Mercurial > meta
view incl.ur @ 23:9d6b931fbd13
Implement JSON type class for recursive datatypes, using Mu combinator.
author | Edward Z. Yang <ezyang@mit.edu> |
---|---|
date | Wed, 02 May 2012 11:47:37 -0400 |
parents | 744bf911dcc6 |
children |
line wrap: on
line source
con incl' = K ==> fn (r1 :: {K}) (r2 :: {K}) (r' :: {K}) => [r1 ~ r'] => {Expose : f :: ({K} -> Type) -> f r2 -> f (r1 ++ r'), Hide : f :: ({K} -> Type) -> f (r1 ++ r') -> f r2} con incl = K ==> fn (r1 :: {K}) (r2 :: {K}) => tp :: Type -> (r' :: {K} -> [r1 ~ r'] => incl' r1 r2 r' -> tp) -> tp fun incl [K] [r1 :: {K}] [r2 :: {K}] [r1 ~ r2] = fn [tp :: Type] (f : r' :: {K} -> [r1 ~ r'] => incl' r1 (r1 ++ r2) r' -> tp) => f [r2] (fn [r1 ~ r2] => {Expose = fn [f :: ({K} -> Type)] x => x, Hide = fn [f :: ({K} -> Type)] x => x}) fun proj [r1 ::: {Type}] [r2 ::: {Type}] (i : incl r1 r2) (r : $r2) = i [$r1] (fn [r' :: {Type}] [r1 ~ r'] (i' : incl' r1 r2 r') => i'.Expose [fn r => $r] r --- r') fun inv1 [K] [nm :: Name] [t :: K] [r :: {K}] [r' :: {K}] [[nm] ~ r] [f :: Name -> K -> {K} -> Type] (i : incl ([nm = t] ++ r) r') (f : nm :: Name -> t :: K -> r :: {K} -> [[nm] ~ r] => f nm t ([nm = t] ++ r)) = i [f nm t r'] (fn [r'' :: {K}] [[nm = t] ++ r ~ r''] (i' : incl' ([nm = t] ++ r) r' r'') => i'.Hide [f nm t] (f [nm] [t] [r ++ r''])) fun inv2 [K] [nm :: Name] [t :: K] [r :: {K}] [r' :: {K}] [[nm] ~ r] (i : incl ([nm = t] ++ r) r') = i [incl r r'] (fn [r'' :: {K}] [[nm = t] ++ r ~ r''] (i' : incl' ([nm = t] ++ r) r' r'') => fn [tp :: Type] (f : r''' :: {K} -> [r ~ r'''] => incl' r r' r''' -> tp) => f [[nm = t] ++ r''] (fn [r ~ [nm = t] ++ r''] => {Expose = fn [f :: ({K} -> Type)] (x : f r') => i'.Expose [f] x, Hide = fn [f :: ({K} -> Type)] x => i'.Hide [f] x})) fun fold [K] [tf :: {K} -> Type] [r ::: {K}] (f : nm :: Name -> v :: K -> r' :: {K} -> [[nm] ~ r'] => incl ([nm = v] ++ r') r -> tf r' -> tf ([nm = v] ++ r')) (i : tf []) (fl : folder r) = @Top.fold [fn r' => incl r' r -> tf r'] (fn [nm :: Name] [v :: K] [r' :: {K}] [[nm] ~ r'] acc i => f [nm] [v] [r'] i (acc (inv2 [nm] [v] [r'] [r] i))) (fn _ => i) fl (incl [r] [[]])