Mercurial > meta
view eq.urs @ 23:9d6b931fbd13
Implement JSON type class for recursive datatypes, using Mu combinator.
author | Edward Z. Yang <ezyang@mit.edu> |
---|---|
date | Wed, 02 May 2012 11:47:37 -0400 |
parents | 799f43bce62b |
children |
line wrap: on
line source
(** A constructor equality predicate *) con eq :: K --> K -> K -> Type val refl : K --> t ::: K -> eq t t val sym : K --> t1 ::: K -> t2 ::: K -> eq t1 t2 -> eq t2 t1 val trans : K --> t1 ::: K -> t2 ::: K -> t3 ::: K -> eq t1 t2 -> eq t2 t3 -> eq t1 t3 val cast : K --> t1 ::: K -> t2 ::: K -> eq t1 t2 -> f :: (K -> Type) -> f t1 -> f t2 val fold : K --> tf :: ({K} -> Type) -> r ::: {K} -> (pre :: {K} -> nm :: Name -> v :: K -> post :: {K} -> [pre ~ post] => [[nm] ~ pre ++ post] => eq r (pre ++ [nm = v] ++ post) -> tf post -> tf ([nm = v] ++ post)) -> tf [] -> folder r -> tf r val foldUR : tr :: Type -> tf :: ({Unit} -> Type) -> r ::: {Unit} -> (pre :: {Unit} -> nm :: Name -> post :: {Unit} -> [pre ~ post] => [[nm] ~ pre ++ post] => eq r (pre ++ [nm] ++ post) -> tr -> tf post -> tf ([nm] ++ post)) -> tf [] -> folder r -> $(mapU tr r) -> tf r val foldR : K --> tr :: (K -> Type) -> tf :: ({K} -> Type) -> r ::: {K} -> (pre :: {K} -> nm :: Name -> t :: K -> post :: {K} -> [pre ~ post] => [[nm] ~ pre ++ post] => eq r (pre ++ [nm = t] ++ post) -> tr t -> tf post -> tf ([nm = t] ++ post)) -> tf [] -> folder r -> $(map tr r) -> tf r val foldR2 : K --> tr1 :: (K -> Type) -> tr2 :: (K -> Type) -> tf :: ({K} -> Type) -> r ::: {K} -> (pre :: {K} -> nm :: Name -> t :: K -> post :: {K} -> [pre ~ post] => [[nm] ~ pre ++ post] => eq r (pre ++ [nm = t] ++ post) -> tr1 t -> tr2 t -> tf post -> tf ([nm = t] ++ post)) -> tf [] -> folder r -> $(map tr1 r) -> $(map tr2 r) -> tf r val foldR3 : K --> tr1 :: (K -> Type) -> tr2 :: (K -> Type) -> tr3 :: (K -> Type) -> tf :: ({K} -> Type) -> r ::: {K} -> (pre :: {K} -> nm :: Name -> t :: K -> post :: {K} -> [pre ~ post] => [[nm] ~ pre ++ post] => eq r (pre ++ [nm = t] ++ post) -> tr1 t -> tr2 t -> tr3 t -> tf post -> tf ([nm = t] ++ post)) -> tf [] -> folder r -> $(map tr1 r) -> $(map tr2 r) -> $(map tr3 r) -> tf r val foldR4 : K --> tr1 :: (K -> Type) -> tr2 :: (K -> Type) -> tr3 :: (K -> Type) -> tr4 :: (K -> Type) -> tf :: ({K} -> Type) -> r ::: {K} -> (pre :: {K} -> nm :: Name -> t :: K -> post :: {K} -> [pre ~ post] => [[nm] ~ pre ++ post] => eq r (pre ++ [nm = t] ++ post) -> tr1 t -> tr2 t -> tr3 t -> tr4 t -> tf post -> tf ([nm = t] ++ post)) -> tf [] -> folder r -> $(map tr1 r) -> $(map tr2 r) -> $(map tr3 r) -> $(map tr4 r) -> tf r val mp : K --> tr :: (K -> Type) -> tf :: (K -> Type) -> r ::: {K} -> (nm :: Name -> t :: K -> rest :: {K} -> [[nm] ~ rest] => eq r ([nm = t] ++ rest) -> tr t -> tf t) -> folder r -> $(map tr r) -> $(map tf r)