : \mt{m} ::: (\mt{Type} \to \mt{Type}) \to \mt{t} ::: \mt{Type} \\
adamc@658 1146 \hspace{.1in} \to \mt{monad} \; \mt{m} \\
adamc@658 1147 \hspace{.1in} \to \mt{t} \to \mt{m} \; \mt{t} \\
adamc@658 1148 \mt{val} \; \mt{bind} : \mt{m} ::: (\mt{Type} \to \mt{Type}) \to \mt{t1} ::: \mt{Type} \to \mt{t2} ::: \mt{Type} \\
adamc@658 1149 \hspace{.1in} \to \mt{monad} \; \mt{m} \\
adamc@658 1150 \hspace{.1in} \to \mt{m} \; \mt{t1} \to (\mt{t1} \to \mt{m} \; \mt{t2}) \\
adamc@658 1151 \hspace{.1in} \to \mt{m} \; \mt{t2}
adamc@658 1152 \end{array}$$
adamc@658 1153
adamc@542 1154 \subsection{Transactions}
adamc@542 1155
adamc@542 1156 Ur is a pure language; we use Haskell's trick to support controlled side effects. The standard library defines a monad $\mt{transaction}$, meant to stand for actions that may be undone cleanly. By design, no other kinds of actions are supported.
adamc@542 1157 $$\begin{array}{l}
adamc@542 1158 \mt{con} \; \mt{transaction} :: \mt{Type} \to \mt{Type} \\
adamc@658 1159 \mt{val} \; \mt{transaction\_monad} : \mt{monad} \; \mt{transaction}
adamc@542 1160 \end{array}$$
adamc@542 1161
adamc@542 1162 \subsection{HTTP}
adamc@542 1163
adamc@542 1164 There are transactions for reading an HTTP header by name and for getting and setting strongly-typed cookies. Cookies may only be created by the $\mt{cookie}$ declaration form, ensuring that they be named consistently based on module structure.
adamc@542 1165 $$\begin{array}{l}
adamc@542 1166 \mt{val} \; \mt{requestHeader} : \mt{string} \to \mt{transaction} \; (\mt{option} \; \mt{string}) \\
adamc@542 1167 \\
adamc@542 1168 \mt{con} \; \mt{http\_cookie} :: \mt{Type} \to \mt{Type} \\
adamc@542 1169 \mt{val} \; \mt{getCookie} : \mt{t} ::: \mt{Type} \to \mt{http\_cookie} \; \mt{t} \to \mt{transaction} \; (\mt{option} \; \mt{t}) \\
adamc@542 1170 \mt{val} \; \mt{setCookie} : \mt{t} ::: \mt{Type} \to \mt{http\_cookie} \; \mt{t} \to \mt{t} \to \mt{transaction} \; \mt{unit}
adamc@542 1171 \end{array}$$
adamc@542 1172
adamc@543 1173 \subsection{SQL}
adamc@543 1174
adamc@543 1175 The fundamental unit of interest in the embedding of SQL is tables, described by a type family and creatable only via the $\mt{table}$ declaration form.
adamc@543 1176 $$\begin{array}{l}
adamc@543 1177 \mt{con} \; \mt{sql\_table} :: \{\mt{Type}\} \to \mt{Type}
adamc@543 1178 \end{array}$$
adamc@543 1179
adamc@543 1180 \subsubsection{Queries}
adamc@543 1181
adamc@543 1182 A final query is constructed via the $\mt{sql\_query}$ function. Constructor arguments respectively specify the table fields we select (as records mapping tables to the subsets of their fields that we choose) and the (always named) extra expressions that we select.
adamc@543 1183 $$\begin{array}{l}
adamc@543 1184 \mt{con} \; \mt{sql\_query} :: \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \\
adamc@543 1185 \mt{val} \; \mt{sql\_query} : \mt{tables} ::: \{\{\mt{Type}\}\} \\
adamc@543 1186 \hspace{.1in} \to \mt{selectedFields} ::: \{\{\mt{Type}\}\} \\
adamc@543 1187 \hspace{.1in} \to \mt{selectedExps} ::: \{\mt{Type}\} \\
adamc@543 1188 \hspace{.1in} \to \{\mt{Rows} : \mt{sql\_query1} \; \mt{tables} \; \mt{selectedFields} \; \mt{selectedExps}, \\
adamc@543 1189 \hspace{.2in} \mt{OrderBy} : \mt{sql\_order\_by} \; \mt{tables} \; \mt{selectedExps}, \\
adamc@543 1190 \hspace{.2in} \mt{Limit} : \mt{sql\_limit}, \\
adamc@543 1191 \hspace{.2in} \mt{Offset} : \mt{sql\_offset}\} \\
adamc@543 1192 \hspace{.1in} \to \mt{sql\_query} \; \mt{selectedFields} \; \mt{selectedExps}
adamc@543 1193 \end{array}$$
adamc@543 1194
adamc@545 1195 Queries are used by folding over their results inside transactions.
adamc@545 1196 $$\begin{array}{l}
adamc@545 1197 \mt{val} \; \mt{query} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \lambda [\mt{tables} \sim \mt{exps}] \Rightarrow \mt{state} ::: \mt{Type} \to \mt{sql\_query} \; \mt{tables} \; \mt{exps} \\
adamc@658 1198 \hspace{.1in} \to (\$(\mt{exps} \rc \mt{map} \; (\lambda \mt{fields} :: \{\mt{Type}\} \Rightarrow \$\mt{fields}) \; \mt{tables}) \\
adamc@545 1199 \hspace{.2in} \to \mt{state} \to \mt{transaction} \; \mt{state}) \\
adamc@545 1200 \hspace{.1in} \to \mt{state} \to \mt{transaction} \; \mt{state}
adamc@545 1201 \end{array}$$
adamc@545 1202
adamc@543 1203 Most of the complexity of the query encoding is in the type $\mt{sql\_query1}$, which includes simple queries and derived queries based on relational operators. Constructor arguments respectively specify the tables we select from, the subset of fields that we keep from each table for the result rows, and the extra expressions that we select.
adamc@543 1204 $$\begin{array}{l}
adamc@543 1205 \mt{con} \; \mt{sql\_query1} :: \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \\
adamc@543 1206 \\
adamc@543 1207 \mt{type} \; \mt{sql\_relop} \\
adamc@543 1208 \mt{val} \; \mt{sql\_union} : \mt{sql\_relop} \\
adamc@543 1209 \mt{val} \; \mt{sql\_intersect} : \mt{sql\_relop} \\
adamc@543 1210 \mt{val} \; \mt{sql\_except} : \mt{sql\_relop} \\
adamc@543 1211 \mt{val} \; \mt{sql\_relop} : \mt{tables1} ::: \{\{\mt{Type}\}\} \\
adamc@543 1212 \hspace{.1in} \to \mt{tables2} ::: \{\{\mt{Type}\}\} \\
adamc@543 1213 \hspace{.1in} \to \mt{selectedFields} ::: \{\{\mt{Type}\}\} \\
adamc@543 1214 \hspace{.1in} \to \mt{selectedExps} ::: \{\mt{Type}\} \\
adamc@543 1215 \hspace{.1in} \to \mt{sql\_relop} \\
adamc@543 1216 \hspace{.1in} \to \mt{sql\_query1} \; \mt{tables1} \; \mt{selectedFields} \; \mt{selectedExps} \\
adamc@543 1217 \hspace{.1in} \to \mt{sql\_query1} \; \mt{tables2} \; \mt{selectedFields} \; \mt{selectedExps} \\
adamc@543 1218 \hspace{.1in} \to \mt{sql\_query1} \; \mt{selectedFields} \; \mt{selectedFields} \; \mt{selectedExps}
adamc@543 1219 \end{array}$$
adamc@543 1220
adamc@543 1221 $$\begin{array}{l}
adamc@543 1222 \mt{val} \; \mt{sql\_query1} : \mt{tables} ::: \{\{\mt{Type}\}\} \\
adamc@543 1223 \hspace{.1in} \to \mt{grouped} ::: \{\{\mt{Type}\}\} \\
adamc@543 1224 \hspace{.1in} \to \mt{selectedFields} ::: \{\{\mt{Type}\}\} \\
adamc@543 1225 \hspace{.1in} \to \mt{selectedExps} ::: \{\mt{Type}\} \\
adamc@658 1226 \hspace{.1in} \to \{\mt{From} : \$(\mt{map} \; \mt{sql\_table} \; \mt{tables}), \\
adamc@543 1227 \hspace{.2in} \mt{Where} : \mt{sql\_exp} \; \mt{tables} \; [] \; [] \; \mt{bool}, \\
adamc@543 1228 \hspace{.2in} \mt{GroupBy} : \mt{sql\_subset} \; \mt{tables} \; \mt{grouped}, \\
adamc@543 1229 \hspace{.2in} \mt{Having} : \mt{sql\_exp} \; \mt{grouped} \; \mt{tables} \; [] \; \mt{bool}, \\
adamc@543 1230 \hspace{.2in} \mt{SelectFields} : \mt{sql\_subset} \; \mt{grouped} \; \mt{selectedFields}, \\
adamc@658 1231 \hspace{.2in} \mt {SelectExps} : \$(\mt{map} \; (\mt{sql\_exp} \; \mt{grouped} \; \mt{tables} \; []) \; \mt{selectedExps}) \} \\
adamc@543 1232 \hspace{.1in} \to \mt{sql\_query1} \; \mt{tables} \; \mt{selectedFields} \; \mt{selectedExps}
adamc@543 1233 \end{array}$$
adamc@543 1234
adamc@543 1235 To encode projection of subsets of fields in $\mt{SELECT}$ clauses, and to encode $\mt{GROUP} \; \mt{BY}$ clauses, we rely on a type family $\mt{sql\_subset}$, capturing what it means for one record of table fields to be a subset of another. The main constructor $\mt{sql\_subset}$ ``proves subset facts'' by requiring a split of a record into kept and dropped parts. The extra constructor $\mt{sql\_subset\_all}$ is a convenience for keeping all fields of a record.
adamc@543 1236 $$\begin{array}{l}
adamc@543 1237 \mt{con} \; \mt{sql\_subset} :: \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \mt{Type} \\
adamc@543 1238 \mt{val} \; \mt{sql\_subset} : \mt{keep\_drop} :: \{(\{\mt{Type}\} \times \{\mt{Type}\})\} \\
adamc@543 1239 \hspace{.1in} \to \mt{sql\_subset} \\
adamc@658 1240 \hspace{.2in} (\mt{map} \; (\lambda \mt{fields} :: (\{\mt{Type}\} \times \{\mt{Type}\}) \Rightarrow \mt{fields}.1 \rc \mt{fields}.2)\; \mt{keep\_drop}) \\
adamc@658 1241 \hspace{.2in} (\mt{map} \; (\lambda \mt{fields} :: (\{\mt{Type}\} \times \{\mt{Type}\}) \Rightarrow \mt{fields}.1) \; \mt{keep\_drop}) \\
adamc@543 1242 \mt{val} \; \mt{sql\_subset\_all} : \mt{tables} :: \{\{\mt{Type}\}\} \to \mt{sql\_subset} \; \mt{tables} \; \mt{tables}
adamc@543 1243 \end{array}$$
adamc@543 1244
adamc@560 1245 SQL expressions are used in several places, including $\mt{SELECT}$, $\mt{WHERE}$, $\mt{HAVING}$, and $\mt{ORDER} \; \mt{BY}$ clauses. They reify a fragment of the standard SQL expression language, while making it possible to inject ``native'' Ur values in some places. The arguments to the $\mt{sql\_exp}$ type family respectively give the unrestricted-availability table fields, the table fields that may only be used in arguments to aggregate functions, the available selected expressions, and the type of the expression.
adamc@543 1246 $$\begin{array}{l}
adamc@543 1247 \mt{con} \; \mt{sql\_exp} :: \{\{\mt{Type}\}\} \to \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \to \mt{Type}
adamc@543 1248 \end{array}$$
adamc@543 1249
adamc@543 1250 Any field in scope may be converted to an expression.
adamc@543 1251 $$\begin{array}{l}
adamc@543 1252 \mt{val} \; \mt{sql\_field} : \mt{otherTabs} ::: \{\{\mt{Type}\}\} \to \mt{otherFields} ::: \{\mt{Type}\} \\
adamc@543 1253 \hspace{.1in} \to \mt{fieldType} ::: \mt{Type} \to \mt{agg} ::: \{\{\mt{Type}\}\} \\
adamc@543 1254 \hspace{.1in} \to \mt{exps} ::: \{\mt{Type}\} \\
adamc@543 1255 \hspace{.1in} \to \mt{tab} :: \mt{Name} \to \mt{field} :: \mt{Name} \\
adamc@543 1256 \hspace{.1in} \to \mt{sql\_exp} \; ([\mt{tab} = [\mt{field} = \mt{fieldType}] \rc \mt{otherFields}] \rc \mt{otherTabs}) \; \mt{agg} \; \mt{exps} \; \mt{fieldType}
adamc@543 1257 \end{array}$$
adamc@543 1258
adamc@544 1259 There is an analogous function for referencing named expressions.
adamc@544 1260 $$\begin{array}{l}
adamc@544 1261 \mt{val} \; \mt{sql\_exp} : \mt{tabs} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{t} ::: \mt{Type} \to \mt{rest} ::: \{\mt{Type}\} \to \mt{nm} :: \mt{Name} \\
adamc@544 1262 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tabs} \; \mt{agg} \; ([\mt{nm} = \mt{t}] \rc \mt{rest}) \; \mt{t}
adamc@544 1263 \end{array}$$
adamc@544 1264
adamc@544 1265 Ur values of appropriate types may be injected into SQL expressions.
adamc@544 1266 $$\begin{array}{l}
adamc@544 1267 \mt{class} \; \mt{sql\_injectable} \\
adamc@544 1268 \mt{val} \; \mt{sql\_bool} : \mt{sql\_injectable} \; \mt{bool} \\
adamc@544 1269 \mt{val} \; \mt{sql\_int} : \mt{sql\_injectable} \; \mt{int} \\
adamc@544 1270 \mt{val} \; \mt{sql\_float} : \mt{sql\_injectable} \; \mt{float} \\
adamc@544 1271 \mt{val} \; \mt{sql\_string} : \mt{sql\_injectable} \; \mt{string} \\
adamc@544 1272 \mt{val} \; \mt{sql\_time} : \mt{sql\_injectable} \; \mt{time} \\
adamc@544 1273 \mt{val} \; \mt{sql\_option\_bool} : \mt{sql\_injectable} \; (\mt{option} \; \mt{bool}) \\
adamc@544 1274 \mt{val} \; \mt{sql\_option\_int} : \mt{sql\_injectable} \; (\mt{option} \; \mt{int}) \\
adamc@544 1275 \mt{val} \; \mt{sql\_option\_float} : \mt{sql\_injectable} \; (\mt{option} \; \mt{float}) \\
adamc@544 1276 \mt{val} \; \mt{sql\_option\_string} : \mt{sql\_injectable} \; (\mt{option} \; \mt{string}) \\
adamc@544 1277 \mt{val} \; \mt{sql\_option\_time} : \mt{sql\_injectable} \; (\mt{option} \; \mt{time}) \\
adamc@544 1278 \mt{val} \; \mt{sql\_inject} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \to \mt{sql\_injectable} \; \mt{t} \\
adamc@544 1279 \hspace{.1in} \to \mt{t} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t}
adamc@544 1280 \end{array}$$
adamc@544 1281
adamc@544 1282 We have the SQL nullness test, which is necessary because of the strange SQL semantics of equality in the presence of null values.
adamc@544 1283 $$\begin{array}{l}
adamc@544 1284 \mt{val} \; \mt{sql\_is\_null} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \\
adamc@544 1285 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; (\mt{option} \; \mt{t}) \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{bool}
adamc@544 1286 \end{array}$$
adamc@544 1287
adamc@559 1288 We have generic nullary, unary, and binary operators.
adamc@544 1289 $$\begin{array}{l}
adamc@544 1290 \mt{con} \; \mt{sql\_nfunc} :: \mt{Type} \to \mt{Type} \\
adamc@544 1291 \mt{val} \; \mt{sql\_current\_timestamp} : \mt{sql\_nfunc} \; \mt{time} \\
adamc@544 1292 \mt{val} \; \mt{sql\_nfunc} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \\
adamc@544 1293 \hspace{.1in} \to \mt{sql\_nfunc} \; \mt{t} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t} \\\end{array}$$
adamc@544 1294
adamc@544 1295 $$\begin{array}{l}
adamc@544 1296 \mt{con} \; \mt{sql\_unary} :: \mt{Type} \to \mt{Type} \to \mt{Type} \\
adamc@544 1297 \mt{val} \; \mt{sql\_not} : \mt{sql\_unary} \; \mt{bool} \; \mt{bool} \\
adamc@544 1298 \mt{val} \; \mt{sql\_unary} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{arg} ::: \mt{Type} \to \mt{res} ::: \mt{Type} \\
adamc@544 1299 \hspace{.1in} \to \mt{sql\_unary} \; \mt{arg} \; \mt{res} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{arg} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{res} \\
adamc@544 1300 \end{array}$$
adamc@544 1301
adamc@544 1302 $$\begin{array}{l}
adamc@544 1303 \mt{con} \; \mt{sql\_binary} :: \mt{Type} \to \mt{Type} \to \mt{Type} \to \mt{Type} \\
adamc@544 1304 \mt{val} \; \mt{sql\_and} : \mt{sql\_binary} \; \mt{bool} \; \mt{bool} \; \mt{bool} \\
adamc@544 1305 \mt{val} \; \mt{sql\_or} : \mt{sql\_binary} \; \mt{bool} \; \mt{bool} \; \mt{bool} \\
adamc@544 1306 \mt{val} \; \mt{sql\_binary} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{arg_1} ::: \mt{Type} \to \mt{arg_2} ::: \mt{Type} \to \mt{res} ::: \mt{Type} \\
adamc@544 1307 \hspace{.1in} \to \mt{sql\_binary} \; \mt{arg_1} \; \mt{arg_2} \; \mt{res} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{arg_1} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{arg_2} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{res}
adamc@544 1308 \end{array}$$
adamc@544 1309
adamc@544 1310 $$\begin{array}{l}
adamc@559 1311 \mt{class} \; \mt{sql\_arith} \\
adamc@559 1312 \mt{val} \; \mt{sql\_int\_arith} : \mt{sql\_arith} \; \mt{int} \\
adamc@559 1313 \mt{val} \; \mt{sql\_float\_arith} : \mt{sql\_arith} \; \mt{float} \\
adamc@559 1314 \mt{val} \; \mt{sql\_neg} : \mt{t} ::: \mt{Type} \to \mt{sql\_arith} \; \mt{t} \to \mt{sql\_unary} \; \mt{t} \; \mt{t} \\
adamc@559 1315 \mt{val} \; \mt{sql\_plus} : \mt{t} ::: \mt{Type} \to \mt{sql\_arith} \; \mt{t} \to \mt{sql\_binary} \; \mt{t} \; \mt{t} \; \mt{t} \\
adamc@559 1316 \mt{val} \; \mt{sql\_minus} : \mt{t} ::: \mt{Type} \to \mt{sql\_arith} \; \mt{t} \to \mt{sql\_binary} \; \mt{t} \; \mt{t} \; \mt{t} \\
adamc@559 1317 \mt{val} \; \mt{sql\_times} : \mt{t} ::: \mt{Type} \to \mt{sql\_arith} \; \mt{t} \to \mt{sql\_binary} \; \mt{t} \; \mt{t} \; \mt{t} \\
adamc@559 1318 \mt{val} \; \mt{sql\_div} : \mt{t} ::: \mt{Type} \to \mt{sql\_arith} \; \mt{t} \to \mt{sql\_binary} \; \mt{t} \; \mt{t} \; \mt{t} \\
adamc@559 1319 \mt{val} \; \mt{sql\_mod} : \mt{sql\_binary} \; \mt{int} \; \mt{int} \; \mt{int}
adamc@559 1320 \end{array}$$
adamc@544 1321
adamc@656 1322 Finally, we have aggregate functions. The $\mt{COUNT(\ast)}$ syntax is handled specially, since it takes no real argument. The other aggregate functions are placed into a general type family, using constructor classes to restrict usage to properly-typed arguments. The key aspect of the $\mt{sql\_aggregate}$ function's type is the shift of aggregate-function-only fields into unrestricted fields.
adamc@544 1323
adamc@544 1324 $$\begin{array}{l}
adamc@544 1325 \mt{val} \; \mt{sql\_count} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{int}
adamc@544 1326 \end{array}$$
adamc@544 1327
adamc@544 1328 $$\begin{array}{l}
adamc@544 1329 \mt{con} \; \mt{sql\_aggregate} :: \mt{Type} \to \mt{Type} \\
adamc@544 1330 \mt{val} \; \mt{sql\_aggregate} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{agg} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \\
adamc@544 1331 \hspace{.1in} \to \mt{sql\_aggregate} \; \mt{t} \to \mt{sql\_exp} \; \mt{agg} \; \mt{agg} \; \mt{exps} \; \mt{t} \to \mt{sql\_exp} \; \mt{tables} \; \mt{agg} \; \mt{exps} \; \mt{t}
adamc@544 1332 \end{array}$$
adamc@544 1333
adamc@544 1334 $$\begin{array}{l}
adamc@544 1335 \mt{class} \; \mt{sql\_summable} \\
adamc@544 1336 \mt{val} \; \mt{sql\_summable\_int} : \mt{sql\_summable} \; \mt{int} \\
adamc@544 1337 \mt{val} \; \mt{sql\_summable\_float} : \mt{sql\_summable} \; \mt{float} \\
adamc@544 1338 \mt{val} \; \mt{sql\_avg} : \mt{t} ::: \mt{Type} \to \mt{sql\_summable} \; \mt{t} \to \mt{sql\_aggregate} \; \mt{t} \\
adamc@544 1339 \mt{val} \; \mt{sql\_sum} : \mt{t} ::: \mt{Type} \to \mt{sql\_summable} \mt{t} \to \mt{sql\_aggregate} \; \mt{t}
adamc@544 1340 \end{array}$$
adamc@544 1341
adamc@544 1342 $$\begin{array}{l}
adamc@544 1343 \mt{class} \; \mt{sql\_maxable} \\
adamc@544 1344 \mt{val} \; \mt{sql\_maxable\_int} : \mt{sql\_maxable} \; \mt{int} \\
adamc@544 1345 \mt{val} \; \mt{sql\_maxable\_float} : \mt{sql\_maxable} \; \mt{float} \\
adamc@544 1346 \mt{val} \; \mt{sql\_maxable\_string} : \mt{sql\_maxable} \; \mt{string} \\
adamc@544 1347 \mt{val} \; \mt{sql\_maxable\_time} : \mt{sql\_maxable} \; \mt{time} \\
adamc@544 1348 \mt{val} \; \mt{sql\_max} : \mt{t} ::: \mt{Type} \to \mt{sql\_maxable} \; \mt{t} \to \mt{sql\_aggregate} \; \mt{t} \\
adamc@544 1349 \mt{val} \; \mt{sql\_min} : \mt{t} ::: \mt{Type} \to \mt{sql\_maxable} \; \mt{t} \to \mt{sql\_aggregate} \; \mt{t}
adamc@544 1350 \end{array}$$
adamc@544 1351
adamc@544 1352 We wrap up the definition of query syntax with the types used in representing $\mt{ORDER} \; \mt{BY}$, $\mt{LIMIT}$, and $\mt{OFFSET}$ clauses.
adamc@544 1353 $$\begin{array}{l}
adamc@544 1354 \mt{type} \; \mt{sql\_direction} \\
adamc@544 1355 \mt{val} \; \mt{sql\_asc} : \mt{sql\_direction} \\
adamc@544 1356 \mt{val} \; \mt{sql\_desc} : \mt{sql\_direction} \\
adamc@544 1357 \\
adamc@544 1358 \mt{con} \; \mt{sql\_order\_by} :: \{\{\mt{Type}\}\} \to \{\mt{Type}\} \to \mt{Type} \\
adamc@544 1359 \mt{val} \; \mt{sql\_order\_by\_Nil} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{exps} :: \{\mt{Type}\} \to \mt{sql\_order\_by} \; \mt{tables} \; \mt{exps} \\
adamc@544 1360 \mt{val} \; \mt{sql\_order\_by\_Cons} : \mt{tables} ::: \{\{\mt{Type}\}\} \to \mt{exps} ::: \{\mt{Type}\} \to \mt{t} ::: \mt{Type} \\
adamc@544 1361 \hspace{.1in} \to \mt{sql\_exp} \; \mt{tables} \; [] \; \mt{exps} \; \mt{t} \to \mt{sql\_direction} \to \mt{sql\_order\_by} \; \mt{tables} \; \mt{exps} \to \mt{sql\_order\_by} \; \mt{tables} \; \mt{exps} \\
adamc@544 1362 \\
adamc@544 1363 \mt{type} \; \mt{sql\_limit} \\
adamc@544 1364 \mt{val} \; \mt{sql\_no\_limit} : \mt{sql\_limit} \\
adamc@544 1365 \mt{val} \; \mt{sql\_limit} : \mt{int} \to \mt{sql\_limit} \\
adamc@544 1366 \\
adamc@544 1367 \mt{type} \; \mt{sql\_offset} \\
adamc@544 1368 \mt{val} \; \mt{sql\_no\_offset} : \mt{sql\_offset} \\
adamc@544 1369 \mt{val} \; \mt{sql\_offset} : \mt{int} \to \mt{sql\_offset}
adamc@544 1370 \end{array}$$
adamc@544 1371
adamc@545 1372
adamc@545 1373 \subsubsection{DML}
adamc@545 1374
adamc@545 1375 The Ur/Web library also includes an embedding of a fragment of SQL's DML, the Data Manipulation Language, for modifying database tables. Any piece of DML may be executed in a transaction.
adamc@545 1376
adamc@545 1377 $$\begin{array}{l}
adamc@545 1378 \mt{type} \; \mt{dml} \\
adamc@545 1379 \mt{val} \; \mt{dml} : \mt{dml} \to \mt{transaction} \; \mt{unit}
adamc@545 1380 \end{array}$$
adamc@545 1381
adamc@545 1382 Properly-typed records may be used to form $\mt{INSERT}$ commands.
adamc@545 1383 $$\begin{array}{l}
adamc@545 1384 \mt{val} \; \mt{insert} : \mt{fields} ::: \{\mt{Type}\} \to \mt{sql\_table} \; \mt{fields} \\
adamc@658 1385 \hspace{.1in} \to \$(\mt{map} \; (\mt{sql\_exp} \; [] \; [] \; []) \; \mt{fields}) \to \mt{dml}
adamc@545 1386 \end{array}$$
adamc@545 1387
adamc@545 1388 An $\mt{UPDATE}$ command is formed from a choice of which table fields to leave alone and which to change, along with an expression to use to compute the new value of each changed field and a $\mt{WHERE}$ clause.
adamc@545 1389 $$\begin{array}{l}
adamc@545 1390 \mt{val} \; \mt{update} : \mt{unchanged} ::: \{\mt{Type}\} \to \mt{changed} :: \{\mt{Type}\} \to \lambda [\mt{changed} \sim \mt{unchanged}] \\
adamc@658 1391 \hspace{.1in} \Rightarrow \$(\mt{map} \; (\mt{sql\_exp} \; [\mt{T} = \mt{changed} \rc \mt{unchanged}] \; [] \; []) \; \mt{changed}) \\
adamc@545 1392 \hspace{.1in} \to \mt{sql\_table} \; (\mt{changed} \rc \mt{unchanged}) \to \mt{sql\_exp} \; [\mt{T} = \mt{changed} \rc \mt{unchanged}] \; [] \; [] \; \mt{bool} \to \mt{dml}
adamc@545 1393 \end{array}$$
adamc@545 1394
adamc@545 1395 A $\mt{DELETE}$ command is formed from a table and a $\mt{WHERE}$ clause.
adamc@545 1396 $$\begin{array}{l}
adamc@545 1397 \mt{val} \; \mt{delete} : \mt{fields} ::: \{\mt{Type}\} \to \mt{sql\_table} \; \mt{fields} \to \mt{sql\_exp} \; [\mt{T} = \mt{fields}] \; [] \; [] \; \mt{bool} \to \mt{dml}
adamc@545 1398 \end{array}$$
adamc@545 1399
adamc@546 1400 \subsubsection{Sequences}
adamc@546 1401
adamc@546 1402 SQL sequences are counters with concurrency control, often used to assign unique IDs. Ur/Web supports them via a simple interface. The only way to create a sequence is with the $\mt{sequence}$ declaration form.
adamc@546 1403
adamc@546 1404 $$\begin{array}{l}
adamc@546 1405 \mt{type} \; \mt{sql\_sequence} \\
adamc@546 1406 \mt{val} \; \mt{nextval} : \mt{sql\_sequence} \to \mt{transaction} \; \mt{int}
adamc@546 1407 \end{array}$$
adamc@546 1408
adamc@546 1409
adamc@547 1410 \subsection{XML}
adamc@547 1411
adamc@547 1412 Ur/Web's library contains an encoding of XML syntax and semantic constraints. We make no effort to follow the standards governing XML schemas. Rather, XML fragments are viewed more as values of ML datatypes, and we only track which tags are allowed inside which other tags.
adamc@547 1413
adamc@547 1414 The basic XML type family has arguments respectively indicating the \emph{context} of a fragment, the fields that the fragment expects to be bound on entry (and their types), and the fields that the fragment will bind (and their types). Contexts are a record-based ``poor man's subtyping'' encoding, with each possible set of valid tags corresponding to a different context record. The arguments dealing with field binding are only relevant to HTML forms.
adamc@547 1415 $$\begin{array}{l}
adamc@547 1416 \mt{con} \; \mt{xml} :: \{\mt{Unit}\} \to \{\mt{Type}\} \to \{\mt{Type}\} \to \mt{Type}
adamc@547 1417 \end{array}$$
adamc@547 1418
adamc@547 1419 We also have a type family of XML tags, indexed respectively by the record of optional attributes accepted by the tag, the context in which the tag may be placed, the context required of children of the tag, which form fields the tag uses, and which fields the tag defines.
adamc@547 1420 $$\begin{array}{l}
adamc@547 1421 \mt{con} \; \mt{tag} :: \{\mt{Type}\} \to \{\mt{Unit}\} \to \{\mt{Unit}\} \to \{\mt{Type}\} \to \{\mt{Type}\} \to \mt{Type}
adamc@547 1422 \end{array}$$
adamc@547 1423
adamc@547 1424 Literal text may be injected into XML as ``CDATA.''
adamc@547 1425 $$\begin{array}{l}
adamc@547 1426 \mt{val} \; \mt{cdata} : \mt{ctx} ::: \{\mt{Unit}\} \to \mt{use} ::: \{\mt{Type}\} \to \mt{string} \to \mt{xml} \; \mt{ctx} \; \mt{use} \; []
adamc@547 1427 \end{array}$$
adamc@547 1428
adamc@547 1429 There is a function for producing an XML tree with a particular tag at its root.
adamc@547 1430 $$\begin{array}{l}
adamc@547 1431 \mt{val} \; \mt{tag} : \mt{attrsGiven} ::: \{\mt{Type}\} \to \mt{attrsAbsent} ::: \{\mt{Type}\} \to \mt{ctxOuter} ::: \{\mt{Unit}\} \to \mt{ctxInner} ::: \{\mt{Unit}\} \\
adamc@547 1432 \hspace{.1in} \to \mt{useOuter} ::: \{\mt{Type}\} \to \mt{useInner} ::: \{\mt{Type}\} \to \mt{bindOuter} ::: \{\mt{Type}\} \to \mt{bindInner} ::: \{\mt{Type}\} \\
adamc@547 1433 \hspace{.1in} \to \lambda [\mt{attrsGiven} \sim \mt{attrsAbsent}] \; [\mt{useOuter} \sim \mt{useInner}] \; [\mt{bindOuter} \sim \mt{bindInner}] \Rightarrow \$\mt{attrsGiven} \\
adamc@547 1434 \hspace{.1in} \to \mt{tag} \; (\mt{attrsGiven} \rc \mt{attrsAbsent}) \; \mt{ctxOuter} \; \mt{ctxInner} \; \mt{useOuter} \; \mt{bindOuter} \\
adamc@547 1435 \hspace{.1in} \to \mt{xml} \; \mt{ctxInner} \; \mt{useInner} \; \mt{bindInner} \to \mt{xml} \; \mt{ctxOuter} \; (\mt{useOuter} \rc \mt{useInner}) \; (\mt{bindOuter} \rc \mt{bindInner})
adamc@547 1436 \end{array}$$
adamc@547 1437
adamc@547 1438 Two XML fragments may be concatenated.
adamc@547 1439 $$\begin{array}{l}
adamc@547 1440 \mt{val} \; \mt{join} : \mt{ctx} ::: \{\mt{Unit}\} \to \mt{use_1} ::: \{\mt{Type}\} \to \mt{bind_1} ::: \{\mt{Type}\} \to \mt{bind_2} ::: \{\mt{Type}\} \\
adamc@547 1441 \hspace{.1in} \to \lambda [\mt{use_1} \sim \mt{bind_1}] \; [\mt{bind_1} \sim \mt{bind_2}] \\
adamc@547 1442 \hspace{.1in} \Rightarrow \mt{xml} \; \mt{ctx} \; \mt{use_1} \; \mt{bind_1} \to \mt{xml} \; \mt{ctx} \; (\mt{use_1} \rc \mt{bind_1}) \; \mt{bind_2} \to \mt{xml} \; \mt{ctx} \; \mt{use_1} \; (\mt{bind_1} \rc \mt{bind_2})
adamc@547 1443 \end{array}$$
adamc@547 1444
adamc@547 1445 Finally, any XML fragment may be updated to ``claim'' to use more form fields than it does.
adamc@547 1446 $$\begin{array}{l}
adamc@547 1447 \mt{val} \; \mt{useMore} : \mt{ctx} ::: \{\mt{Unit}\} \to \mt{use_1} ::: \{\mt{Type}\} \to \mt{use_2} ::: \{\mt{Type}\} \to \mt{bind} ::: \{\mt{Type}\} \to \lambda [\mt{use_1} \sim \mt{use_2}] \\
adamc@547 1448 \hspace{.1in} \Rightarrow \mt{xml} \; \mt{ctx} \; \mt{use_1} \; \mt{bind} \to \mt{xml} \; \mt{ctx} \; (\mt{use_1} \rc \mt{use_2}) \; \mt{bind}
adamc@547 1449 \end{array}$$
adamc@547 1450
adamc@547 1451 We will not list here the different HTML tags and related functions from the standard library. They should be easy enough to understand from the code in \texttt{basis.urs}. The set of tags in the library is not yet claimed to be complete for HTML standards.
adamc@547 1452
adamc@547 1453 One last useful function is for aborting any page generation, returning some XML as an error message. This function takes the place of some uses of a general exception mechanism.
adamc@547 1454 $$\begin{array}{l}
adamc@547 1455 \mt{val} \; \mt{error} : \mt{t} ::: \mt{Type} \to \mt{xml} \; [\mt{Body}] \; [] \; [] \to \mt{t}
adamc@547 1456 \end{array}$$
adamc@547 1457
adamc@549 1458
adamc@701 1459 \subsection{Client-Side Programming}
adamc@659 1460
adamc@701 1461 Ur/Web supports running code on web browsers, via automatic compilation to JavaScript.
adamc@701 1462
adamc@701 1463 \subsubsection{The Basics}
adamc@701 1464
adamc@701 1465 Clients can open alert dialog boxes, in the usual annoying JavaScript way.
adamc@701 1466 $$\begin{array}{l}
adamc@701 1467 \mt{val} \; \mt{alert} : \mt{string} \to \mt{transaction} \; \mt{unit}
adamc@701 1468 \end{array}$$
adamc@701 1469
adamc@701 1470 Any transaction may be run in a new thread with the $\mt{spawn}$ function.
adamc@701 1471 $$\begin{array}{l}
adamc@701 1472 \mt{val} \; \mt{spawn} : \mt{transaction} \; \mt{unit} \to \mt{transaction} \; \mt{unit}
adamc@701 1473 \end{array}$$
adamc@701 1474
adamc@701 1475 The current thread can be paused for at least a specified number of milliseconds.
adamc@701 1476 $$\begin{array}{l}
adamc@701 1477 \mt{val} \; \mt{sleep} : \mt{int} \to \mt{transaction} \; \mt{unit}
adamc@701 1478 \end{array}$$
adamc@701 1479
adamc@701 1480 \subsubsection{Functional-Reactive Page Generation}
adamc@701 1481
adamc@701 1482 Most approaches to ``AJAX''-style coding involve imperative manipulation of the DOM tree representing an HTML document's structure. Ur/Web follows the \emph{functional-reactive} approach instead. Programs may allocate mutable \emph{sources} of arbitrary types, and an HTML page is effectively a pure function over the latest values of the sources. The page is not mutated directly, but rather it changes automatically as the sources are mutated.
adamc@659 1483
adamc@659 1484 $$\begin{array}{l}
adamc@659 1485 \mt{con} \; \mt{source} :: \mt{Type} \to \mt{Type} \\
adamc@659 1486 \mt{val} \; \mt{source} : \mt{t} ::: \mt{Type} \to \mt{t} \to \mt{transaction} \; (\mt{source} \; \mt{t}) \\
adamc@659 1487 \mt{val} \; \mt{set} : \mt{t} ::: \mt{Type} \to \mt{source} \; \mt{t} \to \mt{t} \to \mt{transaction} \; \mt{unit} \\
adamc@659 1488 \mt{val} \; \mt{get} : \mt{t} ::: \mt{Type} \to \mt{source} \; \mt{t} \to \mt{transaction} \; \mt{t}
adamc@659 1489 \end{array}$$
adamc@659 1490
adamc@659 1491 Pure functions over sources are represented in a monad of \emph{signals}.
adamc@659 1492
adamc@659 1493 $$\begin{array}{l}
adamc@659 1494 \mt{con} \; \mt{signal} :: \mt{Type} \to \mt{Type} \\
adamc@659 1495 \mt{val} \; \mt{signal\_monad} : \mt{monad} \; \mt{signal} \\
adamc@659 1496 \mt{val} \; \mt{signal} : \mt{t} ::: \mt{Type} \to \mt{source} \; \mt{t} \to \mt{signal} \; \mt{t}
adamc@659 1497 \end{array}$$
adamc@659 1498
adamc@659 1499 A reactive portion of an HTML page is injected with a $\mt{dyn}$ tag, which has a signal-valued attribute $\mt{Signal}$.
adamc@659 1500
adamc@659 1501 $$\begin{array}{l}
adamc@701 1502 \mt{val} \; \mt{dyn} : \mt{use} ::: \{\mt{Type}\} \to \mt{bind} ::: \{\mt{Type}\} \to \mt{unit} \\
adamc@701 1503 \hspace{.1in} \to \mt{tag} \; [\mt{Signal} = \mt{signal} \; (\mt{xml} \; \mt{body} \; \mt{use} \; \mt{bind})] \; \mt{body} \; [] \; \mt{use} \; \mt{bind}
adamc@659 1504 \end{array}$$
adamc@659 1505
adamc@701 1506 Transactions can be run on the client by including them in attributes like the $\mt{Onclick}$ attribute of $\mt{button}$, and GUI widgets like $\mt{ctextbox}$ have $\mt{Source}$ attributes that can be used to connect them to sources, so that their values can be read by code running because of, e.g., an $\mt{Onclick}$ event.
adamc@701 1507
adamc@701 1508 \subsubsection{Asynchronous Message-Passing}
adamc@701 1509
adamc@701 1510 To support asynchronous, ``server push'' delivery of messages to clients, any client that might need to receive an asynchronous message is assigned a unique ID. These IDs may be retrieved both on the client and on the server, during execution of code related to a client.
adamc@701 1511
adamc@701 1512 $$\begin{array}{l}
adamc@701 1513 \mt{type} \; \mt{client} \\
adamc@701 1514 \mt{val} \; \mt{self} : \mt{transaction} \; \mt{client}
adamc@701 1515 \end{array}$$
adamc@701 1516
adamc@701 1517 \emph{Channels} are the means of message-passing. Each channel is created in the context of a client and belongs to that client; no other client may receive the channel's messages. Each channel type includes the type of values that may be sent over the channel. Sending and receiving are asynchronous, in the sense that a client need not be ready to receive a message right away. Rather, sent messages may queue up, waiting to be processed.
adamc@701 1518
adamc@701 1519 $$\begin{array}{l}
adamc@701 1520 \mt{con} \; \mt{channel} :: \mt{Type} \to \mt{Type} \\
adamc@701 1521 \mt{val} \; \mt{channel} : \mt{t} ::: \mt{Type} \to \mt{transaction} \; (\mt{channel} \; \mt{t}) \\
adamc@701 1522 \mt{val} \; \mt{send} : \mt{t} ::: \mt{Type} \to \mt{channel} \; \mt{t} \to \mt{t} \to \mt{transaction} \; \mt{unit} \\
adamc@701 1523 \mt{val} \; \mt{recv} : \mt{t} ::: \mt{Type} \to \mt{channel} \; \mt{t} \to \mt{transaction} \; \mt{t}
adamc@701 1524 \end{array}$$
adamc@701 1525
adamc@701 1526 The $\mt{channel}$ and $\mt{send}$ operations may only be executed on the server, and $\mt{recv}$ may only be executed on a client. Neither clients nor channels may be passed as arguments from clients to server-side functions, so persistent channels can only be maintained by storing them in the database and looking them up using the current client ID or some application-specific value as a key.
adamc@701 1527
adamc@701 1528 Clients and channels live only as long as the web browser page views that they are associated with. When a user surfs away, his client and its channels will be garbage-collected, after that user is not heard from for the timeout period. Garbage collection deletes any database row that contains a client or channel directly. Any reference to one of these types inside an $\mt{option}$ is set to $\mt{None}$ instead. Both kinds of handling have the flavor of weak pointers, and that is a useful way to think about clients and channels in the database.
adamc@701 1529
adamc@659 1530
adamc@549 1531 \section{Ur/Web Syntax Extensions}
adamc@549 1532
adamc@549 1533 Ur/Web features some syntactic shorthands for building values using the functions from the last section. This section sketches the grammar of those extensions. We write spans of syntax inside brackets to indicate that they are optional.
adamc@549 1534
adamc@549 1535 \subsection{SQL}
adamc@549 1536
adamc@549 1537 \subsubsection{Queries}
adamc@549 1538
adamc@550 1539 Queries $Q$ are added to the rules for expressions $e$.
adamc@550 1540
adamc@549 1541 $$\begin{array}{rrcll}
adamc@550 1542 \textrm{Queries} & Q &::=& (q \; [\mt{ORDER} \; \mt{BY} \; (E \; [o],)^+] \; [\mt{LIMIT} \; N] \; [\mt{OFFSET} \; N]) \\
adamc@549 1543 \textrm{Pre-queries} & q &::=& \mt{SELECT} \; P \; \mt{FROM} \; T,^+ \; [\mt{WHERE} \; E] \; [\mt{GROUP} \; \mt{BY} \; p,^+] \; [\mt{HAVING} \; E] \\
adamc@549 1544 &&& \mid q \; R \; q \\
adamc@549 1545 \textrm{Relational operators} & R &::=& \mt{UNION} \mid \mt{INTERSECT} \mid \mt{EXCEPT}
adamc@549 1546 \end{array}$$
adamc@549 1547
adamc@549 1548 $$\begin{array}{rrcll}
adamc@549 1549 \textrm{Projections} & P &::=& \ast & \textrm{all columns} \\
adamc@549 1550 &&& p,^+ & \textrm{particular columns} \\
adamc@549 1551 \textrm{Pre-projections} & p &::=& t.f & \textrm{one column from a table} \\
adamc@558 1552 &&& t.\{\{c\}\} & \textrm{a record of columns from a table (of kind $\{\mt{Type}\}$)} \\
adamc@549 1553 \textrm{Table names} & t &::=& x & \textrm{constant table name (automatically capitalized)} \\
adamc@549 1554 &&& X & \textrm{constant table name} \\
adamc@549 1555 &&& \{\{c\}\} & \textrm{computed table name (of kind $\mt{Name}$)} \\
adamc@549 1556 \textrm{Column names} & f &::=& X & \textrm{constant column name} \\
adamc@549 1557 &&& \{c\} & \textrm{computed column name (of kind $\mt{Name}$)} \\
adamc@549 1558 \textrm{Tables} & T &::=& x & \textrm{table variable, named locally by its own capitalization} \\
adamc@549 1559 &&& x \; \mt{AS} \; t & \textrm{table variable, with local name} \\
adamc@549 1560 &&& \{\{e\}\} \; \mt{AS} \; t & \textrm{computed table expression, with local name} \\
adamc@549 1561 \textrm{SQL expressions} & E &::=& p & \textrm{column references} \\
adamc@549 1562 &&& X & \textrm{named expression references} \\
adamc@549 1563 &&& \{\{e\}\} & \textrm{injected native Ur expressions} \\
adamc@549 1564 &&& \{e\} & \textrm{computed expressions, probably using $\mt{sql\_exp}$ directly} \\
adamc@549 1565 &&& \mt{TRUE} \mid \mt{FALSE} & \textrm{boolean constants} \\
adamc@549 1566 &&& \ell & \textrm{primitive type literals} \\
adamc@549 1567 &&& \mt{NULL} & \textrm{null value (injection of $\mt{None}$)} \\
adamc@549 1568 &&& E \; \mt{IS} \; \mt{NULL} & \textrm{nullness test} \\
adamc@549 1569 &&& n & \textrm{nullary operators} \\
adamc@549 1570 &&& u \; E & \textrm{unary operators} \\
adamc@549 1571 &&& E \; b \; E & \textrm{binary operators} \\
adamc@549 1572 &&& \mt{COUNT}(\ast) & \textrm{count number of rows} \\
adamc@549 1573 &&& a(E) & \textrm{other aggregate function} \\
adamc@549 1574 &&& (E) & \textrm{explicit precedence} \\
adamc@549 1575 \textrm{Nullary operators} & n &::=& \mt{CURRENT\_TIMESTAMP} \\
adamc@549 1576 \textrm{Unary operators} & u &::=& \mt{NOT} \\
adamc@549 1577 \textrm{Binary operators} & b &::=& \mt{AND} \mid \mt{OR} \mid \neq \mid < \mid \leq \mid > \mid \geq \\
adamc@549 1578 \textrm{Aggregate functions} & a &::=& \mt{AVG} \mid \mt{SUM} \mid \mt{MIN} \mid \mt{MAX} \\
adamc@550 1579 \textrm{Directions} & o &::=& \mt{ASC} \mid \mt{DESC} \\
adamc@549 1580 \textrm{SQL integer} & N &::=& n \mid \{e\} \\
adamc@549 1581 \end{array}$$
adamc@549 1582
adamc@549 1583 Additionally, an SQL expression may be inserted into normal Ur code with the syntax $(\mt{SQL} \; E)$ or $(\mt{WHERE} \; E)$.
adamc@549 1584
adamc@550 1585 \subsubsection{DML}
adamc@550 1586
adamc@550 1587 DML commands $D$ are added to the rules for expressions $e$.
adamc@550 1588
adamc@550 1589 $$\begin{array}{rrcll}
adamc@550 1590 \textrm{Commands} & D &::=& (\mt{INSERT} \; \mt{INTO} \; T^E \; (f,^+) \; \mt{VALUES} \; (E,^+)) \\
adamc@550 1591 &&& (\mt{UPDATE} \; T^E \; \mt{SET} \; (f = E,)^+ \; \mt{WHERE} \; E) \\
adamc@550 1592 &&& (\mt{DELETE} \; \mt{FROM} \; T^E \; \mt{WHERE} \; E) \\
adamc@550 1593 \textrm{Table expressions} & T^E &::=& x \mid \{\{e\}\}
adamc@550 1594 \end{array}$$
adamc@550 1595
adamc@550 1596 Inside $\mt{UPDATE}$ and $\mt{DELETE}$ commands, lone variables $X$ are interpreted as references to columns of the implicit table $\mt{T}$, rather than to named expressions.
adamc@549 1597
adamc@551 1598 \subsection{XML}
adamc@551 1599
adamc@551 1600 XML fragments $L$ are added to the rules for expressions $e$.
adamc@551 1601
adamc@551 1602 $$\begin{array}{rrcll}
adamc@551 1603 \textrm{XML fragments} & L &::=& \texttt{<xml/>} \mid \texttt{<xml>}l^*\texttt{</xml>} \\
adamc@551 1604 \textrm{XML pieces} & l &::=& \textrm{text} & \textrm{cdata} \\
adamc@551 1605 &&& \texttt{<}g\texttt{/>} & \textrm{tag with no children} \\
adamc@551 1606 &&& \texttt{<}g\texttt{>}l^*\texttt{</}x\texttt{>} & \textrm{tag with children} \\
adamc@559 1607 &&& \{e\} & \textrm{computed XML fragment} \\
adamc@559 1608 &&& \{[e]\} & \textrm{injection of an Ur expression, via the $\mt{Top}.\mt{txt}$ function} \\
adamc@551 1609 \textrm{Tag} & g &::=& h \; (x = v)^* \\
adamc@551 1610 \textrm{Tag head} & h &::=& x & \textrm{tag name} \\
adamc@551 1611 &&& h\{c\} & \textrm{constructor parameter} \\
adamc@551 1612 \textrm{Attribute value} & v &::=& \ell & \textrm{literal value} \\
adamc@551 1613 &&& \{e\} & \textrm{computed value} \\
adamc@551 1614 \end{array}$$
adamc@551 1615
adamc@552 1616
adamc@553 1617 \section{The Structure of Web Applications}
adamc@553 1618
adamc@553 1619 A web application is built from a series of modules, with one module, the last one appearing in the \texttt{.urp} file, designated as the main module. The signature of the main module determines the URL entry points to the application. Such an entry point should have type $\mt{unit} \to \mt{transaction} \; \mt{page}$, where $\mt{page}$ is a type synonym for top-level HTML pages, defined in $\mt{Basis}$. If such a function is at the top level of main module $M$, it will be accessible at URI \texttt{/M/f}, and so on for more deeply-nested functions, as described in Section \ref{tag} below.
adamc@553 1620
adamc@553 1621 When the standalone web server receives a request for a known page, it calls the function for that page, ``running'' the resulting transaction to produce the page to return to the client. Pages link to other pages with the \texttt{link} attribute of the \texttt{a} HTML tag. A link has type $\mt{transaction} \; \mt{page}$, and the semantics of a link are that this transaction should be run to compute the result page, when the link is followed. Link targets are assigned URL names in the same way as top-level entry points.
adamc@553 1622
adamc@553 1623 HTML forms are handled in a similar way. The $\mt{action}$ attribute of a $\mt{submit}$ form tag takes a value of type $\$\mt{use} \to \mt{transaction} \; \mt{page}$, where $\mt{use}$ is a kind-$\{\mt{Type}\}$ record of the form fields used by this action handler. Action handlers are assigned URL patterns in the same way as above.
adamc@553 1624
adamc@558 1625 For both links and actions, direct arguments and local variables mentioned implicitly via closures are automatically included in serialized form in URLs, in the order in which they appear in the source code.
adamc@553 1626
adamc@660 1627 Ur/Web programs generally mix server- and client-side code in a fairly transparent way. The one important restriction is that mixed client-server code must encapsulate all server-side pieces within named functions. This is because execution of such pieces will be implemented by explicit calls to the remote web server, and it is useful to get the programmer's help in designing the interface to be used. For example, this makes it easier to allow a client running an old version of an application to continue interacting with a server that has been upgraded to a new version, if the programmer took care to keep the interfaces of all of the old remote calls the same. The functions implementing these services are assigned names in the same way as normal web entry points, by using module structure.
adamc@660 1628
adamc@553 1629
adamc@552 1630 \section{Compiler Phases}
adamc@552 1631
adamc@552 1632 The Ur/Web compiler is unconventional in that it relies on a kind of \emph{heuristic compilation}. Not all valid programs will compile successfully. Informally, programs fail to compile when they are ``too higher order.'' Compiler phases do their best to eliminate different kinds of higher order-ness, but some programs just won't compile. This is a trade-off for producing very efficient executables. Compiled Ur/Web programs use native C representations and require no garbage collection.
adamc@552 1633
adamc@552 1634 In this section, we step through the main phases of compilation, noting what consequences each phase has for effective programming.
adamc@552 1635
adamc@552 1636 \subsection{Parse}
adamc@552 1637
adamc@552 1638 The compiler reads a \texttt{.urp} file, figures out which \texttt{.urs} and \texttt{.ur} files it references, and combines them all into what is conceptually a single sequence of declarations in the core language of Section \ref{core}.
adamc@552 1639
adamc@552 1640 \subsection{Elaborate}
adamc@552 1641
adamc@552 1642 This is where type inference takes place, translating programs into an explicit form with no more wildcards. This phase is the most likely source of compiler error messages.
adamc@552 1643
adamc@552 1644 \subsection{Unnest}
adamc@552 1645
adamc@552 1646 Named local function definitions are moved to the top level, to avoid the need to generate closures.
adamc@552 1647
adamc@552 1648 \subsection{Corify}
adamc@552 1649
adamc@552 1650 Module system features are compiled away, through inlining of functor definitions at application sites. Afterward, most abstraction boundaries are broken, facilitating optimization.
adamc@552 1651
adamc@552 1652 \subsection{Especialize}
adamc@552 1653
adamc@552 1654 Functions are specialized to particular argument patterns. This is an important trick for avoiding the need to maintain any closures at runtime.
adamc@552 1655
adamc@552 1656 \subsection{Untangle}
adamc@552 1657
adamc@552 1658 Remove unnecessary mutual recursion, splitting recursive groups into strongly-connected components.
adamc@552 1659
adamc@552 1660 \subsection{Shake}
adamc@552 1661
adamc@552 1662 Remove all definitions not needed to run the page handlers that are visible in the signature of the last module listed in the \texttt{.urp} file.
adamc@552 1663
adamc@661 1664 \subsection{Rpcify}
adamc@661 1665
adamc@661 1666 Pieces of code are determined to be client-side, server-side, neither, or both, by figuring out which standard library functions might be needed to execute them. Calls to server-side functions (e.g., $\mt{query}$) within mixed client-server code are identified and replaced with explicit remote calls. Some mixed functions may be converted to continuation-passing style to facilitate this transformation.
adamc@661 1667
adamc@661 1668 \subsection{Untangle, Shake}
adamc@661 1669
adamc@661 1670 Repeat these simplifications.
adamc@661 1671
adamc@553 1672 \subsection{\label{tag}Tag}
adamc@552 1673
adamc@552 1674 Assign a URL name to each link and form action. It is important that these links and actions are written as applications of named functions, because such names are used to generate URL patterns. A URL pattern has a name built from the full module path of the named function, followed by the function name, with all pieces separated by slashes. The path of a functor application is based on the name given to the result, rather than the path of the functor itself.
adamc@552 1675
adamc@552 1676 \subsection{Reduce}
adamc@552 1677
adamc@552 1678 Apply definitional equality rules to simplify the program as much as possible. This effectively includes inlining of every non-recursive definition.
adamc@552 1679
adamc@552 1680 \subsection{Unpoly}
adamc@552 1681
adamc@552 1682 This phase specializes polymorphic functions to the specific arguments passed to them in the program. If the program contains real polymorphic recursion, Unpoly will be insufficient to avoid later error messages about too much polymorphism.
adamc@552 1683
adamc@552 1684 \subsection{Specialize}
adamc@552 1685
adamc@558 1686 Replace uses of parameterized datatypes with versions specialized to specific parameters. As for Unpoly, this phase will not be effective enough in the presence of polymorphic recursion or other fancy uses of impredicative polymorphism.
adamc@552 1687
adamc@552 1688 \subsection{Shake}
adamc@552 1689
adamc@558 1690 Here the compiler repeats the earlier Shake phase.
adamc@552 1691
adamc@552 1692 \subsection{Monoize}
adamc@552 1693
adamc@552 1694 Programs are translated to a new intermediate language without polymorphism or non-$\mt{Type}$ constructors. Error messages may pop up here if earlier phases failed to remove such features.
adamc@552 1695
adamc@552 1696 This is the stage at which concrete names are generated for cookies, tables, and sequences. They are named following the same convention as for links and actions, based on module path information saved from earlier stages. Table and sequence names separate path elements with underscores instead of slashes, and they are prefixed by \texttt{uw\_}.
adamc@664 1697
adamc@552 1698 \subsection{MonoOpt}
adamc@552 1699
adamc@552 1700 Simple algebraic laws are applied to simplify the program, focusing especially on efficient imperative generation of HTML pages.
adamc@552 1701
adamc@552 1702 \subsection{MonoUntangle}
adamc@552 1703
adamc@552 1704 Unnecessary mutual recursion is broken up again.
adamc@552 1705
adamc@552 1706 \subsection{MonoReduce}
adamc@552 1707
adamc@552 1708 Equivalents of the definitional equality rules are applied to simplify programs, with inlining again playing a major role.
adamc@552 1709
adamc@552 1710 \subsection{MonoShake, MonoOpt}
adamc@552 1711
adamc@552 1712 Unneeded declarations are removed, and basic optimizations are repeated.
adamc@552 1713
adamc@552 1714 \subsection{Fuse}
adamc@552 1715
adamc@552 1716 The compiler tries to simplify calls to recursive functions whose results are immediately written as page output. The write action is pushed inside the function definitions to avoid allocation of intermediate results.
adamc@552 1717
adamc@552 1718 \subsection{MonoUntangle, MonoShake}
adamc@552 1719
adamc@552 1720 Fuse often creates more opportunities to remove spurious mutual recursion.
adamc@552 1721
adamc@552 1722 \subsection{Pathcheck}
adamc@552 1723
adamc@552 1724 The compiler checks that no link or action name has been used more than once.
adamc@552 1725
adamc@552 1726 \subsection{Cjrize}
adamc@552 1727
adamc@552 1728 The program is translated to what is more or less a subset of C. If any use of functions as data remains at this point, the compiler will complain.
adamc@552 1729
adamc@552 1730 \subsection{C Compilation and Linking}
adamc@552 1731
adamc@552 1732 The output of the last phase is pretty-printed as C source code and passed to GCC.
adamc@552 1733
adamc@552 1734
adamc@524 1735 \end{document}